A method and apparatus for adjusting device settings on a first device are described including receiving input from a second device and adjusting the device settings or settings of a third device responsive to the input.

Published: with international search report (Art. 21(3))
AUTOMATIC SETTINGS NEGOTIATION

FIELD

The proposed method and apparatus relates to automatically adjusting the settings of a home appliance based on external stimuli.

BACKGROUND

This section is intended to introduce the reader to various aspects of art, which may be related to the present embodiments that are described below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light.

People have different preferences when it comes to the settings on their devices. Those preferences may change depending upon things such as time of day/ambient lighting. Multiple people in a room may have drastically different preferences.

Some vehicles will change the seat position and mirrors automatically when different keys are used or when a button is pressed to indicate a specific driver. This may require interaction with the driver (button press). This also is not applicable to multiple simultaneous users.

SUMMARY

The proposed method and apparatus includes a method for having the device automatically change the settings depending on the user and to automatically negotiate settings between two or more users. The proposed method and apparatus will also modify the device settings depending upon other external stimuli if configured to do so by the owner of the device. That is, the proposed method and apparatus will automatically adjust the settings of a home appliance, such as but not limited to a TV, STB, A/V receiver, etc. based on external stimuli, such as but not limited to ambient lighting, time of day, who is present in the room, etc.

A method and apparatus for negotiating and adjusting device settings are described including determining who is present in an area, negotiating settings responsive
to the determination and adjusting the device settings using the negotiated settings. Also
described are a method and apparatus for adjusting device settings on a first device
including receiving input from a second device and adjusting the device settings or
settings of a third device responsive to the input. Also described are a method and
apparatus for a first device to determine profile information including receiving input
from a second device, wherein at least one of the first device or the second device detects
physical characteristics of people present in an area and the physical characteristics are
used by the device to determine who is present in the area, retrieving profile information
of the people present in the area, determining a relationship between profiles of the
people in the area, applying rules to negotiate a compromise regarding device settings
responsive to the relationship between profiles of the people present in the area and
adjusting settings of a first device or a third device responsive to the compromise.

BRIEF DESCRIPTION OF THE DRAWINGS

The proposed method and apparatus is best understood from the following
detailed description when read in conjunction with the accompanying drawings. The
drawings include the following figures briefly described below:

Fig. 1 is a flowchart of an exemplary automatic settings negotiation scheme of a
device in accordance with the principles of the proposed method and apparatus.

Fig. 2 is a flowchart of an exemplary device configuration scheme in accordance
with the principles of the proposed method and apparatus.

Fig. 3 is a schematic diagram of the operation of an exemplary device in
accordance with the principles of the proposed method and apparatus.

It should be understood that the drawing(s) are for purposes of illustrating the
concepts of the disclosure and is not necessarily the only possible configuration for
illustrating the disclosure.

DETAILED DESCRIPTION

The present description illustrates the principles of the present disclosure. It will
thus be appreciated that those skilled in the art will be able to devise various
arrangements that, although not explicitly described or shown herein, embody the principles of the disclosure and are included within its scope.

All examples and conditional language recited herein are intended for educational purposes to aid the reader in understanding the principles of the disclosure and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions.

Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

Thus, for example, it will be appreciated by those skilled in the art that the block diagrams presented herein represent conceptual views of illustrative circuitry embodying the principles of the disclosure. Similarly, it will be appreciated that any flow charts, flow diagrams, state transition diagrams, pseudocode, and the like represent various processes which may be substantially represented in computer readable media and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.

The functions of the various elements shown in the figures may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term "processor" or "controller" should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, read only memory (ROM) for storing software, random access memory (RAM), and nonvolatile storage.

Other hardware, conventional and/or custom, may also be included. Similarly, any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction
of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.

In the claims hereof, any element expressed as a means for performing a specified function is intended to encompass any way of performing that function including, for example, a) a combination of circuit elements that performs that function or b) software in any form, including, therefore, firmware, microcode or the like, combined with appropriate circuitry for executing that software to perform the function. The disclosure as defined by such claims resides in the fact that the functionalities provided by the various recited means are combined and brought together in the manner which the claims call for. It is thus regarded that any means that can provide those functionalities are equivalent to those shown herein.

The proposed method and apparatus is directed to home appliances and the users thereof. The users may "log in" to the appliance via various methods. Some examples are a simple login via remote control or smartphone/tablet application, login via some sort of audio ID (recognition of a person by voice, or a dedicated voice command "TV log in Steve") or login via visual recognition (such as the Kinect camera from Microsoft) or other biometric data such as fingerprint or iris scan.

Once a user is logged in, the appliance will change the settings to match the preferred settings of that user. If user Steve likes high brightness and a volume setting of 30, the appliance would set these automatically.

These settings could be modified by current conditions of the environment. For example, if the ambient lighting in the room is low, the brightness setting would be somewhat reduced, which could be for many reasons: the brightness is too much for the current conditions of the room; or the reduction in brightness could save power. The audio level could be changed to respond to the ambient noise in the room. Taking it a bit further, if the appliance uses a video camera, it could recognize that Steve is wearing a football jersey and automatically change the appliance settings to a "sports" mode.

