

(86) Date de dépôt PCT/PCT Filing Date: 2006/12/22
(87) Date publication PCT/PCT Publication Date: 2007/06/28
(45) Date de délivrance/Issue Date: 2018/10/02
(85) Entrée phase nationale/National Entry: 2008/07/24
(86) N° demande PCT/PCT Application No.: NZ 2006/000343
(87) N° publication PCT/PCT Publication No.: 2007/073220
(30) Priorité/Priority: 2005/12/23 (NZ544432)

(51) Cl.Int./Int.Cl. G01N 33/50(2006.01),
C40B 30/00 (2006.01), C40B 40/06 (2006.01),
G01N 33/48 (2006.01), G01N 33/574 (2006.01),
G01N 33/577 (2006.01), G06F 19/10 (2011.01)

(72) Inventeurs/Inventors:
NEKARDA, HJALMAR, DE;
FRIEDERICH, JAN, DE;
HOLZMANN, BERNHARD, DE;
ROSENBERG, ROBERT, DE;
REEVE, ANTHONY EDMUND, NZ;
...

(73) Propriétaire/Owner:
PACIFIC EDGE BIOTECHNOLOGY LTD., NZ

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre : PREDICTION D'EVOLUTION D'UN CANCER COLORECTAL

(54) Title: PROGNOSIS PREDICTION FOR COLORECTAL CANCER

(57) Abrégé/Abstract:

This invention relates to prognostic signatures, and compositions and methods for determining the prognosis of cancer in a patient, particularly for colorectal cancer. Specifically, this invention relates to the use of genetic markers for the prediction of the prognosis of cancer, such as colorectal cancer, based on signatures of genetic markers. In various aspects, the invention relates to a method of predicting the likelihood of long-term survival of a cancer patient, a method of determining a treatment regime for a cancer patient, a method of preparing a treatment modality for a cancer patient, among other methods as well as kits and devices for carrying out these methods.

(72) Inventeurs(suite)/Inventors(continued): BLACK, MICHAEL ALAN, NZ; MCCALL, JOHN LINDSAY, NZ; LIN, YU-HSIN, NZ; POLLOCK, ROBERT CRAIG, NZ

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
28 June 2007 (28.06.2007)

PCT

(10) International Publication Number
WO 2007/073220 A1

(51) International Patent Classification:

G01N 33/50 (2006.01) *C12Q 1/68* (2006.01)
G01N 33/53 (2006.01) *G01N 33/68* (2006.01)
G06F 19/00 (2006.01)

[NZ/NZ]; 4 Springhill Terrace, Mornington, Dunedin (NZ).

(74) Agent: BALDWINS; P O Box 852, Wellington (NZ).

(21) International Application Number:

PCT/NZ2006/000343

(22) International Filing Date:

22 December 2006 (22.12.2006)

(25) Filing Language:

English

(26) Publication Language:

English

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data:

544432 23 December 2005 (23.12.2005) NZ

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **NEKARDA, Hjalmar** [DE/DE]; Edelweissstr 2a, 82024 Taufkirchen (DE). **FRIEDERICHs, Jan** [DE/DE]; Department of Surgery, Technische Universität München (DE). **HOLZMANN, Bernhard** [DE/DE]; Department of Surgery, Technische Universität München (DE). **ROSENBERG, Robert** [DE/DE]; Scheinerstr 7, 81679 Munich (DE). **REEVE, Anthony Edmund** [NZ/NZ]; 22 Como Street, Maori Hill, Dunedin (NZ). **BLACK, Michael Alan** [NZ/NZ]; 17 Falcon Street, Roslyn, Dunedin (NZ). **MCCALL, John Lindsay** [NZ/NZ]; 148 Konini Road, Titirangi, Auckland (NZ). **LIN, Yu-Hsin** [NZ/NZ]; 66 Poulter's Road, Leith Valley, Dunedin (NZ). **POLLOCK, Robert Craig**

Published:

— with international search report

(48) Date of publication of this corrected version:

8 November 2007

(15) Information about Correction:

see PCT Gazette No. 45/2007 of 8 November 2007

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: PROGNOSIS PREDICTION FOR COLORECTAL CANCER

WO 2007/073220 A1

(57) **Abstract:** This invention relates to prognostic signatures, and compositions and methods for determining the prognosis of cancer in a patient, particularly for colorectal cancer. Specifically, this invention relates to the use of genetic markers for the prediction of the prognosis of cancer, such as colorectal cancer, based on signatures of genetic markers. In various aspects, the invention relates to a method of predicting the likelihood of long-term survival of a cancer patient, a method of determining a treatment regime for a cancer patient, a method of preparing a treatment modality for a cancer patient, among other methods as well as kits and devices for carrying out these methods.

WO 2007/073220

PCT/NZ2006/000343

PROGNOSIS PREDICTION FOR COLORECTAL CANCER**RELATED APPLICATION**

5

FIELD OF THE INVENTION

- 10 This invention relates to methods and compositions for determining the prognosis of cancer, particularly colorectal cancer, in a patient. Specifically, this invention relates to the use of genetic markers for determining the prognosis of cancer, such as colorectal cancer, based on prognostic signatures.

15 **BACKGROUND OF THE INVENTION**

- Colorectal cancer (CRC) is one of the most common cancers in the developed world, and its incidence is continuing to increase. Although the progression of colorectal cancer from benign polyp to adenoma to carcinoma is well studied (1), the molecular events influencing the transition and establishment of metastasis are less well understood. The prognosis and treatment of CRC currently depends on the clinicopathological stage of disease at the time of diagnosis, and primary surgical treatment. Unfortunately disease stage alone does not allow accurate prediction of outcome for individual patients. If patient outcomes could be predicted more accurately treatments could be tailored to avoid under-treating patients destined to relapse, or over-treating patients who would be helped by surgery alone.

Many attempts have been made to identify markers that predict clinical outcome in CRC. Until recently most studies focused on single proteins or gene mutations with limited success in terms of prognostic information (2). Microarray technology enables the identification of sets of genes, called classifiers or signatures that correlate with cancer outcome. This approach has been applied to a variety of cancers, including CRC (3-5), but methodological problems and a lack of independent validation has cast doubt over the findings (6,7). Furthermore, doubts about the ability of classifiers/signatures to predict outcome have arisen due to poor

concordance of identified by different researchers using different array platforms and methodologies (8).

5 There is a need for further tools to predict the prognosis of colorectal cancer. This invention provides further methods, compositions, kits, and devices based on prognostic cancer markers, specifically colorectal cancer prognostic markers, to aid in the prognosis and treatment of cancer.

SUMMARY OF THE INVENTION

- 10 In certain embodiments there is provided a set of markers genes identified to be differentially expressed in recurrent and non-recurrent colorectal tumours. This set of genes can be used to generate prognostics signatures, comprising two or more markers, capable of predicting the progression of colorectal tumour in a patient.
- 15 The individual markers can differentially expressed depending on whether the tumour is recurrent or not. The accuracy of prediction can be enhanced by combining the markers together into a prognostic signature for, providing for much more effective individual tests than single-gene assays. Also provided for is the application of techniques, such as statistics, machine learning, artificial intelligence, and data mining
- 20 to the prognostics signatures to generate prediction models. In another embodiment, expression levels of the markers of a particular prognostic signature in the tumour of a patient can then be applied to the prediction model to determine the prognosis.

25 In certain embodiments, the expression level of the markers can be established using microarray methods, quantitative polymerase chain reaction (qPCR), or immunoassays.

BRIEF DESCRIPTION OF THE FIGURES

30 This invention is described with reference to specific embodiments thereof and with reference to the figures, in which:

Figure 1 depicts a flow chart showing the methodology for producing the prognostic signatures from 149 New Zealand (NZ) and 55 German (DE) colorectal cancer (CRC) samples. New Zealand RNA samples were hybridized to

oligonucleotide spotted arrays, with a 22-gene signature produced via leave one out cross validation (LOOCV), and then independently validated by LOOCV using the 55 sample DE data set. German RNA samples were hybridized to Affymetrix arrays, with a 19-gene signature produced via LOOCV, and then independently validated by 5 LOOCV using the NZ data set.

Figure 2 depicts a Kaplan-Meier analysis of disease-free survival time with patients predicted as high versus low risk of tumour recurrence: **a**, using NZ 22-gene signature on 149 tumours from NZ patients; **b**, using DE 19-gene signature on 55 10 tumours from DE patients; **c**, NZ prognostic signature validated on 55 tumours from DE patients; **d**, DE prognostic signature validated on 149 tumours from NZ patients. P-values were calculated using the log-rank test.

Figure 3 depicts a Kaplan-Meier analysis of disease free survival time with 15 patients predicted as high versus low risk of tumour recurrence: **a**, using the 22-gene NZ signature on NZ patients with Stage II and Stage III disease; **b**, using the 19-gene DE signature on NZ patients with Stage II and Stage III disease.

Figure 4 shows the predictive value of signatures of varying lengths for 20 prognosis of colorectal cancer. These signatures were derived from 10 replicate runs of 11-fold cross validation. Each replicate 11-fold validation run is indicated by the various dashed lines; the mean across replicates by the bold line. In each fold of the cross-validation, genes were removed if the fold-change across classes was < 1.1 (for the remaining samples not removed in that particular fold). The genes were then 25 ranked using a modified t-statistic, obtaining a different set of genes for each fold, and classifiers using the top n - genes (where $n=2$ to 200) were constructed for each fold. The genes therefore may differ for each fold of each replicate 11-fold cross validation. Figure 4 (A): Sensitivity (proportion of recurrent tumours correctly classified), with respect to number of genes/signature. Figure 4 (B): Specificity (proportion of non-recurrent tumours correctly classified), with respect to number of genes/signature. 30 Figure 4 (C): Classification rate (proportion of tumours correctly classified), with respect to number of genes/signature. The nomenclature applied by the statistician is as follows: I refers to Stage I or Stage II colorectal cancer (with no progression), and IV refers to eventual progression to Stage IV metastases.

Figure 5 shows the decreased predictive value of signatures for the prognosis of colorectal cancer, in a repeat of the experiment of Figure 4, except with the two genes, FAS and ME2, removed from the data set. Figure 5 (A): Sensitivity (proportion of recurrent tumours correctly classified), with respect to number of genes/signature. Figure 5 (B): Specificity (proportion of non-recurrent tumours correctly classified), with respect to number of genes/signature. Figure 5 (C): Classification rate (proportion of tumours correctly classified), with respect to number of genes/signature.

10

Figure 6 shows a pairs chart of "top counts" (number of times each gene appeared in the "top-n" gene lists, i.e., top 10, top 20, top 100, and top 325 as described in Example 17) using three different normalization methods produced using the R statistical computing package(10,39) , in accordance with Example 17, below. The "pairs" chart is described in by Becker et al, in their treatise on the S Language (upon which R is based; see reference 39) To compare methods, use row and column as defined on the diagonal to obtain the scatter plot between those two methods, analogous to reading distances off a distance chart on a map

20

Figure 7 shows the pairs chart (39) of top counts (number of times each gene appeared in the "top-n" gene lists, i.e., top 10, top 20, top 100, and top 325 as described in Example 17) using three different filtering statistics: (a) two-sample Wilcoxon test (41), (b) t-test (modified using an *ad-hoc* correction factor in the denominator to abrogate the effect of low-variance genes falsely appearing as significant) and (c) empirical Bayes as provided by the "limma"(10,40,42) package of Bioconductor (12,40).

DETAILED DESCRIPTION

Definitions

30 Before describing embodiments of the invention in detail, it will be useful to provide some definitions of terms used herein.

The term "marker" refers to a molecule that is associated quantitatively or qualitatively with the presence of a biological phenomenon. Examples of "markers"

- include a polynucleotide, such as a gene or gene fragment, RNA or RNA fragment; or a gene product, including a polypeptide such as a peptide, oligopeptide, protein, or protein fragment; or any related metabolites, by products, or any other identifying molecules, such as antibodies or antibody fragments, whether related directly or
- 5 indirectly to a mechanism underlying the phenomenon. The markers of the invention include the nucleotide sequences (e.g., GenBank sequences) as disclosed herein, in particular, the full-length sequences, any coding sequences, any fragments, or any complements thereof, and any measurable marker thereof as defined above.
- 10 The terms "CCPM" or "colorectal cancer prognostic marker" or "CCPM family member" refer to a marker with altered expression that is associated with a particular prognosis, e.g., a higher or lower likelihood of recurrence of cancer, as described herein, but can exclude molecules that are known in the prior art to be associated with prognosis of colorectal cancer. It is to be understood that the term CCPM does not
- 15 require that the marker be specific only for colorectal tumours. Rather, expression of CCPM can be altered in other types of tumours, including malignant tumours.

The terms "prognostic signature," "signature," and the like refer to a set of two or more markers, for example CCPMs, that when analysed together as a set allow for the

20 determination of or prediction of an event, for example the prognostic outcome of colorectal cancer. The use of a signature comprising two or more markers reduces the effect of individual variation and allows for a more robust prediction. Non-limiting examples of CCPMs are set forth in Tables 1, 2, 5, and 9, while non-limiting examples of prognostic signatures are set forth in Tables 3, 4, 8A, 8B, and 9, herein. In the

25 context of the present invention, reference to "at least one," "at least two," "at least five," etc., of the markers listed in any particular set (e.g., any signature) means any one or any and all combinations of the markers listed.

The term "prediction method" is defined to cover the broader genus of methods from

30 the fields of statistics, machine learning, artificial intelligence, and data mining, which can be used to specify a prediction model. These are discussed further in the Detailed Description section.

The term “prediction model” refers to the specific mathematical model obtained by applying a prediction method to a collection of data. In the examples detailed herein, such data sets consist of measurements of gene activity in tissue samples taken from recurrent and non-recurrent colorectal cancer patients, for which the class (recurrent or non-recurrent) of each sample is known. Such models can be used to (1) classify a sample of unknown recurrence status as being one of recurrent or non-recurrent, or (2) make a probabilistic prediction (i.e., produce either a proportion or percentage to be interpreted as a probability) which represents the likelihood that the unknown sample is recurrent, based on the measurement of mRNA expression levels or expression products, of a specified collection of genes, in the unknown sample. The exact details of how these gene-specific measurements are combined to produce classifications and probabilistic predictions are dependent on the specific mechanisms of the prediction method used to construct the model.

15 “Sensitivity”, “specificity” (or “selectivity”), and “classification rate”, when applied to the describing the effectiveness of prediction models mean the following: “Sensitivity” means the proportion of truly positive samples that are also *predicted* (by the model) to be positive. In a test for CRC recurrence, that would be the proportion of recurrent tumours predicted by the model to be recurrent. “Specificity” or “selectivity” means the proportion of truly negative samples that are also *predicted* (by the model) to be negative. In a test for CRC recurrence, this equates to the proportion of non-recurrent samples that are predicted to be non-recurrent by the model. “Classification Rate” is the proportion of all samples that are correctly classified by the prediction model (be that as positive or negative).

25

As used herein “antibodies” and like terms refer to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. These include, but are not limited to, polyclonal, monoclonal, chimeric, 30 single chain, Fc, Fab, Fab', and Fab₂ fragments, and a Fab expression library. Antibody molecules relate to any of the classes IgG, IgM, IgA, IgE, and IgD, which differ from one another by the nature of heavy chain present in the molecule. These include subclasses as well, such as IgG1, IgG2, and others. The light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to

all classes, subclasses, and types. Also included are chimeric antibodies, for example, monoclonal antibodies or fragments thereof that are specific to more than one source, e.g., a mouse or human sequence. Further included are camelid antibodies, shark antibodies or nanobodies.

5

The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by abnormal or unregulated cell growth. Cancer and cancer pathology can be associated, for example, with metastasis, interference with the normal functioning of neighbouring cells, release of cytokines or 10 other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc. Specifically included are colorectal cancers, such as, bowel (e.g., large bowel), anal, and rectal cancers.

15

The term "colorectal cancer" includes cancer of the colon, rectum, and/or anus, and especially, adenocarcinomas, and may also include carcinomas (e.g., squamous cloacogenic carcinomas), melanomas, lymphomas, and sarcomas. Epidermoid (nonkeratinizing squamous cell or basaloid) carcinomas are also included. The cancer 20 may be associated with particular types of polyps or other lesions, for example, tubular adenomas, tubulovillous adenomas (e.g., villoglandular polyps), villous (e.g., papillary) adenomas (with or without adenocarcinoma), hyperplastic polyps, hamartomas, juvenile polyps, polypoid carcinomas, pseudopolyps, lipomas, or leiomyomas. The cancer may be associated with familial polyposis and related 25 conditions such as Gardner's syndrome or Peutz-Jeghers syndrome. The cancer may be associated, for example, with chronic fistulas, irradiated anal skin, leukoplakia, lymphogranuloma venereum, Bowen's disease (intraepithelial carcinoma), condyloma acuminatum, or human papillomavirus. In other aspects, the cancer may be associated with basal cell carcinoma, extramammary Paget's disease, cloacogenic carcinoma, or 30 malignant melanoma.

The terms "differentially expressed," "differential expression," and like phrases, refer to a gene marker whose expression is activated to a higher or lower level in a subject (e.g., test sample) having a condition, specifically cancer, such as colorectal cancer,

- relative to its expression in a control subject (e.g., reference sample). The terms also include markers whose expression is activated to a higher or lower level at different stages of the same condition; in recurrent or non-recurrent disease; or in cells with higher or lower levels of proliferation. A differentially expressed marker may be
- 5 either activated or inhibited at the polynucleotide level or polypeptide level, or may be subject to alternative splicing to result in a different polypeptide product. Such differences may be evidenced by a change in mRNA levels, surface expression, secretion or other partitioning of a polypeptide, for example.
- 10 Differential expression may include a comparison of expression between two or more markers (e.g., genes or their gene products); or a comparison of the ratios of the expression between two or more markers (e.g., genes or their gene products); or a comparison of two differently processed products (e.g., transcripts or polypeptides) of the same marker, which differ between normal subjects and diseased subjects; or
- 15 between various stages of the same disease; or between recurring and non-recurring disease; or between cells with higher and lower levels of proliferation; or between normal tissue and diseased tissue, specifically cancer, or colorectal cancer. Differential expression includes both quantitative, as well as qualitative, differences in the temporal or cellular expression pattern in a gene or its expression products among, for
- 20 example, normal and diseased cells, or among cells which have undergone different disease events or disease stages, or cells with different levels of proliferation.

The term "expression" includes production of polynucleotides and polypeptides, in particular, the production of RNA (e.g., mRNA) from a gene or portion of a gene, and

25 includes the production of a polypeptide encoded by an RNA or gene or portion of a gene, and the appearance of a detectable material associated with expression. For example, the formation of a complex, for example, from a polypeptide-polypeptide interaction, polypeptide-nucleotide interaction, or the like, is included within the scope of the term "expression". Another example is the binding of a binding ligand, such as

30 a hybridization probe or antibody, to a gene or other polynucleotide or oligonucleotide, a polypeptide or a protein fragment, and the visualization of the binding ligand. Thus, the intensity of a spot on a microarray, on a hybridization blot such as a Northern blot, or on an immunoblot such as a Western blot, or on a bead

array, or by PCR analysis, is included within the term "expression" of the underlying biological molecule.

The terms "expression threshold," and "defined expression threshold" are used
5 interchangeably and refer to the level of a marker in question outside which the polynucleotide or polypeptide serves as a predictive marker for patient survival without cancer recurrence. The threshold will be dependent on the predictive model established are derived experimentally from clinical studies such as those described in the Examples below. Depending on the prediction model used, the expression
10 threshold may be set to achieve maximum sensitivity, or for maximum specificity, or for minimum error (maximum classification rate). For example a higher threshold may be set to achieve minimum errors, but this may result in a lower sensitivity. Therefore, for any given predictive model, clinical studies will be used to set an expression threshold that generally achieves the highest sensitivity while having a
15 minimal error rate. The determination of the expression threshold for any situation is well within the knowledge of those skilled in the art.

The term "long-term survival" is used herein to refer to survival for at least 5 years, more preferably for at least 8 years, most preferably for at least 10 years
20 following surgery or other treatment.

The term "microarray" refers to an ordered or unordered arrangement of capture agents, preferably polynucleotides (e.g., probes) or polypeptides on a substrate. See, e.g., Microarray Analysis, M. Schena, John Wiley & Sons, 2002; Microarray Biochip
25 Technology, M. Schena, ed., Eaton Publishing, 2000; Guide to Analysis of DNA Microarray Data, S. Knudsen, John Wiley & Sons, 2004; and Protein Microarray Technology, D. Kambhampati, ed., John Wiley & Sons, 2004.

The term "oligonucleotide" refers to a polynucleotide, typically a probe or primer,
30 including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA: DNA hybrids, and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available, or by a variety of other methods,

including *in vitro* expression systems, recombinant techniques, and expression in cells and organisms.

The term "polynucleotide," when used in the singular or plural, generally refers to any 5 polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. This includes, without limitation, single- and double-stranded DNA, DNA including single- and double- stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more 10 typically, double-stranded or include single- and double-stranded regions. Also included are triple-stranded regions comprising RNA or DNA or both RNA and DNA. Specifically included are mRNAs, cDNAs, and genomic DNAs, and any fragments thereof. The term includes DNAs and RNAs that contain one or more modified bases, such as tritiated bases, or unusual bases, such as inosine. The polynucleotides of the 15 invention can encompass coding or non-coding sequences, or sense or antisense sequences. It will be understood that each reference to a "polynucleotide" or like term, herein, will include the full-length sequences as well as any fragments, derivatives, or variants thereof.

20 "Polypeptide," as used herein, refers to an oligopeptide, peptide, or protein sequence, or fragment thereof, and to naturally occurring, recombinant, synthetic, or semi-synthetic molecules. Where "polypeptide" is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, "polypeptide" and like terms, are not meant to limit the amino acid sequence to the complete, native amino acid 25 sequence for the full-length molecule. It will be understood that each reference to a "polypeptide" or like term, herein, will include the full-length sequence, as well as any fragments, derivatives, or variants thereof.

30 The term "prognosis" refers to a prediction of medical outcome, for example, a poor or good outcome (e.g., likelihood of long-term survival); a negative prognosis, or poor outcome, includes a prediction of relapse, disease progression (e.g., tumour growth or metastasis, or drug resistance), or mortality; a positive prognosis, or good outcome, includes a prediction of disease remission, (e.g., disease-free status), amelioration (e.g., tumour regression), or stabilization.

The term "proliferation" refers to the processes leading to increased cell size or cell number, and can include one or more of: tumour or cell growth, angiogenesis, innervation, and metastasis.

5

The term "qPCR" or "QPCR" refers to quantitative polymerase chain reaction as described, for example, in PCR Technique: Quantitative PCR, J.W. Larrick, ed., Eaton Publishing, 1997, and A-Z of Quantitative PCR, S. Bustin, ed., IUL Press, 2004.

- 10 The term "tumour" refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.

15 "Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe 20 and hybridisable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. Additional details and explanation of stringency of hybridization reactions, are found e.g., in Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).

25

30 "Stringent conditions" or "high stringency conditions", as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ a denaturing agent during hybridization, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5X SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5X, Denhardt's solution, sonicated salmon sperm DNA

(50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2X SSC (sodium chloride/sodium citrate) and 50% formamide at 55°C, followed by a high-stringency wash comprising 0.1X SSC containing EDTA at 55°C.

5 "Moderately stringent conditions" may be identified as described by Sambrook et al., *Molecular Cloning: A Laboratory Manual*, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength, and % SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a
10 solution comprising: 20% formamide, 5X SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5X Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1X SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe
15 length and the like.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art.
20 Such techniques are explained fully in the literature, such as, *Molecular Cloning: A Laboratory Manual*, 2nd edition, Sambrook et al., 1989; *Oligonucleotide Synthesis*, MJ Gait, ed., 1984; *Animal Cell Culture*, R.I. Freshney, ed., 1987; *Methods in Enzymology*, Academic Press, Inc.; *Handbook of Experimental Immunology*, 4th edition, D.M. Weir & CC. Blackwell, eds., Blackwell Science Inc., 1987; *Gene
25 Transfer Vectors for Mammalian Cells*, J.M. Miller & M.P. Calos, eds., 1987; *Current Protocols in Molecular Biology*, F.M. Ausubel et al., eds., 1987; and *PCR: The Polymerase Chain Reaction*, Mullis et al., eds., 1994.

Description of Embodiments of the Invention

30 In colorectal cancer, discordant results have been reported for prognostic markers. The present invention discloses the use of microarrays to reach a firmer conclusion, and to determine the prognostic role of specific prognostic signatures in colorectal cancer. The microarray-based studies shown herein indicate that particular prognostic signatures in colorectal cancer are associated with a prognosis. The

invention can therefore be used to identify patients at high risk of recurrence of cancer, or patients with a high likelihood of recovery.

The present invention provides for markers for the determination of disease prognosis,
5 for example, the likelihood of recurrence of tumours, including colorectal tumours. Using the methods of the invention, it has been found that numerous markers are associated with the prognosis of colorectal cancer, and can be used to predict disease outcome. Microarray analysis of samples taken from patients with various stages of colorectal tumours has led to the surprising discovery that specific patterns of marker expression are associated with prognosis of the cancer. The present invention therefore provides for a set of genes, outlined in Table 1 and Table 2, that are differentially expressed in recurrent and non-recurrent colorectal cancers. The genes outlined in Table 1 and Table 2 provide for a set of colorectal cancer prognostic makers (CCPMs).

15

A decrease in certain colorectal cancer prognostic markers (CCPMs), for example, markers associated with immune responses, is indicative of a particular prognosis. This can include increased likelihood of cancer recurrence after standard treatment, especially for colorectal cancer. Conversely, an increase in other CCPMs is indicative 20 of a particular prognosis. This can include disease progression or the increased likelihood of cancer recurrence, especially for colorectal cancer. A decrease or increase in expression can be determined, for example, by comparison of a test sample, e.g., patient's tumour sample, to a reference sample, e.g., a sample associated with a known prognosis. In particular, one or more samples from patient(s) with non-25 recurrent cancer could be used as a reference sample.

For example, to obtain a prognosis, expression levels in a patient's sample (e.g., tumour sample) can be compared to samples from patients with a known outcome. If the patient's sample shows increased or decreased expression of one or more CCPMs 30 that compares to samples with good outcome (no recurrence), then a positive prognosis, or recurrence is unlikely, is implicated. If the patient's sample shows expression of one or more CCPMs that is comparable to samples with poor outcome (recurrence), then a positive prognosis, or recurrence of the tumour is likely, is implicated.

As further examples, the expression levels of a prognostic signature comprising two or more CCPMs from a patient's sample (e.g., tumour sample) can be compared to samples of recurrent/non-recurrent cancer. If the patient's sample shows increased or 5 decreased expression of CCPMs by comparison to samples of non-recurrent cancer, and/or comparable expression to samples of recurrent cancer, then a negative prognosis is implicated. If the patient's sample shows expression of CCPMs that is comparable to samples of non-recurrent cancer, and/or lower or higher expression than samples of recurrent cancer, then a positive prognosis is implicated.

10

As one approach, a prediction method can be applied to a panel of markers, for example the panel of CCPMs outlined in Table 1 and Table 2, in order to generate a predictive model. This involves the generation of a prognostic signature, comprising two or more CCPMs.

15

The disclosed CCPMs in Table 1 and Table 2 therefore provide a useful set of markers to generate prediction signatures for determining the prognosis of cancer, and establishing a treatment regime, or treatment modality, specific for that tumour. In particular, a positive prognosis can be used by a patient to decide to pursue standard or 20 less invasive treatment options. A negative prognosis can be used by a patient to decide to terminate treatment or to pursue highly aggressive or experimental treatments. In addition, a patient can chose treatments based on their impact on the expression of prognostic markers (e.g., CCPMs).

25

Levels of CCPMs can be detected in tumour tissue, tissue proximal to the tumour, lymph node samples, blood samples, serum samples, urine samples, or faecal samples, using any suitable technique, and can include, but is not limited to, oligonucleotide probes, quantitative PCR, or antibodies raised against the markers. It will be appreciated that by analyzing the presence and amounts of expression of a plurality of 30 CCPMs in the form of prediction signatures, and constructing a prognostic signature (e.g., as set forth in Tables 3, 4, 8A, 8B, and 9), the sensitivity and accuracy of prognosis will be increased. Therefore, multiple markers according to the present invention can be used to determine the prognosis of a cancer.

The invention includes the use of archived paraffin-embedded biopsy material for assay of the markers in the set, and therefore is compatible with the most widely available type of biopsy material. It is also compatible with several different methods of tumour tissue harvest, for example, via core biopsy or fine needle aspiration. In 5 certain aspects, RNA is isolated from a fixed, wax-embedded cancer tissue specimen of the patient. Isolation may be performed by any technique known in the art, for example from core biopsy tissue or fine needle aspirate cells.

In one aspect, the invention relates to a method of predicting a prognosis, e.g., the 10 likelihood of long-term survival of a cancer patient without the recurrence of cancer, comprising determining the expression level of one or more prognostic markers or their expression products in a sample obtained from the patient, normalized against the expression level of other RNA transcripts or their products in the sample, or of a reference set of RNA transcripts or their expression products. In specific aspects, the 15 prognostic marker is one or more markers listed in Tables 1, 2, or 5, , or is included as one or more of the prognostic signatures derived from the markers listed in Tables 1, 2, and 5, or the prognostic signatures listed in Tables 3, 4, 8A, 8B, or 9.

In further aspects, the expression levels of the prognostic markers or their expression 20 products are determined, e.g., for the markers listed in Tables 1, 2, or 5, a prognostic signature derived from the markers listed in Tables 1, 2, and 5, e.g., for the prognostic signatures listed in Tables 3, 4, 8A, 8B, or 9. In another aspect, the method comprises the determination of the expression levels of a full set of prognosis markers or their expression products, e.g., for the markers listed in Tables 1, 2, or 5, or, a prognostic 25 signature derived from the markers listed in Tables 1, 2, and 5, e.g., for the prognostic signatures listed in Tables 3, 4, 8A, 8B, or 9.

In an additional aspect, the invention relates to an array (e.g., microarray) comprising 30 polynucleotides hybridizing to two or more markers, e.g., for the markers listed in Tables 1, 2, and 5, , or a prognostic signature derived from the markers listed in Tables 1, 2, and 5, e.g., the prognostic signatures listed in Tables 3, 4, 8A, 8B, and 9. In particular aspects, the array comprises polynucleotides hybridizing to prognostic signature derived from the markers listed in Tables 1, 2, and 5, or e.g., for the prognostic signatures listed in Tables 3, 4, 8A, 8B, or 9. In another specific aspect, the

array comprises polynucleotides hybridizing to the full set of markers, e.g., for the markers listed in Tables 1, 2, or 5, or, e.g., for the prognostic signatures listed in Tables 3, 4, 8A, 8B, or 9.

