PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GOGF 9/46 Al

(11) International Publication Number:

(43) International Publication Date:

WO 98/19239

7 May 1998 (07.05.98)

(21) International Application Number: PCT/US97/19304

(22) International Filing Date: 24 October 1997 (24.10.97)

(30) Priority Data:

740,285 us

25 October 1996 (25.10.96)

(71) Applicant: HE HOLDINGS, INC., doing business as HUGHES
ELECTRONICS [US/US]; 7200 Hughes Terrace, P.O. Box
80028, Los Angeles, CA 90045-0066 (US).

(72) Inventors: THOMPSON, Christopher, J.; 2770 165th Street,
Surrey, British Columbia V4P 2L8 (CA). KRUCHTEN,
Phillippe; 2906 West 37th Avenue, Vancouver, British
Columbia V6N 2T9 (CA).

(74) Agents: GRUNEBACH, Georgann, S. et al.; Hughes Electron-
ics, 7200 Hughes Terrace, P.O. Box 80028, Los Angeles,

CA 90045-0066 (US).

(81) Designated States: CA, JP, KR, NO, European patent (AT,
BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: DISTRIBUTED VIRTUAL SOFTWARE INTERFACE OR MACHINE

(57) Abstract

A distributed virtual software interface (20) that provides
a reusable framework for building large, distributed fault toler-
ant Ada applications. The software architecture (20) is imple-
mented in a distributed computer system (30) having a plurality
of computers (31) that are interconnected by way of a network
(13), and wherein each computer (31) has an operating sys-
tem. The architecture (20) includes a distributed intermediate
software layer (21) that is distributed among the plurality of
computers (31) and interfaces with the operating system (11) of
the computer (31) on which it is disposed. The distributed inter-
mediate software layer (21) generates intermediate instructions
that cause the operating system (11) to implement primitive
operating system instructions. The distributed virtual software
interface (20) has a distributed object—oriented software layer
(22) distributed among the plurality of computers (31) that pro-
vides communication between computers (31) using objects.
The distributed object-oriented software layer (22) includes in-
structions that distribute objects of the same class to computers
(31) that are linked by attributes, operations and associations
between objects within a class in response to the creation of
a new object on one of the computers (31). Communication
between computers (31) is provided using a number of prede-
fined communication protocols. The distributed object-oriented
software layer (22) interfaces with the distributed middle soft-
ware layer (21) disposed on each respective computer (31) and
generates the intermediate instructions. At least one software
application is provided on each computer (31) that interfaces
with the distributed object—oriented software layer (22) and pro-
cesses objects routed to it.

2 23b 23c 23d 23 23t
appuication [z B[] =] [ofi ii i
sorrware (55| |5) (G Jol |S) 18] i1 |
runctions (5[IS5HIe] [Z] IB]IB]F it

0 <|: ::

24-% = I

5-[.- ‘-l-l
DISTRIBUTED
OBJECT-ORIENTED
221 FRAMEWORK
(VIRTUAL MACHINE)

21 DISTRIBUTED MIDDLEWARE (UNAS)

) OPERATING SYSTEM
111 AND COMMUNICATIONS (UNIX)
31 ¢ (
'\)
4 7 I I 13
30+ 31 COMPUTER COMPUTER|

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
Kp

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

ITreland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
uUs
UzZ
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 98/19239 PCT/US97/19304

10

15

20

DISTRIBUTED VIRTUAL SOFTWARE INTERFACE OR MACHINE

BACKGROUND

The present invention relates generally to distributed. fault tolerant computer
systems, and more particularly, to a distributed virtual software interface or machine
that interfaces between computers. operating systems and applications that run on the
computers of a distributed. multi-computer fault tolerant computer system.

Computers that are used in distributed, fault tolerant computer systems, for
example, have an operating system that embodies primitive instructional codes that
implement various services. Such primitive instructional codes route data to and from
storage devices. write data to display devices. send data to a printer or modem. and
transmit data across a network to other computers, for example. Unfortunately,
conventional computers and computer operating systems inherently limit the
development of large, distributed. fault tolerant computer systems, such as air traffic
control systems, and the like. ,

Conventional computer architectures and operating systems do not directly
support distributed computing environments where there is direct cooperation between
several processes required to perform specified system functions, including those with
clienUserver relationships. In addition, conventional computer architectures and
operating systems are not easily reconfigured on demand or in response to detected
hardware or operating system faults so that continuous service is provided in the event
of such fauits.

There are two primary motivations for building a distributed virtual machine as
contemplated by the present invention. The first is to permit large scale software reuse

10

15

20

25

30

35

WO 98/19239 PCT/US97/19304

2

within a product line (including all of its related parts: process. design, source code,
and documentation. The second is separating the functional concemns of the application
domain from the requirements of building a reliable distributed computer system.

Accordingly, it is an objective of the present invention to provide fora
distributed virtual software interface that interfaces between computers. operating
systems and applications that run on the computers of a distributed. multi-computer
fault tolerant computer system.

SUMMARY OF THE INVENTION

To meet the above and other objectives, the present invention provides for a
distributed virmal software interface that provides a reusable framework for building
large, distributed fault tolerant Ada applications. Ada is a registered trademark of the
U.S. government. Ada Joint Program Office. The framework. referred to as a
distributed virtual machine or distributed virtual software interface. provides a portable
suite of integrated services for building a wide variety of distributed. fauit tolerant
computer systems. The distributed virtal software interface specifically provides a
foundation for a family of automated air traffic control systems currently under
development by the assignee of the present invention.

The distributed virtal software interface provides for an object-oriented
software architecture that is implemented in a distributed computer system having a
plurality of computers that are interconnected by way of a network. Each computer has
an operating system that impiements primitive operating system instructions such as
network communications. data storage. data dispiay. and the like.

The architecture comprises a distributed intermediate software layer that is
distributed among the plurality of computers and interfaces with the operating system of
the computer on which it is disposed and that generates intermediate instructions that
cause the operating system to impiement primitive operating system instructions in
response thereto. A distributed object-oriented software layer is distributed among the
plurality of computers providing communication between computers using objects that
are instances of object classes that are defined by attributes of objects, operations on
objects and associations between objects. The distributed object-oriented software layer
comprises instructions that distribute objects of the same class to computers that are
linked by the attributes, operations and associations between the objects within the class
in response to the creation of a new object on one of the computers. Communication
between computers is provided using predefined communication protocols. At least

one software application is disposed on each computer that interfaces with the

WO 98/19239 PCT/US97/19304

distributed object-oriented software layer disposed on the respective computer and
processes objects distributed to it.

The distributed virtual software interface provides an "abstract instruction set"
for developing distributed computer systems. facilitating application development

h

without concern for the actual physical distribution of the computers forming the
system. This level of abstraction is essential for managing complex air traffic control
systems, for example, which typically require the development of up to one million
lines of Ada source code to effectively operate the distributed system.
The architecture of the distributed virtual software interface supports a
10 distributed computing system where there is direct cooperation between processes
required to perform specified system functions. including client/server relationships. In
addition, distributed computer svstems employing the distributed virtual software
interface may also be reconfigured on demand or in response to detected faults so that
the system provides continuous uninterrupted service.
15 The architecture of the distributed virtual software interface provides a robust
architectural framework for building large distributed Ada-based computer systems.
The architecture of the distributed virmal software interface provides a framework for
building similar fault tolerant applications through large scale reuse of previously
developed blocks of code. Large blocks of the distributed virtual software interface

20 may be reused within an array of computer systems, thus minimizing development
costs of additional systems.