Another condition that could affect the settings is the time of day. The user could have differing settings that are time of day dependent, or the settings could be modified to
take the time of day into account, such as reducing the volume level and brightness after the sun has gone down.

The settings could also adapt to user behavior. If user Bill always turns the brightness back up after it is automatically reduced based on some external condition, the appliance could learn this and stop modifying the brightness (or modify it to a smaller degree) when Bill is in the room.

When more than one person is in the room or "logged in," the appliance would have to decide which settings to use. There are many ways to accomplish this, some examples of which are described here:

- A simple linear combination of the preferred settings \((A+B+C)/3\) so if Steve likes the volume at 30 and Bill likes the volume at 20 and Cathy likes the volume at 40, the volume would be automatically set to 30 \([\text{floor}((30+20+40)/3)]\).

- A weighted combination of the preferred settings \((2A+2B+C)/5\), depending of the relative status of the people in the room (if Cathy is a child and Bill and Steve are adults, perhaps Cathy has less impact on the settings). Using the numbers from above, the volume would be set to 28 \([\text{floor}((60+40+40)/5)]\).

- There are certain settings that the user may not want to adjust in a linear fashion or by a predetermined function or weighting. These settings could be represented by a predetermined curve and adjust (change) to the point on the curve that corresponds with the mean or weighted mean of the users in the room. If Bill's value of 20 matches point 5 on the curve and Steve's value of 30 matches point 7 on the curve and Cathy's value of 40 matches point 12 on the curve, the mean point on the curve would be 8 \([\text{floor}((5+7+12)/3)]\), which could correspond to a volume setting of 32.

- The concept of dominant/recessive could be applied in one of two ways:

 - Dominance by a person: If Steve is in the room, his settings will override anyone else. If there are only people classified as "recessive" in the room, then the negotiation could be via one of the other methods. If there is more than one person classified as "dominant," then the negotiation could be done via one of the other methods.
• Dominance by setting: A particular setting could be designated as "dominant," meaning that the setting would be set by the dominant person in the room, which may make the most sense for simple On/Off type settings.

 The users could all have a priority, where the user with the highest priority in the room wins the negotiation.

 The settings could be determined by a simple majority wins scenario (makes the most sense for On/Off type settings). For example, if Bill and Cathy like HDR mode on, but Steve does not, the combination of Bill and Cathy wins.

 The settings could be determined by the lowest value among the preferred settings of the users in the room. For example, if Bill and Cathy like HDR mode on, but Steve does not, Steve wins as the lowest setting. With the volume example, Bill would win with the lowest setting (20 < 30 < 40).

 If the appliance uses a camera, the appliance (camera) could even detect the result of a friendly competition regarding whose settings get used. A camera with suitable software could possibly detect the results of rock-paper-scissors or an arm wrestling competition.

 Combinations of these modes are also possible (and sometimes necessary). It is possible that all settings negotiations would follow the same scheme, however, it is also possible that each setting uses a different negotiation scheme.

 If the settings are modified by a group of people in the room, the appliance could remember the settings from that group the next time that the same group of people are all in the room. If more people than the group are in the room, the negotiations could be done from scratch, or they could be done based on the group as a unit using the previously negotiated settings as their preference. The group would likely need to have a higher weight versus any individuals that the group is negotiating with for purposes of fair negotiation.

 If the appliance uses a camera, the number of people in the room could be detected and a feature like 3D could be enabled or disabled based on how many people in the room are seen to be wearing 3D glasses. This could be done via simple majority or
possibly on a weighted scale so that people not wearing 3D glasses might have more of an effect on the setting.

It might be possible to detect that some people are in the room but not paying attention to the appliance (reading, sleeping, having a conversation). This could be done with posture and eye tracking or reading the pulse with an IR camera or via another method. If there are people in the room that are not paying attention, there are a few options of what to do with respect to negotiating the appliance settings:

- The people not paying attention could be treated like they are not even present in the room. They are not paying attention so their preferences do not matter.

- The people not paying attention could be treated as "ghost" profiles, which may have lower settings for things like volume so they are able to read/have a conversation/etc.

- The negotiating style for the setting could be changed when there are one or more people present that not paying attention.

- The people not paying attention could be treated normally, in case they are half-paying attention.

If someone is detected as sleeping, there may be special settings that automatically get applied or negotiated. For example, there could be an upper limit placed on volume (and/or the volume could be automatically lowered), brightness could be automatically lowered, color temperature could be shifted to red instead of blue (high color temperature has been shown to inhibit production of melatonin, affecting the ability to fall asleep and the quality of sleep).

Another possibility for settings negotiation is parental controls. The login process could determine that one of the people in the room is a child and automatically apply the parental controls settings. If there are only adults in the room, the parental controls could be automatically disabled or reduced. If there are adults and children in the room, the parental controls could detect who is making changes to the current channel, for example, and allow any settings changes if one of the adults is making settings changes (e.g., channel changes), but disallow settings changes (e.g., channel changes) if one of the
children is attempting to make settings changes (e.g., channel changes). This also opens up the possibility to have relationships defined among the profiles. If Steve has a "parental" relationship to Cathy, it could allow him to change the channel to a channel/program that would have been blocked by parental controls while Cathy is in the room. If Bill does not have a "parental" relationship with Cathy, then parental controls would prevent him from changing the channel to objectionable content while Cathy is in the room.