- 5 For these arrays, the polynucleotides can be cDNAs, or oligonucleotides, and the solid surface on which they are displayed can be glass, for example. The polynucleotides can hybridize to one or more of the markers as disclosed herein, for example, to the full-length sequences, any coding sequences, any fragments, or any complements thereof. In particular aspects, an increase or decrease in expression levels of one or
 10 more CCPM indicates a decreased likelihood of long-term survival, e.g., due to cancer recurrence, while a lack of an increase or decrease in expression levels of one or more CCPM indicates an increased likelihood of long-term survival without cancer recurrence.
- 15 **Table 1: Colorectal Cancer Predictive Markers (corresponding to Affymetrix GeneChip probes that show statistically significant differential expression, P<0.05, as ascertained by BRB Array Tools)**

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
ME2	210154_at, 210153_s_at, 209397_at	NM_002396	malic enzyme 2, NAD(+) -dependent, mitochondrial	Hs.233119	M55905, BC000147	0.74
STAT1	AFFX-HUMISGF3_A/ M97935_MA_at, AFFX-HUMISGF3_A/ M97935_MB_at, AFFX-HUMISGF3_A/ M97935_3_at, 200887_s_at, AFFX-HUMISGF3_A/	NM_007315, NM_139266	signal transducer and activator of transcription 1, 91kDa	Hs.470943	NM_007315, BC002704	0.58

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
	M97935_5_at , 209969_s_at					
CXCL10	204533_at	NM_001565	chemokine (C-X-C motif) ligand 10	Hs.413924	NM_001565	0.29
FAS	215719_x_at, 216252_x_at, 204780_s_at, 204781_s_at	NM_000043, NM_152871, NM_152872, NM_152873, NM_152874, NM_152875, NM_152876, NM_152877	Fas (TNF receptor superfamily, member 6)	Hs.244139	X83493, Z70519, AA164751, NM_000043	0.68
SFRS2	200753_x_at, 214882_s_at, 200754_x_at	NM_003016	splicing factor, arginine/serine-rich 2	Hs.73965	BE866585, BG254869, NM_003016	0.82
GUF1	218884_s_at	NM_021927	GUF1 GTPase homolog (S. cerevisiae)	Hs.546419	NM_021927	0.71
CXCL9	203915_at	NM_002416	chemokine (C-X-C motif) ligand 9	Hs.77367	NM_002416	0.33
TYMS	202589_at	NM_001071	thymidylate synthetase	Hs.369762	NM_001071	0.53
SEC10L1	218748_s_at	NM_006544	SEC10-like 1 (S. cerevisiae)	Hs.365863	NM_006544	0.76
PLK4	204887_s_at	NM_014264	polo-like kinase 4 (Drosophila)	Hs.172052	NM_014264	0.64
MAP2K4	203265_s_at	NM_003010	mitogen-activated protein kinase kinase 4	Hs.514681	AA810268	0.76
EIF4E	201435_s_at, 201436_at	NM_001968	eukaryotic translation initiation factor 4E	Hs.249718	AW268640, AI742789	0.69
TLK1	210379_s_at	NM_012290	tousled-like kinase 1	Hs.470586	AF162666	0.59
CXCL11	210163_at, 211122_s_at	NM_005409	chemokine (C-X-C motif) ligand 11	Hs.518814	AF030514,A F002985	0.15
PSME2	201762_s_at	NM_002818	proteasome (prosome, macropain) activator subunit 2 (PA28 beta)	Hs.434081, Hs.512410	NM_002818	0.68
hCAP-D3	212789_at	NM_015261	non-SMC condensin II complex, subunit D3	Hs.438550	AI796581	0.83
MPP5	219321_at	NM_022474	membrane protein, palmitoylated 5 (MAGUK p55 subfamily member 5)	Hs.509699	NM_022474	0.74
DLGAP4	202570_s_at	NM_014902, NM_183006	discs, large (Drosophila) homolog-associated protein 4	Hs.249600	BF346592	1.3

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
WARS	200628_s_at, 200629_at	NM_004184, NM_173701, NM_213645, NM_213646	tryptophanyl-tRNA synthetase	Hs.497599	M61715, NM_004184	0.66
ARF6	203312_x_at	NM_001663	ADP-ribosylation factor 6	Hs.525330	NM_001663	0.77
PBK	219148_at	NM_018492	PDZ binding kinase	Hs.104741	NM_018492	0.41
GMFB	202543_s_at	NM_004124	glia maturation factor, beta	Hs.151413	BC005359	0.66
NDUFA9	208969_at	NM_005002	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 9, 39kDa	Hs.75227	AF050641	0.77
CDC40	203377_s_at	NM_015891	cell division cycle 40 homolog (yeast)	Hs.428147	NM_015891	0.8
WHSC1	209053_s_at, 209054_s_at, 209052_s_at	NM_007331, NM_014919, NM_133330, NM_133331, NM_133332, NM_133333, NM_133334, NM_133335, NM_133336	Wolf-Hirschhorn syndrome candidate 1	Hs.113876	BE793789, AF083389, BF111870	0.75
C1QBP	208910_s_at, 214214_s_at	NM_001212	complement component 1, q subcomponent binding protein	Hs.555866	L04636, AU151801	0.71
RBM25	212031_at	NM_021239	RNA binding motif protein 25	Hs.531106	AV757384	0.83
SLC25A11	209003_at, 207088_s_at	NM_003562	solute carrier family 25 (mitochondrial carrier, oxoglutarate carrier), member 11	Hs.184877	AF070548, NM_003562	0.83
TK1	202338_at	NM_003258	thymidine kinase 1, soluble	Hs.515122	NM_003258	0.73
ETNK1	222262_s_at, 219017_at	NM_018638	ethanolamine kinase 1	Hs.240056	AL137750, NM_018638	0.66
KLHL24	221985_at	NM_017644	kelch-like 24 (Drosophila)	Hs.407709	AW006750	1.4
AK2	212175_s_at, 205996_s_at, 212174_at	NM_001625, NM_013411	adenylate kinase 2	Hs.470907	AL513611, NM_013411, W02312	0.8
HNRPD	221481_x_at, 209330_s_at, 200073_s_at	NM_0010038 10, NM_00213 8, NM_031369, NM_031370	heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 37kDa)	Hs.480073	D55672, D55674, M94630	0.8

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
GTPBP3	213835_x_at	NM_032620, NM_133644	GTP binding protein 3 (mitochondrial)	Hs.334885	AL524262	0.87
PSAT1	220892_s_at	NM_021154, NM_058179	phosphoserine aminotransferase 1	Hs.494261	NM_021154	0.54
AP1G1	203350_at	NM_001030007, NM_001128	adaptor-related protein complex 1, gamma 1 subunit	Hs.461253	NM_001128	0.89
SMCHD1	212577_at		structural maintenance of chromosomes flexible hinge domain containing 1	Hs.8118	AA868754	0.74
SLC4A4	210738_s_at, 203908_at, 211494_s_at, 210739_x_at	NM_003759	solute carrier family 4, sodium bicarbonate cotransporter, member 4	Hs.5462	AF011390, NM_003759, AF157492, AF069510	0.7
RBMS3	206767_at	NM_001003792, NM_001003793, NM_014483	RNA binding motif, single stranded interacting protein	Hs.221436	NM_014483	1.2
LARP4	214155_s_at	NM_052879, NM_199188, NM_199190	La ribonucleoprotein domain family, member 4	Hs.26613	AI743740	0.66
FANCA	203805_s_at	NM_000135, NM_001018112	Fanconi anemia, complementation group A	Hs.284153	AW083279	0.78
SOS1	212780_at	NM_005633	son of sevenless homolog 1 (Drosophila)	Hs.278733	AA700167	0.84
IFT20	210312_s_at	NM_174887	intraflagellar transport 20 homolog (Chlamydomonas)	Hs.4187	BC002640	1.2
NUP210	212316_at, 220035_at, 213947_s_at	NM_024923	nucleoporin 210kDa	Hs.475525	AA502912, NM_024923, AI867102	0.78
IRF8	204057_at	NM_002163	interferon regulatory factor 8	Hs.137427	AI073984	0.75
SGPP1	221268_s_at	NM_030791	sphingosine-1-phosphate phosphatase 1	Hs.24678	NM_030791	0.76
MAD2L1	203362_s_at	NM_002358	MAD2 mitotic arrest deficient-like 1 (yeast)	Hs.509523, Hs.533185	NM_002358	0.7
PAICS	201013_s_at, 201014_s_at	NM_006452	phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase	Hs.518774	AA902652, NM_006452	0.71
RPS2	217466_x_at	NM_002952	ribosomal protein S2	Hs.356366, Hs.381079, Hs.498569, Hs.506997, Hs.556270	L48784	0.83

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
TMED5	202195_s_at	NM_016040	transmembrane emp24 protein transport domain containing 5	Hs.482873	NM_016040	0.86
GTSE1	204317_at, 204318_s_at	NM_016426	G-2 and S-phase expressed 1	Hs.386189, Hs.475140	BF305380, NM_016426	0.8
DCK	203302_at	NM_000788	deoxycytidine kinase	Hs.709	NM_000788	0.77
DKFZp762E1312	218726_at	NM_018410	hypothetical protein DKFZp762E1312	Hs.532968	NM_018410	0.81
BAZ1A	217986_s_at	NM_013448, NM_182648	bromodomain adjacent to zinc finger domain, 1A	Hs.509140	NM_013448	0.8
HIP2	202346_at	NM_005339	huntingtin interacting protein 2	Hs.50308	NM_005339	0.78
HNRPA3P1	206809_s_at		heterogeneous nuclear ribonucleoprotein A3 pseudogene 1	Hs.524276	NM_005758	0.83
CDC42BPA	214464_at	NM_003607, NM_014826	CDC42 binding protein kinase alpha (DMPK-like)	Hs.35433	NM_003607	1.4
P15RS	218209_s_at	NM_018170	hypothetical protein FLJ10656	Hs.464912	NM_018170	0.79
FLJ10534TSR1	218156_s_at	NM_018128	TSR1, 20S rRNA accumulation, homolog (S. cerevisiae)	Hs.388170	NM_018128	0.75
RRM1	201476_s_at	NM_001033	ribonucleotide reductase M1 polypeptide	Hs.383396	AI692974	0.76
USP4	202682_s_at	NM_003363, NM_199443	ubiquitin specific peptidase 4 (proto-oncogene)	Hs.77500	NM_003363	1.2
ZNF304	207753_at	NM_020657	zinc finger protein 304	Hs.287374	NM_020657	1.3
CA2	209301_at	NM_000067	carbonic anhydrase II	Hs.155097	M36532	0.25
LOC92249	212957_s_at		hypothetical protein LOC92249	Hs.31532	AU154785	1.1
MARCH5	218582_at	NM_017824	membrane-associated ring finger (C3HC4) 5	Hs.549165	NM_017824	0.81
TRMT5	221952_x_at	NM_020810	TRM5 tRNA methyltransferase 5 homolog (S. cerevisiae)	Hs.380159	AB037814	0.81
PRDX3	201619_at	NM_006793, NM_014098	peroxiredoxin 3	Hs.523302	NM_006793	0.73
RAP1GDS1	217457_s_at	NM_021159	RAP1, GTP-GDP dissociation stimulator 1	Hs.132858	X63465	0.82

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
NUMB	209073_s_at	NM_001005743, NM_001005744, NM_001005745, NM_03744	numb homolog (Drosophila)	Hs.509909	AF015040	0.82
KIF2	203087_s_at	NM_004520	kinesin heavy chain member 2	Hs.533222	NM_004520	0.72
ACADSB	205355_at	NM_001609	acyl-Coenzyme A dehydrogenase, short/branched chain	Hs.81934	NM_001609	0.87
IBRDC3	213038_at	NM_153341	IBR domain containing 3	Hs.546478	AL031602	0.88
TES	202719_s_at	NM_015641, NM_152829	testis derived transcript (3 LIM domains)	Hs.533391	BC001451	1.3
YDD19	37079_at		YDD19 protein	Hs.525826	U82319	0.92
GZMB	210164_at	NM_004131	granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1)	Hs.1051	J03189	0.66
LAP3	217933_s_at	NM_015907	leucine aminopeptidase 3	Hs.479264	NM_015907	0.67
C17orf25	209092_s_at	NM_016080	chromosome 17 open reading frame 25	Hs.279061	AF061730	0.72
ZNF345	207236_at	NM_003419	zinc finger protein 345	Hs.362324	NM_003419	1.1
KITLG	207029_at, 211124_s_at	NM_000899, NM_003994	KIT ligand	Hs.1048	NM_000899, AF119835	0.75
CAMSAP1L1	212765_at	NM_203459	calmodulin regulated spectrin-associated protein 1-like 1	Hs.23585	AB029001	1.3
YTHDC2	205835_s_at, 205836_s_at	NM_022828	YTH domain containing 2	Hs.231942	AW975818, NM_022828	0.84
RABIF	204477_at	NM_002871	RAB interacting factor	Hs.90875	U74324	1.2
SERBP1	217725_x_at	NM_001018067, NM_001018068, NM_001018069, NM_015640	SERPINE1 mRNA binding protein 1	Hs.369448, Hs.519284, Hs.530412	NM_015640	0.81
KPNB1	208975_s_at	NM_002265	karyopherin (importin) beta 1	Hs.532793	L38951	0.74
BRIP1	221703_at	NM_032043	BRCA1 interacting protein C-terminal helicase 1	Hs.532799	AF360549	0.86
IRF1	202531_at	NM_002198	interferon regulatory factor 1	Hs.436061	NM_002198	0.62
TIPIN	219258_at	NM_017858	TIMELESS interacting protein	Hs.426696	NM_017858	0.73
SPFH1	202444_s_at	NM_006459	SPFH domain family, member 1	Hs.150087	NM_006459	0.76
SFPQ	201586_s_at	NM_005066	splicing factor proline/glutamine-rich (polypyrimidine tract binding	Hs.355934	NM_005066	0.83

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
			protein associated)			
MGAT2	211061_s_at	NM_0010158 83, NM_00240 8	mannosyl (alpha-1,6)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase	Hs.93338	BC006390	0.79
MCCC2	209624_s_at	NM_022132	methylcrotonoyl-Coenzyme A carboxylase 2 (beta)	Hs.167531	AB050049	0.6
DDAH2	215537_x_at, 214909_s_at	NM_013974	dimethylarginine dimethylaminohydrolase 2	Hs.247362	AJ012008,A K026191	1.2
NP	201695_s_at	NM_000270	nucleoside phosphorylase	Hs.75514	NM_000270	0.79
CHEK1	205393_s_at, 205394_at	NM_001274	CHK1 checkpoint homolog (S. pombe)	Hs.24529	NM_001274	0.7
MYO1B	212365_at	NM_012223	myosin IB	Hs.439620	BF215996	0.85
ATP5A1	213738_s_at	NM_0010019 35, NM_00100 1937, NM_004 046	ATP synthase, H ⁺ transporting, mitochondrial F1 complex, alpha subunit, isoform 1, cardiac muscle	Hs.298280, Hs.551998	AI587323	0.82
IL2RB	205291_at	NM_000878	interleukin 2 receptor, beta	Hs.474787	NM_000878	0.73
RPL39	217665_at	NM_001000	ribosomal protein L39 (RPL39)	Hs.558387	AA420614	1.3
CD59	212463_at	NM_000611, NM_203329, NM_203330, NM_203331	CD59 antigen p18-20 (antigen identified by monoclonal antibodies 16.3A5, EJ16, EJ30, EL32 and G344)	Hs.278573	BE379006	1.5
AMD1	201196_s_at	NM_0010330 59, NM_00163 4	adenosylmethionine decarboxylase 1	Hs.159118	M21154	0.74
GGA2	210658_s_at	NM_015044, NM_138640	golgi associated, gamma adaptin ear containing, ARF binding protein 2	Hs.460336	BC000284	0.82
MCM6	201930_at	NM_005915	MCM6 minichromosome maintenance deficient 6 (MIS5 homolog, S. pombe) (S. cerevisiae)	Hs.444118	NM_005915	0.75
SCC-112	213983_s_at, 212138_at	NM_015200	SCC-112 protein	Hs.331431	AW991219, AK021757	0.8
BCL7C	219072_at	NM_004765	B-cell CLL/lymphoma 7C	Hs.303197	NM_004765	1.2
HMGN2	208668_x_at	NM_005517	high-mobility group nucleosomal binding domain 2	Hs.181163	BC003689	0.9
RBBP4	210371_s_at, 217301_x_at	NM_005610	retinoblastoma binding protein 4	Hs.555890	BC003092,X 71810	0.8
KIAA0090	212396_s_at	NM_015047	KIAA0090	Hs.439200	AI143233	0.81
SYNPO	202796_at	NM_007286	synaptopodin	Hs.435228	NM_007286	1.2
GPR161	214104_at	NM_007369, NM_153832	G protein-coupled receptor 161	Hs.271809	AI703188	1.5

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
TMEM113	215509_s_at	NM_025222	transmembrane protein 113	Hs.194110	AL137654	0.72
SMC2L1	204240_s_at	NM_006444	SMC2 structural maintenance of chromosomes 2-like 1 (yeast)	Hs.119023	NM_006444	0.65
CCNA2	203418_at	NM_001237	cyclin A2	Hs.85137	NM_001237	0.6
VAPB	202549_at	NM_004738	VAMP (vesicle-associated membrane protein)-associated protein B and C	Hs.182625	AK025720	1.2
EXOSC9	213226_at	NM_005033	exosome component 9	Hs.91728	AI346350	0.73
TRIM25	206911_at	NM_005082	tripartite motif-containing 25	Hs.528952, Hs.551516	NM_005082	0.88
SCYL2	221220_s_at	NM_017988	SCY1-like 2 (S. cerevisiae)	Hs.506481	NM_017988	0.85
RYK	214172_x_at	NM_0010058 61, NM_00295 8	RYK receptor-like tyrosine kinase	Hs.245869	BG032035	1.2
MTHFD1	202309_at	NM_005956	methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1, methenyltetrahydrofolate cyclohydrolase, formyltetrahydrofolate synthetase	Hs.435974	NM_005956	0.74
RUNX1	211180_x_at	NM_0010018 90, NM_00175 4	runt-related transcription factor 1 (acute myeloid leukemia 1, aml1 oncogene)	Hs.149261, Hs.278446	D89788	1.1
KPNA2	201088_at, 211762_s_at	NM_002266	karyopherin alpha 2 (RAG cohort 1, importin alpha 1)	Hs.159557, Hs.252712	NM_002266, BC005978	0.77
PSME1	200814_at	NM_006263, NM_176783	proteasome (prosome, macropain) activator subunit 1 (PA28 alpha)	Hs.75348	NM_006263	0.76
TACC3	218308_at	NM_006342	transforming, acidic coiled-coil containing protein 3	Hs.104019	NM_006342	0.78
FEN1	204768_s_at	NM_004111	flap structure-specific endonuclease 1	Hs.409065	NM_004111	0.73
GTF3C4	219198_at	NM_012204	general transcription factor IIIc, polypeptide 4, 90kDa	Hs.549088	NM_012204	0.87
GEMIN4	217099_s_at	NM_015721	gem (nuclear organelle) associated protein 4	Hs.499620	AF258545	0.76
CTSS	202902_s_at	NM_004079	cathepsin S	Hs.181301	NM_004079	0.74
MCM2	202107_s_at	NM_004526	MCM2 minichromosome maintenance deficient 2, mitotin (S. cerevisiae)	Hs.477481	NM_004526	0.71
GPHN	220773_s_at	NM_0010242 18, NM_02080	gephyrin	Hs.208765	NM_020806	0.67

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
		6				
NUP50	218295_s_at	NM_007172, NM_153645, NM_153684	nucleoporin 50kDa	Hs.475103	NM_007172	0.78
RANBP2L1	210676_x_at	NM_005054, NM_032260	RAN binding protein 2-like 1	Hs.469630	U64675	0.83
NR5A2	208337_s_at	NM_003822, NM_205860	nuclear receptor subfamily 5, group A, member 2	Hs.33446	NM_003822	0.77
PGD	201118_at	NM_002631	phosphogluconate dehydrogenase	Hs.464071	NM_002631	0.75
FUT4	209892_at, 209893_s_at	NM_002033	fucosyltransferase 4 (alpha (1,3) fucosyltransferase, myeloid-specific)	Hs.390420	AF305083, M58596	0.78
RAB6A	201048_x_at	NM_002869, NM_198896	RAB6A, member RAS oncogene family	Hs.503222, Hs.535586	NM_002869	0.81
CCNT2	204645_at	NM_001241, NM_058241	cyclin T2	Hs.292754	NM_001241	0.87
TFRC	207332_s_at	NM_003234	transferrin receptor (p90, CD71)	Hs.529618	NM_003234	0.63
BIRC5	202095_s_at	NM_0010122, NM_001012271, NM_001168	baculoviral IAP repeat-containing 5 (survivin)	Hs.514527	NM_001168	0.7
PGGT1B	206288_at	NM_005023	protein geranylgeranyltransferase type I, beta subunit	Hs.254006	NM_005023	0.8
USP14	201672_s_at	NM_005151	ubiquitin specific peptidase 14 (tRNA-guanine transglycosylase)	Hs.464416	NM_005151	0.81
PURA	204020_at	NM_005859	purine-rich element binding protein A	Hs.443121	BF739943	1.2
LMAN1	203293_s_at, 203294_s_at	NM_005570	lectin, mannose-binding, 1	Hs.465295	NM_005570, U09716	0.82
WDR45L	209076_s_at	NM_019613	WDR45-like	Hs.201390	BC000974	0.82
SGCD	213543_at	NM_000337, NM_172244	sarcoglycan, delta (35kDa dystrophin-associated glycoprotein)	Hs.387207	AA570453	1.2
LRP8	205282_at	NM_001018054, NM_004631, NM_017522, NM_033300	low density lipoprotein receptor-related protein 8, apolipoprotein e receptor	Hs.444637	NM_004631	0.78
ITGA4	205885_s_at	NM_000885	integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)	Hs.555880	L12002	0.74

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
BUB3	201458_s_at	NM_0010077 93,NM_00472 5	BUB3 budding uninhibited by benzimidazoles 3 homolog (yeast)	Hs.418533	NM_004725	0.79
KIF18A	221258_s_at	NM_031217	kinesin family member 18A	Hs.301052	NM_031217	0.83
FKBP9	212169_at	NM_007270	FK506 binding protein 9, 63 kDa	Hs.103934	AL050187	1.2
ATF6	217550_at	NM_007348	activating transcription factor 6	Hs.492740	AA576497	1.4
TNFRSF11A	207037_at	NM_003839	tumor necrosis factor receptor superfamily, member 11a, NFKB activator	Hs.204044	NM_003839	0.68
KIAA0841	213054_at		KIAA0841	Hs.7426	AA845355	0.9
TGFB2	209909_s_at	NM_003238	transforming growth factor, beta 2	Hs.133379	M19154	1.1
ITGB5	201125_s_at, 201124_at, 214021_x_at	NM_002213	integrin, beta 5	Hs.13155	NM_002213, AL048423,A I335208	1.2
RABGEF1	218310_at	NM_014504	RAB guanine nucleotide exchange factor (GEF) 1	Hs.530053	NM_014504	1.2
PBX1	205253_at,21 2148_at	NM_002585	pre-B-cell leukemia transcription factor 1	Hs.493096	NM_002585, AL049381	1.2
ZNF148	203318_s_at	NM_021964	zinc finger protein 148 (pHZ-52)	Hs.380334	NM_021964	1.2
ZWINT	204026_s_at	NM_0010054 13,NM_00100 5414,NM_007 057, NM_032997	ZW10 interactor	Hs.42650	NM_007057	0.66
ZDHHC3	213675_at	NM_016598	zinc finger, DHHC-type containing 3	Hs.61430	W61005	1.3
CDCA8	221520_s_at	NM_018101	cell division cycle associated 8	Hs.524571	BC001651	0.76
CUTL1	214743_at	NM_001913, NM_181500, NM_181552	cut-like 1, CCAAT displacement protein (Drosophila)	Hs.438974	BE046521	1.3
C18orf9	219311_at	NM_024899	chromosome 18 open reading frame 9	Hs.236940	NM_024899	0.73
TXNDC	209476_at	NM_030755	thioredoxin domain containing	Hs.125221	AL080080	0.75
POLE2	205909_at	NM_002692	polymerase (DNA directed), epsilon 2 (p59 subunit)	Hs.162777	NM_002692	0.73
SPCS3	218817_at	NM_021928	signal peptidase complex subunit 3 homolog (S. cerevisiae)	Hs.42194	NM_021928	0.7
CAND1	208839_s_at	NM_018448	cullin-associated and	Hs.546407	AL136810	0.84

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
			neddylation-dissociated 1			
U2AF2	218381_s_at	NM_001012478,NM_007279	U2 (RNU2) small nuclear RNA auxiliary factor 2	Hs.528007	NM_007279	0.83
WDHD1	204728_s_at	NM_001008396,NM_007086	WD repeat and HMG-box DNA binding protein 1	Hs.385998	NM_007086	0.73
HEM1	209734_at	NM_005337	hematopoietic protein 1	Hs.182014	BC001604	0.9
RABEP1	214552_s_at	NM_004703	rabaptin, RAB GTPase binding effector protein 1	Hs.551518	AF098638	0.84
SYDE1	44702_at	NM_033025	synapse defective 1, Rho GTPase, homolog 1 (C. elegans)	Hs.528701	R77097	1.1
WFDC1	219478_at	NM_021197	WAP four-disulfide core domain 1	Hs.36688	NM_021197	1.2
TBX2	40560_at	NM_005994	T-box 2	Hs.531085	U28049	1.1
GART	210005_at	NM_000819, NM_175085	phosphoribosylglycinamide formyltransferase, phosphoribosylglycinamide synthetase, phosphoribosylaminoimidazole synthetase	Hs.473648	D32051	0.84
H2AFZ	213911_s_at, 200853_at	NM_002106	H2A histone family, member Z	Hs.119192	BF718636, NM_002106	0.8
CD7	214551_s_at	NM_006137	CD7 antigen (p41)	Hs.36972	NM_006137	0.8
ELOVL6	210868_s_at	NM_024090	ELOVL family member 6, elongation of long chain fatty acids (FEN1/Elo2, SUR4/Elo3-like, yeast)	Hs.412939	BC001305	0.81
CACNB3	34726_at	NM_000725	calcium channel, voltage-dependent, beta 3 subunit	Hs.250712	U07139	1.2
TAP1	202307_s_at	NM_000593	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)	Hs.352018	NM_000593	0.68
NUP98	210793_s_at	NM_005387, NM_016320, NM_139131, NM_139132	nucleoporin 98kDa	Hs.524750	U41815	0.75
CHAF1A	214426_x_at, 203976_s_at	NM_005483	chromatin assembly factor 1, subunit A (p150)	Hs.79018	BF062223, NM_005483	0.83
EPAS1	200878_at	NM_001430	endothelial PAS domain protein 1	Hs.468410	AF052094	1.3
RNGTT	204207_s_at	NM_003800	RNA guanylyltransferase and 5'-phosphatase	Hs.127219	AB012142	0.8

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
KLF7	204334_at	NM_003709	Kruppel-like factor 7 (ubiquitous)	Hs.471221	AA488672	1.1
C4orf16	219023_at	NM_018569	chromosome 4 open reading frame 16	Hs.435991	NM_018569	0.77
YBX2	219704_at	NM_015982	Y box binding protein 2	Hs.380691	NM_015982	0.75
IVD	216958_s_at	NM_002225	isovaleryl Coenzyme A dehydrogenase	Hs.513646	AK022777	0.81
PEG3	209242_at	NM_006210	paternally expressed 3	Hs.201776	AL042588	1.2
FBXL14	213145_at	NM_152441	F-box and leucine-rich repeat protein 14	Hs.367956	BF001666	0.83
TMEPAI	217875_s_at	NM_020182, NM_199169, NM_199170, NM_199171	transmembrane, prostate androgen induced RNA	Hs.517155	NM_020182	1.4
RNF138	218738_s_at	NM_016271, NM_198128	ring finger protein 138	Hs.302408, Hs.501040	NM_016271	0.82
DNM1L	203105_s_at	NM_005690, NM_012062, NM_012063	dynamin 1-like	Hs.550499	NM_012062	0.87
LHCGR	215306_at	NM_000233	luteinizing hormone/choriogonadotropin receptor	Hs.468490	AL049443	1.3
SOCS6	214462_at, 206020_at	NM_004232	suppressor of cytokine signaling 6 (SOCS6)	Hs.591068	NM_004232, NM_016387	0.85
CEP350	213956_at	NM_014810	centrosomal protein 350kDa	Hs.413045	AW299294	1.3
PTGER3	210374_x_at, 210831_s_at	NM_000957, NM_198712, NM_198713, NM_198714, NM_198715, NM_198716, NM_198717, NM_198718, NM_198719, NM_198720	prostaglandin E receptor 3 (subtype EP3)	Hs.445000	D38300, L27489	1.1
M11S1	200723_s_at	NM_005898, NM_203364	membrane component, chromosome 11, surface marker 1	Hs.471818	NM_005898	0.9
RFC5	203210_s_at	NM_007370, NM_181578	replication factor C (activator 1) 5, 36.5kDa	Hs.506989	NM_007370	0.79
INDO	210029_at	NM_002164	indoleamine-pyrrole 2,3 dioxygenase	Hs.840	M34455	0.74
KIAA0286	212619_at	NM_015257	NA	Hs.533787	AW205215	0.77
MOBK1B	201298_s_at	NM_018221	MOB1, Mps One Binder kinase activator-like 1B (yeast)	Hs.196437	BC003398	0.84

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
FLJ20273	218035_s_at	NM_019027	RNA-binding protein	Hs.518727	NM_019027	0.73
HADHSC	211569_s_at	NM_005327	L-3-hydroxyacyl-Coenzyme A dehydrogenase, short chain	Hs.438289	AF001903	0.62
SSPN	204964_s_at	NM_005086	sarcospan (Kras oncogene-associated gene)	Hs.183428	NM_005086	1.6
AP2B1	200615_s_at	NM_0010300 06, NM_001282	adaptor-related protein complex 2, beta 1 subunit	Hs.514819	AL567295	0.77
EIF4A1	201530_x_at, 214805_at	NM_001416	eukaryotic translation initiation factor 4A, isoform 1	Hs.129673	NM_001416, U79273	0.79
DEPDC1	220295_x_at	NM_017779	DEP domain containing 1	Hs.445098	NM_017779	0.66
AGPAT5	218096_at	NM_018361	1-acylglycerol-3-phosphate O-acyltransferase 5 (lysophosphatidic acid acyltransferase, epsilon)	Hs.490899	NM_018361	0.68
HNRPDL	201993_x_at	NM_005463, NM_031372	heterogeneous nuclear ribonucleoprotein D-like	Hs.527105	NM_005463	0.86
GBPI	202270_at	NM_002053	guanylate binding protein 1, interferon-inducible, 67kDa	Hs.62661, Hs.443527	NM_002053	0.61
AMIGO2	222108_at	NM_181847	adhesion molecule with Ig-like domain 2	Hs.121520	AC004010	1.6
XPO7	208459_s_at	NM_015024	exportin 7	Hs.172685	NM_015024	0.78
PAWR	204005_s_at	NM_002583	PRKC, apoptosis, WT1, regulator	Hs.406074	NM_002583	0.71
NARS	200027_at	NM_004539	asparaginyl-tRNA synthetase	Hs.465224	NM_004539	0.84
CENPA	204962_s_at	NM_001809	centromere protein A, 17kDa	Hs.1594	NM_001809	0.69
KIF15	219306_at	NM_020242	kinesin family member 15	Hs.307529	NM_020242	0.78
ZNF518	204291_at	NM_014803	zinc finger protein 518	Hs.147895	NM_014803	0.88
LPP	202821_s_at	NM_005578	LIM domain containing preferred translocation partner in lipoma	Hs.444362	AL044018	1.3
BRRN1	212949_at	NM_015341	barren homolog (Drosophila)	Hs.308045	D38553	0.76
C5orf4	48031_r_at	NM_016348, NM_032385	chromosome 5 open reading frame 4	Hs.519694	H93077	1.2
UBAP1	46270_at	NM_016525	ubiquitin associated protein 1	Hs.268963	AL039447	1.1
SH3GLB1	209090_s_at	NM_016009	SH3-domain GRB2-like endophilin B1	Hs.136309	AL049597	1.2
CDKN1C	213182_x_at	NM_000076	cyclin-dependent kinase inhibitor 1C (p57, Kip2)	Hs.106070	R78668	1.4
MCM10	220651_s_at	NM_018518, NM_182751	MCM10 minichromosome maintenance deficient 10 (S. cerevisiae)	Hs.198363	NM_018518	0.74
KIAA0265	209254_at	NM_014997	KIAA0265 protein	Hs.520710	AI808625	1.2

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
BUB1	209642_at	NM_004336	BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)	Hs.469649	AF043294	0.68
LGALS3BP	200923_at	NM_005567	lectin, galactoside-binding, soluble, 3 binding protein	Hs.514535	NM_005567	0.8
NCAPD2	201774_s_at	NM_014865	non-SMC condensin I complex, subunit D2	Hs.5719	AK022511	0.73
CD86	205686_s_at	NM_006889, NM_175862	CD86 antigen (CD28 antigen ligand 2, B7-2 antigen)	Hs.171182	NM_006889	0.88
C16orf30	219315_s_at	NM_024600	chromosome 16 open reading frame 30	Hs.459652	NM_024600	1.2
RBBP8	203344_s_at	NM_002894, NM_203291, NM_203292	retinoblastoma binding protein 8	Hs.546282	NM_002894	0.79
FEM1C	213341_at	NM_020177	fem-1 homolog c (C.elegans)	Hs.47367	AI862658	0.82
NUP160	214962_s_at	NM_015231	nucleoporin 160kDa	Hs.372099	AK026236	0.84
VAMP4	213480_at	NM_003762, NM_201994	vesicle-associated membrane protein 4	Hs.6651	AF052100	1.1
C9orf76	218979_at	NM_024945	chromosome 9 open reading frame 76	Hs.284137	NM_024945	0.8
DHX15	201386_s_at	NM_001358	DEAH (Asp-Glu-Ala-His) box polypeptide 15	Hs.5683	AF279891	0.83
RIG	221127_s_at		regulated in glioma	Hs.292156	NM_006394	1.2
HBP1	209102_s_at	NM_012257	HMG-box transcription factor 1	Hs.162032	AF019214	1.2
ABCE1	201873_s_at, 201872_s_at	NM_002940	ATP-binding cassette, sub-family E (OABP), member 1	Hs.12013	NM_002940, AI002002	0.79
PPA2	220741_s_at	NM_006903, NM_176866, NM_176867, NM_176869	pyrophosphatase (inorganic) 2	Hs.480452	NM_006903	0.81
CPD	201942_s_at	NM_001304	carboxypeptidase D	Hs.446079	D85390	0.68
KIAA0828	215672_s_at	NM_015328	adenosylhomocysteinase 3	Hs.195058	AK025372	0.73
K-ALPHA-1	211058_x_at	NM_006082	alpha tubulin	Hs.524390	BC006379	0.85
RNMT	202684_s_at	NM_003799	RNA (guanine-7-) methyltransferase	Hs.8086	AB020966	0.9
MIS12	221559_s_at	NM_024039	MIS12 homolog (yeast)	Hs.267194	BC000229	0.8
AURKB	209464_at	NM_004217	aurora kinase B	Hs.442658	AB011446	0.71
FAM64A	221591_s_at	NM_019013	family with sequence similarity 64, member A	Hs.404323	BC005004	0.8
TAP2	204770_at	NM_000544, NM_018833	transporter 2, ATP-binding cassette, sub-family B (MDR/TAP)	Hs.502	NM_000544	0.82

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
PCDHGC3	205717_x_at	NM_002588, NM_032402, NM_032403	protocadherin gamma subfamily C, 3	Hs.368160	NM_002588	1.2
AVEN	219366_at	NM_020371	apoptosis, caspase activation inhibitor	Hs.555966	NM_020371	1.1
HMGB2	208808_s_at	NM_002129	high-mobility group box 2	Hs.434953	BC000903	0.76
CDC2	203214_x_at	NM_001786, NM_033379	cell division cycle 2, G1 to S and G2 to M	Hs.334562	NM_001786	0.72
RIF1	214700_x_at	NM_018151	RAP1 interacting factor homolog (yeast)	Hs.536537	AK000323	0.84
TCF7L2	216511_s_at	NM_030756	transcription factor 7-like 2 (T-cell specific, HMG-box)	Hs.501080	AJ270770	0.8
KIF11	204444_at	NM_004523	kinesin family member 11	Hs.8878	NM_004523	0.68
TTC19	217964_at	NM_017775	tetratricopeptide repeat domain 19	Hs.462316	NM_017775	0.67
MDS032	221706_s_at	NM_018467	uncharacterized hematopoietic stem/progenitor cells protein MDS032	Hs.16187	BC006005	1.2
PSMA3	201532_at	NM_002788, NM_152132	proteasome (prosome, macropain) subunit, alpha type, 3	Hs.531089	NM_002788	0.76
PDGFA	205463_s_at		platelet-derived growth factor alpha polypeptide	Hs.376032, Hs.521331	NM_002607	1.3
GTF2H2	221540_x_at	NM_001515	general transcription factor IIH, polypeptide 2, 44kDa	Hs.191356, Hs.398348	AF078847	0.86
CXCL13	205242_at	NM_006419	chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant)	Hs.100431	NM_006419	0.36
FOXM1	202580_x_at	NM_021953, NM_202002, NM_202003	forkhead box M1	Hs.239	NM_021953	0.7
YARS	212048_s_at	NM_003680	tyrosyl-tRNA synthetase	Hs.213264	AW245400	0.87
SE57-1	220180_at	NM_025214	coiled-coil domain containing 68	Hs.120790	NM_025214	0.77
CLCA4	220026_at	NM_012128	chloride channel, calcium activated, family member 4	Hs.546343	NM_012128	0.64
MCAM	211340_s_at	NM_006500	melanoma cell adhesion molecule	Hs.511397	M28882	1.2
PBXIP1	214177_s_at	NM_020524	pre-B-cell leukemia transcription factor interacting protein 1	Hs.505806	AI935162	1.2
PPM1D	204566_at	NM_003620	protein phosphatase 1D	Hs.286073	NM_003620	0.88

Gene Symbol	Affymetrix Probe IDs	Refseq Access.	Gene Description	Unigene Access.	Other Genbank Access.	Expression Fold Difference (relapse/non-relapse)
			magnesium-dependent, delta isoform			
FLJ22471	218175_at	NM_025140	NA	Hs.114111	NM_025140	1.2
ZBTB20	205383_s_at	NM_015642	zinc finger and BTB domain containing 20	Hs.122417	NM_015642	1.4
RRM2	209773_s_at	NM_001034	ribonucleotide reductase M2 polypeptide	Hs.226390	BC001886	0.69

Table 2: Markers with expression correlating to that of the 22 genes from NZ signature.

