(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/017752 A1l

DIESING, Scott [US/US]; 8610 Columbia Falls Drive,
Round Rock, TX 78681 (US).

(43) International Publication Date
24 February 2005 (24.02.2005)

GO6F 11/26

(51) International Patent Classification’:

21) Int tional Application Number:
(21) International Application Number (74) Agents: SAMPSON, Roger, S. et al.; Beyer Weaver &

PCT/US2004/022935

Thomas, LLP, PO. Box 778, Berkeley, CA 94704-0778

Us).

(22) International Filing Date: 16 July 2004 (16.07.2004) (US)
(81) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
(26) Publication Language: English CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, I,

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(30) Priority Data:

10/635,700 5 August 2003 (05.08.2003) US

(71) Applicant (for all designated States except US):
NEWISYS, INC. [US/US]; 10814 Jollyville Road,

Building 4, Suite 300, Austin, TX 78759 (US). (84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

(72) Inventors; and
(75) Inventors/Applicants (for US only): GURU, Prasadh

[US/US]; 11111 Callanish Park Drive, Austin, TX 78750
(US). GLASCO, David, B. [US/US]; 10337 Ember
Glen Drive, Austin, TX 78726 (US). KOTA, Rajesh
[IN/US]; 5817 Miramonte Drive, Austin, TX 78759 (US).

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHODS AND DEVICES FOR INJECTING COMMANDS IN SYSTEMS HAVING MULTIPLE MULTI-PROCES-
SOR CLUSTERS

Controller Clk Domain

[svne |
[*
UpdaDR CaptureDR
Mailbox Register i
™I _gu DATA, DATAV CMD/RESP[FRCI T [F D0

905 915 ! 8910

P
(~Pprev & (RC | Fprev)) & prev
P &~F)

e

Test Clk Domain

(57) Abstract: Techniques and devices are provided for injecting transactions within computer systems having a plurality of multi-
1) processor clusters. Each cluster includes a plurality of nodes, including processors, a service processor and an interconnection con-
& troller interconnected by point-to-point intra-cluster links. The processors and the interconnection controller in each cluster make
& transactions via an intra-cluster transaction protocol. Inter-cluster links are formed between interconnection controllers of different
clusters. Each of the processors and the interconnection controller in a cluster has a test interface for communicating with the service
processor. The service processor is configured to make an injected transaction according to the intra-cluster transaction protocol via
one of the test interfaces. In preferred embodiments, the service processor is configured to make an injected transaction according
g to the intra-cluster transaction protocol via a test interface of an interconnection controller in the same cluster.

7017752 A1 | IO 00O 0 O

WO 2005/017752 A1 II}110 000000 000 000

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— with international search report ance Notes on Codes and Abbreviations” appearing at the begin-
— before the expiration of the time limit for amending the ning of each regular issue of the PCT Gagzette.

claims and to be republished in the event of receipt of

amendments

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

METHODS AND DEVICES FOR INJECTING COMMANDS IN
SYSTEMS HAVING MULTIPLE MULTI-PROCESSOR CLUSTERS

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is related to United States Patent Application number
09/932,456, filed August 16, 2001 and United States Patent Application numbers
10/157,384 and 10/156,893, both of which were filed on May 28, 2002. All of the

foregoing applications are hereby incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention relates generally to multi-processor computer systems.
More specifically, the present invention provides techniques for building computer
systems having a plurality of multi-processor clusters.

A relatively new approach to the design of multi-processor systems replaces
broadcast communication among processors with a point-to-point data transfer
mechanism in which the processors communicate similarly to network nodes in a
tightly-coupled computing system. That is, the processors are interconnected via a
plurality of communication links and requests are transferred among the processors
over the links according to routing tables associated with each processor. The intent is
to increase the amount of information transmitted within a multi-processor platform
per unit time.

Previous implementations of such systems have had shortcomings. Some of
these shortcomings relate to obtaining debugging information while the system is
running. For example, prior implementations do not provide the ability to determine a
configuration state of nodes in a cluster while the system is running. Instead, the
system would need to be brought down in order to determine such configurations.
Similarly, prior implementations have had a limited ability to respond to information
determined during a debugging operation. For example, it would be desirable to fix
problems such as deadlocks due to dropped packets, etc., without bringing the system
down. It is therefore desirable to provide methods and devices by which multiple-
cluster computing systems have improved troubleshooting and debugging

functionality.

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

SUMMARY OF THE INVENTION

According to the present invention, techniques are provided for injecting
transactions within computer systems having a plurality of multi-processor clusters.
Each cluster includes a plurality of nodes, including processors, a service processor
and an interconnection controller interconnected by point-to-point intra-cluster links.
The processors and the interconnection controller in each cluster make transactions via
an intra-cluster transaction protocol. Inter-cluster links are formed between
interconnection controllers of different clusters.

Each of the processors and the interconnection controller in a cluster has a test
interface for communicating with the service processor. The service processor is
configured to make an injected transaction according to the intra-cluster transaction
protocol via one of the test interfaces. In preferred embodiments, the service
processor is configured to make an injected transaction according to the intra-cluster
transaction protocol via a test interface of an interconnection controller in the same
cluster.

Some embodiments of the invention provide a computer system. The
computer system includes a plurality of processor clusters, each cluster including a
plurality of nodes. The nodes include processors and an interconnection controller
interconnected by point-to-point intra-cluster links. Each of the processors and the
interconnection controller communicate within a cluster via an intra-cluster transaction
protocol. Inter-cluster links are formed between interconnection controllers of
different clusters. The interconnection controllers may communicate between clusters
via an inter-cluster transaction protocol. Each of the processors and the
interconnection controller in a cluster has a test interface for communicating with a
Service processor.

At least one of the nodes in a cluster is a command-injecting node configured
to receive a command via a test interface and to inject the command into a queue of
commands according to the intra-cluster transaction protocol. The test interface may
be compliant with the Joint Test Action Group standard. The test interface may also
include (or at least may be in communication with) a mailbox register for receiving the
command. The mailbox register may be connected with a test data in interface and a
test data out interface. The command may be received from the test interface in a first
clock domain and at least part of the command-injecting node may operate in a second

clock domain.

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

command for reading a configuration of a node within a local cluster that includes the
service processor that made the injected transaction; (b) a command for writing a
configuration of a node within a local cluster that includes the service processor that
made the injected transaction; (c) a command for reading a configuration of a node
within a remote cluster that does not include the service processor that made the
injected transaction; and (d) a command for writing a configuration of a node within a
remote cluster that does not include the service processor that made the injected
transaction.

The injected command may be, for example, a new transaction or a part of a
transaction that was in progress before the command was injected. The new
transaction may be within a local cluster that includes the command-injecting node or
within a remote cluster that includes the command-injecting node.

The command-injecting node may be any device capable of driving the JTAG
port, e.g., an interconnection controller. The command-injecting node may be further
configured for receiving injected transactions in the first clock domain and
synchronizing the injected transactions to the second clock domain.

Alternative embodiments of the invention provide an interconnection
controller for use in a computer system comprising a plurality of processor clusters,
wherein each cluster includes a plurality of nodes (including processors) and an
instance of the interconnection controller interconnected by point-to-point intra-cluster
links. Each of the processors and the interconnection controller within a cluster
communicate via an intra-cluster transaction protocol. The interconnection controller
is configured to receive commands via a test interface and to inject the commands into
a queue of pending commands according to the intra-cluster transaction protocol.

A service processor in a cluster that includes the interconnection controller
may operate in a first clock domain and the interconnection controller may operate in
a second clock domain. The interconnection controller may be further configured for
receiving injected transactions from the service processor in the first clock domain and
synchronizing the injected transactions to the second clock domain.

The interconnection controller may include a mailbox register for receiving the
injected transaction from the service processor. At least one computer-readable
medium having data structures stored therein may be representative of the
interconnection controller. The data structures may include a simulatable

representation of the interconnection controller. The simulatable representation may

3

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

include a netlist. The data structures may include a code description of the
interconnection controller. The code description may correspond to a hardware
description language.

The interconnection controller may be embodied in an integrated circuit. The
integrated circuit may be an application-specific integrated circuit. A set of
semiconductor processing masks may be representative of at least a portion of the
interconnection controller.

A protocol engine may control the queue of pending commands. The
interconnection controller may be further configured to process access commands for
accessing configuration registers of the interconnection controller without forwarding
the access commands to the protocol engine. The interconnection controller may
include a configuration access unit for processing access commands.

A further understanding of the nature and advantages of the present invention
may be realized by reference to the remaining portions of the specification and the

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1A and 1B are diagrémmatic representations depicting systems having
multiple clusters.

Fig. 2 is a diagrammatic representation of an exemplary cluster having a
plurality of processors for use with specific embodiments of the present invention.

Fig. 3A is a diagrammatic representation of an exemplary interconnection
controller for facilitating various embodiments of the present invention.

Fig. 3B is a diagrammatic representation of an exemplary test interface of an
interconnection controller for facilitating various embodiments of the present
invention.

Fig. 3C is a state diagram of a test access port according to the Joint Test
Action Group standard.

Fig. 4A is a diagrammatic representation of a service processor for use with
various embodiments of the present invention.

Fig. 4B is a diagrammatic representation of a local processor for use with
various embodiments of the present invention.