A brief (non-exhaustive) list of some settings that could be negotiated in these manners:

- Program selection
- Volume level
- Channel
- 3D on/off
- 3D depth
- Closed caption settings
 - Font
 - Color
 - Size
 - On/off
- Brightness
- Contrast
- Picture mode
- Sound mode
- Multiple sound outputs
- Parental controls
- HDR on/off

There are, of course, many, many more settings that could be negotiated.

Another useful way of applying settings could be through a form of contextual awareness. Using a combination of sensors, microphone(s), and camera(s), settings could be determined or negotiated based on an understanding of what is occurring in the vicinity of the home appliance. Different types of cameras could be used, including video, infrared, and others. Cameras can be used in a variety of ways, including thermal imaging, depth sensing, motion sensing, and video recording. Cameras may also include thermal imaging cameras, still cameras, plenoptic cameras and/or time-of-flight cameras.

Many different sensors are available on the market today, including motion sensing, temperature sensing, moisture sensing, power meters, and open/close sensing (e.g. sensing the opening of doors or windows) as a few examples.

Using a combination of the inputs available through these and other devices and some hardware or software, contextual awareness can be achieved and applied to settings on many different home appliances, including but not limited to consumer electronics devices and home control devices like a thermostat or security system. Some examples of things that could be observed might be the age or gender of someone in the room, the current activities of people in the room, or the current ambiance of the room.

Using a microphone and camera, the age and gender of a person could be determined, with more accuracy over time and applied to settings of a device. This information could be used on-the-fly or stored in a profile and updated over time to achieve greater accuracy in the information determination. The age, in particular, could be used in different ways, including parental controls. If the age of the person is determined to be below a threshold, parental controls could be automatically enabled or modified. Gender determination could affect recommendations offered by a video service.

Gender and age recognition could use body shape, facial hair and makeup as cues. Voice may provide one of the most accurate cues, as both the pitch, modulation and sibilance of voices vary predictably with gender and age. The camera would correlate a voice with a person by monitoring lip movement. That is, the device which setting are
being adjusted may receive input from a second device. The second device (camera,
sensor, etc.) detects physical characteristics of people present in the area. The physical
characteristics are used by the device being adjusted to determine who is present in the
area. Once it is determined who is present in the area, then that information is used to
identify and locate the profile information for those present in the area. This information
could also be determined on-the-fly or stored in a profile and updated to improve
accuracy. The presence of multiple people in a room could allow for the determination of
a relationship between the people. The determination of a relationship could apply to
parent-child, spouses, friendships, and possibly other relationships. These determined
relationships could be used for things like parental controls (parents can override parental
controls for their children, while others cannot override parental controls, for example) or
negotiate settings. That is profile information includes physical characteristics, age,
gender, favorite teams or relationships between people or profiles. Profile information
(data) is stored and updated over time. The profile data (information) updating may be
performed by the person whose profile it is or may be performed automatically by
observation by secondary devices. For example, a child (boy) growing up may develop
facial hair or a person may begin or suddenly lose hair. Hair loss may be a result of aging
or result suddenly as a result of chemotherapy. The device being adjusted may receive
input from a second device (e.g., camera or other sensor). The second device may detect,
for example, that a child is present in the area. If the device being adjusted is used for
receiving and rendering content then parental controls are automatically invoked. Parental
controls may or are able to be overridden by a parent or guardian or other adult with a
predetermined relationship with the child.

Profiles could be created for people that are recognized but do not have an
account on the system. These "ghost" profiles could be updated as the person is
recognized over multiple occasions, just like a normal profile. An example of this would
be a friend that frequently visits the house, but has never had a need to have an account
on the system. This person could eventually create an account on the system, and the
system could populate the new profile with the information from the "ghost" profile
associated with them. Things like, height, gender, and relationships could have been
determined in the past for the ghost profile and the new profile would contain all of that
information. If a new profile has not been created, the system could use the "ghost" profile for the person for things like negotiation of settings, or distance based changes, for example.

A combination of motion sensors, video, thermal, and infrared cameras, and audio from a microphone could give many clues as to the current activity of the people in the room. The infrared camera could be used to detect heartbeats, the thermal camera could be used to detect body temperature, and the microphone, video camera, and motion sensor data could be used in concert to determine that a person is exercising, or dancing, or singing and make changes to the home appliances in accordance with the activity. If a person is detected as singing or dancing, the volume of the home appliance that is providing sound could be turned up or down or the equalizer for the device could be modified to reduce the vocal frequency range to simulate karaoke. If the person is determined to be exercising, the data from the sensors could be applied to a device or application to track heartbeat and body temperature or the progression of an exercise program. Detection of a high or low body temperature relative to normal could also be used to modify a thermostat, or possibly even notify the person that they may be running a fever or the like.