5

Gene Symbol	Affymetrix Probe IDs	Refseq Access	Gene Description	Unigene Access	Genbank Access	Expression Fold Difference (relapse/non-relapse)
CCL5	1405_i_at, 204655_at	NM_002985	chemokine (C-C motif) ligand 5	Hs.514821	M21121, NM_002985	0.69
SFRS10	200893_at	NM_004593	splicing factor, arginine/serine-rich 10 (transformer 2 homolog, <i>Drosophila</i>)	Hs.533122	NM_004593	0.96
HLA-E	200904_at	NM_005516	major histocompatibility complex, class I, E	Hs.381008	X56841	1
K-ALPHA-1	201090_x_at	NM_006082	alpha tubulin	Hs.524390	NM_006082	0.87
PSMA5	201274_at	NM_002790	proteasome (prosome, macropain) subunit, alpha type, 5	Hs.485246	NM_002790	0.95
TOP2A	201292_at	NM_001067	topoisomerase (DNA) II alpha 170kDa	Hs.156346	AL561834	0.77
EBNA1BP2	201323_at	NM_006824	EBNA1 binding protein 2	Hs.346868	NM_006824	0.98
SNRPC	201342_at	NM_003093	small nuclear ribonucleoprotein polypeptide C	Hs.1063	NM_003093	1
UBE2L6	201649_at	NM_004223, NM_198183	ubiquitin-conjugating enzyme E2L 6	Hs.425777	NM_004223	0.75
LAPTM5	201720_s_at	NM_006762	lysosomal associated multispanning membrane protein 5	Hs.371021	AI589086	0.89
CTSL	202087_s_at	NM_001912,	cathepsin L	Hs.418123	NM_001912	0.97

Gene Symbol	Affymetrix Probe IDs	Refseq Access	Gene Description	Unigene Access	Genbank Access	Expression Fold Difference (relapse/non-relapse)
		NM_145918				
GBP1	202269_x_at	NM_002053	guanylate binding protein 1, interferon-inducible, 67kDa	Hs.62661, Hs.443527	BC002666	0.69
TNFAIP2	202510_s_at	NM_006291	tumor necrosis factor, alpha-induced protein 2	Hs.525607	NM_006291	0.91
CCNB2	202705_at	NM_004701	cyclin B2	Hs.194698	NM_004701	0.83
GBP2	202748_at	NM_004120	guanylate binding protein 2, interferon-inducible	Hs.386567	NM_004120	0.87
CDC20	202870_s_at	NM_001255	CDC20 cell division cycle 20 homolog (S. cerevisiae)	Hs.524947	NM_001255	0.78
HAT1	203138_at	NM_0010330 85,NM_003642	histone acetyltransferase 1	Hs.470611	NM_003642	0.95
SPAG5	203145_at	NM_006461	sperm associated antigen 5	Hs.514033	NM_006461	0.87
RFC5	203209_at	NM_007370, NM_181578	replication factor C (activator 1) 5, 36.5kDa	Hs.506989	BC001866	0.79
MYCBP	203360_s_at	NM_012333	c-myc binding protein	Hs.370040	D50692	1
BUB1B	203755_at	NM_001211	BUB1 budding uninhibited by benzimidazoles 1 homolog beta (yeast)	Hs.36708	NM_001211	0.85
SLA	203761_at	NM_006748	Src-like-adaptor	Hs.75367	NM_006748	0.97
VRK1	203856_at	NM_003384	vaccinia related kinase 1	Hs.422662	NM_003384	0.72
PIK3CD	203879_at	NM_005026	phosphoinositide-3-kinase, catalytic, delta polypeptide	Hs.518451	U86453	0.99
HLA-DMB	203932_at	NM_002118	major histocompatibility complex, class II, DM beta	Hs.1162	NM_002118	0.82
TRIP13	204033_at	NM_004237	thyroid hormone receptor interactor 13	Hs.436187	NM_004237	0.78
RARRES3	204070_at	NM_004585	retinoic acid receptor responder (tazarotene induced) 3	Hs.17466	NM_004585	0.96
CKS2	204170_s_at	NM_001827	CDC28 protein kinase regulatory subunit 2	Hs.83758	NM_001827	0.8
APOBEC3G	204205_at	NM_021822	apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G	Hs.474853	NM_021822	0.74
PSMB9	204279_at	NM_002800, NM_148954	proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2)	Hs.381081	NM_002800	0.63
FUSIP1	204299_at	NM_054016	FUS interacting protein (serine/arginine-rich) 1	Hs.3530	NM_021993	0.9
SELL	204563_at	NM_000655	selectin L (lymphocyte	Hs.82848	NM_000655	0.88

Gene Symbol	Affymetrix Probe IDs	Refseq Access	Gene Description	Unigene Access	Genbank Access	Expression Fold Difference (relapse/non-relapse)
			adhesion molecule 1)			
DKK1	204602_at	NM_012242	dickkopf homolog 1 (Xenopus laevis)	Hs.40499	NM_012242	0.95
KIF23	204709_s_at	NM_004856, NM_138555	kinesin family member 23	Hs.270845	NM_004856	0.9
TTK	204822_at	NM_003318	TTK protein kinase	Hs.169840	NM_003318	0.8
ECGF1	204858_s_at	NM_001953	endothelial cell growth factor 1 (platelet-derived)	Hs.546251	NM_001953	0.85
LCP2	205269_at, 205270_s_at	NM_005565	lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa)	Hs.304475	AI123251, NM_005565	0.91
BTN2A2	205298_s_at	NM_006995, NM_181531	butyrophilin, subfamily 2, member A2	Hs.373938	W58757	0.94
BMP5	205431_s_at	NM_021073	bone morphogenetic protein 5	Hs.296648	NM_021073	0.9
GZMA	205488_at	NM_006144	granzyme A (granzyme 1, cytotoxic T-lymphocyte-associated serine esterase 3)	Hs.90708	NM_006144	0.68
SMURF2	205596_s_at	NM_022739	SMAD specific E3 ubiquitin protein ligase 2	Hs.515011	AY014180	1
CD8A	205758_at	NM_001768, NM_171827	CD8 antigen, alpha polypeptide (p32)	Hs.85258	AW006735	0.78
CD2	205831_at	NM_001767	CD2 antigen (p50), sheep red blood cell receptor	Hs.523500	NM_001767	0.87
JAK2	205842_s_at	NM_004972	Janus kinase 2 (a protein tyrosine kinase)	Hs.434374	AF001362	0.86
UBD	205890_s_at	NM_006398	ubiquitin D	Hs.44532	NM_006398	0.41
ADH1C	206262_at	NM_000669	alcohol dehydrogenase 1C (class I), gamma polypeptide	Hs.2523	NM_000669	0.33
AIM2	206513_at	NM_004833	absent in melanoma 2	Hs.281898	NM_004833	0.91
SI	206664_at	NM_001041	sucrase-isomaltase (alpha-glucosidase)	Hs.429596	NM_001041	0.39
NAT2	206797_at	NM_000015	N-acetyltransferase 2 (arylamine N-acetyltransferase)	Hs.2	NM_000015	0.82
SP110	208012_x_at	NM_004509, NM_004510, NM_080424	SP110 nuclear body protein	Hs.145150	NM_004509	0.95
PRDX1	208680_at	NM_002574, NM_181696, NM_181697	peroxiredoxin 1	Hs.180909	L19184	1
PSMA6	208805_at	NM_002791	proteasome (prosome, macropain) subunit, alpha type, 6	Hs.446260	BC002979	0.87

Gene Symbol	Affymetrix Probe IDs	Refseq Access	Gene Description	Unigene Access	Genbank Access	Expression Fold Difference (relapse/non-relapse)
IFI16	208966_x_at	NM_005531	interferon, gamma-inducible protein 16	Hs.380250	AF208043	1.2
PPIG	208995_s_at	NM_004792	peptidyl-prolyl isomerase G (cyclophilin G)	Hs.470544	U40763	0.98
KIF2C	209408_at, 211519_s_at	NM_006845	kinesin family member 2C	Hs.69360	U63743, AY026505	0.75
APOL1	209546_s_at	NM_003661, NM_145343, NM_145344	apolipoprotein L, 1	Hs.114309	AF323540	0.98
CD74	209619_at	NM_0010251 58, NM_001025159, NM_004355	CD74 antigen (invariant polypeptide of major histocompatibility complex, class II antigen-associated)	Hs.436568	K01144	0.76
HMMR	209709_s_at	NM_012484, NM_012485	hyaluronan-mediated motility receptor (RHAMM)	Hs.72550	U29343	0.84
CDKN3	209714_s_at	NM_005192	cyclin-dependent kinase inhibitor 3 (CDK2-associated dual specificity phosphatase)	Hs.84113	AF213033	0.71
BUB3	209974_s_at	NM_0010077 93, NM_004725	BUB3 budding uninhibited by benzimidazoles 3 homolog (yeast)	Hs.418533	AF047473	0.84
SOCS1	210001_s_at	NM_003745	suppressor of cytokine signaling 1	Hs.50640	AB005043	0.93
CD3Z	210031_at	NM_000734, NM_198053	CD3Z antigen, zeta polypeptide (TiT3 complex)	Hs.156445	J04132	0.87
CACYBP	210691_s_at	NM_0010072 14, NM_014412	calcyclin binding protein	Hs.508524	AF275803	0.97
HLA-DRA	210982_s_at	NM_019111	major histocompatibility complex, class II, DR alpha	Hs.520048	M60333	0.74
NEK2	211080_s_at	NM_002497	NIMA (never in mitosis gene a)-related kinase 2	Hs.153704	Z25425	0.77
NF2	211091_s_at	NM_000268, NM_016418, NM_181825, NM_181826, NM_181827, NM_181828, NM_181829, NM_181830, NM_181831, NM_181832, NM_181833, NM_181834, NM_181835	neurofibromin 2 (bilateral acoustic neuroma)	Hs.187898	AF122828	0.96
FYB	211795_s_at	NM_001465, NM_199335	FYN binding protein (FYB-120/130)	Hs.370503	AF198052	0.83

Gene Symbol	Affymetrix Probe IDs	Refseq Access	Gene Description	Unigene Access	Genbank Access	Expression Fold Difference (relapse/non-relapse)
HLA-DPA1	211991_s_at	NM_033554	major histocompatibility complex, class II, DP alpha 1	Hs.347270	M27487	0.75
PTPRC	212587_s_at, 212588_at	NM_002838, NM_080921, NM_080922, NM_080923	protein tyrosine phosphatase, receptor type, C	Hs.192039	AI809341, Y00062	0.77
SP3	213168_at	NM_0010173 71, NM_003111	Sp3 transcription factor	Hs.531587	AU145005	0.98
ITGAL	213475_s_at	NM_002209	integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1, alpha polypeptide)	Hs.174103	AC002310	0.85
RAC2	213603_s_at	NM_002872	ras-related C3 botulinum toxin substrate 2 (rho family, small GTP binding protein Rac2)	Hs.517601	BE138888	0.92
DNA2L	213647_at		DNA2 DNA replication helicase 2-like (yeast)	Hs.532446	D42046	0.87
TRAF3IP3	213888_s_at	NM_025228	TRAF3 interacting protein 3	Hs.147434	AL022398	0.86
NKG7	213915_at	NM_005601	natural killer cell group 7 sequence	Hs.10306	NM_005601	0.72
SFRS7	214141_x_at	NM_0010316 84, NM_006276	splicing factor, arginine/serine-rich 7, 35kDa	Hs.309090	BF033354	0.88
ZG16	214142_at	NM_152338	zymogen granule protein 16	Hs.184507	AI732905	0.18
PRF1	214617_at	NM_005041	perforin 1 (pore forming protein)	Hs.2200	AI445650	0.81
CCNB1	214710_s_at	NM_031966	cyclin B1	Hs.23960	BE407516	0.63
KIAA0907	214995_s_at	NM_014949	KIAA0907	Hs.24656	BF508948	0.82
GTSE1	215942_s_at	NM_016426	G-2 and S-phase expressed 1	Hs.386189, Hs.475140	BF973178	0.86
HMGB3	216548_x_at	NM_005342	high-mobility group box 3	Hs.19114	AL049709	0.97
HLA-DMA	217478_s_at	NM_006120	major histocompatibility complex, class II, DM alpha	Hs.351279	X76775	0.8
C20orf45	217851_s_at	NM_016045	chromosome 20 open reading frame 45	Hs.3945	NM_016045	1.1
MRPL42	217919_s_at	NM_014050, NM_172177, NM_172178	mitochondrial ribosomal protein L42	Hs.199579	BE782148	0.79
NUSAP1	218039_at, 219978_s_at	NM_016359, NM_018454	nucleolar and spindle associated protein 1	Hs.511093	NM_016359, NM_018454	0.92
TMEM48	218073_s_at	NM_018087	transmembrane protein 48	Hs.476525	NM_018087	0.71

Gene Symbol	Affymetrix Probe IDs	Refseq Access	Gene Description	Unigene Access	Genbank Access	Expression Fold Difference (relapse/non-relapse)
DHX40	218277_s_at	NM_024612	DEAH (Asp-Glu-Ala-His) box polypeptide 40	Hs.29403	NM_024612	1.1
NFS1	218455_at	NM_021100, NM_181679	NFS1 nitrogen fixation 1 (S. cerevisiae)	Hs.194692	NM_021100	1
C10orf3	218542_at	NM_018131	chromosome 10 open reading frame 3	Hs.14559	NM_018131	0.77
NCAPG	218663_at	NM_022346	non-SMC condensin I complex, subunit G	Hs.446201, Hs.479270	NM_022346	0.73
FBXO5	218875_s_at	NM_012177	F-box protein 5	Hs.520506	NM_012177	0.89
SLAMF8	219385_at	NM_020125	SLAM family member 8	Hs.438683	NM_020125	0.94
CENPN	219555_s_at	NM_018455	centromere protein N	Hs.283532	NM_018455	0.81
ATP13A3	219558_at		ATPase type 13A3	Hs.529609	NM_024524	0.75
ECT2	219787_s_at	NM_018098	epithelial cell transforming sequence 2 oncogene	Hs.518299	NM_018098	0.75
ASPM	219918_s_at	NM_018136	asp (abnormal spindle)-like, microcephaly associated (Drosophila)	Hs.121028	NM_018123	0.89
ZC3HAV1	220104_at	NM_020119, NM_024625	zinc finger CCCH-type, antiviral 1	Hs.133512	NM_020119	0.93
CLEC2D	220132_s_at	NM_001004419, NM_001004420, NM_013269	C-type lectin superfamily 2, member D	Hs.268326	NM_013269	0.91
MS4A12	220834_at	NM_017716	membrane-spanning 4-domains, subfamily A, member 12	Hs.272789	NM_017716	0.5
C1orf112	220840_s_at	NM_018186	chromosome 1 open reading frame 112	Hs.443551	NM_018186	0.96
TPRT	220865_s_at	NM_014317	trans-prenyltransferase	Hs.555924	NM_014317	0.92
APOL3	221087_s_at	NM_014349, NM_030644, NM_145639, NM_145640, NM_145641, NM_145642	apolipoprotein L, 3	Hs.474737	NM_014349	0.84
C14orf156	221434_s_at	NM_031210	chromosome 14 open reading frame 156	Hs.324521	NM_031210	0.9
YTHDF3	221749_at	NM_152758	YTH domain family, member 3	Hs.491861	AU157915	0.95
LOC146909	222039_at		hypothetical protein LOC146909	Hs.135094	AA292789	0.83
TRAFD1	35254_at	NM_006700	TRAF-type zinc finger	Hs.5148	AB007447	0.98

Gene Symbol	Affymetrix Probe IDs	Refseq Access	Gene Description	Unigene Access	Genbank Access	Expression Fold Difference (relapse/non-relapse)
			domain containing 1			
ESPL1	38158_at	NM_012291	extra spindle poles like 1 (S. cerevisiae)	Hs.153479	D79987	0.87
BTN3A3	38241_at	NM_006994, NM_197974	butyrophilin, subfamily 3, member A3	Hs.167741	U90548	0.9

General approaches to prognostic marker detection

The following approaches are non-limiting methods that can be used to detect the proliferation markers, including CCPM family members: microarray approaches 5 using oligonucleotide probes selective for a CCPM; real-time qPCR on tumour samples using CCPM specific primers and probes; real-time qPCR on lymph node, blood, serum, faecal, or urine samples using CCPM specific primers and probes; enzyme-linked immunological assays (ELISA); immunohistochemistry using anti-marker antibodies; and analysis of array or qPCR data using computers.

10

Other useful methods include northern blotting and *in situ* hybridization (Parker and Barnes, Methods in Molecular Biology 106: 247-283 (1999)); RNase protection assays (Hod, BioTechniques 13: 852-854 (1992)); reverse transcription polymerase chain reaction (RT-PCR; Weis et al., Trends in Genetics 8: 263-264 15 (1992)); serial analysis of gene expression (SAGE; Velculescu et al., Science 270: 484-487 (1995); and Velculescu et al., Cell 88: 243-51 (1997)), MassARRAY technology (Sequenom, San Diego, CA), and gene expression analysis by massively parallel signature sequencing (MPSS; Brenner et al., Nature Biotechnology 18: 630-634 (2000)). Alternatively, antibodies may be employed that can recognize specific 20 complexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-polypeptide duplexes.

Primary data can be collected and fold change analysis can be performed, for example, by comparison of marker expression levels in tumour tissue and non-tumour 25 tissue; by comparison of marker expression levels to levels determined in recurring tumours and non-recurring tumours; by comparison of marker expression levels to levels determined in tumours with or without metastasis; by comparison of marker

expression levels to levels determined in differently staged tumours; or by comparison of marker expression levels to levels determined in cells with different levels of proliferation. A negative or positive prognosis is determined based on this analysis. Further analysis of tumour marker expression includes matching those markers 5 exhibiting increased or decreased expression with expression profiles of known colorectal tumours to provide a prognosis.

A threshold for concluding that expression is increased will be dependent on the particular marker and also the particular predictive model that is to be applied. The 10 threshold is generally set to achieve the highest sensitivity and selectivity with the lowest error rate, although variations may be desirable for a particular clinical situation. The desired threshold is determined by analysing a population of sufficient size taking into account the statistical variability of any predictive model and is calculated from the size of the sample used to produce the predictive model. The 15 same applies for the determination of a threshold for concluding that expression is decreased. It can be appreciated that other thresholds, or methods for establishing a threshold, for concluding that increased or decreased expression has occurred can be selected without departing from the scope of this invention.

20 It is also possible that a prediction model may produce as its output a numerical value, for example a score, likelihood value or probability. In these instances, it is possible to apply thresholds to the results produced by prediction models, and in these cases similar principles apply as those used to set thresholds for expression values.

25 Once the expression level, or output of a prediction model, of a predictive signature in a tumour sample has been obtained, the likelihood of the cancer recurring can then be determined.

30 From the markers identified, prognostic signatures comprising one or more CCPMs can be used to determine the prognosis of a cancer, by comparing the expression level of the one or more markers to the disclosed prognostic signature. By comparing the expression of one or more of the CCPMs in a tumour sample with the disclosed prognostic signature, the likelihood of the cancer recurring can be determined. The comparison of expression levels of the prognostic signature to

establish a prognosis can be done by applying a predictive model as described previously.

Determining the likelihood of the cancer recurring is of great value to the
5 medical practitioner. A high likelihood of re-occurrence means that a longer or higher dose treatment should be given, and the patient should be more closely monitored for signs of recurrence of the cancer. An accurate prognosis is also of benefit to the patient. It allows the patient, along with their partners, family, and friends to also make decisions about treatment, as well as decisions about their future and lifestyle
10 changes. Therefore, the invention also provides for a method establishing a treatment regime for a particular cancer based on the prognosis established by matching the expression of the markers in a tumour sample with the differential expression signature.

15 It will be appreciated that the marker selection, or construction of a prognostic signature, does not have to be restricted to the CCPMs disclosed in Tables 1, 2, or 5, herein, or the prognostic signatures disclosed in Tables 3, 4, 8A, 8B, and 9, but could involve the use of one or more CCPMs from the disclosed signatures, or a new signature may be established using CCPMs selected from the disclosed marker lists.
20 The requirement of any signature is that it predicts the likelihood of recurrence with enough accuracy to assist a medical practitioner to establish a treatment regime.

Reverse Transcription PCR (RT-PCR)

Of the techniques listed above, the most sensitive and most flexible
25 quantitative method is RT-PCR, which can be used to compare RNA levels in different sample populations, in normal and tumour tissues, with or without drug treatment, to characterize patterns of expression, to discriminate between closely related RNAs, and to analyze RNA structure.

30 For RT-PCR, the first step is the isolation of RNA from a target sample. The starting material is typically total RNA isolated from human tumours or tumour cell lines, and corresponding normal tissues or cell lines, respectively. RNA can be isolated from a variety of samples, such as tumour samples from breast, lung, colon (e.g., large bowel or small bowel), colorectal, gastric, esophageal, anal, rectal,

prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, etc., tissues, from primary tumours, or tumour cell lines, and from pooled samples from healthy donors. If the source of RNA is a tumour, RNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g., formalin-fixed) 5 tissue samples.

The first step in gene expression profiling by RT-PCR is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases 10 are avian myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukaemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin 15 Elmer, CA, USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.

Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5'-3' 20 nuclease activity but lacks a 3'-5' proofreading endonuclease activity. Thus, TaqMan (q) PCR typically utilizes the 5' nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5' nuclease activity can be used.

25 Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is 30 quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is

liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.

TaqMan RT-PCR can be performed using commercially available equipment, 5 such as, for example, ABI PRISM 7700 Sequence Detection System (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the 5' nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 10 7700tam Sequence Detection System. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera, and computer. The system amplifies samples in a 96-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fibre optics cables for all 96 wells, and detected at the CCD. The system includes software for running the instrument 15 and for analyzing the data.

15

5' nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold 20 cycle.

To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental 25 treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and-actin.

Real-time quantitative PCR (qPCR)

30 A more recent variation of the RT-PCR technique is the real time quantitative PCR, which measures PCR product accumulation through a dual-labeled fluorogenic probe (i.e., TaqMan probe). Real time PCR is compatible both with quantitative competitive PCR and with quantitative comparative PCR. The former uses an internal competitor for each target sequence for normalization, while the latter uses a

normalization gene contained within the sample, or a housekeeping gene for RT-PCR. Further details are provided, e.g., by Held et al., *Genome Research* 6: 986-994 (1996).

5 Expression levels can be determined using fixed, paraffin-embedded tissues as the RNA source. According to one aspect of the present invention, PCR primers and probes are designed based upon intron sequences present in the gene to be amplified. In this embodiment, the first step in the primer/probe design is the delineation of intron sequences within the genes. This can be done by publicly available software, such as the DNA BLAT software developed by Kent, W. J., *Genome Res.* 12 (4):
10 656-64 (2002), or by the BLAST software including its variations. Subsequent steps follow well established methods of PCR primer and probe design.

15 In order to avoid non-specific signals, it is useful to mask repetitive sequences within the introns when designing the primers and probes. This can be easily accomplished by using the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe
20 design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers in: Krawetz S, Misener S (eds) *Bioinformatics Methods and Protocols: Methods in Molecular Biology*. Humana Press, Totowa, NJ, pp 365-386).

25

The most important factors considered in PCR primer design include primer length, melting temperature (T_m), and G/C content, specificity, complementary primer sequences, and 3' end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C
30 bases. Melting temperatures between 50 and 80°C, e.g., about 50 to 70°C, are typically preferred. For further guidelines for PCR primer and probe design see, e.g., Dieffenbach, C. W. et al., *General Concepts for PCR Primer Design* in: *PCR Primer, A Laboratory Manual*, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155; Innis and Gelfand, *Optimization of PCRs* in: *PCR Protocols, A Guide to*

WO 2007/073220

PCT/NZ2006/000343

Methods and Applications, CRC Press, London, 1994, pp. 5-11; and Plasterer, T. N. Primerselect: Primer and probe design. Methods Mol. Biol. 70: 520-527 (1997).

5 Microarray analysis

Differential expression can also be identified, or confirmed using the microarray technique. Thus, the expression profile of CCPMs can be measured in either fresh or paraffin-embedded tumour tissue, using microarray technology. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) 10 are plated, or arrayed, on a microchip substrate. The arrayed sequences (i.e., capture probes) are then hybridized with specific polynucleotides from cells or tissues of interest (i.e., targets). Just as in the RT-PCR method, the source of RNA typically is total RNA isolated from human tumours or tumour cell lines, and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of primary 15 tumours or tumour cell lines. If the source of RNA is a primary tumour, RNA can be extracted, for example, from frozen or archived formalin fixed paraffin-embedded (FFPE) tissue samples and fixed (e.g., formalin-fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.

20 In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate. The substrate can include up to 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 75 nucleotide sequences. In other aspects, the substrate can include at least 10,000 nucleotide sequences. The microarrayed 25 sequences, immobilized on the microchip, are suitable for hybridization under stringent conditions. As other embodiments, the targets for the microarrays can be at least 50, 100, 200, 400, 500, 1000, or 2000 bases in length; or 50-100, 100-200, 100-500, 100-1000, 100-2000, or 500-5000 bases in length. As further embodiments, the capture probes for the microarrays can be at least 10, 15, 20, 25, 50, 75, 80, or 100 bases in length; or 10-15, 10-20, 10-25, 10-50, 10-75, 10-80, or 20-80 bases in length.

30

Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound

probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual colour fluorescence, separately labeled cDNA probes generated from two sources of RNA 5 are hybridized pairwise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. An exemplary protocol for this is described in detail in Example 4.

10 The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al., Proc. Natl. Acad. Sci. USA 93 (2): 106-149 (1996)). Microarray analysis can be performed by 15 commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip technology, Illumina microarray technology or Incyte's microarray technology. The development of microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumour types.

20

RNA isolation, purification, and amplification

General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, including Ausubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for 25 RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56: A67 (1987), and De Sandres et al., BioTechniques 18: 42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set, and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be 30 isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure Complete DNA and RNA Purification Kit (EPICENTRE (D, Madison, WI), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test).

RNA prepared from tumour can be isolated, for example, by cesium chloride density gradient centrifugation.

The steps of a representative protocol for profiling gene expression using 5 fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are given in various published journal articles (for example: T. E. Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 µm thick sections of paraffin-embedded tumour tissue 10 samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific promoters followed by RT-PCR. Finally, the data are analyzed to identify the best treatment 15 option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumour sample examined.

Immunohistochemistry and proteomics

Immunohistochemistry methods are also suitable for detecting the expression levels of the proliferation markers of the present invention. Thus, antibodies or 20 antisera, preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker, are used to detect expression. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody 25 is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.

30 Proteomics can be used to analyze the polypeptides present in a sample (e.g., tissue, organism, or cell culture) at a certain point of time. In particular, proteomic techniques can be used to assess the global changes of polypeptide expression in a sample (also referred to as expression proteomics). Proteomic analysis typically includes: (1) separation of individual polypeptides in a sample by 2-D gel

electrophoresis (2-D PAGE); (2) identification of the individual polypeptides recovered from the gel, e.g., by mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics. Proteomics methods are valuable supplements to other methods of gene expression profiling, and can be used, alone or 5 in combination with other methods, to detect the products of the proliferation markers of the present invention.

Once the expression level of one or more prognostic markers in a tumour sample has been assessed the likelihood of the cancer recurring can then be determined. The 10 inventors have identified a number of markers that are differentially expressed in non-recurring colorectal cancers compared to recurring colorectal cancers in patient data sets. The markers are set out in Tables 1, 2, and 9, in the examples below.

Selection of Differentially Expressed Genes.

15 An early approach to the selection of genes deemed significant involved simply looking at the “fold change” of a given gene between the two groups of interest. While this approach hones in on genes that seem to change the most spectacularly, consideration of basic statistics leads one to realize that if the variance (or noise level) is quite high (as is often seen in microarray experiments), then seemingly large fold-change can happen frequently by chance alone.

Microarray experiments, such as those described here, typically involve the simultaneous measurement of thousands of genes. If one is comparing the expression levels for a particular gene between two groups (for example recurrent and non-recurrent tumours), the typical tests for significance (such as the t-test) are not 25 adequate. This is because, in an ensemble of thousands of experiments (in this context each gene constitutes an “experiment”), the probability of at least one experiment passing the usual criteria for significance by chance alone is essentially unity. In a test for significance, one typically calculates the probability that the “null 30 hypothesis” is correct. In the case of comparing two groups, the null hypothesis is that there is no difference between the two groups. If a statistical test produces a probability for the null hypothesis below some threshold (usually 0.05 or 0.01), it is stated that we can reject the null hypothesis, and accept the hypothesis that the two groups are *significantly* different. Clearly, in such a test, a rejection of the null

hypothesis by chance alone could be expected 1 in 20 times (or 1 in 100). The use of t-tests, or other similar statistical tests for significance, fail in the context of microarrays, producing far too many false positives (or type I errors)

- 5 In this type of situation, where one is testing multiple hypotheses at the same time, one applies typical multiple comparison procedures, such as the Bonferroni Method (43). However such tests are too conservative for most microarray experiments, resulting in too many false negative (type II) errors.
- 10 A more recent approach is to do away with attempting to apply a probability for a given test being significant, and establish a means for selecting a subset of experiments, such that the expected proportion of Type I errors (or false discovery rate; 47) is controlled for. It is this approach that has been used in this investigation, through various implementations, namely the methods provided with BRB Array
- 15 Tools (48), and the limma (11,42) package of Bioconductor (that uses the R statistical environment; 10,39).

General methodology for Data Mining: Generation of Prognostic Signatures

20

Data Mining is the term used to describe the extraction of "knowledge", in other words the "know-how", or predictive ability from (usually) large volumes of data (the dataset). This is the approach used in this study to generate prognostic signatures. In the case of this study the "know-how" is the ability to accurately predict prognosis

25 from a given set of gene expression measurements, or "signature" (as described generally in this section and in more detail in the examples section).

The specific details used for the methods used in this study are described in Examples 17-20. However, application of any of the data mining methods (both those described

30 in the Examples, and those described here) can follow this general protocol.

Data mining (49), and the related topic machine learning (40) is a complex, repetitive mathematical task that involves the use of one or more appropriate computer software packages (see below). The use of software is advantageous on the one hand, in that

one does not need to be completely familiar with the intricacies of the theory behind each technique in order to successfully use data mining techniques, provided that one adheres to the correct methodology. The disadvantage is that the application of data mining can often be viewed as a "black box": one inserts the data and receives the

5 answer. How this is achieved is often masked from the end-user (this is the case for many of the techniques described, and can often influence the statistical method chosen for data mining. For example, neural networks and support vector machines have a particularly complex implementation that makes it very difficult for the end user to extract out the "rules" used to produce the decision. On the other hand, k-

10 nearest neighbours and linear discriminant analysis have a very transparent process for decision making that is not hidden from the user.

There are two types of approach used in data mining: supervised and unsupervised approaches. In the supervised approach, the information that is being linked to the

15 data is known, such as categorical data (e.g. recurrent vs. non recurrent tumours). What is required is the ability to link the observed response (e.g. recurrence vs. non-recurrence) to the input variables. In the unsupervised approach, the classes within the dataset are not known in advance, and data mining methodology is employed to attempt to find the classes or structure within the dataset.