Fig. 5 is a diagrammatic representation of a memory mapping scheme

according to a particular embodiment of the invention.

A=

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

Fig. 6A is a simplified block diagram of a four cluster system for illustrating a
specific embodiment of the invention.

Fig. 6B is a combined routing table including routing information for the four
cluster system of Fig. 6A.

Fig. 7 is a flow chart that provides an overview of a command injection
process according to some implementations of the invention.

Fig. 8 depicts the format of a mailbox register according to some
implementations of the invention.

Fig. 9 illustrates a mailbox register in a test clock domain and a corresponding
mailbox register in a clock domain of an interconnection controller.

Fig. 10 is a block diagram that illustrates components of an interconnection

controller that can implement some features of the present invention.

DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Reference will now be made in detail to some specific embodiments of the
invention including the best modes contemplated by the inventors for carrying out the
invention. Examples of these specific embodiments are illustrated in the
accompanying drawings. While the invention is described in conjunction with these
specific embodiments, it will be understood that it is not intended to limit the
invention to the described embodiments. On the contrary, it is intended to cover
alternatives, modifications, and equivalents as may be included within the spirit and
scope of the invention as defined by the appended claims. Multi-processor
architectures having point-to-point communication among their processors are suitable
for implementing specific embodiments of the present invention. In the following
description, numerous specific details are set forth in order to provide a thorough
understanding of the present invention. The present invention may be practiced
without some or all of these specific details. Well known process operations have not
been described in detail in order not to unnecessarily obscure the present invention.
Furthermore, the present application’s reference to a particular singular entity includes
that possibility that the methods and apparatus of the present invention can be
implemented using more than one entity, unless the context clearly dictates otherwise.

Fig. 1A is a diagrammatic representation of one example of a multiple cluster,
multiple processor system which may employ the techniques of the present invention.
Each processing cluster 101, 103, 105, and 107 includes a plurality of processors. The
processing clusters 101, 103, 105, and 107 are connected to each other through point-

-5-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

to-point links 111a-f. The multiple processors in the multiple cluster architecture
shown in Fig. 1A share a global memory space. In this example, the point-to-point
links 111a-f are internal system connections that are used in place of a traditional
front-side bus to connect the multiple processors in the multiple clusters 101, 103,
105, and 107. The point-to-point links may support any point-to-point coherence
protocol.

Fig. 1B is a diagrammatic representation of another example of a multiple
cluster, multiple processor system that may employ the techniques of the present
invention. Each processing cluster 121, 123, 125, and 127 is coupled to a switch 131
through point-to-point links 141a-d. It should be noted that using a switch and point-
to-point links allows implementation with fewer point-to-point links when connecting
multiple clusters in the system. A switch 131 can include a general purpose processor
with a coherence protocol interface. According to various implementations, a multi-
cluster system shown in Fig. 1A may be expanded using a switch 131 as shown in Fig.
1B.

Fig. 2 is a diagrammatic representation of a multiple processor cluster such as,
for example, cluster 101 shown in Fig. 1A. Cluster 200 includes processors 202a-
202d, one or more Basic I/O systems (BIOS) 204, a memory subsystem comprising
memory banks 206a-206d, point-to-point communication links 2082a-208¢, and a
service processor 212. The point-to-point communication links are configured to
allow interconnections between processors 202a-202d, I/O switch 210, and
interconnection controller 230. The service processor 212 is configured to allow
communicatiéns with processors 202a-202d, /O switch 210, and interconnection
controller 230 via a JTAG interface represented in Fig. 2 by links 214a-214f. It should
be noted that other interfaces are supported. I/O switch 210 connects the rest of the
system to I/O adapters 216 and 220, and to BIOS 204 for booting purposes.

Service processor 212 is primarily responsible for partitioning the resources of
cluster 200. According to some embodiments, service processor 212 allocates usage
of processor 202a-202d and /O switch 210 although service processor 212 could be
programmed to manage directly other resources such as, for example, memory banks
or various I/O devices. Service processor 212 may be configured, for example, via a
management/server console (not shown) to which service processor 212 is connected.

According to specific embodiments, service processor 212 has the intelligence
to partition system resources according to previously specified partitioning schema.

The partitioning can be achieved through direct manipulation of routing tables

-6~

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

associated with the system processors by service processor 212. Such partitioning is
made possible by the point-to-point communication infrastructure. The routing tables
can also be changed by execution of the BIOS code in one or more processors. The
routing tables are used to control and isolate various system resources, the connections
between which are defined therein.

According to a specific embodiment, service processor 212 is an autonomous
processor with its own set of operating system applications (which is separate from the
operating system(s) associated with the rest of the system) and its own I/O. Service
processor 212 can run when the rest of the processors, memory, and I/O are not
functioning. Service processor 212 can operate as an external supervising intelligence
that ensures all of the system resources are operating as desired.

It should be noted, however, that the previously-specified partitioning schema
need not be implemented by a separate service processor. That is, for example, one of
the system processors could be employed for this purpose. According to such an
embodiment, for example, the system BIOS could be altered to effect the schema
using the system’s primary processor.

In addition, a partition may represent a variety of system resource
combinations. That is, for example, in a “capacity on demand” scenario a partition
could be represented by a single processor, removal of the processor from its partition
rendering the remaining components unable to run an OS (and therefore the user
would not be charged for this partition). A partition could also be represented by a
processor and some associated memory or /O. In general, any functional subset of
the resources available in a computer system can be thought of as a partition.

The processors 202a-d are also coupled to an interconnection controller 230
through point-to-point links 232a-d. According to various embodiments and as will be
described below in greater detail, interconnection controller 230 performs a variety of
functions which enable the number of interconnected processors in the system to
exceed the node ID space and mapping table limitations associated with each of a
plurality of processor clusters. According to some embodiments, interconnection
controller 230 performs a variety of other functions including the maintaining of cache
coherency across clusters. Interconnection controller 230 can be coupled to similar
controllers associated with other multi-processor clusters. It should be noted that there
can be more than one such interconnection controller in one cluster. Interconnection
controller 230 communicates with both processors 202a-d as well as remote clusters

using a point-to-point protocol.

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

More generally, it should be understood that the specific architecture shown in
Fig. 2 is merely exemplary and that embodiments of the present invention are
contemplated having different configurations and resource interconnections, and a
vafiety of alternatives for each of the system resources shown. However, for purpose
of illustration, specific details of cluster 200 will be assumed. For example, most of
the resources shown in Fig. 2 are assumed to reside on a single electronic assembly.
In addition, memory banks 206a-206d may comprise double data rate (DDR) memory
which is physically provided as dual in-line memory modules (DIMMs). I/O adapter
216 may be, for example, an ultra direct memory access (UDMA) controller or a small
computer system interface (SCSI) controller which provides access to a permanent
storage device. I/O adapter 220 may be an Ethernet card adapted to provide
communications with a network such as, for example, a local area network (LAN) or
the Internet. BIOS 204 may be any persistent memory like flash memory.

According to one embodiment, service processor 212 is a Motorola MPC855T
microprocessor which includes integrated chipset functions, and interconnection
controller 230 is an Application Specific Integrated Circuit (ASIC) supporting the
local point-to-point coherence protocol. Interconnection controller 230 can also be
configured to handle a non-coherent protocol to allow communication with I/O
devices. In one embodiment, interconnection controller 230 is a specially configured
programmable chip such as a programmable logic device or a field programmable gate
array. In another embodiment, the interconnect controller 230 is an Application
Specific Integrated Circuit (ASIC). In yet another embodiment, the interconnect
controller 230 is a general purpose processor augmented with an ability to access and
process interconnect packet traffic.

Fig. 3 is a diagrammatic representation of one example of an interconnection
controller 230 for facilitating various aspects of the present invention. According to
various embodiments, the interconnection controller includes one or more protocol
engines 305 configured to handle packets such as probes and requests received from
various clusters of a multi-processor system. The functionality of the protocol engine
305 can be partitioned across several engines to improve performance. In one
example, partitioning is done based on packet type (request, probe and response),
direction (incoming and outgoing), or transaction flow (request flows, probe flows,
etc).

The protocol engine 305 has access to a pending buffer 309 that allows the

interconnection controller to track transactions such as recent requests and probes and

-8-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

associate the transactions with specific nodes, e.g., from specific processors.
Transaction information maintained in the pending buffer 309 can include transaction
destination nodes, the addresses of requests for subsequent collision detection and
protocol optimizations, response information, tags, and state information. As will
become clear, this functionality is leveraged to enable particular aspects of the present
invention.

The interconnection controller has a coherent protocol interface 307 that
allows the interconnection controller to communicate with other processors in the
cluster as well as external processor clusters. The interconnection controller may also
include other interfaces such as a non-coherent protocol interface 311 for
communicating with J/O devices (e.g., as represented in Fig. 2 by links 208¢ and
208d). According to various embodiments, each interface 307 and 311 is
implemented either as a full crossbar or as separate receive and transmit units using
components such as multiplexers and buffers. It should be noted that the
interconnection controller 230 does not necessarily need to provide both coherent and
non-coherent interfaces. It should also be noted that an interconnection controller 230
in one cluster can communicate with an interconnection controller 230 in another
cluster.