The cameras could be used to detect clues from wearables, including clothing being worn, or possibly sensors from electronic devices worn on the body. These clues could be used to determine that the person is wearing a sports jersey, and could apply settings related to a sports-watching mode. Wearables does not only include sports jerseys. Apparel (wearables) bearing sports team logos, wherein apparel includes, hats, caps, jerseys, shirts, sweatshirts, jackets, shorts, pants, athletic pants, sweatpants, shoe and the like, and wherein sports team logos may be professional sports team logos, collegiate sports team logos or international (e.g., Olympic) sports team logos, and further wherein sports team logos may include football, baseball, basketball, soccer, hockey, skiing, snowboarding, swimming, diving, volleyball, etc. The clues could determine that a person is wearing 3D glasses and automatically switch into 3D viewing mode. The clues could also determine that a person is wearing a smartwatch/activity band.
or holding a smartphone or tablet and trigger uploads of data to an application or downloads of information regarding the current program being watched.

An infrared camera could be used to determine the distance of a person from its location. This could be used to increase or decrease the size of closed captions on a television depending upon the distance the person is from the device or adjust the heating or cooling settings of a third device. Depth information could also be used to increase or decrease volume of a home appliance depending upon the position of a person in the room. This information could also be used to change the operation of a thermostat in order to more effectively direct heating/cooling depending upon where a person is in a room.

Different cameras could be used to detect the lighting in the room and clues from the current lighting could be used to modify things like brightness/contrast, or a video mode of a home appliance. Lighting clues could also be used based on a set preference by the user to operate electronic blinds to let in/shut out light from outside based on the current lighting in the room. Conversely, the lighting in the room could be brightened or dimmed depending on the light coming in from outside to maintain a consistent level of light for the room.

Some example scenarios

Some examples of possible scenarios using the method and apparatus of the proposed method and apparatus:

1) In the situation where "One spouse wants to sleep, the other wants to watch TV", the TV could use person recognition techniques to determine that one person is trying to sleep. A camera or light sensor could determine that bedroom lights are out. The time of day could be considered as well. When this conflict is detected, the TV activates contrast reduction and volume limiting. Once the condition is detected, the mode remains activated until the TV is turned off.

2) In the situation where there is a "Sports party where some want to hold a conversation and others want to focus on the game", the TV can recognize that the program is a sporting event, that there is a crowd in the room, and that the conversation
level is high. When this conflict is detected, the TV activates closed captioning. Once
the condition is detected, the mode remains activated until the event ends. In addition,
the picture may be shrunk to allow captions to be placed below the picture, so there's no chance of obscuring the ball.

3) In the situation where the people present in the room have "Differing commercial preferences", the TV is able to recognize the individuals in the room through facial recognition, or try to ascertain their ages and genders. Targeted advertising can then favor advertisements that would appeal to everyone and disfavor ads that might be inappropriate for some occupants of the room.

4) In the situation where "One person is hot, the other is cold", the thermostat needs to be adjusted for the current heating/cooling zone. But if there are two people in the zone that have different preferred temperatures, the temperature setting could be adjusted based on a predefined curve between the two preferred temperatures in order to make both people somewhat comfortable.

5) In the case of program selection, the appliance (e.g., TV) could be configured to automatically select a program based on those present in the room.

6) In the case of multiple sound outputs, if the users of an appliance (e.g., TV) each have headphones plugged in to the appliance, then the settings could be different for each set of headphones depending on who is using which headphones and according to the preferences of each headphone user.

It is advantageous to notify the viewer when a negotiated setting has been activated. This prevents the viewer from thinking his television is misbehaving, and alerts him to the existence of the feature. Notification can be in the form of temporarily displayed text or an icon. The text or icon could be displayed temporarily or the text or icon could be displayed for the duration of the mode.

It is also possible to have settings travel with a user. If Steve went to Bill's house to watch the football game, it is possible that Bill's TV could understand Steve's settings, possibly through manual means like bringing them on a USB key or through creating an account for Steve and importing his settings from his smartphone or from a server, or
even possibly through some sort of recognition of Steve, possibly in conjunction with a social media account (Steve and Bill are Facebook friends, so Steve's settings come from his Facebook account to Bill's Facebook account to Bill's TV). Steve's setting may only have to be imported (downloaded) once.

Of course, with different viewing environments, it is possible that Steve would not want to use his standard settings for certain items like brightness, or it is possible that Steve could tweak his normal settings to what he likes in Bill's environment and they would be saved that way for whenever Steve is at Bill's house. The settings could be stored locally on the appliance, or somewhere in the cloud, or on Steve's smartphone, or even on a Facebook or some other social media account.

When the TV has access to both Steve's settings preferences and Bill's settings preferences it could present a menu asking whether to use Steve's settings, Bill's settings, or a blended setting. The blended setting could be manually configured by Bill and Steve or could be automatically configured by combining each user's settings. For example, if Bill sets brightness to 50 and Steve sets brightness to 70, the automatic blended setting could set brightness to 60. In cases where it is not possible to create a blended setting, the automatically configured blend would default to the 'home' user - in this case Bill, since Steve went to Bill's house. If Bill and Steve decided to manually configure their blended setting, there could be a user interface showing each configurable setting and allowing Bill and Steve to quickly select 'Bill's Setting', 'Steve's Setting' or manually configure.