BRIEF DESCRIPTION OF THE DRAWINGS
The various features and advantages of the present invention may be more
25 readily understood with reference to the following detailed description taken in
conjunction with the accompanying drawings, wherein like reference numerals
designate like structural elements, and in which:
Fig. 1 illustrates a conventional software architecture known in the prior art;
Fig. 2 is a diagram showing an object-oriented software architecture
30 implemented in a distributed computer system in accordance with the principles of the

present invention;

Fig. 3 shows a static view of a typical software architecture built using the
object-oriented software architecture of Fig. 2;
Fig. 4 shows a logical view of a set of classes making use of distributed object
35 services of the object-oriented software architecture;
Fig. 5 shows an illustration of an example object scenario based on the class
diagram of Fig. 4, using additional operation annotations:

WO 98/19239

10

15

20

25

30

35

PCT/US97/19304

Fig. 6 shows the same sequence of operations depicted in the scenario view of
Fig. 5. but showing an actual distribution of the resulting software:

Fig. 7 illustrates independent processing elements that comprise a class
implemented using distributed object services provided by the object-oriented software
architecture of Fig. 2; and

Fig. 8 illustrates elements of a distributed class.

DETAILED DESCRIPTION

Referring to the drawing figures. Fig. 1 illustrates a conventional software
architecture 10 that may be used with a piurality of computers 14 connected to a
network 13. Each of the computers 14 has an operating system 11 that permits
communication between the computers |4 and that implements primitive instructions
that operates each computer 14. Typicaily. one or more software applications 12 run on
each computer 14. In an example of an air traffic control system. such software
applications 12 may include flight management software 12a. conflict prediction
software 12b, sector management software 12¢. flow management software 12d. radar
data processing software 12, and display data processing software 12f, for example.

In the conventional software architecture 10 running on each of the networked
computers 14, each software application 12 directly communicates with every other
application using low level operating system services. This results in tight coupling
between the applications. wherein each appiication knows of the existence of the other
applications. In addition. a large amount of replicated functionality is implemented
within each application. Furthermore, each appiication is dependent on the particular
computer operating system and related hardware.

To improve upon the conventional software architecture 10 of Fig. I, Fig. 2
shows an improved distributed object-oriented architecture 20 that forms a distributed
virtual software interface or machine in accordance with the principles of the present
invention. The distributed object-oriented framework realized by the distributed virtual
software interface allows each of the applications to be less dependent on each other due
to its implicit invocation capabilities, allows common functions to be implemented once
within the framework rather than implemented repeatedly within the applications. and
allows applications to be developed without direct dependency on the operating system
or hardware. The distributed object-oriented architecture 20 is implemented in a
distributed computer system 30 having a plurality of computers 31 that each have an
operating system 11 and that are interconnected by way of a network 13.

The architecture 20 includes a distributed intermediate software layer 21 that is
distributed among the plurality of computers 31. At least a portion of the distributed

WO 98/19239 PCT/US97/19304

n

10

15

20

30

35

intermediate software layer 21 is disposed on each computer 31. and interfaces with the
operating system 1 | of the computer 31 on which it resides. The distributed
intermediate software layer 21 causes the operating system 11 to implement primitive
operating system instructions in response to intermediate instructions that are generated
thereby. A distributed object-oriented software layer 22 is distributed among the
plurality of computers 31. At least a portion of the distributed object-oriented software
layer 22 is disposed on each computer 31. and interfaces with the respective portion of
the distributed middle software laver 21 residing on the computer 31. At least one
software application is disposed on each computer 31 that interfaces with the distributed
object-oriented software layer 22 disposed on the respective computer 31.

The distributed object-orented software layer 22 provides communication
between computers 31 using objects that are instances of object classes that are defined
by attributes of objects. operations on objects and associations between objects. The
distributed object-oriented software layer 22 comprises instructions that distribute
objects of the same class to computers 31 that are linked by the attributes, operations
and associations between the objects within the class in response to the creation of a
new object on one of the computers 31. Communication between the computers 31 is
provided using predefined, well-known, communication protocols, including asyn-
chronous remote procedure call (ARPC), remote procedure call (RPC), asynchronous
message communication (AMC), and broadcast protocols. The distributed object-
oriented software layer 22 interfaces with the distributed middle software layer 21
disposed on each computer 31 and causes generation of the intermediate instructions.

Fig. 3 shows that large scale reuse is achieved by systematically supporting
variability in an underlyving commercial off-the-shelf (COTS) and hardware
environment that includes the distributed middleware layer 21 (such as the Universal
Network Architecture Services (UNAS) software) available from TRW Data
Technologies Division as well as in the application specific functionality, which
provides the ability 1o add new functionality or tailor existing functionality. The
separation of the functional concerns from those of building a reliable distributed
system is achieved by embodying resources that route data (distribute objects) in the
distributed virtual software interface 22 and providing a the simple, powerful interface
22 that permits application development. The distributed virtual software interface 22
has been designed with a number of architectural objectives including portability,
support of an object-oriented design, support for the distribution of objects, support for
event driven solutions. support for late binding of application processes to the actual

physical architecture (virtual node - physical node mapping), and support for fault
tolerance.

WO 98/19239 PCT/US97/19304

n

10

15

20

30

35

The distributed virtual software interface 22 is portable because it does not
depend on non-portable COTS software products. it uses a well-known International
Standards Organization (ISO) POSIX interface and Simple Network Management
Protocol (SNMP) standards, uses Ada type/byte stream conversions for communication
and storage of data in a heterogeneous environment. and isolates hardware or operating
system dependent features to software packages with portable specifications. The
distributed virtual machine 22 uses the UNAS COTS software layer 21 which is
portable to a wide range of hardware and operating system platforms.

A key aspect of the distributed virtal software interface 22 is its distributed
object service which provides access to objects of a given class in a transparent manner
with respect to their physical locations. The distributed object service allows
distributed application ciasses to be designed with interfaces where the details of the
distributed environment are encapsulated behind the ciass interface. The distributed
object service provides access to objects in a distributed environment. supports physical
distribution of object state (through replication) within the distributed environment
while ensuring data consistency, and provides class operation delegation which allows
a class operation to be invoked in one process and executed in another, such as on a
different computer 31 on the network 13.

The distributed virtual machine 22 also supports large scale reuse of the
software through its support for event-driven invocation (implicit invocation). Event-
driven invocation reduces coupling between cooperating objects and helps build
software architectures that are more resilient to changes. The distributed virtual
machine 22 supports the addition of new classes and customer specific functionality on
top of core application classes via implicit invocation based on changes in the
distributed state of the core application classes. This is accomplished through
registration, using a notification (NOTI) protocol. that allow classes to "register to be
notified” of changes to the distributed application state. Once registered. these classes
have their operations implicitly invoked when a specified change in the distributed state
occurs. This allows new application classes to be added on top of a core application
without modification (or changes in compilation dependencies) to the core application.

The distributed virtual machine 22 permits design decisions as to how
distributed applications are ultimately partitioned into independent processes (executing
Ada programs) and how those processes are allocated to the available distributed
hardware resources to be deferred until late in an application development process and
easily changed during the development process. This late binding to the physical
architecture and repartitioning into processes (with no or little code modifications)
makes systems built on top of the distributed virtual machine 22 casily managed during

WO 98/19239

10

15

20

25

30

35

PCT/US97/19304

development (when small. simplified configurations are often desirable). This late
binding aspect of the present invention also makes the systems easily scaleable to
widely different hardware configurations in support of large scale software reuse. The
distributed virtual machine 22 provides direct support for building fault-tolerant
distributed applications. Fault-tolerance is supported through a well-defined fault
detection and recovery taxonomy. and through automatic and manual reconfiguration of
the processes within a local area based distributed network 13 (LAN) of computers 31.