Interconnection controller 230 also includes test interface 313 for
communicating with service processor 212. In the specific embodiment illustrated in
Fig. 3B, test interface 313 is compliant with the Joint Test Action Group (JTAG)
standard, i.e., IEEE Standard Test Access Port and Boundary Scan Architecture, IEEE
1149.1-2001, the entire disclosure of which is incorporated herein by reference for all
purposes. The JTAG standard describes, inter alia, the requirements for a test access
port (TAP) and boundary scan architecture. However, other test interfaces may be
used to implement the present invention.

As is well known, test interface 313 may be a serial interface that connects a
series of data registers in test data block 315 between a serial input (here, test data in
(TDI) 317) and serial output (here, test data out (TDO) 319) pins. The selection of
which register is to be connected between TDI 317 and TDO 319 is controlled by a
TAP controller 321 and an instruction register 323. That is, TAP controller 321
selects instruction register 323 and a new instruction is shifted into instruction register
323 via the TDI input 317. This instruction selects for a particular one of the data
registers in test data block 315 to be placed into the serial data stream for any of a

variety of operations including, for example, the loading of test data into the data

0-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

register from the TDI input 317, the loading of test results into the data register from
the circuit or system being tested, and the shifting of the test results out of the data
register onto the TDO output 319.

As stated above, test data block 315 includes a plurality of data registers.
Some of these registers may correspond to conventional JTAG data registers. For
example, the data registers could correspond to, for example, a bypass register, a
boundary scan register or a device identification register. According to various
specific embodiments of the invention, test data block 315 also includes at least one
register that allows transactions to be injected into a fabric of transactions.

As used herein, a protocol for transactions sent on an intra-cluster link will
sometimes be referred to as an “intra-cluster protocol” and a protocol for transactions
sent on an inter-cluster link will sometimes be referred to as an “inter-cluster
protocol.” Specific embodiments of multiple-cluster architecture have used the same
protocol for transactions sent on both intra-cluster and inter-cluster links. One such
protocol is HyperTransport™ (HT) protocol, which was specifically designed for
communication of commands and data among subsystems of a computer system, such
as multiple levels of processor caches, local and remote memory elements and various
input/output (/O) devices. The white paper entitled “Meeting the I/O Bandwidth
Challenge: How HyperTransport Technology Accelerates Performance in Key
Applications” (HyperTransport™ Consortium, December 2002) is hereby
incorporated by reference.

According to some implementations of the invention, an interconnection
controller mailbox register that provides a mechanism by which commands, data
and/or transactions may be injected according to, for example, an intra-cluster protocol
used for transactions between an interconnection controller and other nodes in a
cluster. If such transactions involve communication with other clusters, the
transactions may be converted to an inter-cluster protocol for communication between
interconnection controllers in different clusters. One example of such an inter-cluster

protocol is described in U.S. Patent Application No. , attorney docket

no. NWISP039, which is hereby incorporated by reference for all purposes. The inter-
cluster protocol may be the same as, substantially the same as, or substantially
different from the intra-cluster protocol.

According to specific implementations of the invention, the intra-cluster
protocol is the HyperTransport™ (HT) protocol and the mailbox register allows

commands and/or data to be injected into a queue of HT transactions by service

-10-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

processor 212. Although the HT protocol is often used as an example of an intra-
cluster and/or an inter-cluster protocol in this disclosure, the present invention can be
used with any of a wide variety of suitable protocol(s). In alternative embodiments, a
mailbox register in another node, e.g., in one of processors 202, allows such
commands and/or data to be injected.

TAP controller 321 typically implements a finite state machine (FSM), the

state of which is controlled by a plurality of inputs. According to a more specific

 embodiment, the operation of the TAP controller FSM is represented by the state

diagram in Fig. 3C, which is a state diagram according to the JTAG standard. The test
access port is controlled by the test clock (TCK) and test mode select (TMS) inputs
indicated in Fig. 3B, which determine whether an instruction register (IR) scan or a
data register (DR) scan is performed. According to some implementations of the
invention, a DR corresponds to a mailbox register used to inject transactions and an IR
is used to apply instructions to TAP controller 321.

According to the JTAG standard, TAP controller 321 is driven by both clock
edges of the TCK input and responds to TMS input as shown in Fig. 3C. TMS and
TDI are sampled on the rising edge of the TCK signal and TDO changes at the falling
edge of the TCK signal. The values indicated next to each state transition in Fig. 3C
represent the signal present at the TMS at the rising edge of the TCK signal.

The principal part of the TAP controller FSM consists of six steady states:
Test-Logic-Reset state 330, Run-Test/Idle state 332, Shift-DR state 334, Pause-DR
state 336, Shift-IR state 338 and Pause-IR state 340. According to the JTAG protocol,
only one steady state (Test-Logic-Reset 330) exists for the condition in which TMS is
set high. Therefore, the test logic can be reset within 5 TCK signals or less by setting
the TMS input high.

During normal operation (or at power up), the TAP controller is forced into the
Test-Logic-Reset state 330 by driving the TMS input high and by using 5 or more
TCK signals. In Test-Logic-Reset state 330, TAP controller 321 issues a reset signal,
causing all test logic to be in a condition that does not hinder normal operation. When
test access is needed, a protocol is indicated by the TCK and TMS inputs that causes
TAP controller 321 to exit Test-Logic-Reset state 330 and proceed through the
appropriate states. From Run-Test/Idle state 332, an instruction register scan (or a
data register scan) can be issued to move TAP controller 321 through the appropriate
states. As shown in Fig. 3C, each state of an instruction register scan has a

corresponding state for a data register scan.

-11-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

The first action of either scan operation is a capture operation. For a data
register scan, TAP controller 321 enters Capture DR state 342 and for an instruction
register scan, TAP controller 321 enters Capture IR state 344. In Capture DR state
342, data are loaded into the selected serial data path. In Capture IR state 344, status
information is captured by the instruction register.

From a Capture state, TAP controller 321 enters either a Shift state or an Exitl
state. More commonly, TAP controller 321 enters a Shift state, enabling test data or
status information to be shifted out for inspection and new data/information to be
shifted in. After a Shift state, TAP controller 321 transitions either to Run-Test/Idle
state 332 by way of the Exitl and Update states, or to a Pause state via Exitl. The
Pause state may be entered in order to temporarily stop shifting data through the
selected instruction or data register while a necessary operation is performed (e.g.,
refilling a test memory buffer). Shifting data through the register may resume after a
Pause state by returning to a Shift state by way of an Exit2 state. Alternatively,
shifting data through the register may be stopped by transitioning to Run-Test/Idle
state 332 by way of the Exit2 and Update states.

Fig. 4A is a high-level block diagram of the interconnections for service
processor 212 according to one implementation. In this example, service processor
212 has various functions, including partitioning of system resources, controlling test
interface 412 and other functions. It is important to note that a partitioning engine
could look very different from service processor 212 as depicted in Fig. 4A. That is,
any mechanism that can intelligently reconfigure the routing tables using a point-to-
point communication infrastructure could perform such partitioning. For example,
other possible mechanisms include using one or more of processors 202 to effect the
partitioning.

In this embodiment, service processor 212 has direct connections to a DRAM
storage block 402 and flash memory 404. DRAM 402 facilitates execution by the
service processor of a program stored in flash 404. Service processor 212 is also
connected via PCI bus 406 to a sensor interface 408, an Ethernet card 410, and a
JTAG interface 412. Sensor interface 408 may include, for example, inputs from
monitoring circuits (not shown) which provide indications of temperature, supply
voltage, or security locks. Sensor interface 408 may also have various outputs such as,
for example, a control signal for activating the system’s fan. Ethernet card 410
provides an interface between service processor 212 and, for example, a service

console by which the network administrator can monitor and configure the server.

-12-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

In the specific embodiment described herein, test interface 412 (like test
interface 313) is compliant with the JTAG standard. Test interface 412 includes a
TAP with several pins, including a TDI pin, a TDO pin, a test clock (TCK) pin, a test
mode select (TMS) pin, and, optionally, a test reset (TRST) pin for driving the TAP
controller to the test-logic-reset state.

As will be explained further below, test interface 412 facilitates
communication between service processor 212 and processors 202a-202d, thereby
enabling both static and dynamic partitioning of the computer system’s resources.
According to a specific embodiment, this communication is facilitated using a simple
outbound multiplexer.

According to various embodiments of the invention, processors 202a-202d are
substantially identical. Fig. 4B is a simplified block diagram of such a processor 202,
which includes an interface 422 having a plurality of ports 414a-414c and routing
tables 416a-416¢ associated therewith. Each port 414 allows communication with
other resources, e.g., processors or I/O devices, in the computer system via associated
links, e.g., links 208a-208e of Fig. 2.

The infrastructure shown in Fig. 2 can be generalized as a point-to-point,
distributed routing mechanism which comprises a plurality of segments
interconnecting the systems processors according to any of a variety of topologies,
e.g., ring, mesh, etc. Each of the endpoints of each of the segments is associated with
a connected processor that has a unique node ID and a plurality of associated
resources that it “owns,” e.g., the memory and I/O to which it is connected.

The routing tables associated with each of the nodes in the distributed routing
mechanism collectively represent the current state of interconnection among the
computer system resources. Each of the resources (e.g., a specific memory range or
I/O device) owned by any given node (e.g., processor) is represented in the routing
table(s) associated with the node as an address. When a request arrives at a node, the
requested address is compared to a two level entry in the node’s routing table
identifying the appropriate node and link, i.e., given a particular address within a range
of addresses, go to node x; and for node x use link y.