Fig. 1 is a flowchart of an exemplary automatic settings negotiation scheme of a device in accordance with the principles of the proposed method and apparatus. The automatic settings negotiation is specific to a particular device. For example, the automatic settings for a thermostat would not be the same as the automatic settings for a TV. At 105 a determination is made if a user has logged in to the device. The user may login by means of a keypad attached to or associated with the device itself, a remote control device, a smartphone, a computer, a laptop, a tablet, an iPad, an iPod, an iPhone, an audio Id, a video ID, biometric data including a fingerprint or an iris scan. That is the device configured to perform automatic settings negotiation may be equipped to accept (receive) audio input and perform voice recognition or video input using a camera. The
device may be equipped to accept (receive) biometric data or wired line or wireless logins from a remote control, a smartphone, tablet, laptop, computer, iPod, iPad, iPhone or the like. At 110 a determination is made if the device has been configured to automatically negotiate and adjust settings. Once again the settings that are or have been configured to be negotiated and adjusted vary by device. At 115 a determination is made regarding what settings have been configured to be negotiated and adjusted automatically. Just because certain settings may be negotiated and adjusted automatically does not mean that all of the settings that are possible to be negotiated and adjusted automatically have been configured to be negotiated and adjusted automatically. For example, just because it is possible to adjust picture (screen size or aspect ratio) does not mean that, that particular setting has been configured to be negotiated and adjusted automatically. At 120 a determination is made as to who is present in the room. This determination will impact which settings to use and whether automatic settings negotiation and adjustment is necessary. A determination is also made at this point as to the activities of those present in the room. For example, watching TV, listening to TV or the stereo system, reading, sleeping, etc. In some cases the activity of those present in the room affects or may affect the automatic settings negotiation of several devices. For example, if some of those present in the room are sleeping, that would affect both the temperature setting of the thermostat and the volume of the TV or stereo. At 125 a determination is made as to what settings negotiation method to use. For example, it is possible to use a linear combination, a weighted combination a predetermined curve, a dominant/recessive approach (method, scheme), a priority scheme, a majority scheme, a lowest value scheme or a competition or a combination of any of the above schemes. Once a determination is made as to what settings negotiation method is to be used, then a negotiation method is executed (performed) to determine the setting adjustment. Finally at 130, the device setting adjustment is made by the device.

Fig. 2 is a flowchart of an exemplary device configuration scheme in accordance with the principles of the proposed method and apparatus. At 205 a user (owner of the device) logins in (logs on) to the device. The device configuration is specific to a particular device. For example, the device configuration for a thermostat would not be the same as the device configuration for a TV. The user may login by means of a keypad on
the device itself, a remote control device, a smartphone, a computer, a laptop, a tablet, an iPad, an iPod, an iPhone, an audio ID, a video ID, biometric data including a fingerprint or an iris scan. That is, the device may be equipped to accept (receive) user login by audio input and perform voice recognition or video input using a camera. The device may be equipped to accept (receive) biometric data or wired line or wireless logins from a remote control, a smartphone, tablet, laptop, computer, iPod, iPad, iPhone or the like. At 210 the device settings are configured based on time of day (ToD), ambient lighting, noise level, who is present in the room, activities of those present in the room, and other relevant parameters. Each particular device may use different parameters or different subsets of parameters. Configuration may be any of the means described above and may also be accomplished using a USB (flash, thumb) drive or a memory card. This is especially useful for a guest user. The user or guest user may be prompted as to whether the guest user's settings are to be saved. If the guest user is a frequent visitor then this would be helpful. At 215 the device is configured as to which settings are to be automatically negotiated and adjusted. Just because certain settings are able to be negotiated and adjusted automatically does not mean that all of the settings that are possible to be negotiated and adjusted automatically will be configured to be negotiated and adjusted (changed) automatically. For example, just because it is possible to adjust picture (screen size or aspect ratio) does not mean that, that particular setting will be configured to be negotiated and adjusted automatically. At 220 the user configures the device as to which settings use which negotiation scheme. For example, it is possible to use a linear combination, a weighted combination a predetermined curve, a dominant/recessive approach (method, scheme), a priority scheme, a majority scheme, a lowest value scheme or a competition or a combination of any of the above schemes.