The architecture of the distributed virtual machine 22 will be further described
with reference to Figs. 4-8. The architecture of the distributed virtual machine 22 may
be "viewed" from different perspectives including: a static view (Fig. 4) that describes
the organization of the software in a development environment (and its compilation
dependencies), a logical view (Fig. 3) that is an object oriented model of the design, a
dynamic view (Fig. 6) that captures the concurrency and synchronization aspects of the
design, a physical view (Fig. 7) that describes the mapping of the software onto the
hardware, and a scenario view (Fig. 7) that describes its use. Fig. 8 illustrates
elements of a distributed class employed with the distributed virtual machine 27.

Referring to Fig. 4, it shows a static view of a typical software architecture 20
built using the distributed virtual machine 22. The architecture 20 is divided into layers
51-54 where each layer only depends on the layers 51-54 below it, in that al]
compilation dependencies are downward only). In this view, the distributed virtual
machine 22 sits at the bottom of the developed software hierarchy in terms of
dependencies. The distributed virtual machine 22 depends on a POSIX interface to the
operating system 1 1, a small number of operating system services outside of the
POSIX interface. and the UNAS software layer 21 (Fig. 2). The distributed virtual
machine 22 provides a simple, but complete interface to classes of applications 24 that
directly make use of it. Exported services provided by the distributed virtual machine
22 (object distribution, time distribution, and synchronization of objects. event and
error recording) allow application developers to focus on developing application
functionality, with minimal concemn regarding how the application operates in a
distributed environment. Because the distributed virtual machine 22 supports event
driven invocation, a top layer 51 of functionality is supported that makes use of the core
application layer 52 and is able to initiate operations on the core application 24 and have
its own operations implicitly invoked when changes in the distributed state of the core
application 24 occur.

Fig. 5 shows a logical view of classes 61-64 that use distributed object services
60 of the distributed virtual machine 22. The major class 61 in this example is a flight
class 61 that provides services to other higher level clients 71-73, which in this example

WO 98/19239 PCT/US97/19304

20

30

35

are an traffic client 71. an airline regulatory client 72. and an airline flight strip client

73. The flight class 61 uses distributed object services 60 to enable its operations and
state to be accessed and manipulated by clients 71-73 that are physically distributed.
The external interface (to the air traffic and airline regulatory clients 71, 72) and user
interface classes 62-64 have a "use" relationship with the flight class 60, allowing the
flight class 60 to be independent of its clients 71-73. Even though the class relationship
is 1n this direction. the distributed object services 60 allow the higher level classes 61-
64 to have their operations implicitly invoked when client specified changes occur to the
state of the flight class 61.

A scenario view is used to show how elements in the static and logical views
work together to provide end-to-end (externally visible stimulus and response)
operational capabilities. Scenarios are selected to demonstrate the certain "slices”
through the architecture 20. showing how various elements interact to achieve a
common objective. The design of a scenario is expressed using object scenario
diagrams that capture the dvnamic semantics and operational relationships between
objects.

Because of the architectural framework. and unique interclass relationships that
the distributed virtual machine 22 provides to applications built on top of it. a Booch
object scenario diagram notation has is used to explicitly make these interactions
visible. Classes 61-64 impiemented using the distributed object services 60 support the
following kinds of interactions with their clients 71-73: operation invocation using
normal Ada subprogram call semantics (referred to as "CALL"), operation invocation
using synchronous RPC semantics (referred to as "RPC™). operation invocation using
asynchronous RPC semantics (referred to as "ARPC"), and operation invocation using
implicit notification semantics (referred to as "N OTI").

The annotation of the associated object scenario diagrams with an appropriate
operation prefix (CALL. RPC. ARPC, NOTI) has been found to be an effective
technique for documenting the intended inter-class design decisions while providing
insight into the dynamic architectural view. Fig. 6 illustrates an example object
scenario based on the class diagram of Fig. 5, using additional operation annotations.

More specifically, Fig. 6 shows a typical pattern of an object 74 representing
the interests of an external system 71 (the air traffic client 71) using ARPC semantics
when invoking a file flight plan operation 75 exported by the flight class 61 (Fig. 5).
This allows the file flight plan operation 75 to be delegated and performed elsewhere
within the distributed system 20. The air traffic object 74 asynchronously receives
results from the invoked file flight pian operation 75 (e.g., a semantic response 75a
indicating the outcome of the requested operation). The delegation and subsequent

WO 98/19239 PCT/US97/19304

10

15

20

25

30

35

implementation of the file flight plan operation 75 is encapsulated within the flight class
61. As part of the implementation of the file flight plan operation 73, a distributed
object 76 is used to commit the newly created object state. This allows the distributed
object services 60 to subsequently redistribute (replicate) the object 76 to other
processes and computers 31 (or nodes 31), such as an airline regulatory object 77 (the
airline regulatory client 72) and electronic flight strip 78 (the electronic flight strip client
73) within the distributed system 20 that require such objects. Finally, any other client
classes that have expressed interest in newly created flights flight plans 75 will have
their operations implicitly invoked using the notification services (NOTI) provided by
the distributed object services 60.

The dynamic and physical views of a system having the distributed virtual
machine architecture 20 are shown in Fig. 7. These views show the effect of building
distributed application classes using the services of the distributed virtual machine 22
In Fig. 7, the same sequence of operations as shown in the scenario view of Fig. 6is
depicted. but an actual distribution of the resulting software is shown. In this case, the
file flight plan operation 75 invoked in a process 81 (Process 1) on one computer 31
(Node A), is implemented in another process 82 (Process 2) on another computer 31
(Node B), and reactions to the newly created object 73 are triggered in different
processes 83-85 on various computers 31 (Nodes B-D).

An important property of the distributed object services 60 of the distributed
virtual machine 22 is that inter-process communication within the architecture 20 is
between instances of the same class. This is because the architecture of the distributed
virtual machine 22 allows distributed classes to encapsulate. behind their interfaces.
details of any physical distribution of objects that occurs. A client 71-73 (such as the
air traffic client 71, the airline regulatory client 72, or the electronic flight strip client 73)
or client class simply invokes a particular class operation using either synchronous or
asynchronous semantics (this is a client decision), while the details of how and where
the operation is actually executed is not visible to the client 71-73.

Fig. 7 also shows the clientserver relationships that exist between processes
81-85 and classes 61-64. The relationship between two processes 81-85 is always
client/server, and a single process 81-85 can be both a client and a server. In Fig. 7,
the first process 81 (Process 1) is a client of the second process 82 (Process 2), and the
second process 82 (Process 2) is a client of the third process 83 (Process 3). The
client/server model also extends to the class level. In addition, in order to describe a
distributed class, the a service interface is used (in addition to client and server). The
air traffic class 62 and the flight class 61 have a client/server relationship because the air
traffic class 62 invokes operations of the flight class 61. However, the flight class 61

WO 98/19239 PCT/US97/19304

n

10

15

20

25

30

35

10

operates as a service interface and a server depending on which process 82. 83
(Process 2 or 3) it executes. The flight class 61 in the first process 81 (Process 1)
operates as a service interface because it is primarily responsible for delegating
operations to the instance of the class operating as a server in the second process 82
(Process 2). This client/service-interface/server relationship is applied uniformiy in all
distributed class interactions.