20

In the present example the supervised approach was used and is discussed in detail here, although it will be appreciated that any of the other techniques could be used.

The overall protocol involves the following steps:

25

- Data representation. This involves transformation of the data into a form that is most likely to work successfully with the chosen data mining technique. In where the data is numerical, such as in this study where the data being investigated represents relative levels of gene expression, this is fairly simple.

30

If the data covers a large dynamic range (i.e. many orders of magnitude) often the log of the data is taken. If the data covers many measurements of separate samples on separate days by separate investigators, particular care has to be taken to ensure systematic error is minimised. The minimisation of systematic error (i.e. errors resulting from protocol differences, machine differences,

operator differences and other quantifiable factors) is the process referred to here as "normalisation".

- Feature Selection. Typically the dataset contains many more data elements than would be practical to measure on a day-to-day basis, and additionally many elements that do not provide the information needed to produce a prediction model. The actual ability of a prediction model to describe a dataset is derived from some subset of the full dimensionality of the dataset. These dimensions the most important components (or features) of the dataset.
5 Note in the context of microarray data, the dimensions of the dataset are the individual genes. Feature selection, in the context described here, involves finding those genes which are most "differentially expressed". In a more general sense, it involves those groups which pass some statistical test for significance, i.e. is the level of a particular variable consistently higher or lower in one or other of the groups being investigated. Sometimes the features
10 are those variables (or dimensions) which exhibit the greatest variance.
15 The application of feature selection is completely independent of the method used to create a prediction model, and involves a great deal of experimentation to achieve the desired results. Within this invention, the selection of significant genes, and those which correlated with the earlier successful model (the NZ classifier), entailed feature selection. In addition, methods of data reduction (such as principal component analysis) can be applied to the dataset.
20
- Training. Once the classes (e.g. recurrence/non-recurrence) and the features of the dataset have been established, and the data is represented in a form that is acceptable as input for data mining, the reduced dataset (as described by the features) is applied to the prediction model of choice. The input for this model is usually in the form a multi-dimensional numerical input,(known as a vector), with associated output information (a class label or a response). In the training process, selected data is input into the prediction model, either sequentially (in techniques such as neural networks) or as a whole (in techniques that apply some form of regression, such as linear models, linear discriminant analysis, support vector machines). In some instances (e.g. k-nearest neighbours) the dataset (or subset of the dataset obtained after feature
25
30

5

selection) is itself the model. As discussed, effective models can be established with minimal understanding of the detailed mathematics, through the use of various software packages where the parameters of the model have been pre-determined by expert analysts as most likely to lead to successful results.

10

- Validation. This is a key component of the data-mining protocol, and the incorrect application of this frequently leads to errors. Portions of the dataset are to be set aside, apart from feature selection and training, to test the success of the prediction model. Furthermore, if the results of validation are used to effect feature selection and training of the model, then one obtains a further validation set to test the model before it is applied to real-life situations. If this process is not strictly adhered to the model is likely to fail in real-world situations. The methods of validation are described in more detail below.

15

20

- Application. Once the model has been constructed, and validated, it must be packaged in some way as it is accessible to end users. This often involves implementation of some form a spreadsheet application, into which the model has been imbedded, scripting of a statistical software package, or refactoring of the model into a hard-coded application by information technology staff.

Examples of software packages that are frequently used are:

25

- Spreadsheet plugins, obtained from multiple vendors.
- The R statistical environment.
- The commercial packages MatLab, S-plus, SAS, SPSS, STATA.
- Free open-source software such as Octave (a MatLab clone)
- many and varied C++ libraries, which can be used to implement prediction models in a commercial, closed-source setting.

30 Examples of Data Mining Methods.

The methods can be by first performing the step of data mining process (above), and then applying the appropriate known software packages. Further description of the process of data mining is described in detail in many extremely well-written texts.(49)

- Linear models (49, 50): The data is treated as the input of a linear regression model, of which the class labels or responses variables are the output. Class labels, or other categorical data, must be transformed into numerical values (usually integer). In generalised linear models, the class labels or response variables are not themselves linearly related to the input data, but are transformed through the use of a “link function”. Logistic regression is the most common form of generalized linear model.
- 10 ● Linear Discriminant analysis (49, 51, 52). Provided the data is linearly separable (i.e. the groups or classes of data can be separated by a hyperplane, which is an n-dimensional extension of a threshold), this technique can be applied. A combination of variables is used to separate the classes, such that the between group variance is maximised, and the within-group variance is minimised. The byproduct of this is the formation of a classification rule. Application of this rule to samples of unknown class allows predictions or classification of class membership to be made for that sample. There are variations of linear discriminant analysis such as nearest shrunken centroids which are commonly used for microarray analysis.
- 15 ● Support vector machines (53): A collection of variables is used in conjunction with a collection of weights to determine a model that maximizes the separation between classes in terms of those weighted variables. Application of this model to a sample then produces a classification or prediction of class membership for that sample.
- 20 ● Neural networks (52): The data is treated as input into a network of nodes, which superficially resemble biological neurons, which apply the input from all the nodes to which they are connected, and transform the input into an output. Commonly, neural networks use the "multiply and sum" algorithm, to transform the inputs from multiple connected input nodes into a single output. A node may not necessarily produce an output unless the inputs to that node exceed a certain threshold. Each node has as its input the output from several other nodes, with the final output node usually being linked to a categorical

variable. The number of nodes, and the topology of the nodes can be varied in almost infinite ways, providing for the ability to classify extremely noisy data that may not be possible to categorize in other ways. The most common implementation of neural networks is the multi-layer perceptron.

5

- Classification and regression trees (54): In these, variables are used to define a hierarchy of rules that can be followed in a stepwise manner to determine the class of a sample. The typical process creates a set of rules which lead to a specific class output, or a specific statement of the inability to discriminate. A 10 example classification tree is an implementation of an algorithm such as:

```

if gene A > x and gene Y > x and gene Z = z
then
    class A
else if geneA = q
then
    class B

```

20

25

30

- Nearest neighbour methods (51, 52). Predictions or classifications are made by comparing a sample (of unknown class) to those around it (or known class), with closeness defined by a distance function. It is possible to define many different distance functions. Commonly used distance functions are the Euclidean distance (an extension of the Pythagorean distance, as in triangulation, to n-dimensions), various forms of correlation (including Pearson Correlation co-efficient). There are also transformation functions that convert data points that would not normally be interconnected by a meaningful distance metric into euclidean space, so that Euclidean distance can then be applied (e.g. Mahalanobis distance). Although the distance metric can be quite complex, the basic premise of k-nearest neighbours is quite simple, essentially being a restatement of "find the k-data vectors that are most similar to the unknown input, find out which class they correspond to, and vote as to which class the unknown input is".

- Other methods:

- Bayesian networks. A directed acyclic graph is used to represent a collection of variables in conjunction with their joint probability distribution, which is

then used to determine the probability of class membership for a sample.

- Independent components analysis, in which independent signals (e.g., class membership) are isolated (into components) from a collection of variables.

These components can then be used to produce a classification or prediction of
5 class membership for a sample.

Ensemble learning methods in which a collection of prediction methods are combined to produce a joint classification or prediction of class membership for a sample

10 There are many variations of these methodologies that can be explored (49), and many new methodologies are constantly being defined and developed. It will be appreciated that any one of these methodologies can be applied in order to obtain an acceptable result. Particular care must be taken to avoid overfitting, by ensuring that all results are tested via a comprehensive validation scheme.

15

Validation

Application of any of the prediction methods described involves both training and cross-validation (43, 55) before the method can be applied to new datasets (such as
20 data from a clinical trial). Training involves taking a subset of the dataset of interest (in this case gene expression measurements from colorectal tumours), such that it is stratified across the classes that are being tested for (in this case recurrent and non-recurrent tumours). This training set is used to generate a prediction model (defined above), which is tested on the remainder of the data (the testing set).

25

It is possible to alter the parameters of the prediction model so as to obtain better performance in the testing set, however, this can lead to the situation known as overfitting, where the prediction model works on the training dataset but not on any external dataset. In order to circumvent this, the process of validation is followed.

30 There are two major types of validation typically applied, the first (hold-out validation) involves partitioning the dataset into three groups: testing, training, and validation. The validation set has no input into the training process whatsoever, so that any adjustment of parameters or other refinements must take place during

application to the testing set (but not the validation set). The second major type is cross-validation, which can be applied in several different ways, described below.

- 5 There are two main sub-types of cross-validation: K-fold cross-validation, and leave-one-out cross-validation

K-fold cross-validation: The dataset is divided into **K** subsamples, each subsample containing approximately the same proportions of the class groups as the original.

10 In each round of validation, one of the **K** subsamples is set aside, and training is accomplished using the remainder of the dataset. The effectiveness of the training for that round is gauged by how correctly the classification of the left-out group is. This procedure is repeated **K**- times, and the overall effectiveness ascertained by comparison of the predicted class with the known class.

- 15 15 Leave-one-out cross-validation: A commonly used variation of K-fold cross validation, in which **K**=*n*, where *n* is the number of samples.

Combinations of CCPMS, such as those described above in Tables 1 and 2, can be used to construct predictive models for prognosis.

20

Prognostic Signatures

25 Prognostic signatures, comprising one or more of these markers, can be used to determine the outcome of a patient, through application of one or more predictive models derived from the signature. In particular, a clinician or researcher can determine the differential expression (e.g., increased or decreased expression) of the one or more markers in the signature, apply a predictive model, and thereby predict the negative prognosis, e.g., likelihood of disease relapse, of a patient, or alternatively the likelihood of a positive prognosis (continued remission).

- 30 30 A set of prognostic signatures have been developed. In the first instance, there are two signatures developed by cross-comparison of predictive ability between two datasets: the set of microarray experiments encompassing the German colorectal cancer samples, and the set of microarray experiments encompassing the New Zealand samples (discussed in example 6). In the second instance there has been an

exhaustive statistical search for effective signatures based solely on the German dataset (discussed in example 17).

As described in Example 6 below, a prognostic signature comprising 19 genes has
 5 been established from a set of colorectal samples from Germany (Table 4). Another prognostic signature, of 22 genes, has also been established from samples of colorectal tumours from patients in New Zealand (Table 3). By obtaining a patient sample (e.g., tumour sample), and matching the expression levels of one or more markers in the sample to the differential expression profile, the likelihood of the
 10 cancer recurring can be determined.

Table 3: New Zealand prognostic signature

WDR44	WD repeat domain 44	0.81	Hs.98510	NM_019045
RBMS1	rna binding motif, single stranded interacting protein 1, isoform d	1.27	Hs.470412	NM_016836
SACM1L	Ras-GTPase activating protein SH3 domain-binding protein 2	0.84	Hs.156509	NM_014016
SOAT1	sterol o-acyltransferase acyl-coenzyme a: cholesterol acyltransferase 1	1.21	Hs.496383	NM_003101
PBK	pdz-binding kinase	0.76	Hs.104741	NM_018492
G3BP2	ras-gtpase activating protein sh3 domain-binding protein 2	0.86	Hs.303676	NM_012297
ZBTB20	zinc finger and BTB domain containing 20	1.2	Hs.477166	NM_015642
ZNF410	zinc finger protein 410	0.84	Hs.270869	NM_021188
COMMD2	COMM domain containing 2	1.09	Hs.591315	NM_016094
PSMC1	proteasome (prosome, macropain) 26s subunit, atpase, 1	0.79	Hs.356654	NM_002802
COX10	COX10 homolog, cytochrome c oxidase assembly protein, heme A: farnesyltransferase (yeast)	0.9	Hs.462278	NM_001303
GTF3C5	general transcription factor iiic, polypeptide 5 (63kd)	0.84	Hs.495417	NM_012087
HMMR	hyaluronan-mediated motility receptor (rhamm)	0.78	Hs.72550	NM_012485
UBE2L3	ubiquitin-conjugating enzyme e21 3	0.83	Hs.108104	NM_003347
GNAS	gnas complex locus	1.26	Hs.125898	NM_000516
PPP2R2A	protein phosphatase 2 (formerly 2a), regulatory subunit b (pr 52), alpha	0.91	Hs.146339	NM_002717

	isoform			
RNASE2	ribonuclease, rnase a family, 2 (liver, eosinophil-derived neurotoxin)	0.83	Hs.728	NM_002934
SCOC	short coiled-coil protein	0.78	Hs.480815	NM_032547
PSMD9	proteasome (prosome, macropain) 26s subunit, non- atpase, 9	0.89	Hs.131151	NM_002813
EIF3S7	eukaryotic translation initiation factor 3, subunit 7 (zeta, 66/67kd)	0.85	Hs.55682	NM_003753
ATP2B4	ATPase, Ca++ transporting, plasma membrane 4	1.11	Hs.343522	NM_001001396 NM_001684
ABCC9	atp-binding cassette, sub-family c, member 9, isoform sur2a-delta-14	0.9	Hs.446050	NM_020298

Table 4: German prognostic signature

Gene Symbol	Gene Description	Expression fold difference (relapse/non-relapse)	UniGene Cluster	GenBank Acc. No.
CXCL10	Chemokine (C-X-C motif) ligand 10	0.87	Hs.413924	NM_001565
FAS	FAS (TNF receptor superfamily, member 6)	0.9	Hs.244139	NM_000043 NM_152871 NM_152872 NM_152873 NM_152874 NM_152875 NM_152876 NM_152877
CXCL9	chemokine (C-X-C motif) ligand 9	0.87	Hs.77367	NM_002416
TLK1	tousled-like kinase 1	0.91	Hs.470586	NM_012290
CXCL11	chemokine (C-X-C motif) ligand 11	0.75	Hs.518814	NM_005409
PBK	T-LAK cell-originated protein kinase	0.86	Hs.104741	NM_018492
PSAT1	phosphoserine aminotransferase 1	0.91	Hs.494261	NM_021154
MAD2L1	MAD2 mitotic arrest deficient-like 1 (yeast)	0.89	Hs.533185	NM_002358
CA2	carbonic anhydrase II	0.84	Hs.155097	NM_000067
GZMB	granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1)	0.9	Hs.1051	NM_004131
SLC4A4	solute carrier family 4, sodium bicarbonate cotransporter, member 4	0.86	Hs.5462	NM_003759
DLG7	discs, large homolog 7 (Drosophila)	0.89	Hs.77695	NM_014750
TNFRSF11A	tumor necrosis factor receptor superfamily,	0.9	Hs.204044	NM_003839

Gene Symbol	Gene Description	Expression fold difference (relapse/non-relapse)	UniGene Cluster	GenBank Acc. No.
	member 11a, activator of NFKB			
KITLG	KIT ligand	0.91	Hs.1048	NM_000899
INDO	indoleamine-pyrrole 2,3 dioxygenase	0.91	Hs.840	NM_002164
GBP1	guanylate binding protein 1, interferon-inducible, 67kDa	0.9	Hs.62661	NM_002053
CXCL13	chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant)	0.86	Hs.100431	NM_006419
CLCA4	chloride channel, calcium activated, family member 4	0.84	Hs.546343	NM_012128
PCP4	<i>Purkinje cell protein 4</i>	1.14	Hs.80296	NM_006198

Table 5: Immune response genes

Gene Symbol	Gene Description	Expression fold difference (relapse/non-relapse)	UniGene Cluster	GenBank Acc. No.
CXCL9	chemokine (C-X-C motif) ligand 9	0.87	Hs.77367	NM_002416
CXCL10	Chemokine (C-X-C motif) ligand 10	0.87	Hs.413924	NM_001565
CXCL11	chemokine (C-X-C motif) ligand 11	0.75	Hs.518814	AF030514
CXCL13	chemokine (C-X-C motif) ligand 13 (B-cell chemoattractant)	0.86	Hs.100431	NM_006419
PBK	T-LAK cell-originated protein kinase	0.86	Hs.104741	NM_018492
INDO	indoleamine-pyrrole 2,3 dioxygenase	0.91	Hs.840	M34455
GBP1	guanylate binding protein 1, interferon-inducible, 67kDa	0.9	Hs.62661	NM_002053
GZMB	granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1)	0.9	Hs.1051	J03189
KITLG	KIT ligand	0.91	Hs.1048	NM_000899
TNFRSF11A	tumor necrosis factor receptor superfamily, member 11a, activator of NFKB	0.9	Hs.204044	NM_003839
FAS	FAS (TNF receptor superfamily, member 6)	0.9	Hs.244139	Z70519

5 In certain aspects, this invention provides methods for determining the prognosis of a cancer, comprising: (a) providing a sample of the cancer; (b) detecting the expression

level of a CCPM family member in said sample; and (c) determining the prognosis of the cancer. In one aspect, the cancer is colorectal cancer.

In other aspects, the invention includes a step of detecting the expression level of a CCPM mRNA. In other aspects, the invention includes a step of detecting the expression level of a CCPM polypeptide. In yet a further aspect, the invention includes a step of detecting the level of a CCPM peptide. In yet another aspect, the invention includes detecting the expression level of more than one CCPM family member in said sample. In a further aspect the CCPM is a gene associated with an immune response. In a further aspect the CCPM is selected from the markers set forth in Tables 3, 4, 8A, 8B, or 9. In a still further aspect, the CCPM is included in a signature selected from the signatures set forth in Tables 3, 4, 8A, 8B, or 9.

15 In a further aspect the invention comprises detecting the expression level of; WDR44, RBMS1, SACM1L, SOAT1, PBK, G3BP2, ZBTB20, ZNF410, COMMD2, PSMC1, COX10, GTF3C5, HMMR, UBE2L3, GNAS, PPP2R2A, RNASE2, SCOC PSMD9, EIF3S7, ATP2B4, and ABCC9. In a further aspect the invention comprises detecting the expression level of; CXCL10, FAS, CXCL0, TLK1, CXCL11, PBK, PSAT1, MAD2L1, CA2, GZMB, SLC4A4, DLG7, TNFRSF11A, KITLG, INDO, GBP1, 20 CXCL13, CLCA4, and PCP4.

In still further aspects, the invention includes a method of determining a treatment regime for a cancer comprising: (a) providing a sample of the cancer; (b) detecting the expression level of a CCPM family member in said sample; (c) determining the prognosis of the cancer based on the expression level of a CCPM family member; and 25 (d) determining the treatment regime according to the prognosis.

In still further aspects, the invention includes a device for detecting a CCPM, comprising: a substrate having a CCPM capture reagent thereon; and a detector 30 associated with said substrate, said detector capable of detecting a CCPM associated with said capture reagent. Additional aspects include kits for detecting cancer, comprising: a substrate; a CCPM capture reagent; and instructions for use. Yet further aspects of the invention include method for detecting a CCPM using qPCR,

comprising: a forward primer specific for said CCPM; a reverse primer specific for said CCPM; PCR reagents; a reaction vial; and instructions for use.

- Additional aspects of this invention comprise a kit for detecting the presence of a CCPM polypeptide or peptide, comprising: a substrate having a capture agent for said CCPM polypeptide or peptide; an antibody specific for said CCPM polypeptide or peptide; a reagent capable of labeling bound antibody for said CCPM polypeptide or peptide; and instructions for use.
- 10 In yet further aspects, this invention includes a method for determining the prognosis of colorectal cancer, comprising the steps of: providing a tumour sample from a patient suspected of having colorectal cancer; measuring the presence of a CCPM polypeptide using an ELISA method. In specific aspects of this invention the CCPM of the invention is selected from the markers set forth in Tables 1, 2, 5, or 9. In still 15 further aspects, the CCPM is included in a prognostic signature selected from the signatures set forth in Tables 3, 4, 8A, 8B, or 10.

EXAMPLES

The examples described herein are for purposes of illustrating embodiments of the 20 invention. Other embodiments, methods, and types of analyses are within the scope of persons of ordinary skill in the molecular diagnostic arts and need not be described in detail hereon. Other embodiments within the scope of the art are considered to be part of this invention.

25 **Example 1: Patients and methods**

Two cohorts of patients were included in this study, one set from New Zealand (NZ) and the second from Germany (DE). The NZ patients were part of a prospective cohort study that included all disease stages, whereas the DE samples were selected from a tumour bank. Clinical information is shown in Table 6, while Figure 1 30 summarises the experimental design.

Example 2: Tumour samples

Primary colorectal tumor samples from 149 NZ patients were obtained from patients undergoing surgery at Dunedin Hospital and Auckland Hospital between 1995-2000.

Tumor samples were snap frozen in liquid nitrogen. All surgical specimens were reviewed by a single pathologist (H-S Y) and were estimated to contain an average of 85% tumor cells. Among the 149 CRC patients, 12 had metastatic disease at presentation, 35 developed recurrent disease, and 102 were disease-free after a 5 minimum of 5-year follow up.

Primary colorectal tumor samples from DE patients were obtained from patients undergoing surgery at the Surgical Department of the Technical University of Munich between 1995-2001. A group of 55 colorectal carcinoma samples was selected from 10 banked tumours which had been obtained fresh from surgery, snap frozen in liquid nitrogen. The samples were obtained from 11 patients with stage I cancer and 44 patients with stage II cancer. Twenty nine patients were recurrence-free and 26 patients had experienced disease recurrence after a minimum of 5-year follow up.

Tumor content ranged between 70 and 100% with an average of 87%.

15

Table 6: Clinical characteristics of New Zealand and German colorectal tumours*1. Persisting disease*

New Zealand data		
	Relapse free	Relapse
Number of patients	102	47
Age	68.5 (SD: 15.1)	69.8 (SD: 8.7)
Gender		
male	48 (47%)	22 (47%)
female	54 (53%)	25 (53%)
Tumor localization		
right colon	41(40%)	18(38%)
left colon	12(12%)	4(9%)
sigmoid	31(30%)	17(36%)
rectum	18(18%)	8(17%)
Tumor stage		
Stage I	16	0
Stage II	61	13
Stage III	25	22
Stage IV	0	12 ¹
Median follow up period/median recurrence free period (months)	72 (range: 60-80)	15 (range: 0-59)
German data		
	Relapse free	Relapse
Number of patients	29	26
Age	64.3 (SD: 12.8)	61.8 (SD:10.7)
Gender		
male	17 (59%)	16 (62%)
female	12 (41%)	10 (38%)
Tumor localization		
right colon	8 (28%)	4 (15%)
left colon	7 (24%)	5 (19%)
sigmoid	6 (21%)	7 (27%)
rectum	8 (28%)	10 (38%)
Tumor stage		
Stage I	5	6
Stage II	24	20
Median follow up period/median recurrence free period (months)	83.1 (range: 64-99)	27.4 (range: 3-60)

5 Example 3: RNA Extraction and target labeling

NZ tumours: Tumours were homogenized and RNA was extracted using Tri-Reagent (Progenz, Auckland, New Zealand). The RNA was then further purified using RNeasy mini column (Qiagen, Victoria, Australia). Ten micrograms of RNA was labelled with Cy5 dUTP using the indirect amino-allyl cDNA labelling protocol. A reference RNA from 12 different cell lines was labelled with Cy3 dUTP. The

fluorescently labelled cDNA were purified using a QiaQuick PCR purification kit (Qiagen, Victoria, Australia) according to the manufacturer's protocol.

DE tumours: Tumours were homogenized and RNA was isolated using RNeasy Mini Kit (Qiagen, Hilden, Germany). cRNA preparation was performed as described previously (9), purified on RNeasy Columns (Qiagen, Hilden, Germany), and eluted in 55 µl of water. Fifteen micrograms of cRNA was fragmented for 35 minutes at 95°C and double stranded cDNA was synthesized with a oligo-dT-T7 primer (Eurogentec, Köln, Germany) and transcribed using the Promega RiboMax T7-kit (Promega, Madison, WI) and Biotin-NTP labelling mix (Loxo, Dossenheim, Germany).

Example 4: Microarray experiments

NZ tumours: Hybridisation of the labelled target cDNA was performed using MWG Human 30K Array oligonucleotides printed on epoxy coated slides. Slides were blocked with 1% BSA and the hybridisation was done in pre-hybridisation buffer at 42°C for at least 12 hours followed by a high stringency wash. Slides were scanned with a GenePix Microarray Scanner and data was analyzed using GenePix Pro 4.1 Microarray Acquisition and Analysis Software (Axon, CA).

20

DE tumours: cRNA was mixed with B2-control oligonucleotide (Affymetrix, Santa Clara, CA), eukaryotic hybridization controls (Affymetrix, Santa Clara, CA), herring sperm (Promega, Madison, WI), buffer and BSA to a final volume of 300 µl and hybridized to one microarray chip (Affymetrix, Santa Clara, CA) for 16 hours at 45°C. Washing steps and incubation with streptavidin (Roche, Mannheim, Germany), biotinylated goat-anti streptavidin antibody (Serva, Heidelberg, Germany), goat-IgG (Sigma, Taufkirchen, Germany), and streptavidin-phycoerythrin (Molecular Probes, Leiden, Netherlands) was performed in an Affymetrix Fluidics Station according to the manufacturer's protocol. The arrays were then scanned with a HP-argon-ion laser confocal microscope and the digitized image data were processed using the Affymetrix® Microarray Suite 5.0 Software.

Example 5: Data pre-processing

NZ data: Data pre-processing and normalization was performed in the R computing environment (10). A \log_2 transformation was applied to the foreground intensities from each channel of each array. Data from each spot was used on a per array basis to 5 perform print-tip loss normalization via the limma package (11) from the Bioconductor suite of analysis tools (12). Scale normalization (13) was then used to standardize the distribution of log intensity ratios across arrays. Post-normalization cluster analysis revealed the presence of a gene-specific print-run effect present in the data. Analysis of variance (ANOVA) normalization was used to estimate and remove 10 print run effects from the data for each gene. Replicate array data was available for 46 of the 149 samples. Cluster analysis of the entire data set indicated that the duplicate arrays clustered well with each other suggesting internal consistency of the array platform. Genes with low intensity, large differences between replicates (mean \log_2 difference between duplicates higher than 0.5), and unknown proteins were 15 removed from the data set. After the initial normalization procedure, a subset of 10,318 genes was chosen for further analysis.

DE data: All Affymetrix U133A GeneChips passed quality control to eliminate scans with abnormal characteristics, that is, abnormal low or high dynamic range, high 20 perfect match saturation, high pixel noise, grid misalignment problems, and low mean signal to noise ratio. Background correction and normalization were performed in the R computing environment (10, 40). Background corrected and normalized expression measures from probe level data (cel-files) were obtained using the robust multi-array average function (14) implemented in the Bioconductor package affy.

25

Example 6: Prognostic signatures and cross validation

Data analysis was performed using the BRB Array-Tools package (hypertext transfer protocol://linus.nci.nih.gov/BRB-ArrayTools.html). Gene selection was performed using a random variance model *t*-test. In the DE data, 318 genes were found to be 30 differentially expressed when using a significance threshold of 0.001. As most of the differentially expressed genes exhibited relatively small changes in expression, a condition requiring the mean \log_2 fold change between the two classes to be higher than 1.1 was added to the gene selection process for the DE data. Gene-based prognostic signatures were produced using leave one out cross validation (LOOCV)

in each of the NZ and DE data sets. To avoid the problem of over-fitting, both the gene selection and signature construction were performed during each LOOCV iteration. After LOOCV, the prediction rate was estimated by the fraction of samples correctly predicted. In order to find a gene set that could make the best prediction for 5 unknown samples, different *t*-test thresholds using a random variance model were investigated in conjunction with six classification methods: compound covariate classifier (CCP), diagonal linear discriminant analysis (DLD), 3- nearest neighbours (3-NN), 1- nearest neighbours (1-NN), nearest centroid (NC), and support vector machines (SVM).

10

To establish the validity of the NZ and DE prognosis signatures, reciprocal validation was performed, with the NZ signature validated using the DE data set, and vice versa. To test the NZ genes, probes relating to the 22 genes from the NZ signature were identified in the DE data, and LOOCV was used to assess the performance of a 15 signature for the DE samples, based only on these probes. Similarly, probes relating to the 19 genes in the DE signature were identified in the NZ data and LOOCV was used to assess the performance of a signature for the NZ samples. In both cases a significance threshold of 0.999 was used to ensure that all genes were used in each LOOCV iteration. Differences between the platforms (in particular, log-ratio data 20 *versus* log-intensity data) meant that direct application of a prediction rule across data sets was not feasible. The consequence of this is that only the gene sets, and not the prediction rules used, can be generalized to new samples. The significance of the LOOCV prediction results was calculated by permuting the class labels of the samples and finding the proportion of times that the permuted data resulted in a higher 25 LOOCV prediction rate than that obtained for the unpermuted data. All permutation analysis involved 2000 permutations, with small P-values indicating that prediction results were unlikely to be due to chance.

Example 7: Survival analysis

30 Kaplan-Meier survival analysis for censored data was performed using the survival package within the R computing environment. Survival was defined to be "disease free survival" post surgery. For each analysis, survival curves were constructed, and the log-rank test (15) was used to assess the presence of significant differences between the curves for the two groups in question. Censoring was taken into account

for both the NZ and DE data sets. For the disease-free survival data, right censoring prior to five years could only occur for non-recurrent patients as a result of either death, or the last clinical follow-up occurring at less than five years. Odds ratios and confidence intervals were produced using the epitools package for R.

5

Example 8: Identification of markers co-expressed with chemokine ligands

Genes in the DE data which had a Pearson correlation coefficient greater than 0.75 with at least one of the four chemokines appearing in the predictor in the non-relapse group were selected for ontology analysis. Ontology was performed using DAVID 10 (hypertext transfer protocol://apps1.niaid.nih.gov/david/).

Example 9: Results and analysis

To identify robust prognostic signatures to predict disease relapse for CRC, two independent sets of samples from NZ and DE were used to generate array expression data sets from separate series of primary tumours with clinical follow-up of five or more years. After normalization, each data set was analyzed using the same statistical methods to generate a prognostic signature, which was then validated on the alternate series of patients. As such, the DE prognostic signature was validated on the NZ data set and the NZ prognostic signature was validated on the DE data set.

20

Example 10: Exhaustive Identification of differentially expressed markers

DE Data Set: The BRB Array Tools class comparison procedure was used to detect probes exhibiting statistically significant differences in average intensity between relapse and non-relapse samples. The RVM (random variance model) was again used to produce *p*-values for each probe in the data set. In this second round, a total of 325 probes were found to be significantly differentially expressed between the two sample classes using an arbitrary significance threshold of 0.05. Note this selection of genes did not apply any fold-change threshold, and used a significance cut off of 0.05, rather than the threshold of 0.001 that was used in Example 6. The purpose of this less stringent threshold (*p*=0.05 instead of *p*=0.001) was to put forward a larger number of genes for construction of the second round of signatures (see example 17). These probes represent 270 unique genes (Table 1 and Table 2).

Explicitly, the test for significance (random variance model) comprises the following: generating a test statistic for each gene which was identical to that of a standard two sample t-test (45) except that the estimate of the pooled variance was obtained by representing the variance structure across all genes as an F-distribution, and then 5 using the parameters, a and b , of this distribution (obtained via maximization of the empirical likelihood function) to form the following estimate of the pooled variance (see next page),

$$s^2 = \frac{(n - 2)s_{pooled}^2 + 2b^{-1}}{(n - 2) + 2a}$$

10

where S^2 is the new estimate of the pooled variance, s_{pooled}^2 is the standard estimate of pooled variance (45), n is the number of samples, and a and b are the parameters of the F-distribution (46). Based on the t-statistic formed, a t-distribution with $n-2+2a$ degrees of freedom was used to obtain a p-value for each gene. To adjust for multiple 15 hypothesis testing, the False Discovery Rate controlling procedure of Benjamini and Hochberg (7) was used to produce adjusted p-values for each gene. A gene was considered to have undergone significant differential expression if its adjusted p-value was less than 0.05.

20 **Example 11: Identification of correlated markers**

In order to identify additional genes that can be used as prognostic predictors, correlation analysis was carried out using the R statistical computing software package. This analysis revealed 167 probes that had a Pearson correlation coefficient (40, 44, 45) of at least 0.8. Of these probes, 51 were already present in the set of 325 25 significantly differentially expressed probes, while the remaining 116 were reported as non-significant (using a 0.05 threshold for the FDR, or “false-discovery rate” (47) controlling procedure, the RVM, or rando variance model). These 116 probes represent 111 distinct genes (Table 2).

30 **Example 12: Construction of prognostic signatures**

The NZ data set was generated using oligonucleotide printed microarrays. Six different signatures were constructed, with a support vector machine (SVM) using a

gene selection threshold of 0.0008 yielding the highest LOOCV prediction rate, and producing a 22-gene signature (77% prediction rate, 53% sensitivity, 88% specificity; p=0.002, Tables 7, 8A, and 8B). For Tables 8A and 8B, the gene descriptions are shown in Tables 3 and 4, respectively.

5

Table 7: Construction of prognostic signatures

22 gene NZ signature tested on German data					
Data set	Prediction rate	Sensitivity	Specificity	P value*	Odd ratio
NZ data (training; SVM)	0.77 (0.66, 0.86) [§]	0.53 (0.33, 0.73)	0.88 (0.77, 0.95)	0.002	8.4 (3.5, 21.4)
NZ data minus 4 genes not found in German data were removed from NZ data set (training; SVM)	0.72	0.38	0.87	0.011	
German data (test; SVM)	0.71 (0.51, 0.86)	0.62 (0.32, 0.86)	0.79 (0.52, 0.95)	0.002	5.9 (1.6, 24.5)
19 gene German signature tested on NZ data					
Data set	Prediction rate	Sensitivity	Specificity	P value *	Odd ratio
German data (training; 3-NN)	0.84 (0.65, 0.95)	0.85	0.83	< 0.0001	24.1 (5.3, 144.7)
German data minus 5 genes not found in NZ data were removed from German data set (training; 3-NN)	0.67	0.65	0.66	0.046	
NZ data (test; 3-NN)	0.67 (0.55, 0.78)	0.42 (0.22, 0.64)	0.78 (0.65, 0.89)	0.045	2.6 (1.2, 6.0)

SVM: support vector machine signature; 3-NN: 3 nearest neighbour signature.