Fig. 3 is a schematic diagram of the operation of an exemplary device in accordance with the principles of the proposed method and apparatus. A user (an owner of the device) logs in to the device in order to configure (or reconfigure) the device to automatically adjust (change) some or all if its settings. The user logs in through a communications interface module which is in bi-directional communication with a login module. The device configuration is specific to a particular device. For example, the device configuration for a thermostat would not be the same as the device configuration
for a TV. The user may login by means of a keypad attached to or associated with the device itself, a remote control device, a smartphone, a computer, a laptop, a tablet, an iPad, an iPod, an iPhone, an audio ID, a video ID, biometric data including a fingerprint or an iris scan. That is, the device may be equipped to accept (receive) user login by audio input and perform voice recognition or video input using a camera. The device may be equipped to accept (receive) biometric data or wired line or wireless logins from a remote control, a smartphone, tablet, laptop, computer, iPod, iPad, iPhone or the like. Once the user is logged in to the device, the user can provide input to the device regarding which settings the user wishes to be automatically adjusted (changed). The user's input is provided interactively to a configure settings module through the communications interface module. The communications interface module is in bi-directional communications with the configure settings module. This may be voice commands or by a menu or other prompts by the device. The user's input may be provided using a keypad attached or associated with the device itself, a remote control device, a smartphone, a computer, a laptop, a tablet, an iPad, an iPod, an iPhone or keypad attached to or associated with the device itself. Once the user has configured which settings are to be automatically adjusted (changed) the user configures the negotiation scheme to be used to automatically adjust (change) the settings. It should be noted that all communications with the user may take place by any of the means described above. The user communicates with a configure negotiation scheme module through the communications interface module. The communications interface module is in bi-directional communication with the configure negotiation scheme module. It should also be noted that the negotiation scheme configuration may take place after the settings configuration or may take place with the settings configuration. That is, the user may specify a setting that is to be automatically adjusted (changed) and then specify the negotiation scheme to be used to make the automatic adjustment (change) and then specify another setting that is to be automatically adjusted. Both the configured settings and the negotiation scheme are stored in memory (storage). The configuration process may also specify other users whose preferences are to be considered. This can be accomplished by the device owner (user) or by the other individual whose preferences are to be considered. If the device has already been configured for settings that are to be
automatically adjusted (changed) and the user logs in again, the user may update any of their previously configured settings or negotiation schemes. Configuration may be any of the means described above and may also be accomplished using a USB (flash, thumb) drive or a memory card. This is especially useful for a guest user. The user or guest user may be prompted as to whether the guest user's settings are to be saved. If the guest user is a frequent visitor then this would be helpful.

If the device has already been configured for settings that are to be automatically adjusted (changed) and the user logs in again, the user may want the device to automatically adjust the settings. The user may be the device owner or any other individual that has their preferences for automatic settings adjustments configured. It should be noted that each user who has their preferences may have configured a different subset of settings to be automatically adjusted (changed). Certain settings may not matter to one or more users or in some cases, such as parental controls, a child user may not be permitted to change or override such settings. The settings determination module determines which (if any) settings are configured to be automatically adjusted (changed). The settings determination module accomplishes this by accessing the memory (storage) that holds the data from the configuration process described above. The settings determination module then passes this information (data) to the presence determination module, which determines who is present in the room. If only the logged in user is present there is no need for settings adjustment negotiation. If there are multiple individuals present in the room then the device attempts to determine who is present and if any of the individuals present in the room have preferences configured. This is accomplished by accessing the memory (storage) where settings configuration and negotiation scheme information was stored (saved). The presence determination module passes this information (data) to the negotiation scheme determination module, which determines which negotiation scheme to use to resolve difference between setting preferences for the various users present in the room. The negotiation scheme determination module accomplishes this by accessing the memory (storage) where the configuration information (data) was stored (saved). The negotiation scheme determination module passes this information (data) along to the execute negotiation scheme module which actually determines the settings adjustments. The settings
adjustments are forwarded to the adjust settings module which actually makes the settings adjustments (changes) or forwards the changes to a third device through the communications interface module with which it is in communication. The communications interface module may accept (receive) input from a second device or users. The communications module forwards any input it receives to the login module or the configure settings module or the configure negotiation scheme module or the profile module or the presence determination module. The presence determination module also receives input from a second device though the communications interface module. A second device may include sensors or cameras etc. The presence determination module also determines if any activity is occurring and what the activity is. The presence determination module also determines a distance between people present in the area based on input from a second device received through the communications interface module and also determines the distance of people from the device. The communications interface module would interface with the negotiation scheme determination module as does the presence determination module. The negotiation scheme determination module adjusts the device settings responsive to the input from the second device and in accordance with the setting preferences specified by the user and previously stored (saved) in memory (storage). The communications interface module may also send input to a third device. The communications interface module receives changes for the third device from the adjust settings module, with which the adjust settings module is in communication. This input may be used to change the settings of the third device. The third device may include sensors, cameras, Internet of Things (IoT) devices, lighting, thermostats or any other controllable home appliance, etc. The profile module is in bi-directional communication with memory. The profile module creates and updates profiles - both normal profiles and ghost profiles. Normal profiles are created for users that have logged in. The profile module receives input through the communications interface module with which it is in communication. The profile module also creates normal profiles from ghost profiles. The profile module also determines relationships between profiles. The profiles being stored in memory.

The modules depicted in Fig. 3 are exemplary and may be in software executed on one or more processors, any of which maybe application specific integrated circuits
(ASICs), reduced instruction set computers (RISCs), field programmable gate arrays (FPGAs) or the like or equivalent. The exemplary modules depicted on Fig. 3 may be increased or decreased in number with no ill effect upon the design.