Fig. 7 shows the role of the distributed object service 60 (Fig. 5) in physically
distributing copies of objects 76 to nodes 31 (computers 31) and processes 82-85
where they are required. The distributed object 76 in the third process 83 (Process 3)is
a reference copy of the object 73. while distributed objects 76 in the second. fourth and
fifth processes 82. 84, 85 (Processes 2, 4, 5) are surrogate copies of the object 76. It
is the responsibility of the distributed object service 60 to ensure all objects 76 remain
consistent and provide uniform access to object state independent of the existence of a
local surrogate copy.

The ability to provide simple exported interfaces for distributed classes 61-64
that are immune to changes in the dynamic and physical architectures, and the
operations provided by the distributed virtual machine 22, allow details of the
distribution to change without any impact on the client or server classes 61-64. Each
independent process 81-85 that is based on services provided by the distributed virtual
machine 22 conceptually has a single thread of control. Processing is always initiated
by receipt of a message (ARPC, RPC, NOTI) and may occur asynchronously or
periodically. This simplified concurrency model within processes 81-85 greatly
reduces debugging complexity that is often found in multi-tasking applications and
eliminates any concern for murual exclusion within the context of a process 81-85.
Where additional asynchronous behavior is required. the distributed virtual machine 22
provides a light weight thread scheduler (referred to as the Pivot thread scheduler)
whose services are detailed below.

A more detailed description of the services provided by the distributed virtual
machine 22 are described below in a bottom-up fashion, starting with low-level
services and then higher level distributed services. The distributed virtual machine 22
provides a number of low level services for its own use as well as for applications.
The distributed virtual machine 22 uses subprogram variables. In order to provide a
functionality similar to types "access to subprograms” in Ada 95, a subprogram
variable service allows the creation of objects that are "pointers" to procedures with
specific parameter profiles. Subprogram variables are ‘type safe", and are modeled
after Ada 95 access to subprograms. The use of subprogram variables in the
distributed virtual machine 22 provides support for event-driven (implicit) invocation.

WO 98/19239 PCT/US97/19304

10

15

20

30

35

Il

An off-line tool. ATIG (Ada Type Interchange Generator, developed by Little
Tree Consulting), is used to automatically generate Ada code that converts Ada objects
into common "byte stream” data types and vice-versa. This mechanism is similar to the
stream I/O attributes of Ada 95. but is implemented in Ada 83/87. This tool is widely
used in the implementation of the distributed virtual machine. It allows heterogeneous
communication between processes with no need for representation clauses. Two
formats are supported. including a binary format and a human-legible (text) format.

The Pivot thread scheduler is a very light weight asynchronous thread schedujer
that does not use Ada tasks. Services provided by the Pivot thread scheduler have been
developed to provide a high-performance scheduler where a potentially large number of
dynamically created asynchronous threads are required. High performance is obtained
because there are no task or process context switches. nor any need for additional
mutual exclusion mechanisms. A Pivot thread is associated with an Ada procedure.
Each Pivot thread is a member of a “group” where all threads of the same group share a
common context. Each thread can also have a private context, persistent between
invocations of the thread.

There are different kinds of threads and ways to invoke them. A thread may be
time sensitive (periodic), event sensitive (reacting to the occurrence of a global
stimulus), command sensitive (reacting to a stimulus directed to its group), response
sensitive (reacting to a stimulus specifically directed to the thread) or synchronous
(directly invoked). The Pivot thread scheduler also supports implicit invocation. It
provides services of a bookkeeper. a dispatcher. and a watchdog. It manages service
requests and delivers subsequent responses. Such schedulers are generally well
understood by Ada programmers.

The Pivot thread scheduler is a software component that provides threads of
control. The Pivot scheduler provides services of a bookkeeper, maintaining
knowledge of which threads have expressed an interest in particular events. The Pivot
thread scheduler provides services of a dispatcher, invoking threads in response to the
occurrence of events that have been designated as “interesting”. The Pivot thread
scheduler provides services of a broker. managing a context that may be shared by a
number of threads that contribute to0 a collective goal. The Pivot thread scheduler
provides services of a watchdog, alerting those threads that have requested to be
invoked when a specified period of time has elapsed. The Pivot thread scheduler
provides a mechanism that orchestrates execution of an application whose behavior is
highly dependent upon a number of dynamic state variables.

Threads are references to subprograms whose invocations by the thread
scheduler are based on three different sensitivities: events. responses, and times. There

WO 98/19239 PCT/US97/19304

10

15

20

25

30

35

12
are three categories of Pivot threads that exploit these sensitivities, namely, event
sensitive. response sensitive. and time sensitive threads. respectively.

An application creates an event sensitive thread that is invoked as the result of
specific events, which, for example. may be produced in response to distributed object
notifications. When an application "produces” an event. all threads having expressed
an interest in the event are "dispatched” by the Pivot thread scheduler. Whereas the
creation of an event results in the dispatch of any number of event sensitive threads that
have previously expressed interest, a response sensitive thread is created to direct data
to a single thread. The application creates a time sensitive thread that is invoked as the
result of an expiry condition specified in an argument list. In general. the creation of
threads using the Pivot thread scheduler is well understood by Ada programmers.

The distributed virtual machine 22 provides several parameterization services to
its clients 61-64. The distributed virtual machine 22 uses these parameterization
services to provide portability and scalability. These services allow each executable
program 1nstance (o have its behavior tailored by a set of resource data. Thus. a
program instance is a pair: {executable binary, resources]. A resource is an initia] value
that was not written explicitly in the source code but must be provided for the program
torun. A resource can be as simple as a single integer value or as complex as a table of
arbitrary values. Two kinds of resources include constant and variable system
parameters which allow the parameterization of applications and of the distributed
virtual machine 22 before start of execution (constant system parameters) and during
runtime (variable system parameters). Constant system parameters may be used during
elaboration (for example. for the bounds of subtypes). Services to define and manage
collections of system parameters are provided by the distributed virtual machine 22,

The system parameter mechanism allows generation of binary data files that are
read by the software when it is initially loaded. The advantage of this mechanism is
that it allows modification of these parameters, thereby modifying the software
behavior in some desired way without the requirement to modify source code and
recompile and relink all of the software. This significantly shortens the time it takes to
make certain changes to the system.

The distributed virtual machine 22 permits the use of Ada exceptions.

However. an application running under normal operating conditions should not raise an
Ada exception. The explicit raising of an exception under abnormal conditions is
always made through an error reporting mechanism, by reporting an error with an
appropriate severity. The different severities include informative, which is used to
report interesting, but infrequent events; warning, which is used to report an

unexpected condition within the software, but local recovery was possible and the

WO 98/19239 PCT/US97/19304

10

15

20

25

30

35

13

software is able to continue to provide service: serious but not fatal. which is used to
report that the current operation is unable to be completed. but there is no reason that
subsequent operations won't be successful: controlled and fatal, which is used to report
the occurrence of a fatal event. but the software knows what’s wrong and is confident
that a controlled shutdown of the process will be successful: and wild and fatal. which
is used to report conditions that should never happen, such as if there is a strong
indication of a programming error. or the loss of an essential system resource
(memory). Only the last three reports result in an exception, and only the exception
raised for severity "serious but not fatal" is handled by the general application code.
The primary motivation for this strategy is to avoid exception handling code from
creeping all over the place and dwarfing the useful code, a phenomenon often observed
in large Ada systems. The error reporting mechanism allows applications to define and
report their own errors and to parameterize the error text through resource data.
Reported errors are centralized for recording. for display and for subsequent query.