As shown in Fig. 4B, processor 202 can conduct point-to-point communication
with three other processors according to the information in the associated routing
tables. According to a specific embodiment, routing tables 416a-416¢ comprise two-
level tables, a first level associating the unique addresses of system resources (e.g., a

memory bank) with a corresponding node (e.g., one of the processors), and a second

13-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

level associating each node with the link (e.g., 208a-208¢) to be used to reach the node
from the current node.

Processor 202 also has a set of JTAG handshake registers 418 which, among
other things, facilitate communication between the service processor (e.g., service
processor 212 of Fig. 2) and processor 202. That is, the service processor can write
routing table entries to handshake registers 418 for eventual storage in routing tables
416a-416¢. It should be understood that the processor architecture depicted in Fig. 4B
is merely exemplary for the purpose of describing a specific embodiment of the
present invention. For example, a fewer or greater number of ports and/or routing
tables may be used to implement other embodiments of the invention.

According to a specific embodiment, cluster 200 of Fig. 2 may be configured
using the techniques described herein to operate as a single four-processor system, or
as two or more functionally separate partitions. In contrast to a “greedy” algorithm,
which operates without a priori knowledge of the eventual system configuration,
service processor 212 facilitates the configuration of cluster 200 by generating and/or
dynamically altering the routing tables associated with all or some of processors 202a-
202d (and I/O switch 210) according to previously-specified partitioning schema.
This can be accomplished by service processor 212 writing routing table entries to the
JTAG handshake registers of the appropriate processors (and similar tables associated
with /O switch 210) via interface links 214a-214e. As described in United States
Patent Application number 09/932,456, filed August 16, 2001, which is incorporated
by reference in its entirety, this system configuring/partitioning may be done either
statically, e.g., at server boot up, or dynamically, e.g., during operation of cluster 200.

As mentioned above, the basic protocol upon which the clusters in specific
embodiments of the invention are based provides for a limited node ID space which,
according to a particular implementation, is a 3-bit space, therefore allowing for the
unique identification of only 8 nodes. That is, if this basic protocol is employed
without the innovations represented by the present invention, only 8 nodes may be
interconnected in a single cluster via the point-to-point infrastructure. To get around
this limitation, the present invention introduces a hierarchical mechanism that
preserves the single-layer identification scheme within particular clusters while
enabling interconnection with and communication between other similarly situated
clusters and processing nodes.

According to a specific embodiment, at least one of the nodes in each multi-

processor cluster corresponds to an interconnection controller, e.g., interconnection

-14-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

controller 230 of Fig. 2, which manages the hierarchical mapping of information
thereby enabling multiple clusters to share a single memory address space while
simultaneously allowing the processors within its cluster to operate and to interact
with any processor in any cluster without “knowledge” of anything outside of their
own cluster. The interconnection controller appears to its associated processor to be
just another one of the processors or nodes in the cluster.

In the basic protocol, when a particular processor in a cluster generates a
request, a set of address mapping tables are employed to map the request to one of the
other nodes in the cluster. That is, each node in a cluster has a portion of a shared
memory space with which it is associated. There are different types of address
mapping tables for main memory, memory-mapped I/O, different types of I/O space,
etc. These address mapping tables map the address identified in the request to a
particular node in the cluster.

A set of routing tables are then employed to determine how to get from the
requesting node to the node identified from the address mapping table. That is, as
discussed above, each processor (i.e., cluster node) has associated routing tables which
identify a particular link in the point-to-point infrastructure which may be used to
transmit the request from the current node to the node identified from the address
mapping tables. Although generally a node may correspond to one or a plurality of
resources (including, for example, a processor), it should be noted that the terms node
and processor are often used interchangeably herein. According to a particular
imple1£entation, a node comprises multiple sub-units, e.g., CPUs, memory controllers,
/O bridges, etc., each of which has a unit ID.

In addition, because individual transactions may be segmented in non-
consecutive packets, each packet includes a unique transaction tag to identify the
transaction with which the packet is associated with reference to the node which
initiated the transaction. According to a specific implementation, a transaction tag
identifies the source node (3-bit field), the source node unit (2-bit field), and a
transaction ID (5-bit field).

Thus, when a transaction is initiated at a particular node, the address mapping
tables are employed to identify the destination node (and unit) which are then
appended to the packet and used by the routing tables to identify the appropriate
link(s) on which to route the packet. The source information is used by the destination
node and any other nodes which are probed with the request to respond to the request

appropriately.

-15-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

" According to a specific embodiment and as mentioned above, the
interconnection controller in each cluster appears to the other processors in its cluster
as just another processor in the cluster. However, the portion of the shared memory
space associated with the interconnection controller actually encompasses the
remainder of the globally shared memory space, i.e., the memory associated with all
other clusters in the system. That is, from the perspective of the local processors in a
particular cluster, the memory space associated with all of the other multi-processor
clusters in the system are represented by the interconnection controller(s) in their own
cluster.

According to an even more specific embodiment which will be described with
reference to Fig. 5, each cluster has five nodes (e.g., as shown in Fig. 2) which include
four processors 202a-d and an interconnection controller 230, each of which is
represented by a 3-bit node ID which is unique within the cluster. As mentioned
above, each processor (i.e., cluster node) may represent a number of sub-units
including, for example, CPUs, memory controllers, etc.

An illustration of an exemplary address mapping scheme designed according
to the invention and assuming such a cluster configuration is shown in Fig. 5. In the
illustrated example, it is also assumed that the global memory space is shared by 4
such clusters also referred to herein as quads (in that each contains four local
processors). As will be understood, the number of clusters and nodes within each
cluster may vary according to different embodiments.

To extend the address mapping function beyond a single cluster, each cluster
maps its local memory space, i.e., the portion of the global memory space associated
with the processors in that cluster, into a contiguous region while the remaining
portion of the global memory space above and below this region is mapped to the local
interconnection controller(s). The interconnection controller in each cluster maintains
two mapping tables: a global map and local map. The global map maps outgoing
requests to remote clusters. The local map maps incoming requests from remote
clusters to a particular node within the local cluster. .

Referring now to Fig. 5, each local cluster has a local memory map (501-504),
which maps the local memory space (i.e., the contiguous portion of the global memory
space associated with the local processors) into the respective nodes and maps all
remote memory spaces (i.€., the remainder of the global memory space) into one or
two map entries associated with the local interconnection controller(s), e.g., Node 4 of

Quad 3. Each node in the local cluster has a copy of the local map. The

-16-

10

15

20

25

30

35

WO 2005/017752

PCT/US2004/022935
interconnection controller in each cluster also maintains a global map (505-508)
relating these remote memory spaces with each of the other clusters in the system.
Each interconnection controller uses its copy of the local map (509-511) to map
requests received from remote clusters to the individual nodes in its cluster.

An exemplary transaction described with reference to Fig. 5 may be
illustrative. In this example, Node 2 in Quad 3 generates a request that maps (via map
501) to the local interconnection controller (i.e., Node 4). When the interconnection
controller receives this request, its global map 505 maps the address to Quad 2. The
interconnection controller then forwards the request to Quad 2. The interconnection
controller at Quad 2 uses its local memory map to determine the proper node to target
for the request — Node 1 in this example.

In a particular implementation, each processor or cluster node is limited to
eight memory map registers. The scheme described above with reference to Fig. 5
requires four entries for the local memory space and at most two registers for remote
space. Therefore, according to more specific embodiments, the two remaining entries
can be used to subdivide regions. The eight mapping register limit requires that all
memory local to a quad be allocated within a contiguous block. The interconnection
controller’s local memory map in such embodiments is also eight entries. However,
the size of the interconnection controller’s global map size is determined by the
number of clusters in the system. According to various embodiments, the memory
mapped I/O space is mapped by an identical set of mapping registers.

As described above, on the local cluster level, information from address
mapping tables is used to identify the appropriate link on which to transmit
information to a destination node within the cluster. To effect transmissions between
clusters using the global mapping described above, a similar mechanism is needed.
Therefore, according to various embodiments, in addition to the local routing tables
associated with each node in a cluster, the interconnection controller maintains global
routing information which maps the other clusters in the system to the various point-
to-point transmission links interconnecting the clusters (e.g., links 111 of Fig. 1A).

According to a specific embodiment, two types of local routing tables are
employed: one for directed packets and one for broadcast packets. Each table (e.g.,

tables 406 of Fig. 4B) maintains a mapping between target nodes and links. For

 directed packets, a separate table is used for request and for responses. This allows

responses to be routed back to the requester along the same path as the request.

Maintaining the same route simplifies debugging and is not required for correctness.

-17-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

For broadcast packets, the corresponding table indicates on which links the broadcast
packet is forwarded. A broadcast packet may thus be routed to multiple links.

In a particular implementation of the interconnection controller, its local tables
map a local destination node to one of four links for directed packets and any number
of links for broadcast packets. The interconnection controller also maintains a global
routing table which maps remote destination clusters to a particular remote link.
According to a particular embodiment, the interconnection controller also supports
multicast of packets at the global routing level.