It is to be understood that the proposed method and apparatus may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof. Special purpose processors may include application specific integrated circuits (ASICs), reduced instruction set computers (RISCs) and/or field programmable gate arrays (FPGAs). Preferably, the proposed method and apparatus is implemented as a combination of hardware and software. Moreover, the software is preferably implemented as an application program tangibly embodied on a program storage device. The application program may be uploaded to, and executed by, a machine comprising any suitable architecture. Preferably, the machine is implemented on a computer platform having hardware such as one or more central processing units (CPU), a random access memory (RAM), and input/output (I/O) interface(s). The computer platform also includes an operating system and microinstruction code. The various processes and functions described herein may either be part of the microinstruction code or part of the application program (or a combination thereof), which is executed via the operating system. In addition, various other peripheral devices may be connected to the computer platform such as an additional data storage device and a printing device.

It should be understood that the elements shown in the figures may be implemented in various forms of hardware, software or combinations thereof. Preferably, these elements are implemented in a combination of hardware and software on one or more appropriately programmed general-purpose devices, which may include a processor, memory and input/output interfaces. Herein, the phrase "coupled" is defined to mean directly connected to or indirectly connected with through one or more intermediate components. Such intermediate components may include both hardware and software based components.

It is to be further understood that, because some of the constituent system components and method steps depicted in the accompanying figures are preferably implemented in software, the actual connections between the system components (or the
process steps) may differ depending upon the manner in which the proposed method and apparatus is programmed. Given the teachings herein, one of ordinary skill in the related art will be able to contemplate these and similar implementations or configurations of the proposed method and apparatus.
1. A computer implemented method for adjusting device settings on a first device, said method comprising:
 receiving input from a second device; and
 adjusting said device settings or settings of a third device responsive to said input, wherein said third device is one of lighting, a thermostat, an Internet of Things device and a controllable home appliance.

2. A method for adjusting device settings on a first device, said method comprising:
 receiving input from a second device; and
 adjusting said device settings or settings of a third device responsive to said input.

3. The method according to claim 2, wherein said second device detects if anyone present in said area is wearing apparel having a logo and if anyone is wearing said apparel adjust said device settings to a mode responsive to said apparel having said logo.

4. The method according to claim 2, wherein said second device is a camera or said second device includes a camera.

5. The method according to claim 4, wherein said camera is a video camera or an infrared camera or a thermal imaging camera or a still camera or a plenoptic camera or a time-of-flight camera.

6. The method according to claim 2, wherein said second device is a sensor.

7. The method according to claim 6, wherein said sensor is a motion sensor or a thermal sensor or a moisture sensor or a power meter or any combination of the above.

8. The method according to claim 2, wherein said second device is a microphone.

9. The method according to claim 2, wherein said second device detects some people present in said area want to focus on a sporting event being rendered on said device and other people present want to hold a conversation and when such a conflict is detected automatically invoking closed captioning.

10. The method according to claim 9, wherein said second device is a camera or said second device includes a camera.
11. The method according to claim 10, wherein said camera is a video camera or an infrared camera or a thermal imaging camera or a still camera or a plenoptic camera or a time-of-flight camera.

12. The method according to claim 9, wherein said second device is a sensor.

13. The method according to claim 12, wherein said sensor is a motion sensor or a thermal sensor or a moisture sensor or a power meter or any combination of the above.

14. The method according to claim 2, wherein said third device is one of a sensor, a camera, lighting, a thermostat, an Internet of Things device and a controllable home appliance.

15. A method for a first device to determine profile information, said method comprising:

 receiving input from a second device, wherein said second device detects physical characteristics of people present in an area and said physical characteristics are used by said device to determine user presence in said area, and further wherein said determination of user presence in said area is used to determine profile information.

16. The method according to claim 15, wherein said profile information includes physical characteristics, age, gender, favorite teams or relationships between people or profiles.

17. The method according to claim 16, wherein said profile information is stored and updated over time.

18. The method according to claim 15, wherein said second device detects the presence of a child and said device is used for receiving and rendering content then parental controls are automatically invoked.

19. The method according to claim 18, wherein said parental controls are able to be overridden by a parent or guardian or other adult with a predetermined relationship with said child.

20. The method according to claim 16, wherein said second device detects the presence of 3D glasses and if anyone is wearing 3D glasses adjust said device settings to turn 3D mode on.
21. The method according to claim 16, wherein said second device detects the presence of 3D glasses and if a predetermined number of people are wearing 3D glasses adjust said device settings to turn 3D mode on.

22. An apparatus for adjusting device settings, comprising:

- a communications interface module, said communications interface module receiving input from a second device; and
- an adjust settings module, said adjust settings module adjusting said device settings or settings of a third device responsive to said input, wherein said third device is one of lighting, a thermostat, an Internet of Things device and a controllable home appliance, wherein said apparatus is a first device, wherein said first device is a consumer electronic device.

23. An apparatus for adjusting device settings, comprising:

- a communications interface module, said communications interface module accepting input from a second device; and
- an adjust settings module, said adjust settings module adjusting said device settings using said input or adjusting settings of a third device responsive to said input, wherein said apparatus is a first device.

24. The apparatus according to claim 23, wherein said second apparatus detects if anyone present in said area is wearing apparel having a logo and if anyone is wearing said apparel adjusting said device settings to a mode responsive to said apparel having said logo.