The distributed virtual machine 22 provides services that allow an application to
be instrumented for the collection of performance data. The distributed virtual machine
uses this capability for some of its operations in implementing the distributed services.
These services support the grouping of measurements for input to statistical analysis
and threshold evaluation. The services support the development of higher leve]
responses (i.e., application specific) to sustained poor performance trends. (NOTE: if
this topic is not pertinent to the invention. then it should be deleted. Otherwise. this
topic needs to be explained in more detail.)

The distributed virtual machine 22 provides services that allow application
classes to achieve intra-class message-based communication independent of their
physical location in the architecture. Class communication services are the foundation
for all inter-process communication. A class 61-64 may have different roles with
regard to inter-process communication: service interface, server or both.

There are four types of communication protocols used in the distributed virtual
machine 22. An ARPC protocol is used by the vast majority of classes. This is the
standard protocol used for all delegated operations. The caller's thread of control is
released immediately after sending the message, and the caller will be notified
(asynchronously) when a return message is received. The ARPC model is based on the
metaphor of taking one’s car in to be serviced at an auto repair shop. The general
sequence of events is illustrated as follows.

A client takes a car to the repair shop requesting work to be performed (invokes
a class operation). At the same time, the client also provides a phone number (in

addition to other normal input parameters) so that the repair shop can call back when the

WO 98/19239 PCT/US97/19304

w

10

15

20

25

30

35

14

service is complete (implicitly invoke the client to inform of operation compietion). As
a result of the request for service. the client is provided a work order that uniquely
identifies this service request (an output parameter of the operation request). At some
time later. the client (asynchronously) receives a phone call from the repair shop
indicating that the requested service (operation) has been completed. Once again, the
work order is used to uniquely identify the requested operation. At some time
convenient to the client, the client returns to the repair shop (invokes a class operation
to retrieve the results of the requested operation). Based on the work order the results
of the service (operation) are returned to the client.

An RPC protocol is used by classes that need to implement synchronous
communication. The caller’s thread of control is blocked until a return message is
received or the RPC times out. An AMC protocol is used by classes implementing
some ad-hoc communication protocol. A broadcast protocol is used to distribute
messages to muitiple receivers. The broadcast protocol enables a class to broadcast a
message to multiple destinations by sending only one physical message over the
network. Class instances can act as transmitters or can subscribe to the broadcast
service, in which case they will receive all subsequent broadcast messages of the class.

The distributed object service 60 allows applications to access objects of a class
without concern for where the objects are actually located within the distributed system
20. It provide its users with features including uniform access, an application-oriented
cache, data consistency, notification. failure recovery, time management. notices,
recording services. data extraction services. and tactical configuration. Uniform access
refers to the ability of a distributed class (and consequently clients of that class) to
access any of its objects without knowledge of the actual location of the object.

With regard to the application-oriented cache (illustrated in Fig. 8), local
caching of objects (i.e., the physical distribution of objects values throughout the
system) allows distributed classes (and their clients) to make the best possible use of
limited memory resources (and network bandwidth) by indicating, on the basis of local
knowledge of an object’s criteria of interest. that certain objects should be immediately
available for read access at any time. This service is known as subscription and the
local copies of object values are referred to as surrogates.

A subscription to objects can be expressed either through a filter or by explicit
specification of an object’s handle. A filter provides a means of specifying a subset of
the objects of a class by applying a Boolean predicate to each object of the class when it
is updated for those objects that are of interest. The subscription capability directly
supports the software design principle of bringing objects to where they are needed
rather than always deferring to some central processing resource. Not only does this

WO 98/19239 PCT/US97/19304

N

10

15

20

30

35

15

provide for improved response times for read access to objects, but it also supports
continued access to objects even during failure of other processing elements, thus
contributing to the fault tolerance characteristics of the distributed virtual machine.

Data consistency is ensured between multiple copies of a given object within a
class (and across different classes). Transactions allow several objects (possibly of
different classes) to be accessed automatically, in the sense that modifications
performed in the course of the transaction are committed on an all-or-nothing basis.
The notification capability allows clients to register to be notified (via a callback) of
changes to objects of a distributed class. This capability allows for the reversal of
dependency between two classes. and allows the distributed class to only be concerned
with maintaining its own state. rather than also conceming itself with the other classes
that are interested in those state changes.

The notification capability allows the client class to register interest in objects
based on their state or based on changes to their state. As with the subscription
capability, a filter may be specified to indicate which objects are of interest. When an
object is committed at its central object store. its state is evaluated against the notifica-
tion fiiter and if it passes. then the client is notified. In addition to expressing interest in
objects via a filter, clients may also express interest based on change to the state of an
object. A mutation is a description of the difference between two objects. When two
objects are successive versions of the same object, a mutation describes the set of
changes that occurred from one version to the next. Mutations allow clients to be
notified upon arbitrary change to some set of attributes of an object. The mutation is
always used in conjunction with a notification filter and acts as a second level criteria
that must be passed before a notification will occur. The mutation of an object s
computed in a central object store (at transaction commit time) and distributed as an
additional attribute of the object. This allows the mutation to be accessed as any other
attribute of the object. allowing clients of the distributed class to base their processing
on knowing exactly which attributes changed in the current version of the object.

Automatic failure recovery is supported by keeping one or several backup
copies of each object on various processing nodes 31. and ensuring that these copies
remain synchronized and consistent.

With regards to time management. the distributed virtual machine 22
simultaneously supports concepts of real and logical time. Logical time is a time that
has a linear relation with real time. The parameters of this linear relation may be
modified on line, within limits. For each type of time (real and logical) there is a

corresponding type of duration (real and logical). In an operational system. logical time

o

WO 98/19239 PCT/US97/19304

wn

15

20

30

35

16

1s equivalent to real time. For training or simulation. logical time may be different from
real time: it may flow "faster” or "slower”, or be "frozen".

The real time clock is provided by the host processor system time. The
distributed virtual machine 22 assumes that the different processor system clocks are
synchronized by an external mechanism. such as the well-known Network Time
Protocol (NTP). The services provided on times and durations are reading the current
(real or logical) time. arithmetic on times and durations. and control of the distributed
logical time (setting the initial time, modifying the time flow, that is the “speed"” of the
logical time versus the real time) for all the processes of an application. real and logical
timers. "one shot" or cyclic. that invoke a specified operation when they expire.

The distributed virtual machine 22 provides a notice mechanism that is used to
disseminate operational events. This is another mechanism that supports the concept of
implicit invocation: when a notice is created. it can be received by any interested client
in the system without the creator’s knowledge of the particular recipients. The notice
mechanism is based on a metaphor of pinning notes on a bulletin board and allowing
unknown interested parties to read and react to them.

Notices are divided into notice categories. and each notice category is further
subdivided into keyword subsets. A notice belongs to a single notice category and is a
member of one or more keyword subsets. Each notice contains some information, the
type of which depends on the notice category.

A bulletin is a set of notice categories. Each notice category is a member of one
or more bulletins. A notice is "posted” on all of the bulletins associated with its
category. A notice has one creator and zero or more subscribers. Subscribers may
subscribe to individual notice categories. as well as to bulletins. Each notice has a state
during its lifetime: created. completed or timed-out.

Notices have several characteristics. in that their lifetimes may be limited. and
upon expiration. a notice will be automatically deleted. Subscribers may "respond” to a
notice, giving feed-back to the creator. A number of responses to a notice may be
required. and when this number of responses is given. the state of the notice is changed
to "completed”. For notices that need one or more responses, a "response " period may
be limited. If at the end of this period, the proper number of responses have not been
recetved, the state of the notice becomes "timed-out". Notices, when they are "timed-
out", may be escalated: another notice of a different category, displayed on different
bulletins, is created and distributed to potentially different subscribers. A notice may be
"updated" by its creator after its creation. Subscribers to a specific notice category may
specify the states and keywords for which they want to be notified.