A specific embodiment of a routing mechanism will now be described with
reference to Figs. 6A and 6B. System 600 of Fig. 6A includes four clusters each
having a plurality of local nodes including nodes No and N;. The table of Fig. 6B
combines all of the local and global routing tables of the system for illustrative
purposes.

As part of an exemplary transaction, a CPU 602 at node Ny in Cluster 0
generates a packet directed to a CPU 604 at node Ny in the Cluster 3. This packet
could be, for example, a memory request that maps to a memory controller at that
node. Because CPU 602 has no knowledge of anything outside of its cluster, it
generates the packet targeting node Ny in Cluster 0 (i.e., the local interconnection
controller 606) as the destination. As discussed above, this is due to the fact that the
local memory map owned by node Ny (see the relevant portion of the table of Fig. 6B)
identifies node N as corresponding to all memory owned by remote clusters.
Interconnection controller 606 receives the packet, uses its global address map (e.g., as
described above) to determine that the final destination of the packet is Cluster 3, and
generates a remote packet targeting Cluster 3. Then, using its global routing table
(i.e., relevant portion of Fig. 6B), interconnection controller 606 determines that this
packet must be sent out on link L;. Similar to the local routing mechanism described
above, information identifying the source and destination cluster is appended to the
packet.

When interconnection controller 608 at Cluster 1 receives the packet, it also
determines that the packet is destined for Cluster 3 and determines from its global
routing table (Fig. 6B) that link L, must be used to send the packet. Interconnection
controller 610 at Cluster 3 receives the packet, determines that the packet is targeting
the local cluster, and uses its local routing table (Fig. 6B) to determine that local link
L, must be used to send the packet to its destination. CPU 604 at node No then

receives the packet via link Lo. According to specific embodiments in which the node

-18-

10

15

20

25

30

35

WO 2005/017752

PCT/US2004/022935
ID space is a 3-bit ID space, this multi-level routing mechanism can be extended to
eight local nodes with no specific limit on the number of clusters.

Embodiments described herein also address the issue of transaction
identification in a system having a plurality of multi-processor clusters. In general, the
importance of the unique identification of transactions in a multi-processor
environment is understood. Where the transaction identification or tag space is
limited, mechanisms to extend it are needed to enable the interconnection of more than
the maximum number of processors supported by the limited tag space. That is, in an
environment with a plurality of clusters operating with identical local transaction tag
spaces, there is a potential for more than one transaction to be generated in different
clusters simultaneously with the identical tag. Where those transactions occur
between nodes in different clusters, the potential for conflict is obvious. Therefore,
embodiments described herein provide mechanisms that extend the local tag spaces
such that each transaction in the multi-cluster system is uniquely identified.

More specifically, these embodiments map transactions from the local
transaction tag space to a larger global transaction tag space. As described above, the
local tag space is specified using the node ID, the unit ID, and a transaction ID. On
top of that, the global tag space is specified using a global cluster ID and a global
transaction ID. According to one embodiment, the interconnection controllers in the
system use their pending buffers to simplify the allocation and management of the
mapping and remapping actions. According to an even more specific embodiment and
as will be described, additional protocol management is used to maintain the
uniqueness of the global transaction tags.

According to a specific embodiment, all transactions within a cluster are
tagged with a unique ID generated by the requesting node. The processors in each
cluster that are not the interconnection controller support a 3-bit node ID, a 2-bit unit
ID and a 5-bit transaction ID. The combination of these fields creates a 10 bit tag
which is unique within the cluster. The unit ID represents sub-units within a node. It
should be noted that a particular node may or may not include a processor as one of its
sub-units, e.g., the node might contain only memory.

According to one embodiment, to extend to the transaction tag space beyond
the local cluster, each cluster’s interconnection controller maps each its cluster’s local
tag space into the global tag space using a Q-bit Cluster ID and a T-bit Transaction ID.
In the exemplary system in which each cluster has a 5-bit transaction ID and there are

four clusters, T might be 7 and Q might be 2.

-19-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

The local-to-global and global-to-local mapping techniques set forth in U.S.
Patent Application No. 10/157,384 also may be used in connection with the present
invention. As noted above, that application is incorporated herein by reference for all
purposes.

The previously-described methods and devices provide an exemplary
framework for intra-cluster and inter-cluster transactions. The present invention
provides methods for injecting commands into a pipeline or queue of intra-cluster or
inter-cluster transactions, whether the queue is created according to the exemplary
framework described above or according to another framework. As used herein, a
“command” is used broadly and may include, for example, an instruction and
associated data, when appropriate. A “command” may include all or any part of a
transaction, such as a request, a response, etc. According to preferred
implementations of the invention, commands may be injected into a pipeline of
transactions “on the fly,” i.e., while the system is running. Some preferred
implementations do not require an interconnection controller to be configured in a
special mode in order for such transactions to be injected.

Fig. 7 is a flow chart that provides an overview of an exemplary method of the
present invention. Further details of this process will be described below with
reference to Figs. 9 and 10. In step 705, an “inject command” indication is sent to a
test interface. According to the specific embodiment described with reference to Fig.
7, service processor 212 (see Fig. 2) sends the indication to TAP controller 321 of
interconnection controller 230 (see Figs. 3A and 3B). In other embodiments, another
device sends the indication and/or other signals to a test interface. The indication may
be sent in response to a user’s input, for example, during a troubleshooting and/or
debugging operation. The user may also indicate the command to be inserted, whether
by service processor 212 or otherwise. In some embodiments, a user interacts with a
graphical user interface to send the indication and to insert command.

In response to this command, in step 710 TAP controller 321 connects the TDI
and TDO pins to a data register within test data block 315 that has been designated a
mailbox register. In step 715, service processor 212 loads a command packet,
associated data (if any) and status bits into the mailbox register. An exemplary format
for this information will be described below with reference to Fig. 8.

The mailbox register that receives this information from the service processor
is in a test clock domain that is typically a slower clock domain than that of the

interconnection controller. For example, the TAP clock domain may be on the order

20-

10

15

20

25

30

35

WO 2005/017752

PCT/US2004/022935
of 1 to 10 MHz, whereas the clock domain of the interconnection controller may be on
the order of 400 MHz or more. Therefore, in step 720, the fields in mailbox register of
the test clock domain are synchronized with the interconnection controller clock
domain and used to update the corresponding fields of a mailbox register in the
interconnection controller clock domain.

In step 725, the command from the mailbox register in the interconnection
controller clock domain is inserted into a command buffer of the interconnection
controller. In step 730, status bits of the mailbox are updated to indicate that the
command is no longer pending.

Fig. 8 illustrates an exemplary format 800 for packets to be shifted into
mailbox registers. Preferably, the same format is used for the mailbox registers of the
test clock domain and of the interconnection controller clock domain. In this example,
the underlying protocol is the HT protocol and the mailbox register is used to facilitate
the injection of HT commands.

HT Data field 805 is used to encode data, if any, associated with a command in
the mailbox register. Data Valid field 810 includes a valid bt for each double word of
data in HT Data field 805. RCV LINK ID field 815 states which link conveyed the
packet to the mailbox. XMT LINK SEL field 820 indicates a link for transmission of
the packet.

DATA PTRYV field 825 is a “data pointer valid” field that indicates whether
there are data associated with a command in the mailbox. DATA PTR field 830 is the
associated data pointer field. REM Link Ext field 835 includes information (if
relevant) pertaining to remote links. For example, such information may identify
remote clusters, as described above with reference to Figs. 5, 6A and 6B.

Next is the HT CMD field 840, which includes an HT command to be injected
via the mailbox. Such commands may allow, for example, configuration registers to
be read or written, whether the configuration registers are in a local cluster or a remote
cluster. The command may initiate a new transaction in a local cluster (e.g., a
Memory Read request to a local processor) or in a remote cluster (e.g., a Read Block
request to a remote cluster). Alternatively, the injected command may be a part of a
transaction that is already in progress (e.g., a probe response to a Read request). Such
commands may be particularly useful during a debugging operation for breaking
deadlocks due to missing packets, e.g., missing probe responses from a remote cluster.
As noted above, the present invention is not limited to injecting HT commands, but

may be used with any suitable protocol.

21-

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

SPITAG _CMD field 845 is for commands directed to the SPTTAG module
inside the Special Functions Unit illustrated in Fig. 10. According to some
implementations, SPTTAG_CMD field 845 is relatively small, e.g., 3 bits. If
SPITAG_CMD field 845 includes a non-zero value, HT CMD field 840 will be
ignored.

According to one implementation, there are 2 SPITTAG commands. The first
SPITAG command clears the Finished and Pending bits. This command is used when
2 responses are expected for an injected HT command. After the first response is
captured and shifted out, this SPTTAG command is shifted in so that the F and P bits
get cleared. This procedure allows the second response from the system to be written
into the mailbox. The second response can then be shifted out during the next
Capture-DR.

The second SPTTAG command resets the Configuration register Access
mechanism inside interconnection controller 230. This command is used in situations
where the configuration register access mechanism inside Horus fails to operate
correctly and needs to be reset.