25. The apparatus according to claim 23, wherein said second apparatus is a camera or said second device includes a camera.

26. The apparatus according to claim 25, wherein said camera is a video camera or an infrared camera or a thermal imaging camera or a still camera or a plenoptic camera or a time-of-flight camera.

27. The apparatus according to claim 23, wherein said second apparatus is a sensor.

28. The apparatus according to claim 27, wherein said sensor is a motion sensor or a thermal sensor or a moisture sensor or a power meter or any combination of the above.
29. The apparatus according to claim 23, wherein said second apparatus detects some
to focus on a sporting event being rendered on
people present in said area want to hold a conversation and when
such a conflict is detected automatically invoking closed captioning.

30. The apparatus according to claim 29, wherein said second apparatus is a camera
or said second device includes a camera.

31. The apparatus according to claim 30, wherein said camera is a video camera or an
infrared camera or a thermal imaging camera or a still camera or a plenoptic
camera or a time-of-flight camera.

32. The apparatus according to claim 29, wherein said second apparatus is a sensor.

33. The apparatus according to claim 32, wherein said sensor is a motion sensor or a
thermal sensor or a moisture sensor or a power meter or any combination of the
above.

34. The apparatus according to claim 23, wherein said third device is one of a sensor,
a camera, lighting, a thermostat, an Internet of Things device and a controllable
home appliance.

35. An apparatus for determining profile information, comprising a communications
interface module, said communications interface module receives input from a
second apparatus, said second apparatus detects physical characteristics of people
present in an area and said physical characteristics are used by said apparatus to
determine user presence in said area, and further wherein said determination of
user presence in said area is used to determine profile information, wherein said
apparatus is a first device.

36. The apparatus according to claim 35, wherein said profile information includes
physical characteristics, age, gender, favorite teams or relationships between
people or profiles.

37. The apparatus according to claim 36, wherein said profile information is stored
and updated over time.

38. The apparatus according to claim 35, wherein said apparatus receives input from a
second apparatus, said second apparatus, said second apparatus detecting the
presence of a child and said apparatus is used for receiving and rendering content then parental controls are automatically invoked.

39. The apparatus according to claim 38, wherein said parental controls are overridden by a parent or guardian or other adult with a predetermined relationship with said child.

40. The apparatus according to claim 35, wherein said second device detects the presence of 3D glasses and if anyone is wearing 3D glasses adjust said device settings to turn 3D mode on.

41. The apparatus according to claim 35, wherein said second device detects the presence of 3D glasses and if a predetermined number of people are wearing 3D glasses adjust said device settings to turn 3D mode on.

42. The apparatus according to claim 35, wherein said apparatus is a consumer electronic device.

43. The apparatus according to claim 42, wherein said consumer electronic device is a home appliance.

44. The apparatus according to claim 43, wherein said home appliance is one of a television, a set top box and an audio-video receiver.

45. The apparatus according to claim 23, wherein said apparatus is a consumer electronic device.

46. The apparatus according to claim 45, wherein said consumer electronic device is a home appliance.

47. The apparatus according to claim 46, wherein said home appliance is one of a television, a set top box and an audio-video receiver.
Start

105. Determine if user has logged in to the device

110. Determine if the device has been configured to automatically change settings

115. Determine what settings have been configured to be automatically changed

120. Determine who is present in the room

125. Determine what settings to use

130. Adjust device settings

End

Fig. 1
Start

Login/logon to device

Configure device settings based on ToD, ambient lighting, noise level, who is present, activities, and other relevant parameters

Configure which settings to automatically negotiate

Configure device as to which settings negotiation scheme to use

End

Fig. 2
Fig. 3
A. CLASSIFICATION OF SUBJECT MATTER

INV. H04N21/442 H04N21/45 H04N21/422 H04N21/4223 H04N21/41 H04N21/454 H04N21/466 G06F17/30 G06K9/00 H04H60/45

ADD.

According to International Patent Classification (IPC) onto both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- H04N
- G06F
- G06K
- H04H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- EPO-Internal
- WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 2 624 574 A2 (SAMSUNG ELECTRONICS CO LTD [KR]) 7 August 2013 (2013-08-07) paragraphs [0022], [0028], [0033], [0042], [0075], [0105]</td>
<td>20,21, 40,41</td>
</tr>
</tbody>
</table>

- Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier application or patent but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) on which the application is based
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed
 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "S" document member of the same patent family

Further documents are listed in the continuation of Box C.

X See patent family annex.

Date of the actual completion of the international search: 7 September 2016

Date of mailing of the international search report: 14/09/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040; Fax: (+31-70) 340-3016

Authorized officer: Santos Conde, Jose
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 2007271580 A1</td>
<td>22-11-2007</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2014245335 A1</td>
<td>28-08-2014</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>EP 2624574 A2</td>
<td>07-08-2013</td>
<td>CN 103227931 A</td>
<td>31-07-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2624574 A2</td>
<td>07-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2498954 A</td>
<td>07-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20130088722 A</td>
<td>08-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2013194401 A1</td>
<td>01-08-2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2015341625 A1</td>
<td>26-11-2015</td>
</tr>
</tbody>
</table>