WO 98/19239 PCT/US97/19304

10

15

20

25

30

35

17

The distributed virral machine 22 provides a recording mechanism that allows
applications to record on-line distributed operational data in a central location. The
metaphor of a sound track studio is used to implement this mechanism. with classes
such as signal. mixer, recorder. tape and tape library. Similar recorded data of all
processes in an application are centralized on one physical location. Fault tolerance
mechanisms are used to ensure continuous operation of the recording services. Data
extraction services are also provided to support application level data reduction and
report generation.

Tactical configuration services of the distributed virtual machine 22 provide
capabilities to manage and control mapping of the dynamic architecture to the physical
architecture. This is accomplished through real-time monitoring of the current system
configuration. manually controlling the current system configuration (startup, shut-
down. reconfiguration). and automatic reconfiguration in response to svstem faulits.

The distributed virtual machine concept for management of a network starts
with the notion of a logical network. where a logical network is a set of communicating
processes, operating within a common (logical) time base. that provide a service. The
distributed virtual machine 22 supports managing multiple simultaneous logical
networks that share the same set of physical resources (nodes 31 and physical network
13). Each logical network includes many settings where each setting is a named
collection of processes that may execute on a node 31 of the physical network 13.

The monitoring capabilities provide insight into the current logical networks,
settings and processes as well as insight into the current allocation of nodes 31 to the
physical network 13. The manual reconfiguration services allow for controlled system
level starup and shutdown as well as the execution of scripted reconfigurations without
service interruption. Common reconfiguration actions can be saved as a script and
recalled at any time.

A description of how the distributed virtual machine 22 may be used to build
fault tolerant distributed applications is described below. Fault tolerance is defined and
a general taxonomy of faults that the software can detect and respond to is discussed.
Each of the software services provided by distributed virtual machine 22 that play a
significant role in the fault tolerance approach is discussed.

A distributed application provides services. A service is correct if, in response
to inputs, it behaves in a manner that is consistent with its specification. When a
service fails to behave in its prescribed manner, then a fault has occurred. If a fault is
unhandled or exists for a prolonged time, then a failure has occurred. The fault tolerant
mechanisms of the distributed virtual machine 22 prevents failures from occurring.

WO 98/19239 PCT/US97/19304

wn

10

15

20

25

30

35

18

From the very specific to the very general. software faults can be classified into
the following hierarchy which includes crash fault. omission fault, timing fault and
arbitrary fault. A crash fault is the failure of a service to respond to an input and all
subsequent inputs. An omission fault is a super-set of crash faults. and includes the
case where a service fails to respond to a particular input, but may respond to
subsequent inputs. A timing fault occurs when a service fails to respond or responds
too early or too late. Performance fauits are a subset of timing faults that are
predominantly due to responses that are too late. An arbitrary fault is either a timing
fault. or the service produces a response different from the one specified.

The distributed virtual machine 22 provides a variety of integrated services to
detect and recover from the various classes of software faults. Tactical configuration
services are responsible for detection and process level recovery from crash faults.
Class communication services are responsible for the masking (from the application
classes) of crash faults and the detection of omission faults. The distributed object
services are responsible for ensuring data consistency and continued access after the
recovery from crash and omission faults. Performance measurement services are
responsible for the detection of performance faults.

The tactical configuration services that support the detection and recovery from
crash faults are described below. The crash fauits handled by the tactical configuration
services can be further divided into process faults and node faults. Process faults can,
in turn, be divided into three sub-categories depending on the kind of failures they may
lead to: blindfolded. wild, and controlled failures.

Blindfolded failures occur when a process fails without even being aware of it
(for example, a class enters an infinite loop). The watchdog capabilities of the UNAS
software layer 21 are responsible for detecting these failures. Wild failures are detected
from within the process. but their origin or impact is unknown. These failures manifest
themselves as unhandled exceptions and are detected by an exception handler at the
bottom stack frame of the main task in each process. Controlled failures are the result
of an explicit action by the software that has detected a fatal condition. Controlied
failures manifest themselves as a unique Ada exception raised in response to the
reporting of a fatal condition. A controlled failure is different from a wild failure in the
sense that with a controlled failure, the process can be shutdown in an organized
fashion, giving the applications an opportunity to save data or do any other appropriate
task.

To enable tailoring of recovery processing in response crash faults, each active
process operates in a process mode, which helps define the process’s fault tolerance

strategy. The distributed virtual machine 22 supports the following predefined process

WO 98/19239 PCT/US97/19304

10

15

20

30

35

19

modes: solitary, sharing, primary, and secondary. A process is in the solitary mode if
it is actively providing services to client processes, and there are no associated sharing
or secondary processes active. A process is in the sharing mode if it is actively
providing services while operating in a network configuration where there are multiple
instances of this same process actively sharing the service load. A process is in the
primary mode if it is actively providing services and is operating in a network
configuration where it has been paired with another process in secondary mode.

A process in the secondary mode is not actively providing services (to client
processes), but is potentially interacting with another process instance operating in
primary mode. The secondary mode process is responsible for being prepared to take
over the services provided by the primary mode process in the event of a fault.

Resource data. along with the mode of the process experiencing the failure,
determine the particular recovery action to be taken in response to a crash fault.
Recovery actions can be specified for individual processes. for individual nodes 3 1,or
for the entire network, providing a natural hierarchy of possible recovery actions
dependent on the type of failure (process or node 31) and the current system
configuration. In the case of an entire node failure, a special mode (node failure) is
used to direct the particular recovery actions.

Tactical configuration services support recovery strategies in response to crash
faults including starting a new process on the same node 31 or on a different node 31;
changing the mode of an existing process on the same node 31 or a different node 31;
shutting down an existing process on the same node 31 or a different node 31: and
performing a soft shutdown and warm restart of the failed process (applicable for
controlled failures).

The class communication services play two roles in the fault tolerance design:
aiding in the masking of crash faults by supporting automatic re-establishment of
client/server communication paths as part of node 31 or process recovery actions taken
by the tactical configuration services, and providing automatic detection of omission
faults.

The masking of crash faults from the majority of the application code occurs as
the result of the automatic recovery actions described in the previous section as well as
the automatic re-establishment of client/server communication paths performed by the
class communication services. After the recovery of a failed server process (on the
same or different node 31), the class communication services automatically determine

the new address for the server and re-establish the communication connections between
that server and all of its clients.

WO 98/19239 PCT/US97/19304

wh

10

15

20

30

35

20

In addition, the class communication services export operations that allow
distributed classes to be built such that they take explicit advantage of operating in the
sharing or primary/secondary configuration. These operations support the design of
higher level fault recovery strategies within distributed classes by allowing them to
naturally react to changes in the network topoiogy.

Omission faults are a super-set of crash faults and include the case where a
server fails to respond to a request but has not crashed. Omission fault detection has
been built into the asynchronous and synchronous remote procedure call (ARPC and
RPC) protocols provided by the class communication services through the automatic
detection of time-out conditions. These protocols detect the failure of a server to:
respond to a client request within a specified duration. If a client does not receive a
response within the specified duration. an error response is generated and returned to
the client indicating that the request has not completed due to a time-out. The RPC and
ARPC protocols guarantee that once a client receives a time-out indication, the client
will not receive the real response later, even if it actually arrives.

The time-outs built into the ARPC and RPC protocols are only intended to
detect conditions when something has really gone wrong, rather than detecting the
condition where responses are just late (timing fault). Consequently, the time-out
duration associated with an ARPC or RPC is several times larger than the actual time
the request is expected to take.