§ 95% confidence interval

* P values were calculated from 2,000 permutation of class labels

Table 8A: NZ prognostic signature

New Zealand 22-gene prognostic signature

10

p-value	Gene Symbol	GenBank Acc. No.	Genes not found in German data at time of analysis
2.30E-05	WDR44	NM_019045	*
3.30E-05	RBMS1	NM_016836	
4.60E-05	SACM1L	NM_014016	
6.80E-05	SOAT1	NM_003101	
7.90E-05	PBK	NM_018492	
0.00014	G3BP2	NM_012297	
0.000163	ZBTB20	NM_015642	
0.000214	ZNF410	NM_021188	*
0.00022	COMM2	NM_016094	*
0.000293	PSMC1	NM_002802	
0.000321	COX10	NM_001303	
0.000334	GTF3C5	NM_012087	
0.000367	HMMR	NM_012485	
0.000405	UBE2L3	NM_003347	
0.000417	GNAS	NM_000516	
0.000467	PPP2R2A	NM_002717	
0.000493	RNASE2	NM_002934	
0.000532	SCOC	NM_032547	*
0.000578	PSMD9	NM_002813	

0.000593	EIF3S7	NM_003753	
0.000649	ATP2B4	NM_001001396 NM_001684	
0.000737	ABCC9	NM_020298	

Table 8B: DE prognostic signature

German 19-gene prognostic signature

p-value	Gene Symbol	GenBank Acc. No.	Genes not found in NZ data at time of analysis
3.00E-06	CXCL10	NM_001565	
4.00E-06	FAS	NM_000043 NM_152871 NM_152872 NM_152873 NM_152874 NM_152875 NM_152876 NM_152877	
8.00E-06	CXCL9	NM_002416	*
1.20E-05	TLK1	NM_012290	
1.30E-05	CXCL11	NM_005409	
2.10E-05	PBK	NM_018492	
4.20E-05	PSAT1	NM_021154	
7.60E-05	MAD2L1	NM_002358	
9.80E-05	CA2	NM_000067	
0.000128	GZMB	NM_004131	*
0.000177	SLC4A4	NM_003759	
0.000215	DLG7	NM_014750	*
0.000376	TNFRSF11A	NM_003839	
0.00038	KITLG	NM_000899	
0.000579	INDO	NM_002164	
0.000634	GBP1	NM_002053	
0.000919	CXCL13	NM_006419	*
0.000942	CLCA4	NM_012128	*
0.001636	PCP4	NM_006198	

5

The NZ signature had an odds ratio for disease recurrence in the NZ patients of 8.4 (95% CI 3.5-21.4).

10 The DE data set was generated using Affymetrix arrays resulting in a 19-gene (22-probe) and 3-nearest neighbour (3-NN) signature (selection threshold 0.002, \log_2 fold change >1.1 , 84% classification rate, 85% sensitivity, 83% specificity, $p<0.0001$, Tables 3, 4, 7). The DE signature had an odds ratio for recurrence in the DE patients of 24.1 (95% CI 5.3-144.7). Using Kaplan-Meier analysis, disease-free survival in NZ and DE patients was significantly different for those predicted to recur or not 15 recur (NZ signature, $p<0.0001$, Fig. 2A; DE signature, $p<0.0001$, Fig. 2B).

Example 13: External validation of the NZ and DE prognostic signatures

To validate the NZ signature, the 22 genes were used to construct a SVM signature in the DE data set by LOOCV. A prediction rate of 71% was achieved, which was 5 highly significant ($p=0.002$; Table 7). The odds ratio for recurrence in DE patients, using the NZ signature, was 5.9 (95% CI 1.6-24.5). We surmise that the reduction in prediction rate, from 77% in NZ patients to 71% in DE patients (Table 7), was due to four genes from the NZ signature not being present in the DE data. Disease-free survival for DE patients predicted to relapse, according to the NZ signature, was 10 significantly lower than disease-free survival for patients predicted not to relapse ($p=0.0049$, Fig. 2C).

The DE signature was next validated by using the 19 genes to construct a 3-NN signature in the NZ data set by LOOCV. The prediction rate of 67% was again 15 significant ($p=0.046$; Table 7), confirming the validity of the DE signature. The odds ratio for recurrence in NZ patients, using the DE signature, was 2.6 (95% CI 1.2-6.0). We consider that the reduction of the prediction rate was due to five genes from DE signature not being present in the NZ data set. This was confirmed when removal of 20 these five genes from the DE data set resulted in a reduction of the LOOCV prediction rate from 84% to 67% (Table 7). Disease-free survival for NZ patients predicted to relapse, according to the DE signature, was significantly lower than disease-free survival for patients predicted not to relapse ($p=0.029$; Fig. 2D).

Example 14: Comparison of NZ and DE prognostic signatures with current staging 25 system

Significant differences in disease-free survival between patients predicted to relapse or not relapse were also observed within the same clinico-pathological stage (Figure 3). When patient predictions were stratified according to disease stage, the NZ signature was able to identify patients who were more likely to recur in both Stage II 30 ($p=0.0013$, Fig. 3A), and Stage III subgroups ($p=0.0295$, Fig. 3A). This was mirrored to a lesser extent when the DE signature was applied to the NZ data set, where the difference was only observed for Stage III patients ($p=0.0491$, Fig. 3B). Again, the decreased predictive accuracy of the DE signature was likely due to the absence of five genes from the NZ data that decreased the LOOCV prediction rate.

Example 15: Genes in signatures are related to CRC disease progression

A number of genes in the NZ signature (Table 3) including G3BP2 (16), RBMS1 (17), HMMR (18), UBE2L3 (19), GNAS (20), RNASE2 (21) and ABCC9 (22) have all been reported to be involved in cancer progression, while RBMS1 (23), EIF3S7

5 EIF3S7 (24) and GTF3C5 (25) are involved in transcription or translation. PBK is a protein kinase, which is involved in the process of mitosis (26), and the only gene common to the NZ and DE signatures. Eleven of 19 genes in the DE signature (Table 4) are involved in the immune response including 4 chemokine ligands (CXCL9, CXCL10, CXCL11, CXCL13; (27)), PBK (28), INDO (29), GBP1 (30), GZMB (31), KITLG 10 (32), and two receptors of the tumor necrosis factor family (TNFRSF11A, FAS; 33)).

Eighty six genes were found to be moderately correlated (Pearson correlation coefficient > 0.75) with at least one of the four chemokine ligands in the DE data. Ontology analysis found that 39 of these 65 genes were in the category of immune 15 response ($p < 10^{-26}$). This result suggests a key role for the host immune response in determining CRC recurrence.

Example 16: Discussion of NZ and DE Prognostic Signatures

It has been shown that the two different prognostic signatures can be used to improve 20 the current prognosis of colorectal cancer.

For the DE signature, it was surprising and unexpected that the stage I/II samples could be used to predict stage III outcome. It was also surprising that many genes associated with recurrent disease are related to the immune response. The immune 25 response has an important role in the progression of different cancers and T-lymphocyte infiltration in CRC patients is an indicator of good prognosis (36-38). All of the eleven immune response (Table 5) genes were down-regulated in recurrent patients which would be unexpected based on known biological mechanisms.

30 To further confirm these results, 4 chemokine genes were chosen for further analysis. Chemokine ligands not only reflect the activity of the immune system and mediate leukocyte recruitment but also are involved in chemotaxis, cell adhesion and motility, and angiogenesis (36). To investigate the role of the immune response genes, 86 genes co-expressed with the chemokine ligands were identified. Almost half of these 35 genes had a Gene Ontology classification within the "immune response" category

suggesting that the primary function of these genes in the recurrence process is the modulation of the immune response. Furthermore, CD4+ and CD8+ T cell antigens (CD8A, CD3, PRF1, TRA@, TRB@) or functionally related antigens, for example, major histocompatibility molecules, interferon gamma induced proteins, and IL2RB, 5 were found in the co-expressed gene list. The activation of tumor specific CD4+ T cells and CD8+ T cells has been shown to result in tumour rejection in a mouse colorectal cancer model (37). Collectively, these findings suggest that the lymphocytes form part of a tumor-specific host response involved in minimising the spread of cells from the primary tumour.

10

Example 17: Selection of additional prognostic signatures

The performance of the two prognostic signatures described above was excellent in terms of cross-validation between the two data sets. Further studies were carried out, using a purely statistical approach, to develop a range of signatures, in addition to the 15 aforementioned, that would also predict prognosis for other data sets. One of the additional goals of these studies was to ensure that the method used to normalize the microarray data (robust multi-array average) was not exerting undue influence on the choice of genes.

20 Figure 4 shows the classification rates obtained from signatures of varying lengths. The classification rate is the proportion of correct relapse predictions (expressed as a percentage of total predictions), i.e., the proportion of samples correctly classified. The classification rates were determined using 11-fold cross validation. For this cross validation, a randomly selected stratified sample (i.e. same ratio of recurrent to non- 25 recurrent tumours as the full data set) was removed as a validation set prior to gene selection of the genes, and model construction (using the training set of the remaining 50 samples). Cross-validation was then repeated a further ten times so that all 55 samples appeared in one validation set each. This 11-fold cross-validation process was repeated as 10 replicates, and the results plotted in Figure 4 and Figure. The 30 classification rates shown were corrected using bootstrap bias correction (43), to give the expected classification rates for the signatures to be applied to another data set. From this analysis, it was ascertained that shorter signatures produced the best classification rate. In addition, analysis of the genes that most frequently appeared in classifiers show that the discriminatory power was mostly due to the effectiveness of

two genes: FAS and ME2. This is illustrated most clearly by figure 5 shows the effectiveness of the signatures, once the two genes FAS and ME2 were removed from the data set. For more detail see the legend to Figure 5.

5 The effect of normalization on feature selection was thoroughly investigated by generating gene lists from 1000 stratified sub-samples of the original set of tumours, each time removing 5 samples (i.e. 1/11 of the total number of samples) from the data set. (This is effectively the same as performing 11-fold cross-validation). A tally was made of the number of times each gene appeared in the “top-n” gene lists (i.e., top 10, 10 top 20, top 100, and top 325). This value was termed the “top count”. Top counts were generated using three different normalization methods (40) (Figure 6), and three different filtering statistics (Figure 7). There was substantial correlation in the top count between normalization schemes and filtering statistics (41, 42) used. Thus, while normalization and feature selection methods were important, many genes 15 appeared in the gene lists independently of the method used to pre-process the data. This indicates that the choice of normalization method had only a minimal effect on which genes were selected for use in signature construction. The top count, summed across all normalization methods and statistics, was found to be a robust measure of a gene's differential expression between recurrent and non-recurrent tumours.

20

Genes from the gene lists (see Table 1 and Table 2), were used to generate signatures by random sampling. The generation of samples was weighted, such that genes with higher “top count” were more likely to be selected. A range of signatures was generated, using between 2 and 55 Affymetrix probes. Signatures were selected if 25 they exhibited >80% median classification rate, using three methods of classifiers: k-nearest neighbours, with k=1; k-nearest neighbours, with k=3; and support vector machines, with a linear kernel function, and using leave-one-out cross-validation.

30 On average, longer prognostic signatures were preferred over shorter signatures in terms of ability to predict prognosis for new data sets (Figure 4 and Figure 5). The genes FAS and ME2 were also important (discussed, above). These two facts were used, along with the fact that short signatures that do not contain either FAS or ME2 perform less effectively, to select candidate signatures as shown in Table 9, below. Signatures were selected (from the pool of randomly generated signatures) if they

exhibited >80% median classification rate (using three methods of classifiers: k-nearest neighbours, with k=1; k-nearest neighbours, with k=3; and support vector machines, with a linear kernel function), using leave-one-out cross-validation.

- 5 In addition, because, on average, longer signatures (>10 genes/signature) tended to perform better, we selected signatures with 20 or more genes/signatures from a pool of signatures with 30 or more probes/signature. It is expected that these signatures (Table 10) will perform with a classification rate of around 70% when applied to other data sets, on the basis of the results shown in Figures 4 and 5. It was found that all of
10 the signatures generated in this way contained both ME2, and all but one contained FAS, which may be due to the importance of these genes in providing prediction of prognosis. It was noted that the high classification rate obtained using this approach on the in-house data set did not necessarily mean that these signatures that would be expected to perform better than those set forth in Example 12, on other data sets.
15 Rather, the purpose was to produce a range of signatures expected to apply to other data sets as least as well as the previous signatures. The markers comprising the prognostic signatures are set forth in Table 9.
- 20 Table 9: Additional Prognostic signatures (note SVM=support vector machine, 3NN=3 nearest neighbours, 1NN=1 nearest neighbour, Sens=sensitivity, Spec=specificity, for prediction of recurrence)

Signature Number	Signature Genes (as gene symbols)	SVM		3NN		1NN	
		Sens	Spec	Sens	Spec	Sens	Spec
1	WARS, STAT1, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, TYMS, CTSS, MAD2L1, CXCL10, C1QBP, NDUFA9, SLC25A11, HNRPD, ME2, CXCL11, RBM25, CAMSAP1L1, hCAP-D3, BRRN1, ATP5A1, FAS, FLJ13220, PBK, BRIP1	81%	86%	73%	90%	77%	83%
2	WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL10, NDUFA9, SLC25A11, CA2, ME2, IFT20, TLK1, CXCL11, RBM25, AK2, FAS, FLJ13220, PBK, PSAT1, STAT1	77%	86%	85%	79%	81%	86%
3	WARS, SFRS2, PRDX3, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL10, NDUFA9, KPNB1, SLC25A11, CA2, ME2, FUT4, CXCL11, GZMB, RBM25, ATP5A1, CDC42BPA, FAS, RBBP4, HNRPD, BRIP1, STAT1	85%	86%	92%	76%	85%	79%
4	WARS, PRDX3, MTHFD2, PSME2, TES, DCK,	81%	79%	77%	69%	77%	79%

		SVM		3NN		1NN	
	CDC40, CXCL10, PLK4, NDUFA9, SLC25A11, WHSC1, ME2, CXCL11, SLC4A4, RBM25, ATP5A1, CDC42BPA, FAS, BAZ1A, AGPAT5, FLJ13220, HNRPD, KLHL24, STAT1						
5	HNRPD, WARS, MTHFD2, GMFB, DLGAP4, TYMS, CXCL9, IRF8, GTSE1, RABIF, CXCL10, FAS, TRIM25, KITLG, C1QBP, SLC25A11, C17orf25, CA2, ME2, SLC4A4, CXCL11, RBM25, KLHL24, STAT1	88%	83%	88%	83%	88%	76%
6	HNRPD, WARS, STAT1, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CXCL9, PLK4, KITLG, NDUFA9, ME2, CXCL11, SLC4A4, AK2, FAS, AGPAT5, FLJ13220, PBK, ETNK1	73%	83%	81%	79%	65%	66%
7	WARS, EIF4E, PRDX3, TK1, GMFB, DLGAP4, TYMS, LMAN1, ARF6, FAS, CHEK1, NDUFA9, SLC25A11, WHSC1, CA2, ME2, CXCL11, IFT20, SLC4A4, RBM25, hCAP-D3, CDC42BPA, FLJ13220, HNRPD, STAT1	88%	90%	88%	90%	85%	86%
8	WARS, EPAS1, EIF4E, PRDX3, PSME2, TK1, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, CXCL10, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, TLK1, RBM25, BRRN1, FAS, BRIP1, TRMT5, KLHL24, STAT1	77%	86%	85%	79%	77%	79%
9	HNRPD, WARS, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CDC40, IRF8, CXCL10, FAS, CHEK1, KITLG, WHSC1, CA2, ME2, TLK1, RBM25, AK2, NUP210, ATP5A1, BRIP1, STAT1	69%	79%	85%	83%	77%	79%
10	HNRPD, EPAS1, EIF4E, PRDX3, DLGAP4, TES, CTSS, DCK, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, SLC25A11, C1QBP, C17orf25, CA2, ME2, RBM25, AK2, SEC10L1, FLJ13220, TRMT5, STAT1	85%	79%	85%	79%	77%	72%
11	HNRPD, WARS, EIF4E, PRDX3, PSME2, GBP1, GMFB, DLGAP4, TYMS, TES, RABIF, CXCL10, C1QBP, NDUFA9, SLC25A11, C17orf25, ME2, FUT4, CXCL11, RBM25, AK2, hCAP-D3, FAS, AGPAT5, SEC10L1, PBK, STAT1	85%	83%	92%	76%	85%	76%
12	HNRPD, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, DCK, IRF8, NDUFA9, SLC25A11, C17orf25, CA2, ME2, CXCL11, GZMB, RBM25, NUP210, SOCS6, DDAH2, FAS, RBBP4, MARCH5, SEC10L1, KLHL24, STAT1	88%	79%	92%	69%	92%	83%
13	WARS, EPAS1, STAT1, MTHFD2, MCM6, GBP1, GMFB, DLGAP4, TYMS, ARF6, CXCL10, FAS, KITLG, NDUFA9, CA2, ME2, GZMB, CXCL11, RBM25, RBBP4, PBK, PSAT1, HNRPD	88%	90%	88%	76%	77%	69%
14	WARS, EPAS1, EIF4E, PRDX3, PSME2, GBP1, TK1, GMFB, TYMS, CXCL9, FAS, CHEK1, SLC25A11, NDUFA9, WHSC1, CA2, ME2, FUT4, CXCL11, RBM25, CAMSAP1L1, SFRS2, DDAH2, AGPAT5, HNRPD, BRIP1, ETNK1	85%	83%	92%	76%	92%	79%
15	SFRS2, EIF4E, PRDX3, MTHFD2, MCM6, TK1, GMFB, TYMS, TES, CTSS, ARF6, CXCL9, RABIF, CXCL10, FAS, KITLG, SLC25A11, ME2,	81%	83%	81%	83%	77%	79%

		SVM		3NN		1NN	
	IFT20, SLC4A4, CXCL11, RBM25, PSAT1, HNRPD, TRMT5, STAT1						
16	WARS, SFRS2, EPAS1, EIF4E, PRDX3, TYMS, LMAN1, CDC40, CXCL9, CXCL10, PLK4, CHEK1, SLC25A11, C1QBP, NDUFA9, ME2, IFT20, SLC4A4, CXCL11, RBM25, DDAH2, FAS, HNRPD, BRIP1, STAT1	92%	93%	81%	83%	81%	83%
17	WARS, EIF4E, GMFB, DLGAP4, TYMS, CTSS, MAD2L1, SLC4A4, CXCL9, IRF8, CXCL10, FAS, TRIM25, KPNB1, SLC25A11, HNRPD, ME2, CXCL11, RBM25, AK2, hCAP-D3, DDAH2, SEC10L1, ETNK1, STAT1	92%	90%	85%	79%	81%	76%
18	HNRPD, WARS, SFRS2, MTHFD2, PSME2, TK1, GMFB, DLGAP4, ARF6, CXCL10, TRIM25, NDUFA9, SLC25A11, WHSC1, ME2, CXCL11, TLK1, RBM25, CAMSAP1L1, hCAP-D3, CDC42BPA, FAS, AGPAT5, STAT1	81%	79%	85%	90%	81%	93%
19	HNRPD, WARS, SFRS2, STAT1, EIF4E, PSME2, TYMS, USP4, DCK, ARF6, CXCL9, RABIF, CXCL10, C1QBP, SLC25A11, ME2, IFT20, SLC4A4, CXCL11, RBM25, AK2, SOCS6, FAS, ETNK1	96%	86%	73%	76%	73%	66%
20	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, TES, ARF6, CXCL10, FAS, KITLG, C1QBP, SLC25A11, C17orf25, ME2, FUT4, CXCL11, RBM25, ATP5A1, FLJ13220, PSAT1, HNRPD, STAT1	77%	79%	73%	83%	81%	86%
21	WARS, PSME2, GMFB, DLGAP4, USP4, ARF6, CDC40, CXCL9, IRF8, RABIF, CXCL10, PLK4, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, ME2, TLK1, SLC4A4, RBM25, hCAP-D3, SOCS6, FAS, AGPAT5, SEC10L1, KLHL24, STAT1	77%	72%	85%	83%	85%	79%
22	WARS, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, CXCL9, CXCL10, CHEK1, TRIM25, SLC25A11, C17orf25, HNRPD, ME2, SLC4A4, RBM25, AK2, BRRN1, FAS, DKFZp762E1312, SEC10L1, PBK, TRMT5, STAT1	77%	79%	77%	76%	81%	72%
23	HNRPD, WARS, STAT1, EIF4E, PRDX3, DLGAP4, TYMS, ARF6, CXCL9, CXCL10, FAS, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, CXCL11, RBM25, MARCH5, SEC10L1, BRIP1	85%	83%	92%	90%	85%	76%
24	WARS, PRDX3, PSME2, GMFB, DLGAP4, CTSS, LMAN1, CXCL9, CXCL10, HNRPA3P1, SLC25A11, NDUFA9, C17orf25, ME2, FUT4, SLC4A4, RBM25, AK2, FAS, MARCH5, PBK, HNRPD, KLHL24, ETNK1, STAT1	85%	83%	77%	69%	81%	69%
25	WARS, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CDC40, CXCL9, CXCL10, TRIM25, NDUFA9, CA2, ME2, TLK1, CXCL11, SLC4A4, RBM25, AK2, ATP5A1, SOCS6, DDAH2, FAS, MARCH5, PBK, STAT1	81%	83%	77%	83%	81%	72%
26	WARS, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, ARF6, CXCL10, PLK4, CHEK1, HNRPA3P1, C1QBP, NDUFA9, SLC25A11,	81%	83%	92%	86%	81%	79%

		SVM		3NN		1NN	
	WHSC1, CA2, ME2, CXCL11, RBM25, CAMSAP1L1, FAS, SEC10L1, FLJ13220, STAT1						
27	WARS, SFRS2, EIF4E, MTHFD2, PSME2, TK1, TYMS, LMAN1, CDC40, CXCL10, C1QBP, NDUFA9, KPNB1, CA2, ME2, GZMB, TLK1, SLC4A4, RBM25, ATP5A1, FAS, AGPAT5, SEC10L1, FLJ13220, HNRPD, STAT1	85%	90%	85%	86%	81%	79%
28	HNRPD, WARS, EPAS1, MTHFD2, PSME2, TK1, TYMS, CXCL9, CXCL10, FAS, TRIM25, KITLG, C1QBP, NDUFA9, CA2, ME2, CXCL11, RBM25, AK2, BRRN1, FLJ10534, SEC10L1, PBK, ETNK1, STAT1	88%	86%	81%	86%	81%	76%
29	EIF4E, PRDX3, PSME2, DLGAP4, CTSS, CXCL9, GTSE1, CXCL10, FAS, PLK4, KITLG, SLC25A11, CA2, ME2, GZMB, CXCL11, RBM25, AK2, AGPAT5, MARCH5, FLJ13220, PBK, HNRPD, STAT1	88%	86%	88%	76%	77%	69%
30	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, CTSS, CDC40, CXCL9, CXCL10, FAS, PLK4, NDUFA9, ME2, CXCL11, RBM25, AK2, BRRN1, RBBP4, HNRPD, KLHL24, ETNK1, STAT1	77%	79%	81%	79%	65%	69%
31	WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, ARF6, CDC40, CXCL9, TRIM25, SLC25A11, CA2, ME2, IFT20, CXCL11, RBM25, BRRN1, CDC42BPA, FAS, AGPAT5, FLJ10534, HNRPD, TRMT5, STAT1	85%	83%	92%	76%	92%	72%
32	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CTSS, DCK, CXCL9, CXCL10, FAS, KITLG, NDUFA9, ME2, CXCL11, RBM25, ATP5A1, PBK, ETNK1, STAT1	85%	79%	77%	83%	77%	72%
33	WARS, SFRS2, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, LMAN1, CDC40, SLC4A4, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, WHSC1, C17orf25, CA2, ME2, RBM25, SOCS6, AGPAT5, HNRPD, STAT1	73%	79%	92%	90%	88%	79%
34	HNRPD, WARS, MTHFD2, PSME2, GMFB, DLGAP4, RABIF, CXCL10, TRIM25, KITLG, C1QBP, KPNB1, SLC25A11, WHSC1, ME2, RBM25, CAMSAP1L1, BRRN1, CDC42BPA, FAS, AGPAT5, SEC10L1, ETNK1, STAT1	85%	86%	92%	90%	81%	86%
35	HNRPD, WARS, SFRS2, SFPQ, MTHFD2, DLGAP4, TYMS, USP4, LMAN1, ARF6, CDC40, C1QBP, C17orf25, CA2, ME2, CXCL11, SLC4A4, RBM25, AK2, ATP5A1, FAS, SEC10L1, FLJ13220, ETNK1, STAT1	81%	83%	85%	79%	73%	79%
36	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, LMAN1, ARF6, MAD2L1, GTSE1, CXCL10, FAS, KITLG, SLC25A11, WHSC1, ME2, FUT4, IFT20, RBM25, AGPAT5, HNRPD, STAT1	85%	83%	85%	90%	88%	90%
37	WARS, SFRS2, EIF4E, MTHFD2, TK1, GMFB, DLGAP4, TYMS, LMAN1, CXCL10, CHEK1, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, ME2, CXCL11, RBM25, BRRN1, CDC42BPA, FAS,	73%	79%	92%	83%	85%	86%

		SVM		3NN		1NN	
	SEC10L1, PSAT1, HNRPD, KLHL24, STAT1						
38	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, CTSS, LMAN1, DCK, CDC40, RABIF, CXCL10, HNRPAP1, C1QBP, C17orf25, ME2, CXCL11, TLK1, RBM25, FAS, FLJ13220, HNRPD, KLHL24, STAT1	85%	86%	77%	90%	85%	90%
39	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, CTSS, SLC4A4, CXCL10, SLC25A11, C17orf25, HNRPD, ME2, CXCL11, RBM25, AK2, CDC42BPA, FAS, AGPAT5, SEC10L1, TRMT5, STAT1	88%	83%	88%	79%	85%	72%
40	SFRS2, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, TYMS, CXCL9, IRF8, RABIF, CXCL10, FAS, TRIM25, SLC25A11, NDUFA9, ME2, CXCL11, RBM25, AGPAT5, FLJ13220, HNRPD, BRIP1, ETNK1, STAT1	85%	93%	88%	83%	81%	69%
41	HNRPD, WARS, EIF4E, PRDX3, TK1, DLGAP4, TYMS, CDC40, CXCL9, GTSE1, CXCL10, FAS, KITLG, SLC25A11, NDUFA9, ME2, IFT20, SLC4A4, RBM25, NUP210, BAZ1A, SEC10L1, TRMT5, KLHL24, STAT1	85%	83%	96%	79%	92%	72%
42	WARS, SFRS2, EIF4E, PRDX3, PSME2, DLGAP4, TYMS, CTSS, CXCL9, IRF8, CXCL10, FAS, C1QBP, NDUFA9, KPNB1, SLC25A11, ME2, SLC4A4, RBM25, SOCS6, MARCH5, SEC10L1, HNRPD, BRIP1, STAT1	81%	79%	85%	83%	92%	69%
43	WARS, EPAS1, PRDX3, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, CDC40, CXCL9, CXCL10, SLC25A11, C1QBP, WHSC1, ME2, GZMB, RBM25, SFRS2, FAS, AGPAT5, SEC10L1, PSAT1, KLHL24, ETNK1, STAT1	77%	83%	88%	62%	92%	72%
44	WARS, PSME2, GMFB, DLGAP4, TYMS, CDC40, CXCL10, FAS, PLK4, C1QBP, NDUFA9, SLC25A11, CA2, ME2, CXCL11, IFT20, TLK1, RBM25, NUP210, BAZ1A, MARCH5, PSAT1, TRMT5, STAT1	85%	86%	96%	79%	81%	83%
45	WARS, PRDX3, MTHFD2, PSME2, TYMS, CXCL10, FAS, CHEK1, TRIM25, C1QBP, NDUFA9, C17orf25, CA2, ME2, CXCL11, IFT20, RBBP4, RBM25, AK2, CDC42BPA, AGPAT5, DKFZp762E1312, HNRPD, STAT1	88%	90%	85%	79%	88%	66%
46	WARS, SFRS2, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, USP4, CDC40, CXCL10, FAS, HNRPAP1, KITLG, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, ME2, CXCL11, SLC4A4, RBM25, hCAP-D3, BRRN1, CDC42BPA, AGPAT5, MARCH5, SEC10L1, FLJ13220, BRIP1, ETNK1, STAT1	81%	79%	81%	79%	77%	72%
47	HNRPD, WARS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CTSS, MAD2L1, CDC40, CXCL9, CXCL10, KITLG, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, SLC4A4, CXCL11, RBM25, AK2, ATP5A1, CDC42BPA, FAS, BAZ1A, AGPAT5, SEC10L1, BRIP1, TRMT5, STAT1	81%	83%	88%	86%	88%	69%
48	WARS, EIF4E, SFPQ, PRDX3, MTHFD2,	77%	83%	81%	79%	73%	69%

		SVM		3NN		1NN	
	PSME2, GMFB, DLGAP4, TYMS, USP4, ARF6, CXCL9, CXCL10, FAS, HNRPA3P1, C1QBP, NDUFA9, KPNB1, SLC25A11, ME2, CXCL11, IFT20, TLK1, RBM25, RBBP4, AGPAT5, MARCH5, SEC10L1, PBK, PSAT1, HNRPD, BRIP1, STAT1						
49	HNRPD, WARS, SFRS2, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, DCK, ARF6, CXCL9, CXCL10, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, ME2, CXCL11, IFT20, TLK1, RBM25, AK2, hCAP-D3, ATP5A1, FAS, MARCH5, KLHL24, STAT1	77%	83%	77%	79%	81%	83%
50	WARS, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, TK1, GMFB, DLGAP4, TYMS, CTSS, CXCL9, IRF8, CXCL10, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, C17orf25, ME2, SLC4A4, AK2, CAMSAP1L1, FAS, BAZ1A, MARCH5, FLJ13220, PBK, BRIP1, KLHL24, ETNK1	81%	79%	85%	83%	77%	66%
51	HNRPD, WARS, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, TES, ARF6, CXCL9, CXCL10, TRIM25, SLC25A11, NDUFA9, WHSC1, CA2, ME2, SLC4A4, CXCL11, RBM25, hCAP-D3, ATP5A1, FAS, RBBP4, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, ETNK1, STAT1	77%	79%	85%	79%	85%	72%
52	WARS, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, CXCL10, FAS, HNRPA3P1, SLC25A11, C1QBP, ME2, FUT4, CXCL11, SLC4A4, RBM25, AK2, CAMSAP1L1, SFRS2, DDAH2, RBBP4, AGPAT5, FLJ10534, DKFZp762E1312, PSAT1, HNRPD	77%	83%	81%	86%	69%	76%
53	HNRPD, WARS, SFRS2, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL9, GTSE1, FAS, HNRPA3P1, SLC25A11, NDUFA9, KPNB1, CA2, ME2, CXCL11, SLC4A4, RBM25, BRRN1, CDC42BPA, RBBP4, BAZ1A, SEC10L1, BRIP1, KLHL24, STAT1	88%	83%	92%	79%	92%	72%
54	HNRPD, WARS, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, LMAN1, MAD2L1, CDC40, SLC4A4, CXCL9, CXCL10, FAS, KITLG, C1QBP, SLC25A11, ME2, CXCL11, RBM25, AK2, CDC42BPA, SFRS2, SEC10L1, STAT1	77%	79%	85%	83%	85%	79%
55	WARS, EPAS1, STAT1, EIF4E, SFPQ, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CXCL9, IRF8, CXCL10, FAS, NDUFA9, C17orf25, CA2, HNRPD, ME2, CXCL11, IFT20, RBM25, CDC42BPA, FLJ10534, SEC10L1, PBK, BRIP1, TRMT5	88%	90%	88%	76%	88%	79%
56	SFRS2, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, LMAN1, SLC4A4, CXCL9, CXCL10, FAS, PLK4, TRIM25, SLC25A11, NDUFA9, WHSC1, C17orf25, ME2, FUT4, CXCL11, IFT20, RBM25, ATP5A1, CDC42BPA, FLJ10534, SEC10L1, HNRPD, KLHL24, STAT1	85%	79%	85%	79%	81%	86%