Fields 850 through 870 are single-bit fields according to some
implementations. When NRE bit 850 is set, this indicates that no response is to be
expected for the command shifted in. Accordingly, Finished bit 870 will be set as
soon as the command is accepted. When FRC bit 855 is set, the command is forced
into the system and Finished bit 870 is ignored. PRIO bit 860 indicates that the
command should be sent directly to Special Functions Configuration Access Dispatch
(“SPCAD”) unit 1015, (see Fig. 10). PRIO bit 860 is used with commands to access
configuration registers in the local interconnection controller 230. When PRIO bit 860
is not set, the injected HT command is sent to SPE Protocol Engine 1010 for
decoding. If the command is a configuration access command to the local
interconnection controller, SPE Protocol Engine 1010forwards the command to
SPCAD unit 1015, which sends a response to SPE Protocol Engine 1010. SPE
Protocol Engine 1010 then forwards the response back to SPJTAG unit 1038, where
the response is written into the mailbox register.

If the PRIO bit is set, however, the injected configuration access command is
sent directly to SPCAD unit 1015, bypassing the SPE Protocol Engine 1010. In
addition, the response from SPCAD unit 1015 is sent directly back to SPJTAG unit
1038, bypassing SPE Protocol Engine 1010.

22~

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

Thus, the PRIO bit mechanism provides a way of bypassing SPE Protocol
Engine 1010for configuration accesses to the local interconnection controller. The
PRIO bit mechanism offers 2 benefits. First, it provides a way to work around logic
bugs in the logically complex SPE Protocol Engine 1010 (that may make SPE
Protocol Engine 1010 inoperable) by bypassing SPE Protocol Engine 1010. Second,
the PRIO bit mechanism provides a less intrusive access to the local interconnection
controller configuration registers, in that the injected commands do not contend with
transactions that exist in the command pipeline controlled by SPE Protocol Engine
1010. PRIO bit 860 is set, for example, for configuration Read/Write commands to
the local interconnection controller.

Pending bit 865 indicates that a new command has been shifted into the
mailbox register. Finished bit 870 is set when the command has been completed and
indicates that a response to the command is ready to be captured from the mailbox
register.

Fig. 9 illustrates some aspects of injecting commands according to the present
invention. As noted above, after an instruction register of TAP controller 321 receives
an instruction (e.g., from service processor 212) to initiate the process of injecting a
command, TAP controller 321 connects TDI pin 905 and TDO pin 910 to mailbox
register 915. Mailbox register 915 is in the test clock domain (here, the TAP domain).
Mailbox register 915 and corresponding mailbox register 920 in the interconnection
controller clock domain may have the format 800 described above, but in Fig. 9 only
selected fields are shown.

After the mailbox register 915 is connected with TDI 905 and TDO 910, a
TAP controller 321 enters the Shift DR state (see Fig. 3C). In this state, a packet
including a command, associated data (if any) and status bits is then loaded into
mailbox register 915 via TDI 905. In some embodiments, the packet is loaded into
mailbox register 915 by service processor 212. In other embodiments, such
information is loaded into mailbox register 915 via another device configured to
access test interface 313. As noted above, the packet may be loaded into mailbox
register 915 under the control of a user, possibly by interacting with a graphical user
interface.

According to one specific embodiment, in order for a successful update to
occur, a command must be loaded with Pending bit 865 set and Finished bit 870 clear.
Moreover, in this example, a sample of the status flags obtained from Capture-DR

state 342 must show that a prior command was accepted (Pprev=0) and completed

-23-

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

(Fprev=1). After TAP controller 321 determines that Pending bit 865 is set and
Finished bit 870 is clear, TAP controller 321 enters the Update DR state (see Fig. 3C)
and asserts an Update DR signal to mailbox register 915. Upon receiving the Update
DR signal, mailbox register 915 determines that the entire packet has been shifted in
and that mailbox register 915 may perform an update. Accordingly, the command,
data and status fields of corresponding mailbox register 920 in the interconnection
controller clock domain are then updated.

If FRC bit 855 is set, then the Update is “forced” and the Fprev status bit is
ignored. FRC bit 855 is used, for example, if Finished bit 870 is not asserted even
after the interconnection controller has completed the previous command, or if the
previous command does not have an expected response.

Because the update occurs in the test clock domain, the update signal must be
synchronized to the interconnection controller’s clock domain. According to some
embodiments, Special Functions Unit (SPFU) 1005 (see Fig. 10) performs this
synchronization. The synchronized update is qualified with the previously-mentioned
conditions regarding the command and status fields.

After the command, data and status fields of mailbox register 920 have been
loaded, the packet or packets are forwarded to SPFU 10050f the interconnection
controller. (In alternative embodiments, mailbox register 920 is part of SPFU 1005.)
SPFU 1005 inserts the command packet into command pipeline 1006 from buffer
1007. Preferably, SPFU 1005 inserts the command into command FIFO 1008 which
may be located, for example, at the input of Special Protocol Engine (SPE) 1010.
SPFU 1005 inserts data packets into data stream 1009. Transmitter 1020 forwards the
data and commands to the appropriate destinations.

If the injected command needs to access the local configuration registers, then
the SPE 1010 will later send the command back to SPCAD 1015. However, if PRIO
bit 860 is set, the packet is send directly to SPCAD 1015 directly, bypassing SPE
1010. After SPFU 1005 accepts the command, SPFU 1005 changes Pending bit 865
in mailbox register 920 to “0,” indicating that the command has been processed.

According to some embodiments, SPE 1010 has other functions. For example,
at the time the system comes out of “reset” mode, the local and remote protocol
engines are not functioning right away. The only functioning protocol engiﬁe at that
time is SPE 1010, which programs and configures the system. Once the system is

configured, other protocol engines are activated and take over many system

-24-

10

15

20

25

30

35

WO 2005/017752 PCT/US2004/022935

transactions, but SPE 1010 is still responsible for special instructions such as
broadcasts, interrupts, etc.

Preferably, the packets are assigned an identifier (e.g., a node ID) that is
associated with mailbox register 920. The identifier indicates that the command or
data originated from the mailbox and allows, for example, a response to an inserted
command to be directed back to the mailbox according to the intra-cluster and inter-
cluster protocols.

In this embodiment, service processor 212 polls the data, command and status
bits of ‘the mailbox register during Capture-DR state 342, then shifts the results out
TDO pin 910 for inspection. Preferably, only Pending bit 865 and Finished bit 870
are shifted out for inspection. If the captured state of Pending bit 865 is clear, service
processor 212 knows that the command previously shifted in has been accepted.

After SPE 1010 receives the injected command, SPE 1010 sends the command
through the pipeline according to the normal intra-cluster protocol. If the conmmand
triggers a response, the response will come back to SPE 1010. According to some
implementations, when SPE 1010 receives the response, SPE 1010 (or another
component of SPFU 1005) will cause the response to be written into CMD/RESP field
950 of mailbox register 920, e.g., by asserting an SP response write enable
(“SPRespWrE”) command. SPFU 1005 will cause associated data, if any, to be
written into data field 960, e.g., by asserting an SP data write enable (“SPDataWrE”)
command. Because the data and response may or may not be synchronized, it is
preferable to have separate commands for controlling this process. Finished bit 870 is
set only after both the data and response are written into mailbox 920.

Meanwhile, service processor 212 has continued to poll the contents of the
mailbox register (or, at least, Finished bit 870 is shifted out for inspection).
Preferably, while the data, command and status bits are being shifted out, a new set of
data, command and status bits are being shifted in. If the captured state of the
Finished bit 870 is clear, service processor 212 knows that the command previously
shifted in has not been completed. Accordingly, if the command shifted in has not
been completed, the contents of mailbox 915 are overwritten with the contents of
mailbox 920.

If the captured state of the Finished bit 870 is set, service processor 212 knows
that the command previously shifted in has been completed and that a response packet
can be copied into the test clock domain in Capture-DR state 342. After capture, the

entire contents of mailbox 915 are shifted out. Service processor 212 would then

-25-

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

continue polling and injecting new transactions. In preferred implementations, service
processor 212 does not need to change the TAP instruction between subsequent
commands.

‘While the invention has been particularly shown and described with reference
to specific embodiments thereof, it will be understood by those skilled in the art that
changes in the form and details of the disclosed embodiments may be made without
departing from the spirit or scope of the invention. For example, specific
embodiments have been described herein with reference to a particular multi-
processor architecture having a limited node ID space and flat request mapping
functions. Tt will be understood, however, that the present invention applies more
generally to a wide variety of multi-processor architectures that employ a point-to-
point communication infrastructure to facilitate communication among the various
nodes in the system. In addition, each of the various aspects of the embodiments
described herein relating to, for example, address mapping, routing mechanisms, and
transaction identification, may be used in combination with various alternatives of
other ones of these aspects without departing from the scope of the invention.

It should also be understood that the various embodiments of the invention
may be implemented or represented in a wide variety of ways without departing from
the scope of the invention. That is, for example, the interconnection controller
described herein may be represented (without limitation) in software (object code or
machine code), in varying stages of compilation, as one or more netlists, in a
simulation language, in a hardware description ianguage, by a set of semiconductor
processing masks, and as partially or completely realized semiconductor devices. The
various alternatives for each of the foregoing as understood by those of skill in the art
are also within the scope of the invention. For example, the various types of
computer-readable media, software languages (e.g., Verilog, VHDL), simulatable
representations (e.g., SPICE netlist), semiconductor processes (e.g., CMOS), and
device types (e.g., ASICs) suitable for designing and manufacturing the processes and
circuits described herein are within the scope of the invention. Moreover, a test
interface of a processor may be used for receiving injected commands in a manner
parallel to that described herein for an interconnection controller.