There is a tension between the goals of data integrity, fast response time and
fault-tolerance. Providing data integrity requires that only a single copy of each object
be maintained, and all accesses 1o an object be serialized. Fast response ume (less than
a second or even half a second) to air traffic controllers, and high fault-tolerance and
availability of the system all require to bringing objects close to where they are being
used. This, in turn, leads to a high degree of redundant information. The distributed
object services resolve this tension by providing fast read access to objects through
replication, while still ensuring data integrity, even in the presence of faults.

Fig. 8 illustrates independent processing elements or components that comprise
a class implemented using distributed object services of the distributed virtual machine
22. The components include class instances providing service interface behavior. class
instances providing server role behavior, and central object storage/data
consistency/availability assurance.

Referring to Fig. 8, a plurality of individual computers 31 are shown that each
run processes 81-85 (i.e., Ada programs). The processes 81, 82 shown in the top
portion of Fig. 8 each contain a client application 922, 92b (Client) making use of the
services of a distributed class 91. The distributed class 91 illustrated on the left side of

WO 98/19239

10

15

20

25

30

35

PCT/US97/19304

21

Fig. 8 is in a service interface role and communicates with one or more instances in a
server role (shown by the processes on the right side of Fig. 8). The bi-directional
arrow connecting the computers 31 represents internal communication that occurs
during operation delegation. Each process 81. 82 that contains a distributed class 91
also contains a single transaction manager 94. Both the distributed class 91 and the
transaction manager 94 communicate with the primary central object store 95 associated
with the distributed class 91. The central object store 95 is responsible for committing
transactions. distributing surrogate copies of objects to proper remote caches 96 . and
communicating with a secondary central object store 97.

Of these core capabilities of the distributed object services, the data consistency,
notification. and automatic failure recovery capabilities play key roles in the fault
tolerance system 20. Ensuring data consistency in the presence of crash faults is the
combined responsibility of the transaction manager 94 and the central object store 95
provided by the distributed object services. The transaction manager 94 provides
operations to initiate, roll back, and commit transactions. Integrity is ensured by keep-
ing in a transaction log all modifications to objects requested as part of that transaction,
and making their effect permanent only upon the successful completion of the commit
operation. If the transaction is rolled back. or is never committed due to the occurrence
of a fault. the transaction log is discarded and no change to the object state occurs.

The design of the transaction manager 94 was heavily influenced by the desire
for it to be as "light-weight" as possible. This is why the transaction manager 94 is not
based on the use of locks or two-phase-commit protocols. but an approach of detecting
object version mismatches at transaction commit time (rather than trying to secure locks
on objects at each step of the transaction).

From the above description of the transaction capabilities, the transaction man-
ager 94 ensures data integrity in the case of a crash fault occurring in the committing
process (prior to the transaction being committed). The transaction manager 94 only
partially accounts for ensuring data integrity in the case of a crash fault occurring in the
primary central object store 95. The automatic failure recovery capability provided by
the distributed object services provides the balance of the capabilities. The automatic
failure recovery capabilities provided by the distributed object services provide toler-
ance in the presence of crash faults occurring in the primary central object store 95 or in
the case of complete node failures. The automatic failure recovery functionality is an
example of the primary/secondary process mode capabilities described above.

For each central object store operating in the primary process mode. there may
exist another central object store operating in the secondary process mode on a different

computer 31. It is the responsibility of the primary central object store 95 to keep the

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 98/19239 PCT/US97/19304

22

secondary central object store 97 synchronized regarding the state of all objects. The
communication that occurs when committing a transaction. described above. as well as
the communication that occurs when initializing the secondary central object store,
accomplishes this synchronization.

In the case where the tactical configuration mechanism detects a crash fault in
the primary central object store process, the automatically initiated recovery action
causes the secondary central object store process to undergo a mode change, from
secondary to primary. In addition, it is the responsibility of the central object store to
provide persistence for all objects. This persistency is relied upon when the system is
initially started or re-started from a cold state.

The notification capability provided by the distributed object services provides a
powerful form of communication between classes by allowing an operation of one class
to be implicitly invoked as the result of a change to the state of an object in another
class. Since notifications trigger second-order processing on other classes. it is impor-
tant that these events are not lost in the presence of faults. Performing the evaluation of
notification criteria (and subsequent notifications), not only at transaction commit time,
but also when the notification criteria are initially registered or re-registered, ensures
notification events occur. even in the presence of faults. By evaluating notification
criteria at the time of registration. the distributed virtual machine 22 can recover from
both crash faults in the primary central object store 95, and in any second-order
processing (i.e.: the second-order processing will occur).

The distributed virtual machine 22 has been reduced to practice and is currently
undergoing testing. The enure framework currently represents over 50.000 source
lines of Ada code (not including the UNAS software layer 21). The distributed virtual
machine 22 has been tested in distributed systems that have physical networks
containing over fifty computers 31 or nodes 31.

Thus, a distributed virtual software interface that interfaces between computers,
operating systems and applications that run on the computers of a distributed. multi-
computer fault tolerant computer system has been disclosed. It is to be understood that
the described embodiment is merely illustrative of some of the many specific embodi-
ments which represent applications of the principles of the present invention. Clearly,
numerous and other arrangements can be readily devised by those skilled in the art
without departing from the scope of the invention.

' SUBSTITUTE SHEET (RULE 26)

WO 98/19239 PCT/US97/19304

10

15

20

23

CLAIMS
What is claimed is:

1. An object-oriented software architecture (20) implemented in a distributed
computer system (30) having a plurality of computers (31) that are interconnected by
way of a network (13), and wherein each computer (31) comprises an operating
systemn, said architecture (20) characterized by:

a distributed intermediate software layer (21) that is distributed among the
plurality of computers (31) that interfaces with the operating system (11) of the
computer (31) on which it is disposed and that generates intermediate instructions thét
cause the operating system (11) to implement primitive operating system instructions in
response thereto,

a distributed object-oriented software layer (22) distributed among the plurality
of computers (31) that provides communication between computers (31) using objects
that are instances of object classes that are defined by attributes of objects, operations
on objects and associations between objects, and wherein the distributed object-oriented
software layer (22) comprises instructions that distribute objects of the same class to
computers (31) that are linked by the attributes, operations and associations between the
objects within the class in response to the creation of a new object on one of the
computers (31), and wherein communication between computers (31) is provided using
predefined communication protocols, and wherein the distributed object-oriented
software layer (22) interfaces with the distributed middle software layer (21) disposed
on each respective computer (31) and causes generation of the intermediate instructions;
and

at least one software application disposed on each computer (31) that interfaces
with the distributed object-oriented software layer (22) disposed on the respective

computer (31) and processes objects distributed to it.

2. The architecture (20) of Claim 1 wherein the operating system (11) is
characterized by a UNIX operating system (11).

3. The architecture (20) of Claim 3 wherein the distributed intermediate
software layer (21) is characterized by Universal Network Architecture Services

software.

WO 98/19239 PCT/US97/19304

24

4. The architecture (20) of Claim 3 wherein the distributed object-oriented
software layer (22) supports multiple communications protocols.

5. The architecture (20) of Claim 1 wherein the distributed object-oriented
software layer (22) supports an asynchronous remote procedure call communications

protocol.

6. The architecture (20) of Claim 5 wherein the distributed object-oriented

software layer (22) supports a remote procedure call communications protocol.

7. The architecture (20) of Claim 5 wherein the distributed object-oriented

software layer (22) supports an asynchronous message call communications protocol.