			SVM		3NN		1NN	
57		SFRS2, PAICS, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, CTSS, LMAN1, SLC4A4, CXCL9, IRF8, CXCL10, TRIM25, NDUFA9, C17orf25, CA2, HNRPD, ME2, CXCL11, IFT20, RBM25, AK2, ATP5A1, FAS, PBK, BRIP1, TRMT5, ETNK1, STAT1	81%	86%	85%	79%	85%	83%
58		HNRPD, WARS, SFRS2, STAT1, EIF4E, MTHFD2, PSME2, DLGAP4, TYMS, DCK, CDC40, CXCL9, IRF8, CXCL10, PLK4, SLC25A11, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, NUP210, SOCS6, CDC42BPA, FAS, AGPAT5, SEC10L1, FLJ13220, BRIP1, KLHL24, ETNK1	81%	76%	92%	79%	88%	72%
59		WARS, SFRS2, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CDC40, CXCL9, GTSE1, CXCL10, FAS, PLK4, TRIM25, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, CXCL11, TLK1, RBM25, BRRN1, AGPAT5, MARCH5, HNRPD, BRIP1, TRMT5, KLHL24, STAT1	81%	79%	88%	86%	85%	83%
60		HNRPD, WARS, SFRS2, EIF4E, SFPQ, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL9, CXCL10, FAS, CHEK1, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, TLK1, CXCL11, RBM25, CDC42BPA, AGPAT5, FLJ10534, FLJ13220, PSAT1, STAT1	92%	79%	77%	86%	69%	76%
61		WARS, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, LMAN1, ARF6, CDC40, CXCL9, CXCL10, FAS, PLK4, TRIM25, C1QBP, C17orf25, CA2, ME2, CXCL11, SLC4A4, RBM25, AK2, ATP5A1, CDC42BPA, AGPAT5, FLJ10534, DKFZp762E1312, SEC10L1, PBK, PSAT1, STAT1	77%	83%	85%	72%	85%	69%
62		HNRPD, WARS, STAT1, EIF4E, SFPQ, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CXCL9, GTSE1, CXCL10, FAS, CHEK1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, SLC4A4, RBM25, CDC42BPA, DDAH2, AGPAT5, FLJ13220, PBK, TRMT5, KLHL24, ETNK1	85%	76%	88%	83%	77%	69%
63		WARS, EIF4E, PRDX3, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, DCK, MAD2L1, CXCL10, TRIM25, C1QBP, NDUFA9, SLC25A11, C17orf25, HNRPD, ME2, CXCL11, IFT20, RBBP4, TLK1, SLC4A4, RBM25, AK2, CAMSAP1L1, SOCS6, FAS, FLJ10534, FLJ13220, PBK, BRIP1, ETNK1, STAT1	81%	83%	65%	83%	73%	72%
64		WARS, SFRS2, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, CXCL9, IRF8, RABIF, CXCL10, CHEK1, NDUFA9, ME2, FUT4, CXCL11, SLC4A4, RBM25, AK2, CAMSAP1L1, FAS, RBBP4, MARCH5, SEC10L1, PBK, PSAT1, HNRPD, TRMT5, KLHL24, STAT1	69%	79%	73%	83%	85%	83%
65		HNRPD, WARS, SFPQ, MTHFD2, PSME2, GMFB, DLGAP4, CTSS, LMAN1, ARF6, CDC40,	85%	72%	88%	79%	77%	72%

		SVM		3NN		1NN	
	SLC4A4, CXCL9, CXCL10, FAS, CHEK1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, FUT4, GZMB, IFT20, RBM25, CAMSAP1L1, BAZ1A, AGPAT5, SEC10L1, PBK, KLHL24, ETNK1, STAT1						
66	HNRPD, WARS, SFRS2, STAT1, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, ARF6, IRF8, RABIF, CXCL10, PLK4, HNRPA3P1, SLC25A11, C1QBP, CA2, ME2, GZMB, CXCL11, RBM25, NUP210, ATP5A1, DDAH2, FAS, PSAT1, BRIP1, TRMT5, KLHL24, ETNK1	81%	76%	96%	69%	81%	66%
67	WARS, EPAS1, STAT1, EIF4E, SFPQ, PSME2, GMFB, DLGAP4, TYMS, CTSS, DCK, SLC4A4, CXCL9, CXCL10, C1QBP, NDUFA9, SLC25A11, C17orf25, CA2, ME2, FUT4, CXCL11, RBM25, AK2, NUP210, CAMSAP1L1, FAS, AGPAT5, FLJ13220, PBK, HNRPD, ETNK1	77%	83%	92%	79%	77%	69%
68	HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, GMFB, TYMS, TES, CDC40, SLC4A4, CXCL9, CXCL10, PLK4, HNRPA3P1, SLC25A11, C1QBP, NDUFA9, C17orf25, CA2, ME2, CXCL11, RBM25, NUP210, hCAP-D3, SOCS6, FAS, SEC10L1, PBK, TRMT5, KLHL24, STAT1	77%	76%	88%	79%	92%	79%
69	HNRPD, WARS, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, TES, CTSS, CXCL9, CXCL10, FAS, CHEK1, C1QBP, NDUFA9, SLC25A11, CA2, ME2, GZMB, TLK1, CXCL11, RBM25, BRRN1, MARCH5, FLJ13220, PBK, TRMT5, KLHL24, ETNK1, STAT1	81%	83%	92%	72%	77%	79%
70	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, USP4, TES, LMAN1, CDC40, CXCL9, IRF8, CXCL10, KITLG, NDUFA9, SLC25A11, WHSC1, CA2, ME2, CXCL11, RBM25, AK2, CAMSAP1L1, FAS, SEC10L1, PBK, BRIP1, TRMT5, STAT1	81%	79%	85%	83%	85%	79%
71	HNRPD, WARS, PAICS, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CXCL9, CXCL10, FAS, TRIM25, C1QBP, SLC25A11, C17orf25, CA2, ME2, CXCL11, IFT20, RBBP4, RBM25, AK2, hCAP-D3, ATP5A1, BAZ1A, PBK, BRIP1, KLHL24, ETNK1, STAT1	85%	86%	88%	76%	81%	72%
72	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, TYMS, USP4, CXCL9, GTSE1, RABIF, CXCL10, FAS, PLK4, CHEK1, SLC25A11, C1QBP, NDUFA9, C17orf25, CA2, ME2, FUT4, IFT20, RBBP4, SLC4A4, CXCL11, RBM25, hCAP-D3, FLJ10534, MARCH5, HNRPD, TRMT5, STAT1	81%	83%	85%	86%	88%	83%
73	HNRPD, WARS, EIF4E, PRDX3, PSME2, TK1, DLGAP4, TYMS, CTSS, LMAN1, ARF6, CXCL9, CXCL10, CHEK1, TRIM25, NDUFA9, KPNB1, SLC25A11, WHSC1, ME2, SLC4A4, RBM25, AK2, SFRS2, DDAH2, FAS, FLJ10534, MARCH5, FLJ13220, BRIP1, TRMT5, KLHL24, ETNK1, STAT1	73%	79%	81%	79%	77%	76%
74	WARS, SFRS2, EIF4E, MTHFD2, PSME2,	92%	86%	81%	83%	88%	76%

		SVM		3NN		1NN	
	DLGAP4, TYMS, USP4, TES, MAD2L1, SLC4A4, CXCL9, CXCL10, CHEK1, HNRPA3P1, TRIM25, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, IFT20, TLK1, CXCL11, RBM25, BRRN1, ATP5A1, FAS, AGPAT5, PBK, HNRPD, ETNK1, STAT1						
75	HNRPD, WARS, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, LMAN1, CDC40, GTSE1, CXCL10, FAS, KITLG, C1QBP, NDUFA9, SLC25A11, CA2, ME2, CXCL11, GZMB, IFT20, TLK1, SLC4A4, RBM25, hCAP-D3, BRRN1, DDAH2, MARCH5, FLJ13220, PBK, BRIP1, KLHL24, STAT1	85%	86%	88%	79%	85%	76%
76	HNRPD, WARS, EIF4E, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, CDC40, SLC4A4, IRF8, GTSE1, CXCL10, CHEK1, HNRPA3P1, TRIM25, NDUFA9, WHSC1, CA2, ME2, CXCL11, RBM25, NUP210, ATP5A1, CDC42BPA, SFRS2, FAS, MARCH5, SEC10L1, BRIP1, STAT1	85%	83%	88%	86%	85%	83%
77	HNRPD, WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, ARF6, SLC4A4, CXCL10, PLK4, CHEK1, HNRPA3P1, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, IFT20, RBBP4, TLK1, RBM25, CDC42BPA, SFRS2, FAS, AGPAT5, FLJ10534, SEC10L1, TRMT5, STAT1	96%	83%	92%	83%	88%	79%
78	WARS, SFRS2, STAT1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, MAD2L1, SLC4A4, CXCL9, CXCL10, SLC25A11, C17orf25, CA2, ME2, FUT4, GZMB, CXCL11, RBM25, CAMSAP1L1, BRRN1, CDC42BPA, FAS, FLJ10534, SEC10L1, PBK, TRMT5, KLHL24	81%	83%	92%	76%	85%	76%
79	HNRPD, WARS, SFRS2, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CXCL9, CXCL10, FAS, KITLG, C1QBP, NDUFA9, C17orf25, CA2, ME2, RBM25, SOCS6, CDC42BPA, BAZ1A, AGPAT5, DKFZp762E1312, SEC10L1, FLJ13220, PSAT1, BRIP1, TRMT5, KLHL24, STAT1	81%	72%	88%	79%	88%	69%
80	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, DLGAP4, TYMS, TES, CTSS, ARF6, CXCL9, CXCL10, FAS, HNRPA3P1, TRIM25, SLC25A11, C1QBP, NDUFA9, HNRPD, ME2, CXCL11, RBBP4, RBM25, AK2, AGPAT5, FLJ10534, DKFZp762E1312, SEC10L1, PBK, KLHL24, STAT1	85%	86%	81%	69%	69%	69%
81	EIF4E, SFPQ, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, CXCL9, CXCL10, FAS, PLK4, NDUFA9, WHSC1, C17orf25, CA2, HNRPD, ME2, IFT20, RBM25, NUP210, CDC42BPA, DDAH2, BAZ1A, AGPAT5, FLJ10534, DKFZp762E1312, SEC10L1, FLJ13220, PBK, BRIP1, TRMT5, STAT1	81%	79%	85%	76%	81%	66%
82	WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES,	81%	90%	85%	76%	85%	72%

		SVM		3NN		1NN	
	LMAN1, DCK, CDC40, CXCL9, CXCL10, FAS, TRIM25, C1QBP, NDUFA9, SLC25A11, CA2, ME2, CXCL11, SLC4A4, RBM25, AK2, BRRN1, AGPAT5, DKFZp762E1312, FLJ13220, PBK						
83	SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, LMAN1, ARF6, CDC40, IRF8, CXCL10, CHEK1, C1QBP, SLC25A11, WHSC1, ME2, SLC4A4, CXCL11, RBM25, NUP210, FAS, FLJ10534, MARCH5, FLJ13220, PSAT1, HNRPD, BRIP1, TRMT5, KLHL24	65%	79%	77%	83%	77%	79%
84	HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, ARF6, MAD2L1, CXCL10, TRIM25, KITLG, NDUFA9, WHSC1, CA2, ME2, GZMB, IFT20, CXCL11, RBM25, FAS, AGPAT5, MARCH5, PSAT1, BRIP1, TRMT5, STAT1	85%	83%	88%	76%	73%	72%
85	HNRPD, SFRS2, STAT1, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, USP4, CTSS, ARF6, SLC4A4, CXCL9, RABIF, CXCL10, FAS, TRIM25, KITLG, C1QBP, SLC25A11, WHSC1, CA2, ME2, GZMB, RBBP4, CXCL11, RBM25, AGPAT5, MARCH5, SEC10L1, PBK, BRIP1, TRMT5	88%	76%	92%	76%	81%	69%
86	WARS, STAT1, EIF4E, MTHFD2, PSME2, DLGAP4, TYMS, USP4, LMAN1, CDC40, CXCL9, IRF8, CXCL10, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, CA2, ME2, CXCL11, RBM25, ATP5A1, SFRS2, FAS, AGPAT5, MARCH5, FLJ13220, PBK, HNRPD, BRIP1, TRMT5, KLHL24, ETNK1	85%	76%	81%	83%	81%	76%
87	HNRPD, WARS, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, SLC4A4, CXCL9, IRF8, GTSE1, RABIF, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, ME2, CXCL11, TLK1, RBM25, AK2, NUP210, BRRN1, ATP5A1, SFRS2, AGPAT5, FLJ10534, MARCH5, PSAT1, BRIP1, KLHL24	73%	79%	88%	83%	69%	72%
88	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, FAS, CHEK1, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, IFT20, SLC4A4, RBM25, CDC42BPA, BAZ1A, AGPAT5, MARCH5, PBK, PSAT1, HNRPD, BRIP1, TRMT5, ETNK1	73%	83%	85%	79%	81%	72%
89	HNRPD, WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, TYMS, USP4, CTSS, DCK, CDC40, SLC4A4, CXCL9, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, GZMB, RBBP4, RBM25, ATP5A1, SOCS6, AGPAT5, MARCH5, DKFZp762E1312, SEC10L1, PBK, BRIP1, TRMT5, KLHL24	77%	76%	88%	79%	85%	66%
90	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10,	77%	79%	88%	76%	88%	76%

		SVM		3NN		1NN	
	PLK4, CHEK1, HNRPA3P1, KITLG, SLC25A11, C1QBP, NDUFA9, C17orf25, CA2, ME2, GZMB, CXCL11, RBM25, AK2, SOCS6, DDAH2, FAS, RBBP4, FLJ10534, MARCH5, DKFZp762E1312, PBK, HNRPD, BRIP1, KLHL24, STAT1						
91	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, DCK, ARF6, MAD2L1, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, ME2, FUT4, CXCL11, IFT20, RBBP4, RBM25, CAMSAP1L1, SEC10L1, PBK, PSAT1, KLHL24	69%	83%	81%	79%	77%	76%
92	HNRPD, WARS, STAT1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, MAD2L1, SLC4A4, CXCL9, CXCL10, FAS, CHEK1, HNRPA3P1, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, GZMB, CXCL11, RBM25, AK2, CAMSAP1L1, DDAH2, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, BRIP1, TRMT5	77%	83%	92%	83%	77%	66%
93	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, DCK, MAD2L1, CDC40, RABIF, CXCL10, FAS, PLK4, KITLG, SLC25A11, NDUFA9, WHSC1, CA2, ME2, CXCL11, IFT20, TLK1, RBM25, CDC42BPA, DDAH2, RBBP4, MARCH5, DKFZp762E1312, PBK, PSAT1, BRIP1, KLHL24, ETNK1	73%	83%	77%	79%	77%	76%
94	HNRPD, WARS, STAT1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, DCK, ARF6, CDC40, CXCL9, IRF8, RABIF, CXCL10, FAS, HNRPA3P1, TRIM25, SLC25A11, NDUFA9, WHSC1, CA2, ME2, CXCL11, GZMB, IFT20, SLC4A4, SFRS2, AGPAT5, FLJ10534, MARCH5, PBK, BRIP1	88%	83%	85%	76%	85%	69%
95	WARS, SFRS2, STAT1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, DCK, MAD2L1, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, FAS, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, IFT20, RBM25, hCAP-D3, ATP5A1, DDAH2, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, PBK, HNRPD, BRIP1, TRMT5, KLHL24	73%	79%	85%	83%	85%	79%
96	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, ARF6, CXCL9, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, SLC25A11, C1QBP, WHSC1, CA2, ME2, CXCL11, GZMB, IFT20, RBM25, NUP210, SOCS6, AGPAT5, MARCH5, SEC10L1, PBK, BRIP1, ETNK1	85%	86%	92%	76%	77%	69%
97	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, TES, DCK, CDC40, SLC4A4, CXCL9, CXCL10, FAS, TRIM25, NDUFA9, SLC25A11, WHSC1, CA2, ME2, GZMB, IFT20, TLK1,	92%	90%	88%	76%	77%	66%

		SVM		3NN		1NN	
	CXCL11, RBM25, AK2, hCAP-D3, BRRN1, AGPAT5, MARCH5, FLJ13220, TRMT5, KLHL24						
98	HNRPD, WARS, EIF4E, SFPQ, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, DCK, CDC40, SLC4A4, CXCL9, GTSE1, CXCL10, FAS, PLK4, CHEK1, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, CXCL11, TLK1, RBM25, NUP210, RBBP4, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, TRMT5, KLHL24, ETNK1, STAT1	73%	76%	92%	83%	81%	83%
99	WARS, EPAS1, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, USP4, CTSS, CDC40, SLC4A4, CXCL9, IRF8, RABIF, CXCL10, FAS, HNRPA3P1, TRIM25, SLC25A11, NDUFA9, WHSC1, C17orf25, HNRPD, ME2, FUT4, CXCL11, GZMB, RBM25, AK2, ATP5A1, CDC42BPA, SFRS2, BAZ1A, AGPAT5, MARCH5, FLJ13220, BRIP1, KLHL24, ETNK1, STAT1	85%	86%	92%	72%	77%	69%
100	HNRPD, WARS, SFRS2, PAICS, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, ARF6, MAD2L1, CDC40, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, HNRPA3P1, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, RBM25, hCAP-D3, CDC42BPA, FAS, AGPAT5, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, PBK, BRIP1, TRMT5, ETNK1, STAT1	77%	79%	88%	83%	88%	76%
101	HNRPD, WARS, STAT1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, ARF6, CXCL9, IRF8, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, ME2, CXCL11, IFT20, RBBP4, TLK1, SLC4A4, RBM25, AK2, NUP210, CAMSAP1L1, DDAH2, AGPAT5, MARCH5, SEC10L1, KLHL24, ETNK1	73%	83%	88%	86%	85%	76%
102	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, USP4, CTSS, ARF6, CDC40, CXCL10, FAS, PLK4, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, IFT20, RBBP4, TLK1, SLC4A4, CXCL11, RBM25, AK2, BAZ1A, MARCH5, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, STAT1	85%	86%	81%	83%	85%	79%
103	WARS, SFRS2, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, DCK, SLC4A4, CXCL9, CXCL10, FAS, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, GZMB, IFT20, TLK1, CXCL11, RBM25, RBBP4, MARCH5, PBK, PSAT1, BRIP1, TRMT5, KLHL24, ETNK1, STAT1	81%	86%	85%	76%	77%	76%
104	HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, CDC40, CXCL9, GTSE1, CXCL10, FAS, CHEK1, HNRPA3P1, SLC25A11, C1QBP, WHSC1, CA2, ME2, GZMB, IFT20,	85%	86%	88%	72%	77%	72%

		SVM		3NN		1NN	
	SLC4A4, CXCL11, RBM25, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, TRMT5, ETNK1, STAT1						
105	WARS, PAICS, EIF4E, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, CTSS, MAD2L1, CDC40, SLC4A4, CXCL9, IRF8, RABIF, CXCL10, FAS, CHEK1, HNRPA3P1, TRIM25, NDUFA9, SLC25A11, CA2, HNRPD, ME2, CXCL11, IFT20, RBM25, AK2, CAMSAP1L1, BRRN1, SFRS2, DDAH2, RBBP4, SEC10L1, PBK, PSAT1, BRIP1, TRMT5, KLHL24, STAT1	88%	86%	81%	83%	81%	83%
106	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, LMAN1, DCK, SLC4A4, CXCL9, CXCL10, PLK4, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, RBBP4, TLK1, RBM25, CAMSAP1L1, FAS, MARCH5, DKFZp762E1312, SEC10L1, PBK, STAT1	81%	90%	85%	83%	81%	76%
107	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, MAD2L1, CDC40, SLC4A4, CXCL9, CXCL10, FAS, KITLG, C1QBP, NDUFA9, SLC25A11, ME2, CXCL11, IFT20, TLK1, RBM25, AK2, BRRN1, ATP5A1, CDC42BPA, RBBP4, AGPAT5, MARCH5, SEC10L1, PBK, HNRPD, BRIP1, TRMT5, ETNK1, STAT1	85%	83%	81%	86%	81%	72%
108	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, CXCL9, GTSE1, RABIF, CXCL10, FAS, PLK4, SLC25A11, NDUFA9, KPNB1, HNRPD, ME2, FUT4, CXCL11, GZMB, IFT20, RBBP4, RBM25, CAMSAP1L1, hCAP-D3, SFRS2, DDAH2, AGPAT5, MARCH5, PBK, BRIP1, TRMT5, ETNK1, STAT1	81%	83%	85%	69%	73%	79%
109	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, DCK, CDC40, RABIF, CXCL10, FAS, CHEK1, HNRPA3P1, TRIM25, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, TLK1, RBM25, ATP5A1, CDC42BPA, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, PBK, PSAT1, KLHL24, STAT1	77%	79%	88%	79%	77%	72%
110	HNRPD, WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, ARF6, MAD2L1, CDC40, CXCL9, GTSE1, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, CXCL11, IFT20, TLK1, RBM25, ATP5A1, SOCS6, AGPAT5, SEC10L1, PBK, TRMT5, KLHL24	73%	79%	85%	83%	88%	83%
111	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, MAD2L1, CXCL9, CXCL10, FAS, PLK4, CHEK1, SLC25A11, C1QBP, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB,	81%	90%	88%	83%	77%	76%

		SVM		3NN		1NN	
	TLK1, SLC4A4, RBM25, AK2, hCAP-D3, FLJ10534, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, STAT1						
112	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, MAD2L1, CXCL9, CXCL10, TRIM25, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, TLK1, RBM25, AK2, CAMSAP1L1, BRRN1, CDC42BPA, DDAH2, FAS, MARCH5, SEC10L1, PBK, PSAT1, BRIP1, KLHL24, ETNK1, STAT1	96%	90%	81%	76%	77%	76%
113	HNRPD, WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GBP1, GMFB, DLGAP4, TYMS, USP4, LMAN1, DCK, ARF6, CDC40, CXCL9, CXCL10, FAS, PLK4, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, TLK1, CXCL11, SLC4A4, RBM25, AK2, ATP5A1, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, PSAT1	65%	76%	88%	76%	85%	83%
114	HNRPD, WARS, SFRS2, STAT1, MTHFD2, PSME2, MCM6, TK1, GMFB, TYMS, USP4, LMAN1, ARF6, CXCL10, FAS, PLK4, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, GZMB, RBBP4, CXCL11, RBM25, AK2, BRRN1, ATP5A1, CDC42BPA, DDAH2, BAZ1A, AGPAT5, MARCH5, SEC10L1, PBK, BRIP1	81%	76%	81%	79%	85%	62%
115	HNRPD, WARS, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, ARF6, CDC40, CXCL9, CXCL10, FAS, IRF8, GTSE1, CXCL10, KITLG, NDUFA9, KPNB1, C17orf25, CA2, ME2, FUT4, CXCL11, GZMB, IFT20, TLK1, SLC4A4, RBM25, AK2, BRRN1, DDAH2, FAS, FLJ13220, PBK, PSAT1, BRIP1	81%	86%	81%	76%	81%	79%
116	WARS, SFRS2, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, CTSS, ARF6, CDC40, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, SLC25A11, NDUFA9, WHSC1, HNRPD, ME2, FUT4, CXCL11, SLC4A4, RBM25, CAMSAP1L1, hCAP-D3, DDAH2, MARCH5, FLJ13220, PBK, PSAT1, TRMT5, ETNK1, STAT1	81%	79%	73%	90%	73%	69%
117	WARS, SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, ARF6, MAD2L1, CDC40, SLC4A4, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, TLK1, RBM25, ATP5A1, RBBP4, AGPAT5, PSAT1, HNRPD, KLHL24, STAT1	92%	90%	88%	79%	81%	72%
118	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, DLGAP4, TYMS, DCK, ARF6, MAD2L1, CDC40, CXCL9, IRF8, GTSE1, RAB1F, CXCL10, FAS, CHEK1, TRIM25, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, ME2, GZMB, IFT20, TLK1, CXCL11, RBM25, AK2, SFRS2, BAZ1A,	77%	90%	88%	76%	73%	79%

		SVM		3NN		1NN	
	SEC10L1, FLJ13220, PBK, PSAT1, HNRPD, BRIP1, KLHL24, STAT1						
119	HNRPD, WARS, SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, CXCL10, PLK4, CHEK1, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, ME2, FUT4, CXCL11, RBM25, AK2, hCAP-D3, BRRN1, FAS, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, TRMT5, KLHL24, ETNK1, STAT1	77%	76%	92%	83%	92%	76%
120	WARS, SFRS2, EPAS1, EIF4E, SFPQ, MTHFD2, PSME2, GMFB, TYMS, USP4, CTSS, LMAN1, DCK, MAD2L1, CDC40, SLC4A4, CXCL9, CXCL10, FAS, KITLG, SLC25A11, C1QBP, NDUFA9, CA2, ME2, IFT20, CXCL11, RBM25, AK2, CAMSAP1L1, hCAP-D3, ATP5A1, CDC42BPA, BAZ1A, AGPAT5, SEC10L1, PBK, HNRPD, BRIP1, KLHL24, STAT1	81%	86%	88%	83%	85%	72%
121	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, MAD2L1, CDC40, CXCL9, CXCL10, CHEK1, TRIM25, SLC25A11, WHSC1, CA2, ME2, CXCL11, IFT20, RBBP4, SLC4A4, RBM25, AK2, NUP210, hCAP-D3, DDAH2, FAS, BAZ1A, FLJ10534, FLJ13220, PBK, BRIP1, TRMT5, ETNK1, STAT1	85%	90%	88%	90%	85%	76%
122	HNRPD, WARS, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, CDC40, CXCL9, CXCL10, FAS, PLK4, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, ME2, CXCL11, RBM25, hCAP-D3, BRRN1, ATP5A1, CDC42BPA, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, BRIP1, TRMT5, KLHL24, ETNK1	69%	76%	77%	86%	69%	69%
123	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, CDC40, CXCL9, IRF8, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, SLC4A4, CXCL11, RBM25, AK2, NUP210, AGPAT5, FLJ10534, MARCH5, DKFZp762E1312, PSAT1, BRIP1, TRMT5, STAT1	73%	83%	85%	76%	81%	79%
124	WARS, SFRS2, EPAS1, PAICS, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CDC40, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, KITLG, C1QBP, NDUFA9, WHSC1, CA2, HNRPD, ME2, FUT4, CXCL11, GZMB, SLC4A4, RBM25, AK2, BRRN1, ATP5A1, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, TRMT5, KLHL24, ETNK1, STAT1	77%	76%	92%	76%	85%	72%
125	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, MAD2L1, CXCL9, IRF8, GTSE1, CXCL10, PLK4, CHEK1, TRIM25, NDUFA9, SLC25A11, C17orf25, CA2, HNRPD,	85%	86%	92%	86%	88%	83%

		SVM		3NN		1NN	
	ME2, CXCL11, IFT20, TLK1, RBM25, BRRN1, FAS, AGPAT5, FLJ10534, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24						
126	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, ARF6, MAD2L1, CXCL9, GTSE1, CXCL10, FAS, HNRPA3P1, NDUFA9, KPNB1, SLC25A11, CA2, ME2, CXCL11, TLK1, SLC4A4, RBM25, BRRN1, AGPAT5, MARCH5, DKFZp762E1312, SEC10L1, PBK, BRIP1, KLHL24, STAT1	77%	83%	88%	86%	85%	72%
127	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, CDC40, CXCL9, IRF8, CXCL10, PLK4, CHEK1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, FUT4, CXCL11, TLK1, SLC4A4, RBM25, AK2, CAMSAP1L1, BRRN1, ATP5A1, SFRS2, FAS, SEC10L1, FLJ13220, PBK, PSAT1, TRMT5, KLHL24, STAT1	73%	83%	73%	90%	73%	86%
128	HNRPD, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, DCK, ARF6, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, TLK1, SLC4A4, RBM25, AK2, BRRN1, SOCS6, DDAH2, RBBP4, FLJ10534, MARCH5, FLJ13220, PBK, BRIP1, ETNK1, STAT1	69%	83%	77%	83%	85%	76%
129	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, DCK, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, FAS, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, RBM25, NUP210, CDC42BPA, AGPAT5, SEC10L1, FLJ13220, HNRPD, BRIP1, KLHL24, ETNK1	73%	76%	92%	79%	85%	72%
130	HNRPD, WARS, SFRS2, EPAS1, PAICS, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CTSS, CXCL9, IRF8, RABIF, CXCL10, FAS, PLK4, CHEK1, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, CA2, ME2, CXCL11, RBBP4, SLC4A4, RBM25, AK2, AGPAT5, FLJ10534, FLJ13220, PBK, TRMT5, KLHL24, STAT1	85%	83%	92%	72%	88%	76%
131	WARS, SFRS2, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, CTSS, ARF6, CDC40, CXCL9, CXCL10, FAS, HNRPA3P1, TRIM25, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, TLK1, SLC4A4, RBM25, AK2, hCAP-D3, BRRN1, SOCS6, DDAH2, RBBP4, AGPAT5, PBK, BRIP1, STAT1	85%	83%	92%	86%	88%	79%
132	HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, CDC40, CXCL9, CXCL10, PLK4, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, CXCL11,	77%	83%	88%	76%	85%	76%

		SVM		3NN		1NN	
	GZMB, IFT20, SLC4A4, RBM25, AK2, ATP5A1, FAS, RBBP4, BAZ1A, MARCH5, DKFZp762E1312, SEC10L1, FLJ13220, PBK, TRMT5, KLHL24, STAT1						
133	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, TES, LMAN1, ARF6, CDC40, CXCL9, RABIF, CXCL10, FAS, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, CA2, HNRPD, ME2, CXCL11, RBBP4, TLK1, RBM25, CDC42BPA, BAZ1A, AGPATS, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1	77%	83%	88%	76%	85%	79%
134	WARS, SFRS2, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CTSS, LMAN1, ARF6, MAD2L1, CDC40, IRF8, GTSE1, CXCL10, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, ME2, CXCL11, RBBP4, TLK1, SLC4A4, RBM25, AK2, BRRN1, ATP5A1, CDC42BPA, DDAH2, FAS, MARCH5, SEC10L1, FLJ13220, PBK, HNRPD, BRIP1, STAT1	81%	86%	77%	93%	81%	79%
135	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, DCK, CDC40, CXCL9, IRF8, CXCL10, FAS, PLK4, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, FUT4, CXCL11, GZMB, SLC4A4, RBM25, AK2, ATP5A1, DDAH2, FLJ10534, PBK, HNRPD, BRIP1, ETNK1, STAT1	77%	90%	88%	72%	85%	79%
136	WARS, SFRS2, STAT1, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, TES, LMAN1, ARF6, CDC40, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, C17orf25, CA2, ME2, IFT20, RBBP4, CXCL11, RBM25, AK2, hCAP-D3, ATP5A1, CDC42BPA, BAZ1A, AGPATS, PBK, BRIP1, KLHL24	81%	79%	85%	79%	81%	69%
137	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, DLGAP4, TYMS, TES, LMAN1, ARF6, CDC40, CXCL9, CXCL10, FAS, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, CA2, ME2, IFT20, RBBP4, TLK1, CXCL11, SLC4A4, RBM25, AK2, CDC42BPA, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, HNRPD, BRIP1, TRMT5, KLHL24, STAT1	85%	83%	81%	83%	73%	72%
138	WARS, SFRS2, EPAS1, STAT1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, ARF6, CXCL9, IRF8, CXCL10, CHEK1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, SLC4A4, RBM25, AK2, BRRN1, CDC42BPA, FAS, BAZ1A, AGPATS, FLJ10534, MARCH5, PBK, PSAT1, HNRPD, TRMT5, KLHL24	73%	76%	85%	83%	81%	76%
139	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4,	85%	76%	85%	79%	77%	69%

		SVM	3NN		1NN	
	TYMS, USP4, LMAN1, ARF6, CXCL9, CXCL10, PLK4, HNRPA3P1, TRIM25, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, HNRPD, ME2, FUT4, CXCL11, GZMB, RBM25, AK2, hCAP-D3, BRRN1, ATP5A1, FAS, AGPAT5, SEC10L1, FLJ13220, PSAT1, TRMT5, ETNK1, STAT1					
140	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, SLC4A4, CXCL9, CXCL10, FAS, PLK4, CHEK1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, GZMB, RBM25, hCAP-D3, ATP5A1, AGPAT5, FLJ10534, PBK, PSAT1, BRIP1, TRMT5, STAT1	81%	90%	85%	79%	81% 72%
141	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, PLK4, HNRPA3P1, TRIM25, SLC25A11, NDUFA9, WHSC1, C17orf25, ME2, FUT4, CXCL11, IFT20, SLC4A4, RBM25, AK2, CAMSAP1L1, hCAP-D3, BRRN1, FAS, BAZ1A, AGPAT5, MARCH5, SEC10L1, FLJ13220, PSAT1, HNRPD, BRIP1, TRMT5, STAT1	85%	83%	88%	83%	73% 79%
142	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, PLK4, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, IFT20, RBM25, hCAP-D3, ATP5A1, SOCS6, CDC42BPA, FAS, RBBP4, BAZ1A, DKFZp762E1312, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, STAT1	77%	83%	81%	83%	85% 79%
143	HNRPD, WARS, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, CDC40, CXCL9, IRF8, CXCL10, PLK4, HNRPA3P1, KITLG, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, SLC4A4, RBM25, hCAP-D3, DDAH2, FAS, RBBP4, AGPAT5, FLJ13220, PBK, BRIP1, TRMT5, KLHL24	73%	72%	88%	79%	92% 76%
144	WARS, SFRS2, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CDC40, CXCL9, CXCL10, FAS, CHEK1, NDUFA9, KPNB1, WHSC1, CA2, ME2, GZMB, TLK1, RBM25, AK2, CAMSAP1L1, hCAP-D3, FLJ10534, DKFZp762E1312, FLJ13220, HNRPD, STAT1	73%	79%	85%	79%	69% 76%
145	HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, DCK, ARF6, CDC40, CXCL9, CXCL10, PLK4, TRIM25, C1QBP, KPNB1, SLC25A11, C17orf25, ME2, CXCL11, RBM25, hCAP-D3, DDAH2, FAS, MARCH5, STAT1	77%	79%	81%	86%	81% 83%
146	WARS, STAT1, EIF4E, MTHFD2, PSME2, DLGAP4, TYMS, ARF6, CXCL9, CXCL10, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, SLC4A4,	81%	79%	88%	79%	85% 69%