Finally, although various advantages, aspects, and objects of the present
invention have been discussed herein with reference to various embodiments, it will be

understood that the scope of the invention should not be limited by reference to such

-26-

WO 2005/017752 PCT/US2004/022935

advantages, aspects, and objects. Rather, the scope of the invention should be

determined with reference to the appended claims.

27-

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

WE CLAIM:

1. A computer system comprising a plurality of processor clusters, each
cluster including a plurality of nodes, the nodes including processors and an
interconnection controller interconnected by point-to-point intra-cluster links, each of
the processors and the interconnection controller communicating within a cluster via
an intra-cluster transaction protocol, inter-cluster links being formed between
interconnection controllers of different clusters, each of the processors and the
interconnection controller in a cluster having a test interface for communicating with
service processor, at least one of the nodes in a cluster is a command-injecting node
configured to receive a command via a test interface and to inject the command into a

queue of commands according to the intra-cluster transaction protocol.

2. The computer system of claim 1, wherein the test interface is compliant

with the Joint Test Action Group standard.

3. The computer system of claim 1, wherein the injected command is
selected from the group consisting of (a) a command for reading a configuration of a
node within a local cluster that includes the service processor that made the injected
transaction; (b) a command for writing a configuration of a node within a local cluster
that includes the service processor that made the injected transaction; (c) a command
for reading a configuration of a node within a remote cluster that does not include the
service processor that made the injected transaction; and (d) a command for writing a
configuration of a node within a remote cluster that does not include the service

processor that made the injected transaction.

4. The computer system of claim 1, wherein the injected command

comprises a new transaction.

5. The computer system of claim 1, wherein the injected command
comprises a part of a transaction that was in progress before the command was

injected.

28~

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

6. The computer system of claim 1, wherein the interconnection

controllers communicate between clusters via an inter-cluster transaction protocol.

7. The computer system of claim 1, wherein the test interface further

comprises a mailbox register for receiving the command.

8. The computer system of claim 1, wherein a command is received from
the test interface in a first clock domain and at least part of the command-injecting
node operates in a second clock domain, and wherein the command-injecting node is
further configured for:

receiving injected transactions in the first clock domain; and

synchronizing the injected transactions to the second clock domain.

9. The computer system of claim 1, wherein the command-injecting node

is an interconnection controller.

10. The computer system of claim 1, wherein the command-injecting node

is any device capable of driving the JTAG port.

11. The computer system of claim 4, wherein the new transaction is within

a local cluster that includes the command-injecting node.

12. The computer system of claim 4, wherein the new transaction is within

a remote cluster that includes the command-injecting node.

13. The computer system of claim 7, wherein the mailbox register is

configured to be connected with a test data in interface and a test data out interface.

14. An interconnection controller for use in a computer system comprising
a plurality of processor clusters, each cluster including a plurality of nodes, the nodes
including processors and an instance of the interconnection controller interconnected
by point-to-point intra-cluster links, each of the processors and the interconnection

controller within a cluster communicating via an intra-cluster transaction protocol, the
-29-

10

15

20

25

30

WO 2005/017752 PCT/US2004/022935

interconnection controller configured to receive commands via a test interface and to
inject the commands into a queue of pending commands according to the intra-cluster

transaction protocol.

15. The interconnection controller of claim 14, wherein a service processor
in a cluster that includes the interconnection controller operates in a first clock
domain, wherein the interconnection controller operates in a second clock domain, and
wherein the interconnection controller is further configured for:

receiving injected transactions from the service processor in the first clock
domain; and

synchronizing the injected transactions to the second clock domain.

16. The interconnection controller of claim 14, further comprising a

mailbox register for receiving the injected transaction from the service processor.

17. Anintegrated circuit comprising the interconnection controller of claim
14.

18. At least one computer-readable medium having data structures stored

therein representative of the interconnection controller of claim 14.

19. A set of semiconductor processing masks representative of at least a

portion of the interconnection controller of claim 14.

20. The integrated circuit of claim 17, wherein the integrated circuit

comprises an application-specific integrated circuit.

21. The at least one computer-readable medium of claim 18, wherein the

data structures comprise a simulatable representation of the interconnection controller.

22. The at least one computer-readable medium of claim 18, wherein the

data structures comprise a code description of the interconnection controller.

-30-

WO 2005/017752 PCT/US2004/022935

23, The at least one computer-readable medium of claim 21, wherein the

simulatable representation comprises a netlist.

24. The at least one computer-readable medium of claim 22, wherein the

5 code description corresponds to a hardware description language.

25. The interconnection controller of claim 14, wherein the queue of
pending commands is controlled by a protocol engine, the interconnection controller
further configured to process access commands for accessing configuration registers

10 ofthe interconnection controller without forwarding the access commands to the

protocol engine.

26. The interconnection controller of claim 25, further comprising a
configuration access unit for processing access commands.

15

31-

PCT/US2004/022935

WO 2005/017752
1/13
/—1 11d
Processing [¢ 3 Processing
Cluster 101 L o/ Cluster 103
A P N T A
la— | .| Ln T~ T i}j ______ il
“ —111b
Processing ¢ ‘:" T Processing
Cluster 105 » Cluster 107
Fig. 1A
Processing Processing
Cluster 121 | o Cluster 123
M1 T 1414
Switch 131
141b AW 7 141c
Processing [¢ » Processing
Cluster 125 Cluster 127

Fig. 1B

PCT/US2004/022935

——P90T

owoml/

2/13

WO 2005/017752

¥0C
JoUIOYY
Rt soId
EliRCl
Y
0CcC O/1 > » 917 O/
012 yaums O/1
owoml/, 'y 7y —P80C
C —
PZ0T 108$9001J 9707 F0S$9001J
; ; pzez—| | o "
L > 12
PYIT r W
I8 2 NP z1z Iossado1g ¢ °
\,\,-,/m..‘u N R P—— 90TIAISG v1c
—q80¢C WIT A
D mwomlv
y v v 1T y k2l
qz0C 10559001 |- 0£Z I9[[01U0D) > BZ(Z 10SS9901]
) eger—"" A qzeg—""
A 3 A
SI3)S0[)) SJ0WY
00—"

.mwoml\

PCT/US2004/022935

WO 2005/017752

3/13

V¢ "Sig

60¢ Iogyng
supuag

[T ¢ 99.JIa1u] JUIIYOIUON

G0€ auIduy [000301]

LOE 99BJISU] 1USISYO))

1€ 90BJINUT 1S9],

I\ 0€T

PCT/US2004/022935

WO 2005/017752

4/13

o0lg

Odl <

gq¢ b4

ele <
19

1at

la)siBay uononnsu)

A

Jsjjouon
aoeuaY|

<« N 1S¥1
<« ML
<« SINL

cze —/

Lze —

*—¢cle

WO 2005/017752

5/13

330

1 G est Logic ReseD<

PCT/US2004/022935

0 < Run-Test/Idle

A
3325

v
—1-< Capture-DR >
lo 334

1 1 1
%—{Select—D R—Scan)—»(Select-lR-Scan>—
342

10 §344
—QCapture-lR >
1 lo (338

§
"C Shift—:)R)0

>< Shift—l;?l)o
l

+< Exit1-IR >—1—

340 lo
§
< Pause-IR)O
1

PCT/US2004/022935

WO 2005/017752

6/13

v 614

}IOM}BU BJOSUO0D

sdiyo 1ayjo pue

OIS UB| < 90IAIBS O] SNdD 01
Alnoeg —————» % ﬁ» ﬁs ﬁ» ﬁa
abejjop ———— >

- aoeLs)U|
alnjesadws} — ovir
orvu\ A /(N_‘v
soepaU
owﬂww <
oovl\
80— 4
lossaoold
 — | f———
20INIeg
Y0¥\ zie—" " zop
yse|q Wvdd

PCT/US2004/022935

WO 2005/017752

7/13

Ri28%

ariy

dy 814

A

A

Y

A 4

Nmﬁl\

¥

A

A

A 4

A 4

(orw) avo
11D
D g

(orw) avd
LD
10

S1qBL
Sunnoy

(0w avo
LD
Digie)

(0'w) avd
gnie)
1O

JlqeL
gunnoy

091

29TH \

9lqeL
gunnoy

(0w avd
1L
Do)

(0'w) avd
LD
1D

<€

A

Y

N

/914

I0SS9001J

3TH# \ A

SI9)SI3oY
oeyspueH
DVIL

\4

Brlv

WO 2005/017752

8/13
Requesting Quad
501\Local Map Global Map 505
Node 4 [|™.
ode L Quad 3 /
Node3d |1 ™ Quad 2 <
Node2 <]
Quad 1
Node 1 N Quad 0
Node O
502 Quad 3
\ Noded ™. LROA Y
Noded |™-.] Quad3 | \% “%
Node 2 Quad 2 IR
Node 1 | Quad1
Node 0 |~ Quad 0
Node4 | .-~ (506
Quad 2
503
™ Node 4 | ™. .
Node 3 Quad 3
Node 2 *.| Quad?2
Node 1 Quad 1
Node 0 Quad 0
Node4 | .~ (507
Quad 1
504 508
I Node 4 | "
ode 4 X Quad 3 /
Node 3
Quad 2
Node 2
Quad 1
Node 1 Quad 0
Node 0
Quad 0