8. The architecture (20) of Claim 5 wherein the distributed object-oriented

software layer (22) supports a broadcast communications protocol.

9. The architecture (20) of Claim 5 wherein the distributed object-oriented
software layer (22) provides for class-based communications between respective ones
of the computers (31).

PCT/US97/19304

WO 98/19239

N mu_n_ (1LHVY HOIHd)

™ I DI o
HILNdNOD HILNAWOO [1€ =-o0g y
el ¥
. ¢
) y BT
.. locenne, 1498
HILNdNOD| |H3ILNAWOOD | +1
(XINN) SNOILVOINNINWOO ANV~ | Ll :
WILSAS ONILYHIHO : & c
1 7 7 Vi
Y m A I !
(SYNN) 3HYMITAAIN a3Llngidisia [+ m i | SNOLLVOINNWWOO ANV |y} i
. " m WILSAS DNILVHIdO "
Y w
(INIHOVIN YN LHIA) ol o
MHOMIWVHS o> FZE]2 ==z |- "
Q3LN3IHO-LO3rE0 12112 1Bl &S] 8] <2t
a3ingidlsia MRS :
1. T 1 T T 1 L2 el [2]|2] ¢
A ve : M o2 Z & 2
. : H - -t . ; < <
" > o : L < [=2] =
L HSIE| 3] 9|13 | 5| snotonnd Sl 2] zllel |2
P12 |19 (ol |B | 8] 3dvmLdos 2B ClIE] |
FoHIBH] |® B]S] | 2| Nolwvorddy Fsl =] 1S o] 2]]S
: O : Colal|a) e |E| (8] IE
..... teeed b T 7 Y T / : <2 m 1@
J62 €2 PEZ 9EC 4EZ BEC 0z A S O O
.. i J2k ezk P2t 9g) qek Eel

1/6

WO 98/19239

PCT/US97/19304

20

Vs
APPLICATION
C A FUNCTIONALITY
24
SEPARATION
OF CONCERNS
DISTRIBUTED VIRTUAL
22-] SOFTWARE INTERFACE
v AVAILABILITY
T PORTABILITY,
SCALABILITY
11, 21
COTS SOFTWARE AND
HARDWARE ENVIRONMENT
FIG. 4 20
I3
EVENT TRIGGERED FUNCTIONALITY:
51+ EXTERNAL SYSTEM INTERFACES FUNCTIONALITY
USER INTERFACES ~— AND CUSTOMER
ADVANCED APPLICATIONS DEPENDENT LAYER
24
52 APPLICATION
CORE APPLICATION CLASSES 2 AVER
53] OBJECT DISTRIBUTION L 22
TACTICAL CONFIGURATION _DIGITAL VIRTUAL
TIME DISTRIBUTION AND SYNCHRONIZATION| ™~ SOFTWARE LAYER
EVENT RECORDING AND ERROR LOGGING
54 -11
OPERATING SYSTEM - OPERATING SYSTEM
AND HARDWARE LAYER

2/6

PCT/US97/19304

WO 98/19239

S Ol

o}

S30IAHES
103rdo0
a3ingidlisia

(SIN3IMD SL 40
1NIAN3d3ANI
19

did1S 1HODITd
JINOHLO3 1

AONIOV

9 AHOLVY1ND3Y ~ €9

09

SdIHSNOILV134 31VOIANI SNOILOINNOD
S3SSV10 IN3IS3Hd3H SANO10
NOILVION HOOO04

@ 29

Ol44vHL HIV SINIMOD

a3aLngidisia

3/6

9/%

1. ARPC: FILE FLIGHT PLAN

AIR TRAFFIC

2. RPC: COMMIT

40 —m

DISTRIBUTED
OBJECT

RPC: REMOTE PROCEDURE CALL
ARPC: ASYNCHRONOUS RPC
NOTI: IMPLICIT INVOCATION

3. NOTI: PROCESS NEW FLIGHT

4. NOTI: PROCESS NEW FLIGHT

FIG. 6

REGULATORY
AGENCY

ELECTRONIC
FLIGHT
STRIP

20

6€761/86 OM

POE6T/L6S/1LDd

PCT/US97/19304

WO 98/19239

0c

d 3dON

G SS3004d

did1S 1HDITd
OINOHLO313

103rao
a3aLngidisid

O 3AON

193rdo
aaLngidisida

14

SS3004d

AON3IOV

AHOLVINDO3Y

d 3AdON

193rdo0
a3aLngiisia

¢ SS3004d

103rao
a3ingidlisia

L Ol

Vv 3AON

I SS300Hd

a9

Olddvdl div

A

5/6

PCT/US97/19304

WO 98/19239

8 VI

02
a
A A
Yy \]
Jlavl
JHOLS NOILNgIH1SIa 56
/611 103rdo IVHINID | - -}
AHVYANOD3S 3HOLS 193rgo
IVHINID AHVIHC
ol ~1e
\V Y /
/
1e
' \ / e
= P AN
— \ ¥ \
IHOVD IHOVD
HIOVYNVYIN HIOVNVYIN
NOILOVSNVHL 3LOW3d NOILOVSNYHL 3LON3H
~ 'S IS
7 96 7 96
v6 (43AY3S) SSY10 | v6 ~{(d3AY3S) SSYT1O
16 a3arngidisia [™ a3lngidisia

nmm_ S1IN3NO

L6

BZ6 \‘ SLIN3ITO

6/6

INTERNATIONAL SEARCH REPORT Inte. onal Application No
PCT/US 97/19304

A. CLASSIFICATION SUBJECT MATTER

OF
IPC 6 GO6F9/46

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system foliowed by classification symbols)

IPC 6 GO6F

Documentation searched other than minimumdocumentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X LEA R ET AL: "COOL-2: an object oriented 1,5-9
support platform built above the Chorus
micro-kernel™

PROCEEDINGS. 1991 INTERNATIONAL WORKSHOP
ON OBJECT ORIENTATION IN OPERATING SYSTEMS
(CAT. NO.91TH0392-1), PALO ALTO, CA, USA,
17-18 OCT. 1991, ISBN 0-8186-2265-2, 1991,

PRESS, USA,
pages 68-72, XP002054687

(FR)) 20 January 1993

LOS ALAMITOS, CA, USA, IEEE COMPUT. SQC.

see page 69, left-hand column, line 1 -
page 70, left-hand column, line 26

see page 2, line 1 - page 3, line 25

-/

X EP 0 524 077 A (ALCATEL NV ;CIT ALCATEL 1

Further documents are listed in the continuation of box C.

Patent family members are iisted in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

“L" document which may throw doubts on priority claim(s) or
which is cited to establish the publicationdate of another
citation or other special reason (as specified)

"Q" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

“T* later document published after the international filing date
or priotity date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

“X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y' document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of theinternational search

5 February 1998

Date of mailing of the intarnational search report

20/02/1998

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Brandt, J

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

inte, onal Application No

PCT/US 97/19304

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category * | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A "MODEL AND ARCHITECTURE FOR DIAGNOSTIC
REQUESTS IN A HETEROGENEOUS DISTRIBUTED
ENVIRONMENT"

IBM TECHNICAL DISCLOSURE BULLETIN,
vol. 34, no. 5, 1 October 1991,
pages 451-455, XP000189819

see the whole document

1-9

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

.nformation on patent family members

inte onal Application No

PCT/US 97/19304

Patent document Publication Patent family Pubtication
cited in search report date member(s) date
EP 0524077 A 20-01-93 FR 2679348 A 22-01-93

CA 2073914 A 17-01-93
JP 5204854 A 13-08-93

Form PCT/ISA/210 (patent family annex) (July 1992)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