		SVM		3NN		1NN	
	RBM25, hCAP-D3, SOCS6, CDC42BPA, FAS						
147	HNRPD, WARS, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, ARF6, CDC40, SLC4A4, CXCL9, CXCL10, HNRPA3P1, NDUFA9, SLC25A11, CA2, ME2, TLK1, CXCL11, RBM25, ATP5A1, SFRS2, FAS, MARCH5, SEC10L1, PBK, TRMT5, STAT1	88%	83%	92%	83%	85%	83%
148	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, TYMS, TES, LMAN1, ARF6, CXCL9, CXCL10, FAS, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, RBM25, SEC10L1, HNRPD, KLHL24, ETNK1, STAT1	73%	83%	88%	79%	85%	72%
149	WARS, EIF4E, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, MAD2L1, CDC40, CXCL10, HNRPA3P1, NDUFA9, C17orf25, ME2, CXCL11, SLC4A4, RBM25, AK2, CDC42BPA, DDAH2, FAS, RBBP4, BAZ1A, AGPAT5, HNRPD, BRIP1, TRMT5, STAT1	77%	79%	85%	76%	88%	79%
150	WARS, SFRS2, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, CXCL9, IRF8, CXCL10, FAS, PLK4, CHEK1, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, RBM25, FLJ10534, SEC10L1, BRIP1, TRMT5, STAT1	85%	83%	88%	86%	85%	79%
151	WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CTSS, DCK, SLC4A4, CXCL9, CXCL10, FAS, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, TLK1, RBM25, AK2, CDC42BPA, SEC10L1, FLJ13220, KLHL24, STAT1	100%	97%	85%	86%	81%	72%
152	WARS, STAT1, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, DCK, MAD2L1, CDC40, CXCL9, IRF8, RAB1F, CXCL10, KITLG, SLC25A11, NDUFA9, ME2, IFT20, TLK1, CXCL11, RBM25, AK2, FAS, AGPAT5, DKFZp762E1312, SEC10L1, PSAT1, HNRPD, TRMT5	85%	90%	81%	86%	65%	86%
153	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, CXCL10, FAS, PLK4, CHEK1, C1QBP, SLC25A11, CA2, ME2, FUT4, IFT20, SLC4A4, RBM25, SFRS2, DDAH2, PBK, HNRPD, KLHL24, ETNK1, STAT1	69%	86%	85%	86%	88%	79%
154	HNRPD, WARS, STAT1, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, TYMS, TES, MAD2L1, CXCL9, IRF8, CXCL10, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, ME2, FUT4, IFT20, hCAP-D3, SOCS6, DDAH2, FAS, BAZ1A, PBK, KLHL24	88%	83%	81%	83%	85%	72%
155	SFRS2, EPAS1, EIF4E, PRDX3, PSME2, GMFB, TYMS, TES, LMAN1, SLC4A4, CXCL9, GTSE1, CXCL10, C1QBP, NDUFA9, SLC25A11, CA2, ME2, TLK1, RBM25, CDC42BPA, FAS, FLJ10534, MARCH5, SEC10L1, PBK, HNRPD, TRMT5, KLHL24, ETNK1, STAT1	92%	83%	88%	83%	77%	72%

		SVM		3NN		1NN	
		81%	83%	88%	79%	92%	79%
156	WARS, STAT1, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, USP4, ARF6, CDC40, CXCL9, IRF8, CXCL10, FAS, PLK4, HNRPA3P1, KITLG, C1QBP, SLC25A11, ME2, FUT4, RBM25, DDAH2, RBBP4, AGPAT5, PBK, HNRPD, TRMT5, KLHL24						
157	HNRPD, WARS, SFPQ, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, SLC4A4, CXCL9, CXCL10, FAS, HNRPA3P1, KITLG, SLC25A11, NDUFA9, CA2, ME2, IFT20, CXCL11, RBM25, BAZ1A, AGPAT5, SEC10L1, PBK, BRIP1, STAT1	92%	86%	85%	69%	85%	69%
158	WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, ARF6, CXCL9, IRF8, CXCL10, PLK4, TRIM25, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, RBBP4, TLK1, SLC4A4, RBM25, NUP210, FAS, AGPAT5, MARCH5, SEC10L1, HNRPD, STAT1	69%	83%	92%	86%	88%	83%
159	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, LMAN1, ARF6, CDC40, CXCL9, CXCL10, PLK4, NDUFA9, C17orf25, ME2, CXCL11, SLC4A4, RBM25, CDC42BPA, FAS, BAZ1A, AGPAT5, FLJ13220, BRIP1, KLHL24, STAT1	77%	76%	88%	79%	85%	66%
160	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, LMAN1, ARF6, CDC40, CXCL9, CXCL10, PLK4, NDUFA9, C17orf25, ME2, CXCL11, SLC4A4, RBM25, FAS, BAZ1A, DKFZp762E1312, SEC10L1, PBK, PSAT1, HNRPD, STAT1	77%	76%	77%	83%	77%	79%
161	EIF4E, PSME2, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, CXCL10, FAS, TRIM25, KITLG, NDUFA9, SLC25A11, WHSC1, C17orf25, HNRPD, ME2, CXCL11, IFT20, SLC4A4, RBM25, AK2, AGPAT5, MARCH5, SEC10L1, FLJ13220, KLHL24, STAT1	92%	86%	85%	79%	88%	72%
162	HNRPD, WARS, EPAS1, EIF4E, PRDX3, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, CDC40, CXCL10, C1QBP, SLC25A11, C17orf25, ME2, CXCL11, SLC4A4, RBM25, CAMSAP1L1, CDC42BPA, FAS, MARCH5, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, STAT1	81%	79%	85%	72%	85%	76%
163	WARS, SFRS2, EIF4E, MTHFD2, PSME2, TK1, DLGAP4, TYMS, USP4, TES, DCK, CDC40, CXCL10, CHEK1, HNRPA3P1, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, RBBP4, SLC4A4, RBM25, FAS, SEC10L1, FLJ13220, BRIP1, TRMT5, STAT1	69%	86%	81%	83%	81%	79%
164	HNRPD, WARS, MTHFD2, TK1, GMFB, DLGAP4, TYMS, LMAN1, CDC40, GTSE1, CXCL10, CHEK1, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, RBBP4, RBM25, AK2, BRRN1, FAS, AGPAT5, MARCH5, PBK, BRIP1, STAT1	81%	83%	92%	79%	81%	83%
165	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, DCK, CXCL9, CXCL10, SLC25A11, C1QBP, NDUFA9,	73%	83%	88%	79%	88%	76%

		SVM		3NN		1NN	
	KPNB1, WHSC1, ME2, CXCL11, SLC4A4, RBM25, CDC42BPA, FAS, AGPAT5, SEC10L1, HNRPD, BRIP1, TRMT5, STAT1						
166	WARS, EIF4E, MTHFD2, PSME2, GMFB, TYMS, TES, CDC40, IRF8, RABIF, CXCL10, PLK4, TRIM25, SLC25A11, WHSC1, C17orf25, CA2, ME2, TLK1, CXCL11, SLC4A4, RBM25, CDC42BPA, FAS, RBBP4, SEC10L1, PBK, HNRPD, BRIP1, TRMT5, STAT1	73%	76%	81%	83%	77%	76%
167	WARS, SFRS2, MTHFD2, PSME2, TK1, DLGAP4, TYMS, DCK, CDC40, CXCL9, CXCL10, FAS, CHEK1, TRIM25, C1QBP, SLC25A11, WHSC1, CA2, ME2, CXCL11, GZMB, IFT20, SLC4A4, RBM25, hCAP-D3, DDAH2, SEC10L1, FLJ13220, PBK, KLHL24, STAT1	88%	93%	85%	76%	88%	72%
168	WARS, SFRS2, EIF4E, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, LMAN1, DCK, CDC40, CXCL9, CXCL10, FAS, NDUFA9, WHSC1, HNRPD, ME2, SLC4A4, CXCL11, RBM25, NUP210, hCAP-D3, SEC10L1, PSAT1, KLHL24, STAT1	73%	79%	81%	86%	85%	76%
169	SFRS2, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, USP4, LMAN1, DCK, ARF6, CDC40, CXCL9, RABIF, CXCL10, KITLG, C1QBP, SLC25A11, C17orf25, CA2, ME2, CXCL11, SLC4A4, RBM25, CAMSAP1L1, FAS, HNRPD, BRIP1, STAT1	73%	79%	85%	86%	88%	76%
170	WARS, SFRS2, PAICS, EIF4E, PSME2, GMFB, DLGAP4, TYMS, ARF6, MAD2L1, SLC4A4, CXCL9, IRF8, CXCL10, FAS, NDUFA9, WHSC1, CA2, ME2, CXCL11, TLK1, RBM25, AK2, AGPAT5, MARCH5, FLJ13220, TRMT5, STAT1	85%	83%	88%	83%	77%	76%
171	SFRS2, EPAS1, EIF4E, MTHFD2, GBP1, GMFB, CTSS, LMAN1, CDC40, CXCL9, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, C17orf25, CA2, ME2, IFT20, CXCL11, RBM25, BRRN1, ATP5A1, RBBP4, HNRPD, BRIP1, STAT1	88%	86%	85%	86%	77%	79%
172	WARS, SFRS2, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, CDC40, SLC4A4, CXCL10, KITLG, SLC25A11, C1QBP, NDUFA9, CA2, HNRPD, ME2, FUT4, CXCL11, RBM25, ATP5A1, FAS, RBBP4, BRIP1, TRMT5, STAT1	81%	79%	96%	86%	88%	83%
173	WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, TYMS, TES, LMAN1, DCK, CXCL9, CXCL10, KITLG, KPNB1, SLC25A11, ME2, CXCL11, IFT20, TLK1, RBM25, CDC42BPA, FAS, BAZ1A, FLJ10534, MARCH5, SEC10L1, HNRPD, BRIP1, TRMT5, STAT1	77%	79%	77%	86%	73%	86%
174	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, TK1, GMFB, DLGAP4, TYMS, LMAN1, CDC40, SLC4A4, CXCL9, IRF8, RABIF, CXCL10, SLC25A11, NDUFA9, CA2, ME2, CXCL11, RBBP4, RBM25, NUP210, FAS, SEC10L1, PBK, STAT1	85%	79%	88%	83%	85%	86%
175	HNRPD, WARS, EPAS1, PRDX3, MTHFD2,	85%	90%	88%	83%	85%	72%

		SVM		3NN		1NN	
	PSME2, DLGAP4, TYMS, CDC40, IRF8, CXCL10, FAS, SLC25A11, C1QBP, CA2, ME2, GZMB, IFT20, SLC4A4, AK2, NUP210, RBBP4, AGPAT5, MARCH5, FLJ13220, STAT1						
176	HNRPD, WARS, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CXCL9, CXCL10, FAS, C1QBP, NDUFA9, SLC25A11, CA2, ME2, RBBP4, SLC4A4, CXCL11, RBM25, ATP5A1, DDAH2, BAZ1A, PBK, BRIP1, STAT1	81%	79%	88%	76%	88%	79%
177	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, PSME2, DLGAP4, TYMS, TES, LMAN1, CDC40, CXCL10, FAS, C1QBP, NDUFA9, SLC25A11, CA2, ME2, GZMB, IFT20, CXCL11, SLC4A4, RBM25, AK2, AGPAT5, DKFZp762E1312, SEC10L1, BRIP1, KLHL24	96%	93%	92%	76%	88%	76%
178	WARS, EIF4E, PRDX3, MTHFD2, TK1, GMFB, TYMS, CDC40, CXCL9, IRF8, CXCL10, FAS, CHEK1, TRIM25, SLC25A11, NDUFA9, CA2, ME2, IFT20, RBM25, AK2, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, HNRPD, STAT1	85%	83%	88%	79%	88%	72%
179	WARS, EIF4E, PRDX3, MTHFD2, GBP1, GMFB, DLGAP4, TYMS, USP4, IRF8, CXCL10, FAS, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, GZMB, TLK1, CXCL11, RBM25, DKFZp762E1312, PSAT1, BRIP1, TRMT5, KLHL24, STAT1	85%	86%	88%	76%	81%	76%
180	WARS, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, CXCL9, IRF8, CXCL10, C1QBP, NDUFA9, SLC25A11, WHSC1, HNRPD, ME2, CXCL11, IFT20, TLK1, SLC4A4, CDC42BPA, SFRS2, FAS, PSAT1	92%	90%	88%	79%	73%	76%
181	WARS, EIF4E, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL9, FAS, PLK4, C1QBP, CA2, HNRPD, ME2, CXCL11, RBM25, RBBP4, SEC10L1, FLJ13220, PBK, BRIP1, TRMT5, KLHL24, ETNK1, STAT1	77%	79%	81%	79%	85%	76%
182	WARS, SFRS2, EIF4E, MTHFD2, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL9, IRF8, GTSE1, CXCL10, HNRPA3P1, SLC25A11, NDUFA9, CA2, HNRPD, ME2, RBBP4, SLC4A4, RBM25, BRRN1, FAS, BAZ1A, BRIP1, STAT1	88%	83%	85%	83%	77%	86%
183	HNRPD, WARS, EPAS1, EIF4E, MTHFD2, TK1, GMFB, DLGAP4, LMAN1, ARF6, MAD2L1, CDC40, CXCL9, CXCL10, HNRPA3P1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, ME2, CXCL11, SLC4A4, RBM25, DDAH2, FAS, ETNK1, STAT1	88%	90%	81%	86%	81%	79%
184	HNRPD, WARS, PAICS, MTHFD2, PSME2, DLGAP4, TYMS, USP4, CXCL9, CXCL10, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, CXCL11, SLC4A4, RBM25, NUP210, ATP5A1, CDC42BPA, FAS, MARCH5, DKFZp762E1312, SEC10L1, PBK, BRIP1, STAT1	73%	83%	77%	69%	69%	69%
185	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, DCK, MAD2L1, CXCL9, CXCL10, FAS, PLK4,	81%	86%	81%	86%	73%	83%

			SVM	3NN		1NN	
		TRIM25, KITLG, SLC25A11, WHSC1, ME2, FUT4, CXCL11, SLC4A4, RBM25, NUP210, DDAH2, RBBP4, BAZ1A, AGPAT5, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, PSAT1, BRIP1, TRMT5, STAT1					
186		WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, TYMS, LMAN1, ARF6, CDC40, CXCL9, IRF8, RABIF, CXCL10, FAS, PLK4, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, ME2, FUT4, CXCL11, IFT20, SLC4A4, RBM25, AK2, SOCS6, MARCH5, SEC10L1, FLJ13220, PBK, HNRPD, BRIP1, TRMT5, STAT1	85%	79%	85%	79%	73% 76%
187		HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, ARF6, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, PLK4, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, CXCL11, TLK1, RBM25, ATP5A1, CDC42BPA, RBBP4, AGPAT5, SEC10L1, FLJ13220, PSAT1, BRIP1, STAT1	77%	83%	85%	79%	81% 79%
188		HNRPD, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, ARF6, MAD2L1, CDC40, CXCL9, CXCL10, FAS, PLK4, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, TLK1, SLC4A4, RBM25, AK2, NUP210, hCAP-D3, DDAH2, RBBP4, PBK, BRIP1, STAT1	77%	86%	85%	83%	85% 76%
189		WARS, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, USP4, CTSS, ARF6, CDC40, SLC4A4, CXCL9, CXCL10, FAS, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, GZMB, TLK1, RBM25, NUP210, CDC42BPA, AGPAT5, MARCH5, SEC10L1, PBK, HNRPD, TRMT5, KLHL24, STAT1	77%	79%	96%	79%	85% 72%
190		HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GBP1, DLGAP4, TYMS, TES, LMAN1, ARF6, CDC40, CXCL9, IRF8, CXCL10, FAS, TRIM25, SLC25A11, NDUFA9, WHSC1, CA2, ME2, TLK1, CXCL11, SLC4A4, RBM25, AK2, hCAP-D3, DDAH2, FLJ10534, SEC10L1, BRIP1, STAT1	92%	79%	85%	83%	69% 79%
191		WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, TES, LMAN1, CDC40, CXCL9, IRF8, RABIF, CXCL10, FAS, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, SLC4A4, RBM25, AK2, hCAP-D3, SOCS6, CDC42BPA, FLJ10534, DKFZp762E1312, SEC10L1, FLJ13220, PBK, HNRPD, TRMT5, STAT1	77%	83%	85%	76%	85% 79%
192		WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, CTSS, CDC40, CXCL9, CXCL10, PLK4, KITLG, SLC25A11, C1QBP, NDUFA9, C17orf25, CA2, ME2, CXCL11, IFT20, RBM25, hCAP-D3, ATP5A1, FAS, FLJ10534, MARCH5, SEC10L1, PBK, HNRPD, BRIP1, TRMT5	73%	86%	85%	83%	85% 83%

		SVM		3NN		1NN	
193	HNRPD, WARS, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, MAD2L1, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, SLC4A4, RBM25, hCAP-D3, SOCS6, BAZ1A, FLJ10534, SEC10L1, FLJ13220, PBK, BRIP1	77%	76%	85%	83%	81%	72%
194	SFRS2, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, CDC40, CXCL9, CXCL10, FAS, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, CXCL11, IFT20, RBBP4, SLC4A4, RBM25, AK2, hCAP-D3, BRRN1, CDC42BPA, MARCH5, FLJ13220, HNRPD, STAT1	77%	83%	85%	83%	81%	76%
195	WARS, SFRS2, EPAS1, EIF4E, SFPQ, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, DCK, ARF6, CDC40, CXCL10, FAS, CHEK1, HNRPA3P1, SLC25A11, NDUFA9, CA2, HNRPD, ME2, GZMB, RBBP4, TLK1, SLC4A4, CXCL11, RBM25, ATP5A1, AGPAT5, FLJ10534, FLJ13220, ETNK1, STAT1	81%	86%	88%	76%	85%	79%
196	WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, ARF6, CDC40, SLC4A4, CXCL9, GTSE1, RABIF, CXCL10, FAS, HNRPA3P1, KITLG, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, RBBP4, RBM25, AK2, CDC42BPA, MARCH5, TRMT5, KLHL24	88%	83%	88%	79%	88%	72%
197	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, RABIF, CXCL10, FAS, PLK4, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, FUT4, CXCL11, RBM25, CDC42BPA, MARCH5, DKFZp762E1312, SEC10L1, PBK	77%	79%	85%	79%	88%	79%
198	WARS, SFRS2, EPAS1, EIF4E, SFPQ, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CDC40, RABIF, CXCL10, PLK4, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, ME2, CXCL11, IFT20, RBM25, CAMSAP1L1, BRRN1, FAS, AGPAT5, PSAT1, HNRPD, TRMT5, KLHL24, ETNK1, STAT1	85%	90%	77%	83%	77%	66%
199	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, LMAN1, ARF6, CDC40, CXCL9, CXCL10, FAS, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, CA2, ME2, GZMB, RBBP4, TLK1, CXCL11, RBM25, AK2, SOCS6, AGPAT5, SEC10L1, PBK, STAT1	92%	90%	96%	76%	85%	76%
200	SFRS2, PAICS, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, TYMS, DCK, ARF6, MAD2L1, CDC40, CXCL9, GTSE1, RABIF, CXCL10, FAS, C1QBP, NDUFA9, SLC25A11, C17orf25, CA2, ME2, GZMB, IFT20, CXCL11, RBM25, AK2, hCAP-D3, BRRN1, AGPAT5, DKFZp762E1312, PBK, PSAT1, HNRPD, TRMT5, ETNK1, STAT1	81%	86%	88%	79%	73%	72%
201	HNRPD, WARS, SFRS2, STAT1, EIF4E,	88%	93%	88%	76%	85%	66%

		SVM		3NN		1NN	
	MTHFD2, PSME2, DLGAP4, TYMS, CXCL9, GTSE1, CXCL10, FAS, CHEK1, HNRPA3P1, TRIM25, KITLG, NDUFA9, SLC25A11, WHSC1, CA2, ME2, GZMB, IFT20, SLC4A4, CXCL11, RBM25, CAMSAP1L1, hCAP-D3, BRRN1, AGPAT5, MARCH5, DKFZp762E1312, SEC10L1, PBK, BRIP1						
202	WARS, SFRS2, STAT1, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, CTSS, ARF6, CDC40, CXCL9, CXCL10, FAS, HNRPA3P1, SLC25A11, CA2, HNRPD, ME2, FUT4, RBBP4, TLK1, CXCL11, SLC4A4, RBM25, AK2, CDC42BPA, AGPAT5, DKFZp762E1312, SEC10L1, FLJ13220, PBK, KLHL24, ETNK1	85%	86%	92%	76%	73%	72%
203	WARS, SFRS2, STAT1, MTHFD2, PSME2, GMFB, DLGAP4, SLC4A4, CXCL9, CXCL10, FAS, CHEK1, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, ME2, CXCL11, IFT20, RBM25, NUP210, CAMSAP1L1, BRRN1, CDC42BPA, DDAH2, AGPAT5, DKFZp762E1312, SEC10L1, FLJ13220, PBK, HNRPD, TRMT5, KLHL24	92%	86%	85%	76%	69%	69%
204	WARS, SFRS2, EPAS1, EIF4E, PSME2, MCM6, GMFB, DLGAP4, TYMS, DCK, ARF6, SLC4A4, CXCL9, IRF8, CXCL10, FAS, KITLG, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, FUT4, GZMB, IFT20, RBBP4, CXCL11, RBM25, AK2, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, BRIP1, ETNK1, STAT1	85%	83%	85%	76%	81%	72%
205	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, MAD2L1, CDC40, SLC4A4, CXCL9, GTSE1, RABIF, CXCL10, FAS, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, CA2, HNRPD, ME2, CXCL11, IFT20, RBM25, BRRN1, CDC42BPA, DDAH2, PSAT1, KLHL24, STAT1	96%	86%	81%	79%	85%	72%
206	WARS, PAICS, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, ARF6, SLC4A4, CXCL9, CXCL10, FAS, PLK4, TRIM25, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, HNRPD, ME2, CXCL11, IFT20, TLK1, RBM25, AK2, AGPAT5, SEC10L1, FLJ13220, BRIP1, TRMT5, KLHL24, STAT1	81%	83%	88%	90%	77%	79%
207	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, ARF6, CDC40, CXCL9, CXCL10, FAS, HNRPA3P1, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, HNRPD, ME2, FUT4, CXCL11, GZMB, IFT20, SLC4A4, RBM25, AK2, SEC10L1, PBK, BRIP1, STAT1	85%	90%	96%	79%	85%	79%
208	HNRPD, WARS, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, TES, CDC40, CXCL9, IRF8, GTSE1, CXCL10, FAS, C1QBP, NDUFA9, C17orf25, ME2, SLC4A4, CXCL11, RBM25, NUP210, FLJ10534, MARCH5, DKFZp762E1312,	77%	79%	81%	83%	73%	72%

	FLJ13220, PBK, BRIP1, TRMT5, ETNK1	SVM		3NN		1NN	
209	WARS, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, USP4, LMAN1, MAD2L1, CDC40, SLC4A4, CXCL9, IRF8, GTSE1, RABIF, CXCL10, FAS, TRIM25, C1QBP, NDUFA9, SLC25A11, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, TLK1, RBM25, AK2, SOCS6, RBBP4, AGPAT5, MARCH5, SEC10L1, PBK, HNRPD, STAT1	85%	86%	88%	79%	85%	76%
210	HNRPD, WARS, SFRS2, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, MCM6, DLGAP4, TYMS, ARF6, MAD2L1, CDC40, CXCL9, RABIF, CXCL10, PLK4, CHEK1, TRIM25, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, TLK1, BRRN1, SOCS6, FAS, AGPAT5, MARCH5, FLJ13220, PBK, TRMT5, KLHL24	77%	79%	85%	86%	81%	79%
211	WARS, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, DCK, MAD2L1, CDC40, RABIF, CXCL10, FAS, HNRPA3P1, SLC25A11, NDUFA9, C17orf25, ME2, CXCL11, SLC4A4, RBM25, AK2, hCAP-D3, SOCS6, DDAH2, RBBP4, AGPAT5, DKFZp762E1312, SEC10L1, PBK, PSAT1, HNRPD, BRIP1, ETNK1, STAT1	77%	79%	85%	76%	81%	72%
212	HNRPD, WARS, EPAS1, STAT1, EIF4E, MTHFD2, GBP1, TK1, GMFB, DLGAP4, TYMS, LMAN1, DCK, CDC40, CXCL9, IRF8, CXCL10, FAS, PLK4, HNRPA3P1, SLC25A11, NDUFA9, KPNB1, WHSC1, CA2, ME2, CXCL11, GZMB, RBBP4, SLC4A4, RBM25, NUP210, DDAH2, PBK, KLHL24, ETNK1	81%	83%	85%	76%	77%	79%
213	HNRPD, WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, DCK, ARF6, CDC40, CXCL9, IRF8, CXCL10, FAS, TRIM25, SLC25A11, C1QBP, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, TLK1, RBM25, AK2, CDC42BPA, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, ETNK1	100%	90%	92%	72%	85%	79%
214	WARS, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CDC40, CXCL9, IRF8, GTSE1, CXCL10, FAS, PLK4, TRIM25, C1QBP, SLC25A11, C17orf25, CA2, HNRPD, ME2, CXCL11, IFT20, AK2, BRRN1, SOCS6, CDC42BPA, SFRS2, RBBP4, MARCH5, SEC10L1, FLJ13220, PSAT1, BRIP1, TRMT5, KLHL24, STAT1	81%	79%	85%	79%	85%	72%
215	HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, MAD2L1, CDC40, CXCL9, IRF8, GTSE1, CXCL10, SLC25A11, NDUFA9, WHSC1, CA2, ME2, CXCL11, IFT20, RBM25, AK2, BRRN1, CDC42BPA, FAS, RBBP4, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, ETNK1, STAT1	85%	86%	88%	72%	81%	72%
216	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, CDC40, CXCL9, IRF8, CXCL10,	73%	83%	88%	79%	85%	72%

		SVM		3NN		1NN	
	FAS, PLK4, HNRPA3P1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, RBM25, AK2, hCAP-D3, BAZ1A, AGPAT5, DKFZp762E1312, PBK, BRIP1						
217	WARS, EIF4E, MTHFD2, PSME2, MCM6, DLGAP4, TYMS, USP4, TES, DCK, ARF6, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, PLK4, HNRPA3P1, TRIM25, SLC25A11, C1QBP, WHSC1, CA2, ME2, CXCL11, GZMB, IFT20, TLK1, SLC4A4, RBM25, SOCS6, DDAH2, FAS, FLJ13220, PBK, KLHL24, ETNK1, STAT1	85%	86%	81%	79%	77%	76%
218	WARS, SFRS2, EPAS1, STAT1, PAICS, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, TRIM25, C1QBP, NDUFA9, CA2, ME2, FUT4, CXCL11, RBM25, AK2, ATP5A1, AGPAT5, SEC10L1, FLJ13220, HNRPD, KLHL24	81%	83%	85%	83%	88%	76%
219	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, USP4, CDC40, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, SLC25A11, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, IFT20, RBM25, hCAP-D3, ATP5A1, RBBP4, AGPAT5, FLJ10534, MARCH5, SEC10L1, HNRPD, BRIP1, KLHL24, STAT1	81%	79%	85%	79%	88%	76%
220	HNRPD, WARS, SFRS2, EPAS1, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, TYMS, USP4, TES, LMAN1, CDC40, CXCL9, CXCL10, FAS, C1QBP, SLC25A11, WHSC1, CA2, ME2, FUT4, TLK1, CXCL11, SLC4A4, RBM25, hCAP-D3, DDAH2, BAZ1A, FLJ10534, MARCH5, FLJ13220, PBK, PSAT1, BRIP1, TRMT5, STAT1	73%	79%	85%	79%	85%	83%
221	HNRPD, EPAS1, STAT1, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, CXCL9, CXCL10, FAS, CHEK1, HNRPA3P1, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, ME2, CXCL11, TLK1, RBM25, ATP5A1, DDAH2, RBBP4, SEC10L1, PBK, BRIP1, ETNK1	81%	83%	88%	83%	85%	86%
222	WARS, SFRS2, EIF4E, MTHFD2, PSME2, DLGAP4, TYMS, ARF6, CXCL9, IRF8, GTSE1, RAB1F, CXCL10, FAS, PLK4, KITLG, SLC25A11, C1QBP, NDUFA9, ME2, CXCL11, GZMB, IFT20, RBBP4, SLC4A4, RBM25, AK2, BAZ1A, AGPAT5, MARCH5, FLJ13220, HNRPD, BRIP1, KLHL24, ETNK1, STAT1	88%	86%	92%	72%	81%	72%
223	HNRPD, WARS, SFRS2, STAT1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, ARF6, CXCL9, GTSE1, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, KITLG, C1QBP, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, TLK1, RBM25, ATP5A1, AGPAT5, FLJ10534, MARCH5, FLJ13220, PBK, BRIP1, TRMT5	85%	83%	88%	76%	81%	83%
224	HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS,	85%	79%	92%	76%	85%	72%

		SVM		3NN		1NN	
	USP4, TES, CDC40, SLC4A4, CXCL9, CXCL10, FAS, TRIM25, KITLG, C1QBP, NDUFA9, C17orf25, CA2, ME2, GZMB, TLK1, CXCL11, RBM25, CAMSAP1L1, CDC42BPA, DDAH2, BAZ1A, AGPAT5, SEC10L1, PBK, KLHL24, ETNK1, STAT1						
225	WARS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, ARF6, CDC40, CXCL9, IRF8, CXCL10, FAS, PLK4, CHEK1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, CXCL11, GZMB, IFT20, RBBP4, SLC4A4, RBM25, ATP5A1, PBK, BRIP1, TRMT5, STAT1	81%	79%	88%	76%	88%	79%
226	HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, DCK, CXCL9, CXCL10, FAS, HNRPA3P1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, SLC4A4, CXCL11, RBM25, BRRN1, BAZ1A, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, TRMT5, ETNK1, STAT1	77%	79%	77%	86%	73%	69%
227	HNRPD, WARS, SFRS2, EPAS1, PRDX3, PSME2, GBP1, TK1, DLGAP4, TYMS, DCK, ARF6, CDC40, CXCL9, GTSE1, RABIF, CXCL10, FAS, TRIM25, C1QBP, NDUFA9, SLC25A11, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, RBBP4, RBM25, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, BRIP1, STAT1	81%	90%	92%	76%	88%	69%
228	WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, GMFB, DLGAP4, TYMS, TES, CTSS, CXCL9, CXCL10, FAS, PLK4, CHEK1, TRIM25, SLC25A11, NDUFA9, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, SLC4A4, RBM25, AK2, BRRN1, CDC42BPA, DDAH2, AGPAT5, MARCH5, PBK, HNRPD, KLHL24	77%	83%	88%	76%	88%	76%
229	HNRPD, WARS, SFRS2, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, CXCL9, IRF8, RABIF, FAS, PLK4, TRIM25, SLC25A11, C1QBP, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, GZMB, IFT20, RBM25, SOCS6, DDAH2, MARCH5, PBK, PSAT1, BRIP1, TRMT5, STAT1	85%	86%	85%	72%	85%	76%
230	WARS, SFRS2, STAT1, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, ARF6, CDC40, CXCL9, CXCL10, FAS, HNRPA3P1, C1QBP, SLC25A11, WHSC1, ME2, CXCL11, RBBP4, SLC4A4, RBM25, AK2, hCAP-D3, CDC42BPA, FLJ10534, SEC10L1, FLJ13220, PBK, PSAT1, HNRPD, BRIP1, TRMT5, KLHL24	73%	83%	81%	76%	69%	66%
231	SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, CXCL9, IRF8, CXCL10, CHEK1, HNRPA3P1, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, ME2, FUT4, CXCL11, GZMB, RBM25, CDC42BPA, FAS, RBBP4, AGPAT5, FLJ10534, SEC10L1, FLJ13220, PBK, HNRPD, TRMT5, STAT1	73%	76%	92%	72%	77%	76%

		SVM		3NN		1NN	
232	HNRPD, WARS, SFRS2, PAICS, EIF4E, MTHFD2, PSME2, MCM6, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, TES, CDC40, CXCL9, IRF8, RABIF, CXCL10, CHEK1, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, FUT4, CXCL11, IFT20, TLK1, SLC4A4, RBM25, NUP210, CAMSAP1L1, BRRN1, FAS, RBBP4, BAZ1A, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, KLHL24, STAT1	73%	79%	88%	86%	81%	83%
233	WARS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, DCK, ARF6, MAD2L1, CDC40, SLC4A4, CXCL9, GTSE1, CXCL10, FAS, KITLG, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, FUT4, CXCL11, GZMB, IFT20, TLK1, RBM25, AK2, CAMSAP1L1, DDAH2, RBBP4, BAZ1A, AGPAT5, SEC10L1, PBK, BRIP1, KLHL24, ETNK1, STAT1	77%	79%	92%	76%	88%	76%
234	WARS, SFRS2, EPAS1, STAT1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, ARF6, CDC40, CXCL9, IRF8, RABIF, CXCL10, FAS, SLC25A11, NDUFA9, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, RBBP4, TLK1, SLC4A4, RBM25, NUP210, BRRN1, ATP5A1, AGPAT5, MARCH5, SEC10L1, PBK, PSAT1, HNRPD, BRIP1, TRMT5	85%	90%	92%	79%	77%	83%
235	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, ARF6, MAD2L1, CDC40, CXCL9, CXCL10, PLK4, CHEK1, TRIM25, KITLG, SLC25A11, C1QBP, KPNB1, WHSC1, C17orf25, CA2, HNRPD, ME2, GZMB, CXCL11, RBM25, BRRN1, ATP5A1, CDC42BPA, DDAH2, FAS, BAZ1A, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, TRMT5, KLHL24, ETNK1	81%	90%	92%	76%	85%	69%
236	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, DCK, ARF6, MAD2L1, CDC40, CXCL9, RABIF, CXCL10, CHEK1, HNRPA3P1, TRIM25, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, ME2, GZMB, SLC4A4, CXCL11, RBM25, AK2, ATP5A1, DDAH2, FAS, BAZ1A, DKFZp762E1312, SEC10L1, FLJ13220, BRIP1, TRMT5, ETNK1, STAT1	81%	83%	88%	72%	81%	76%
237	WARS, SFRS2, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, DCK, ARF6, MAD2L1, SLC4A4, CXCL9, GTSE1, CXCL10, FAS, HNRPA3P1, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, IFT20, RBBP4, RBM25, AK2, ATP5A1, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, BRIP1, ETNK1, STAT1	77%	83%	92%	83%	81%	76%
238	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, CHEK1, TRIM25, KITLG, SLC25A11,	85%	86%	88%	86%	85%	79%