Fig. 5

PCT/US2004/022935

Target Quad
Local Map

Node 4 509
Node 3
Node 2
Node 1
Node 0
Node 4

Quad 2

Node 4 510
Node 3
Node 2
Node 1
Node 0
Node 4

Quad 1

Node 4 5
Node3d |
Node 2
Node 1
Node 0
Quad 0

—
—

WO 2005/017752 PCT/US2004/022935

9/13

e 600
Cluster 0 Cluster 1
e T e e e e— e e - — - e e e e s e e —— =1
| 602 606 | | 608 |
I L. L | 1 L, L I
| N, || N, |
| , | | |
Lo _] I Ly N]
e e e s e — - — T TN e e e e e e e e —— — |
| ||)= 610 I 604 |
I L, L | | L, L |
| 0 ™0 IC L1 || |-1 IC 00 |
| N 1 || N1 |
I | | I
e e e e e e e N J
Cluster 2 Cluster 3
L, - Link number
N, - Node number
Fig. 6A
Local Table Global Table
Dest Node Dest Cluster
Source No N1 Co G C, Cs
Cluster 0 | Node 0 X Ly NA NA NA NA
Node 1 LO X X L1 Lz L]
Cluster 1 | Node 0 X Lo NA NA NA NA
Node 1 Lo X L, X L, L,
Cluster 2 | Node 0 X Lo NA NA NA NA
Node 1 Lo X LZ L2 X Ll
Cluster 3 | Node 0 X L NA NA NA NA
Node 1 Lo X L, L, L X

Fig. 6B

WO 2005/017752 PCT/US2004/022935
10/13

705

“Inject command” indication sent to TAP
controller

l /710

TAP controller connects TDI and TDO
pins to mailbox register

l 715

Service processor loads command to be inserted, status bits and
data, if any, into mailbox register in the test clock domain

720

Y

Fields in mailbox register in test clock domain synchronized with
interconnection controller clock domain and used to update
mailbox register in interconnection controller clock domain

l 725

Command inserted into command buffer of interconnection controller

l /730

Status bits updated to indicate command
no longer pending

700

Fig. 7

WO 2005/017752

PCT/US2004/022935
11/13

Name

Description

805__- HT Data

Data Associated with the Mailbox HT Command

810 __~ Data Valid

Valid bit for each double word (DW) of HT data

8 -] v
15 RCV LINK ID Indicates the D of link on which the packet was
820 received.
| XMT LINK SEL Transmit Link Selector.
825 Data Pointer Valid. Indicates that the mailbox HT

~ | DATA PTRV

command has data associated with it.

830 _{pATAPTR

Data Pointer.

8
30— REM Link Ext

Remote Link Extension Bits. Contains information
pertaining to remote links such as QUAD ID etc.

840 _HT CMD

64-bit HT Command

845__| SPJTAG_CMD

Command issued to the SPJTAG Unit. A non-zero
value in this field causes the HT CMD field to be
ignhored.

850_
NRE

No Response Expected. Indicates that no response
is to be expected for the HT command shifted in.
When set, it causes the Fbit to be set as soon as the
command is accepted.

855_
FRC

Force Command Bit. When set, the supplied
command is forced into the system ignoring the
Finished status bit.

860~ PRIO

Priority Command Bit. Set by software to indicate
that the HT Command needs to be sent to the CAR
directly. This bit should be set only for configuration
RD/WR HT Commands to the local Horus.

865 _ 1P pit

Command Pending Bit. Set by software to indicate
that there is a new command shifted into the
mailbox register.

870__|
F_bit

Finished Bit. Set by Horus on completing the HT
command. Indicates that the response to the
command is ready to be captured from the Horus
mailbox register.

Fig. 8 =

800

PCT/US2004/022935

WO 2005/017752

12/13

W W % W W W 4 W 4 # @ & % @4 @4 A @ A @ & & @& @ @ A A 4 8 4 @ s @A @A @d s A @@ 9 @® @ @ F &AW A BB A @ AT

a

4 a

2 s
RS @0 -
TeTaTa e e oAl
R =
T S| e
R Fu.“,u 7] " n s ey

g gl R e

» p— . - . - - . - - o

< .ﬂ.:dE..._. " moe e mom oy

g 8-l 8 e m D OO

S @ -OE D I

A g e

=2] i Ny
© & Tl el 7

— . 2 mm e r] B!

S = »

3 @A -] DR &
O AT R P =
Teae e s e Tels = e n nu.uuugﬂm
R (R R w e
Ili'.ll!.!-utﬂi! r.! ”, lil..! .!iwa
......... o B Eee B
R a.a N B) m... KR _.m
G m,- sleleele’s Ol] -]
.ug.a...puu..,.um. .
........ [. W oA [-4
a:-usu4|»n.:A-.¢ m.uauna.ua-au»n W.- l.n\.
OISR S R gy B A

CaptureDR

E
|
Pprev

Fprev |[€—

\4
P]

CMD/RESP __ [FRC]

(~Pprev & (FRC | Fprev)) & [%]

915S
(P & ~F)

. DATAV |

A 4

TDI g—ﬂ DATA
905

Test Clk Domain

Fig. 9

WO 2005/017752 PCT/US2004/022935
13/13

Protocol Engines §

Node(s)
e
. aT 1005
¢ l(SPFU) Special Functions Unit
N
—_—
—>
1007 — '

1038

Confign Access

Fig. 10

INTERNATIONAL SEARCH REPORT fonal Application No
+ v+, US2004/022935

CLASSIFICATION OF SUBJECT MATTER

TPC 7 CGOBF11/26

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GOG6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2002/065646 A1 (MERRELL DAVID ET AL) 1-17,20,
30 May 2002 (2002-05-30) 25,26

paragraph ‘0033! .

paragraph ‘0036! - paragraph €0037!
paragraph ‘0040!

paragraph ‘0048!; figures 1,2

Y US 2003/037224 Al (KULPA WILLIAM G ET AL) 1-17,20,
20 February 2003 (2003-02-20) 25,26
paragraph ‘00191

paragraph ‘0030! - paragraph 0032!;
figures 2-4

D Further documents are listed in the continuation of box C. Patent family members are listed in annex.

° Special categories of cited documents : . R . "

"T* later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

A document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

L document which may throw doubts on priotity claim(s) or involve an inventive step when the document Is taken alone
which is cited to establish the publication date of another *Y* document of paticular relevance; the claimed invention

citation or other special reason (as specified) cannot be considered to involve an inventive step when the

*0" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but inthe art.
later than the priority date claimed *&* document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
12 January 2005 21/01/2005
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk

Tel. (+31-70) 340—-2040, Tx. 31 651 epo nl, :
Fax: (+31-70) 340-3016 Gorzewski, M

Form PCT/ISA/210 (second sheet) (January 2004)

rnational application No.

INTERNATIONAL SEARCH REPORT PCT/US2004/022935

Box Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 18,19,21-24

because they relate to parts of the International Application that do not comply with the prescribed requirements to such
an extent that no meaningful international Search can be carried out, specifically:

see FURTHER INFORMATION sheet PCT/ISA/210

3. D Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box Il Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. l:l As all required additional search fees were timely paid by the applicant, this International Search Report covers all
searchable claims.

2. I:l As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.

3.]:I As only some of the required additional search fees were timely paid by the applicant, this International Search Report
covers only those claims for which fees were paid, specifically claims Nos.:

4, D No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is
restricted to the invention first mentioned In the claims; it is covered by claims Nos.:

Remark on Protest I:I The additional search fees were accompanied by the applicant’s protest.

|:| No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)

International Application No. PCT/US2004 /022935

FURTHER INFORMATION CONTINUED FROM PCT/ASA/ 210

Continuation of Box II.2

Claims Nos.: 18,19,21-24

Claims 18,21-24 relate to a computer-readable medium having data
structures representative of the interconnection controller.

Claim 19 relates to a set of semiconductors processing masks.

Claims 18 and 19 are completely unrelated to the previous independent
claims and they are not linked to them by a common inventive concept.
However, 1t 1s pointless to raise a non-unity objection asking the
applicant to choose among the different inventions because claims 18 and
claim 19 cannot be chosen.

Both claims do not seem to have any support in the description, and
since their Tength is hardly more than a T1ine of text, they do not
contain enough technical subject-matter for a meaningful search.

The applicant’s attention is drawn to the fact that claims relating to
inventions in respect of which no international search report has been
established need not be the subject of an international preliminary
examination (Rule 66.1(e) PCT). The applicant is advised that the EPO
policy when acting as an International Preliminary Examining Authority is
normally not to carry out a preliminary examination on matter which has
not been searched. This is the case irrespective of whether or not the
claims are amended following receipt of the search report or during any
Chapter II procedure. If the application proceeds into the regional phase
before the EPO, the applicant is reminded that a search may be carried
out during examination before the EPO (see EPO Guideline C-VI, 8.5),
should the problems which led to the Article 17(2) declaration be
overcome,

INTERNATIONAL SEARCH REPORT

fonal Application No

.. US2004/022935
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002065646° Al 30-05-2002 NONE
US 2003037224 Al 20-02-2003 CA 2457666 Al 27-02-2003
EP 1442385 Al 04-08-2004
WO 03017126 Al 27-02-2003

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