		SVM		3NN		1NN	
	C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, FUT4, TLK1, CXCL11, RBM25, BRRN1, DDAH2, FAS, RBBP4, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, TRMT5, STAT1						
239	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, IRF8, GTSE1, RABIF, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, IFT20, CXCL11, SLC4A4, RBM25, AK2, hCAP-D3, ATP5A1, SOCS6, DDAH2, FLJ10534, MARCH5, SEC10L1, PBK, PSAT1, BRIP1, STAT1	69%	79%	88%	83%	81%	76%
240	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, ARF6, MAD2L1, CXCL9, IRF8, RABIF, CXCL10, FAS, HNRPA3P1, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, HNRPD, ME2, GZMB, SLC4A4, CXCL11, RBM25, AK2, CAMSAP1L1, hCAP-D3, BRRN1, CDC42BPA, RBBP4, BAZ1A, FLJ10534, SEC10L1, BRIP1, KLHL24, ETNK1	81%	83%	96%	69%	81%	76%
241	HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, MAD2L1, CDC40, CXCL9, RABIF, CXCL10, FAS, PLK4, TRIM25, SLC25A11, NDUFA9, KPNB1, WHSC1, CA2, ME2, CXCL11, TLK1, SLC4A4, RBM25, hCAP-D3, BRRN1, SOCS6, CDC42BPA, DDAH2, RBBP4, BAZ1A, AGPAT5, DKFZp762E1312, SEC10L1, PBK, BRIP1, KLHL24, ETNK1, STAT1	73%	79%	88%	83%	92%	79%
242	WARS, STAT1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, DCK, ARF6, MAD2L1, CDC40, CXCL9, RABIF, CXCL10, FAS, PLK4, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, C17orf25, CA2, ME2, CXCL11, GZMB, SLC4A4, RBM25, AK2, hCAP-D3, DDAH2, RBBP4, BAZ1A, PSAT1, HNRPD, BRIP1, TRMT5, KLHL24, ETNK1	81%	83%	85%	79%	81%	69%
243	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, CDC40, SLC4A4, CXCL9, CXCL10, FAS, PLK4, CHEK1, KITLG, C1QBP, NDUFA9, WHSC1, CA2, HNRPD, ME2, CXCL11, GZMB, TLK1, RBM25, AK2, hCAP-D3, BRRN1, CDC42BPA, RBBP4, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, ETNK1, STAT1	85%	83%	92%	79%	77%	72%
244	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, ARF6, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, PLK4, CHEK1, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, HNRPD, ME2, CXCL11, GZMB, IFT20, RBM25, CAMSAP1L1, BRRN1, CDC42BPA, BAZ1A, AGPAT5, FLJ10534, DKFZp762E1312, PBK,	81%	83%	88%	79%	81%	69%

	ETNK1	SVM		3NN		1NN	
245	HNRPD, WARS, SFRS2, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, TES, DCK, CDC40, SLC4A4, CXCL9, CXCL10, PLK4, CHEK1, HNRPA3P1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, GZMB, RBBP4, CXCL11, RBM25, AK2, NUP210, CAMSAP1L1, hCAP-D3, CDC42BPA, FAS, MARCH5, SEC10L1, PBK, ETNK1, STAT1	77%	86%	88%	76%	77%	76%
246	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, TES, LMAN1, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, PLK4, HNRPA3P1, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, FUT4, GZMB, TLK1, CXCL11, RBM25, CAMSAP1L1, DDAH2, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, HNRPD, BRIP1, ETNK1, STAT1	77%	83%	92%	79%	81%	79%
247	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, USP4, TES, MAD2L1, CDC40, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, PLK4, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, ME2, IFT20, RBBP4, CXCL11, RBM25, AK2, CAMSAP1L1, CDC42BPA, FAS, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, HNRPD, BRIP1, KLHL24, ETNK1, STAT1	77%	83%	85%	79%	85%	72%
248	HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, DCK, CDC40, CXCL9, GTSE1, RABIF, CXCL10, FAS, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, GZMB, IFT20, RBBP4, CXCL11, SLC4A4, RBM25, BRRN1, AGPAT5, FLJ10534, MARCH5, FLJ13220, PSAT1, TRMT5, KLHL24, ETNK1, STAT1	77%	86%	88%	76%	81%	69%
249	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, MAD2L1, SLC4A4, CXCL9, GTSE1, CXCL10, FAS, PLK4, TRIM25, KITLG, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, GZMB, IFT20, TLK1, RBM25, CAMSAP1L1, BRRN1, SOCS6, CDC42BPA, BAZ1A, AGPAT5, MARCH5, SEC10L1, FLJ13220, KLHL24, ETNK1, STAT1	92%	97%	88%	76%	85%	79%
250	HNRPD, WARS, SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, ARF6, CDC40, CXCL9, CXCL10, FAS, CHEK1, TRIM25, NDUFA9, KPNB1, SLC25A11, C17orf25, CA2, ME2, CXCL11, IFT20, TLK1, SLC4A4, RBM25, AK2, BRRN1, ATP5A1, DDAH2, BAZ1A, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, STAT1	92%	90%	92%	76%	85%	79%
251	WARS, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4,	77%	90%	92%	76%	85%	72%

		SVM	3NN		1NN	
	TYMS, LMAN1, ARF6, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, FAS, PLK4, HNRPA3P1, SLC25A11, C1QBP, NDUFA9, CA2, HNRPD, ME2, FUT4, CXCL11, GZMB, IFT20, TLK1, RBM25, AK2, ATP5A1, SOCS6, DDAH2, RBBP4, AGPAT5, MARCH5, SEC10L1, FLJ13220, BRIP1, TRMT5					
252	WARS, SFRS2, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, CDC40, SLC4A4, GTSE1, RABIF, CXCL10, FAS, PLK4, HNRPA3P1, C1QBP, SLC25A11, WHSC1, HNRPD, ME2, FUT4, CXCL11, IFT20, TLK1, RBM25, AK2, NUP210, BRRN1, ATP5A1, AGPAT5, FLJ10534, DKFZp762E1312, SEC10L1, FLJ13220, PBK, TRMT5, KLHL24, ETNK1, STAT1	65%	83%	77%	90%	73% 76%
253	HNRPD, WARS, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, DCK, SLC4A4, CXCL9, CXCL10, FAS, PLK4, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, RBBP4, TLK1, RBM25, CAMSAP1L1, ATP5A1, MARCH5, SEC10L1, PBK, PSAT1, BRIP1, TRMT5, KLHL24, ETNK1	73%	83%	85%	79%	81% 76%
254	HNRPD, WARS, EPAS1, EIF4E, MTHFD2, PSME2, MCM6, GBP1, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, ARF6, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, IFT20, RBBP4, CXCL11, RBM25, NUP210, hCAP-D3, SFRS2, DDAH2, BAZ1A, AGPAT5, FLJ10534, DKFZp762E1312, SEC10L1, FLJ13220, KLHL24, STAT1	77%	76%	92%	86%	88% 79%
255	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL9, CXCL10, PLK4, CHEK1, TRIM25, KITLG, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, SLC4A4, RBM25, AK2, NUP210, DDAH2, FAS, BAZ1A, AGPAT5, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, PBK, PSAT1, BRIP1, KLHL24, STAT1	81%	79%	85%	79%	85% 76%
256	WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, PLK4, CHEK1, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, C17orf25, CA2, ME2, TLK1, RBM25, NUP210, AGPAT5, FLJ10534, SEC10L1, FLJ13220, PBK, PSAT1, HNRPD, BRIP1, TRMT5, KLHL24	77%	83%	85%	79%	81% 83%
257	WARS, SFRS2, EIF4E, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, LMAN1, MAD2L1, CDC40, CXCL9, CXCL10, FAS, CHEK1, HNRPA3P1, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, CA2, HNRPD, ME2, GZMB, TLK1, SLC4A4, CXCL11, RBM25, AK2, CAMSAP1L1, DDAH2, AGPAT5, FLJ10534,	73%	86%	88%	83%	77% 72%

			SVM		3NN		1NN	
		MARCH5, DKFZp762E1312, PBK, PSAT1, BRIP1, TRMT5, KLHL24, ETNK1, STAT1						
258		WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, ARF6, CDC40, CXCL9, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, HNRPD, ME2, CXCL11, IFT20, RBBP4, SLC4A4, RBM25, AK2, ATP5A1, SOCS6, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, TRMT5, ETNK1, STAT1	77%	83%	73%	86%	73%	76%
259		HNRPD, WARS, EPAS1, PAICS, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, CDC40, CXCL9, RABIF, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, GZMB, IFT20, RBBP4, TLK1, RBM25, AK2, CAMSAP1L1, ATP5A1, CDC42BPA, DDAH2, BAZ1A, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, ETNK1, STAT1	85%	93%	92%	72%	77%	72%
260		HNRPD, WARS, SFRS2, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, ARF6, MAD2L1, CDC40, CXCL9, GTSE1, RABIF, CXCL10, PLK4, CHEK1, HNRPA3P1, TRIM25, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, IFT20, SLC4A4, RBM25, AK2, NUP210, ATP5A1, SOCS6, FAS, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, PSAT1, BRIP1, ETNK1, STAT1	77%	79%	85%	76%	85%	69%
261		HNRPD, WARS, SFRS2, STAT1, MTHFD2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, ARF6, SLC4A4, CXCL9, GTSE1, CXCL10, FAS, HNRPA3P1, TRIM25, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, RBM25, hCAP-D3, ATP5A1, SOCS6, DDAH2, BAZ1A, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, ETNK1	85%	83%	88%	72%	77%	76%
262		HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, ARF6, CDC40, SLC4A4, CXCL9, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, IFT20, SLC4A4, RBM25, AK2, ATP5A1, SOCS6, BAZ1A, AGPAT5, FLJ10534, SEC10L1, PBK, PSAT1, BRIP1, KLHL24, ETNK1, STAT1	77%	79%	85%	79%	85%	76%
263		HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, PSME2, MCM6, GBP1, GMFB, DLGAP4, USP4, CTSS, ARF6, CDC40, SLC4A4, CXCL9, GTSE1, RABIF, CXCL10, FAS, CHEK1, HNRPA3P1, KITLG, C1QBP, NDUFA9, KPNB1, WHSC1, CA2, ME2, CXCL11, RBM25, CDC42BPA, RBBP4, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, TRMT5, KLHL24	81%	83%	88%	79%	81%	79%

		SVM		3NN		1NN		
264		WARS, SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, HNRPD, ME2, CXCL11, GZMB, TLK1, RBM25, AK2, hCAP-D3, ATP5A1, CDC42BPA, BAZ1A, AGPAT5, MARCH5, SEC10L1, PBK, TRMT5, KLHL24, STAT1	88%	86%	88%	83%	85%	79%
265		HNRPD, WARS, EPAS1, PAICS, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, ARF6, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, CHEK1, TRIM25, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, ME2, GZMB, TLK1, CXCL11, RBM25, AK2, CAMSAP1L1, AGPAT5, FLJ10534, SEC10L1, PBK, BRIP1, KLHL24, STAT1	92%	90%	85%	76%	69%	76%
266		WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, MAD2L1, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, RBM25, AK2, ATP5A1, RBBP4, AGPAT5, MARCH5, SEC10L1, PBK, HNRPD, BRIP1, TRMT5, KLHL24, ETNK1, STAT1	77%	86%	88%	76%	85%	79%
267		WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, LMAN1, DCK, ARF6, CDC40, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, IFT20, RBM25, AK2, NUP210, SOCS6, CDC42BPA, SFRS2, RBBP4, BAZ1A, FLJ10534, MARCH5, FLJ13220, PBK, PSAT1, HNRPD, KLHL24, STAT1	85%	83%	85%	79%	81%	76%
268		HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GBP1, GMFB, DLGAP4, TYMS, USP4, ARF6, CDC40, SLC4A4, IRF8, GTSE1, CXCL10, FAS, HNRPA3P1, TRIM25, KITLG, NDUFA9, SLC25A11, CA2, ME2, CXCL11, GZMB, TLK1, RBM25, AK2, hCAP-D3, CDC42BPA, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, TRMT5, STAT1	88%	93%	92%	76%	81%	72%
269		HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, ARF6, CDC40, SLC4A4, CXCL9, GTSE1, CXCL10, HNRPA3P1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, GZMB, RBM25, AK2, CDC42BPA, FAS, RBBP4, BAZ1A, SEC10L1, FLJ13220, PBK, PSAT1, KLHL24, ETNK1, STAT1	81%	79%	92%	76%	81%	69%
270		HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, ARF6, MAD2L1, CDC40, CXCL9, IRF8, GTSE1, CXCL10, FAS, CHEK1,	88%	86%	88%	79%	85%	72%

		SVM		3NN		1NN	
	HNRPA3P1, TRIM25, KITLG, SLC25A11, NDUFA9, KPNB1, WHSC1, CA2, ME2, FUT4, CXCL11, GZMB, RBM25, AK2, CDC42BPA, BAZ1A, AGPAT5, DKFZp762E1312, SEC10L1, PBK, TRMT5, KLHL24, ETNK1, STAT1						
271	WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, MAD2L1, CDC40, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, PLK4, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, FUT4, GZMB, RBM25, AK2, ATP5A1, CDC42BPA, FAS, AGPAT5, FLJ10534, SEC10L1, FLJ13220, PBK, BRIP1, TRMT5, KLHL24, ETNK1	77%	69%	92%	79%	81%	69%
272	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, DCK, SLC4A4, CXCL9, IRF8, CXCL10, FAS, HNRP3P1, KITLG, C1QBP, NDUFA9, SLC25A11, CA2, ME2, FUT4, IFT20, RBBP4, TLK1, CXCL11, RBM25, BRRN1, CDC42BPA, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, BRIP1, TRMT5, KLHL24, ETNK1, STAT1	73%	83%	92%	83%	85%	76%
273	WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, ARF6, CXCL9, IRF8, RABIF, CXCL10, FAS, PLK4, CHEK1, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, IFT20, RBBP4, TLK1, RBM25, ATP5A1, CDC42BPA, FLJ13220, PBK, HNRPD, BRIP1, TRMT5, KLHL24, ETNK1	88%	83%	85%	83%	77%	79%
274	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, TES, DCK, MAD2L1, CXCL9, CXCL10, FAS, PLK4, HNRP3P1, KITLG, SLC25A11, NDUFA9, WHSC1, C17orf25, CA2, ME2, IFT20, RBBP4, CXCL11, SLC4A4, RBM25, NUP210, CAMSAP1L1, BRRN1, CDC42BPA, DDAH2, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, TRMT5, KLHL24, ETNK1, STAT1	81%	86%	88%	83%	85%	76%
275	WARS, SFRS2, PAICS, EIF4E, MTHFD2, PSME2, MCM6, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, CDC40, CXCL9, CXCL10, PLK4, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, C17orf25, HNRPD, ME2, CXCL11, IFT20, TLK1, SLC4A4, RBM25, hCAP-D3, ATP5A1, DDAH2, FAS, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, STAT1	73%	86%	77%	83%	69%	79%
276	HNRPD, WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, DCK, ARF6, CDC40, CXCL9, IRF8, CXCL10, FAS, PLK4, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, CXCL11, GZMB, RBBP4, TLK1, RBM25, AK2, NUP210, ATP5A1, AGPAT5, MARCH5, SEC10L1, PBK, BRIP1, TRMT5	85%	79%	88%	79%	81%	79%

			SVM		3NN		1NN	
277		HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GBP1, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, DCK, SLC4A4, CXCL9, GTSE1, CXCL10, PLK4, CHEK1, TRIM25, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, ME2, CXCL11, RBM25, BRRN1, ATP5A1, CDC42BPA, DDAH2, FAS, AGPAT5, MARCH5, PBK, BRIP1, TRMT5, KLHL24, ETNK1	81%	83%	88%	76%	77%	69%
278		WARS, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, MCM6, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, MAD2L1, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, KITLG, SLC25A11, C1QBP, NDUFA9, C17orf25, CA2, HNRPD, ME2, GZMB, TLK1, CXCL11, RBM25, BRRN1, CDC42BPA, SFRS2, DDAH2, AGPAT5, SEC10L1, PBK, PSAT1, BRIP1, TRMT5, KLHL24	77%	72%	88%	83%	77%	79%
279		HNRPD, WARS, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, TES, DCK, ARF6, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, TRIM25, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, GZMB, TLK1, CXCL11, RBM25, AK2, hCAP-D3, CDC42BPA, DDAH2, RBBP4, FLJ10534, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, KLHL24	77%	86%	92%	76%	77%	76%
280		WARS, SFRS2, STAT1, EIF4E, MTHFD2, PSME2, MCM6, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, LMAN1, ARF6, CDC40, SLC4A4, CXCL9, CXCL10, FAS, PLK4, KITLG, C1QBP, KPNB1, WHSC1, CA2, ME2, FUT4, GZMB, CXCL11, RBM25, AK2, CDC42BPA, RBBP4, BAZ1A, AGPAT5, MARCH5, SEC10L1, PBK, HNRPD, BRIP1, KLHL24, ETNK1	81%	79%	92%	79%	85%	72%
281		HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, DCK, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, TRIM25, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, ME2, CXCL11, TLK1, RBM25, hCAP-D3, CDC42BPA, FAS, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, TRMT5, ETNK1	85%	79%	77%	86%	73%	76%
282		HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, MAD2L1, SLC4A4, CXCL9, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, TLK1, RBM25, hCAP-D3, ATP5A1, CDC42BPA, DDAH2, AGPAT5, FLJ10534, DKFZp762E1312, SEC10L1, FLJ13220, PBK, TRMT5, STAT1	77%	83%	88%	83%	88%	86%
283		WARS, SFRS2, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, ARF6, CDC40, CXCL9, CXCL10, FAS, PLK4, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, FUT4, IFT20, SLC4A4, CXCL11, RBM25, AK2,	81%	83%	85%	76%	85%	72%

		SVM		3NN		1NN	
	BRRN1, ATP5A1, CDC42BPA, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, HNRPD, BRIP1, TRMT5, KLHL24, ETNK1, STAT1						
284	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, SLC4A4, CXCL9, IRF8, CXCL10, FAS, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, ME2, GZMB, CXCL11, RBM25, AK2, hCAP-D3, CDC42BPA, DDAH2, RBBP4, AGPAT5, MARCH5, DKFZp762E1312, SEC10L1, FLJ13220, PBK, BRIP1, TRMT5, KLHL24, STAT1	81%	76%	88%	79%	85%	72%
285	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, ARF6, CDC40, SLC4A4, CXCL9, CXCL10, FAS, CHEK1, TRIM25, SLC25A11, C1QBP, C17orf25, CA2, ME2, GZMB, IFT20, RBBP4, CXCL11, RBM25, AK2, NUP210, SOCS6, DDAH2, AGPAT5, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, PBK, HNRPD, TRMT5	85%	86%	92%	76%	81%	72%
286	WARS, EPAS1, STAT1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, DLGAP4, TYMS, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, FAS, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, HNRPD, ME2, CXCL11, IFT20, RBBP4, SLC4A4, RBM25, AK2, NUP210, SOCS6, CDC42BPA, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, TRMT5	73%	76%	81%	79%	73%	66%
287	WARS, SFRS2, EPAS1, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, TYMS, CTSS, ARF6, MAD2L1, CDC40, CXCL9, CXCL10, FAS, TRIM25, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, IFT20, TLK1, SLC4A4, RBM25, CAMSAP1L1, hCAP-D3, RBBP4, BAZ1A, AGPAT5, MARCH5, FLJ13220, PBK, TRMT5, ETNK1, STAT1	88%	90%	88%	79%	77%	79%
288	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, ARF6, CDC40, CXCL9, CXCL10, FAS, SLC25A11, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, IFT20, SLC4A4, RBM25, AK2, SOCS6, DDAH2, RBBP4, BAZ1A, DKFZp762E1312, FLJ13220, PBK, PSAT1, BRIP1, ETNK1	81%	90%	85%	76%	85%	69%
289	WARS, SFRS2, EPAS1, STAT1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, CDC40, CXCL9, IRF8, RABIF, CXCL10, FAS, TRIM25, SLC25A11, C1QBP, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, TLK1, RBM25, CAMSAP1L1, hCAP-D3, CDC42BPA, BAZ1A, AGPAT5, MARCH5, DKFZp762E1312, FLJ13220, PBK, PSAT1, BRIP1, KLHL24	77%	86%	88%	83%	73%	69%
290	WARS, SFRS2, EIF4E, PRDX3, MTHFD2,	85%	83%	85%	83%	81%	72%

		SVM		3NN		1NN	
	PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, ARF6, MAD2L1, SLC4A4, CXCL9, IRF8, CXCL10, FAS, TRIM25, SLC25A11, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, GZMB, IFT20, RBBP4, CXCL11, RBM25, AK2, BRRN1, CDC42BPA, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, HNRPD, BRIP1, KLHL24, ETNK1, STAT1						
291	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, ARF6, MAD2L1, CDC40, CXCL9, CXCL10, FAS, PLK4, CHEK1, KITLG, SLC25A11, NDUFA9, KPNB1, CA2, ME2, FUT4, CXCL11, GZMB, TLK1, SLC4A4, RBM25, ATP5A1, DDAH2, MARCH5, DKFZp762E1312, PBK, BRIP1, KLHL24	85%	86%	92%	79%	85%	86%
292	WARS, SFRS2, EPAS1, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, CXCL9, IRF8, RABIF, CXCL10, FAS, PLK4, TRIM25, C1QBP, NDUFA9, SLC25A11, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, SLC4A4, RBM25, ATP5A1, CDC42BPA, DDAH2, MARCH5, DKFZp762E1312, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, ETNK1, UBD, GTSE1, MYO1B, TMED5, RBBP8	81%	83%	85%	72%	69%	76%
293	HNRPD, WARS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, MAD2L1, CXCL9, IRF8, CXCL10, FAS, SLC25A11, NDUFA9, WHSC1, ME2, CXCL11, IFT20, RBBP4, SLC4A4, RBM25, AK2, NUP210, CAMSAP1L1, ATP5A1, DDAH2, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, STAT1, FLJ22471, LAPT5, DEPDC1, INDO, YDD19	81%	79%	77%	79%	69%	72%
294	WARS, SFRS2, PSME2, GMFB, DLGAP4, TYMS, TES, CDC40, CXCL9, CXCL10, HNRPA3P1, C1QBP, SLC25A11, WHSC1, C17orf25, CA2, ME2, TLK1, SLC4A4, CXCL11, AK2, hCAP-D3, DDAH2, FAS, AGPAT5, FLJ10534, PSAT1, HNRPD, BRIP1, KLHL24, STAT1, IVD	73%	79%	88%	79%	85%	76%
295	WARS, SFRS2, EPAS1, EIF4E, SFPQ, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, CDC40, SLC4A4, CXCL9, IRF8, RABIF, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, TRIM25, SLC25A11, NDUFA9, KPNB1, WHSC1, CA2, HNRPD, ME2, GZMB, IFT20, CXCL11, RBM25, hCAP-D3, BAZ1A, AGPAT5, MARCH5, PBK, BRIP1, KLHL24, ETNK1, STAT1, TACC3, IL2RB, AK2	85%	86%	85%	76%	73%	76%
296	HNRPD, WARS, SFRS2, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CDC40, SLC4A4, CXCL9, CXCL10, HNRPA3P1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, FUT4, CXCL11, IFT20, RBBP4, RBM25, AK2, DDAH2, FAS, FLJ10534, SEC10L1, FLJ13220, PBK, BRIP1,	81%	86%	92%	86%	85%	76%

		SVM		3NN		1NN	
	TRMT5, KLHL24, STAT1, FEM1C, ITGB5						
297	WARS, EIF4E, PSME2, GMFB, DLGAP4, TYMS, USP4, CDC40, SLC4A4, CXCL10, TRIM25, C1QBP, NDUFA9, SLC25A11, CA2, ME2, CXCL11, RBM25, CAMSAP1L1, ATP5A1, SOCS6, FLJ10534, DKFZp762E1312, SEC10L1, HNRPD, STAT1, LMAN1, LOC92249, NFS1	77%	79%	73%	86%	81%	86%
298	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, DCK, MAD2L1, CXCL9, GTSE1, CXCL10, FAS, HNRPA3P1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, FUT4, CXCL11, SLC4A4, RBM25, CDC42BPA, DDAH2, RBBP4, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, BRIP1, ETNK1, STAT1, ZWINT, ZG16, TPRT, PURA	81%	76%	81%	72%	77%	76%
299	HNRPD, WARS, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, MAD2L1, SLC4A4, CXCL9, CXCL10, FAS, NDUFA9, WHSC1, ME2, GZMB, TLK1, CXCL11, RBM25, AGPAT5, FLJ13220, KLHL24, SLAMF8, PBX1, CAP350	85%	79%	81%	69%	77%	72%
300	HNRPD, WARS, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, DCK, ARF6, CXCL9, CXCL10, FAS, TRIM25, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, ME2, FUT4, CXCL11, GZMB, IFT20, SLC4A4, RBM25, BRRN1, ATP5A1, SFRS2, DDAH2, RBBP4, SEC10L1, FLJ13220, PBK, PSAT1, KLHL24, ETNK1, FLJ20273, VAPB, LARP4, CD74, BTN2A2	77%	79%	85%	76%	85%	79%
301	WARS, SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, CHEK1, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, HNRPD, ME2, CXCL11, GZMB, RBBP4, RBM25, CAMSAP1L1, BRRN1, CDC42BPA, AGPATS, FLJ10534, SEC10L1, PBK, BRIP1, KLHL24, ETNK1, STAT1, H2AFZ, PGGT1B	81%	76%	88%	69%	77%	69%
302	WARS, EIF4E, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, CDC40, SLC4A4, CXCL10, FAS, CHEK1, HNRPA3P1, KITLG, SLC25A11, CA2, ME2, FUT4, CXCL11, IFT20, TLK1, RBM25, AK2, SFRS2, TRMT5, KLHL24, STAT1, FKBP9	85%	86%	88%	83%	81%	79%
303	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, DLGAP4, TYMS, TES, MAD2L1, CDC40, CXCL9, CXCL10, FAS, PLK4, CHEK1, TRIM25, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, GZMB, RBBP4, SLC4A4, RBM25, CAMSAP1L1, DDAH2, AGPAT5, MARCH5, SEC10L1, PBK, BRIP1, TRMT5, ETNK1, STAT1, CHAF1A, ITGB5, HNRPD	77%	79%	88%	79%	81%	76%
304	HNRPD, WARS, SFRS2, MTHFD2, PSME2, TK1,	81%	79%	81%	83%	81%	72%

		SVM		3NN		1NN	
	GMFB, DLGAP4, TYMS, LMAN1, DCK, MAD2L1, CXCL9, CXCL10, FAS, KITLG, KPNB1, SLC25A11, WHSC1, ME2, CXCL11, IFT20, SLC4A4, RBM25, BRRN1, ATP5A1, CDC42BPA, BAZ1A, MARCH5, SEC10L1, PBK, PSAT1, BRIP1, KLHL24, STAT1, RBM28						
305	HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CDC40, CXCL9, CXCL10, PLK4, HNRPA3P1, TRIM25, SLC25A11, KPNB1, ME2, SLC4A4, RBM25, hCAP-D3, FAS, RBBP4, BAZ1A, DKFZp762E1312, SEC10L1, KLHL24, STAT1, PSME1, BUB3, SOCS6	77%	83%	77%	83%	88%	79%
306	WARS, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, ARF6, SLC4A4, CXCL9, RABIF, CXCL10, FAS, PLK4, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, CA2, HNRPD, ME2, FUT4, CXCL11, IFT20, RBM25, CAMSAP1L1, SOCS6, DDAH2, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, ETNK1, RPS2, CHAF1A, LGALS3BP	73%	79%	85%	79%	81%	76%
307	WARS, SFRS2, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CXCL9, GTSE1, RABIF, CXCL10, HNRPA3P1, TRIM25, KITLG, C1QBP, NDUFA9, WHSC1, CA2, ME2, FUT4, RBM25, hCAP-D3, ATP5A1, DDAH2, FAS, STAT1, CDCA8, HMGB3	85%	93%	85%	83%	81%	83%
308	WARS, MTHFD2, PSME2, GBP1, MAD2L1, CXCL9, IRF8, CXCL10, CHEK1, KITLG, ME2, CXCL11, IFT20, RBM25, AK2, ATP5A1, FAS, AGPAT5, SEC10L1, FLJ13220, HNRPD, KLHL24, ETNK1, STAT1, ECGF1	81%	76%	81%	83%	77%	69%
309	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CDC40, SLC4A4, CXCL9, GTSE1, CXCL10, FAS, PLK4, CHEK1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, ME2, FUT4, CXCL11, IFT20, RBBP4, RBM25, AK2, NUP210, BRRN1, CDC42BPA, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, TRMT5, ETNK1, STAT1, SELL, GART	81%	83%	88%	76%	73%	76%
310	WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, ARF6, CDC40, CXCL9, GTSE1, CXCL10, FAS, PLK4, CHEK1, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, ME2, FUT4, CXCL11, IFT20, RBBP4, SLC4A4, RBM25, hCAP-D3, DDAH2, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PSAT1, HNRPD, BRIP1, KLHL24, ETNK1, WFDC1, YTHDF3, K-ALPHA-1, PAWR	73%	72%	85%	83%	69%	72%
311	HNRPD, WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, LMAN1, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, PLK4, HNRPA3P1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2,	81%	83%	88%	83%	73%	79%

		SVM		3NN		1NN	
	FUT4, CXCL11, IFT20, RBM25, BRRN1, CDC42BPA, FAS, AGPAT5, DKFZp762E1312, SEC10L1, FLJ13220, PBK, BRIP1, KLHL24, SMC2L1, IRF1						
312	WARS, EPAS1, STAT1, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, CXCL9, IRF8, CXCL10, KITLG, C1QBP, NDUFA9, SLC25A11, ME2, SLC4A4, RBM25, hCAP-D3, SOCS6, FAS, RBBP4, BAZ1A, AGPAT5, PSAT1, BRIP1, ETNK1, LPP, PPM1D, LAP3, TXND	73%	79%	81%	79%	77%	76%
313	WARS, EIF4E, PRDX3, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, CXCL10, SLC25A11, C1QBP, NDUFA9, KPNB1, C17orf25, CA2, ME2, RBBP4, SLC4A4, RBM25, FAS, SEC10L1, PBK, HNRPD, ETNK1, STAT1, KIAA0828, SPCS3, NARS	77%	76%	85%	79%	77%	83%
314	HNRPD, WARS, SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, GZMB, CXCL11, RBM25, CAMSAP1L1, CDC42BPA, FLJ10534, MARCH5, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, STAT1, NUP160, HLA-E	81%	76%	85%	79%	81%	79%
315	WARS, EIF4E, SFPQ, PRDX3, MTHFD2, MCM6, GMFB, DLGAP4, TYMS, CDC40, CXCL9, CXCL10, CHEK1, HNRPA3P1, C1QBP, SLC25A11, WHSC1, CA2, ME2, CXCL11, SLC4A4, RBM25, AK2, SFRS2, FAS, MARCH5, FLJ13220, KLHL24, ETNK1, STAT1, SOCS1	73%	79%	85%	83%	77%	72%
316	WARS, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, USP4, DCK, CDC40, CXCL9, CXCL10, FAS, SLC25A11, C1QBP, KPNB1, WHSC1, CA2, ME2, FUT4, CXCL11, RBM25, DDAH2, SEC10L1, PBK, HNRPD, TRMT5, KLHL24, STAT1, PPA2, GTSE1, TNFRSF11A, RYK	81%	83%	81%	79%	85%	76%
317	WARS, SFRS2, EPAS1, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, PLK4, CHEK1, SLC25A11, C1QBP, KPNB1, WHSC1, CA2, ME2, GZMB, TLK1, CXCL11, RBM25, hCAP-D3, FAS, RBBP4, FLJ10534, MARCH5, HNRPD, STAT1, KIF2C, HAT1	77%	90%	85%	79%	85%	83%
318	WARS, EIF4E, PRDX3, PSME2, GBP1, TYMS, LMAN1, CXCL9, CXCL10, FAS, CHEK1, SLC25A11, NDUFA9, CA2, ME2, RBBP4, TLK1, CXCL11, SLC4A4, BRRN1, PBK, HNRPD, STAT1, TGFb2	69%	83%	77%	86%	81%	83%
319	WARS, SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, DLGAP4, TYMS, LMAN1, SLC4A4, CXCL9, CXCL10, PLK4, SLC25A11, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, RBM25, NUP210, CAMSAP1L1, ATP5A1, FAS, RBBP4, AGPAT5, FLJ10534, PBK, PSAT1, HNRPD, STAT1, HLA-	92%	90%	88%	79%	73%	79%

	DMB	SVM		3NN		1NN	
320	SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, TRIM25, SLC25A11, C1QBP, NDUFA9, CA2, ME2, CXCL11, SLC4A4, RBM25, ATP5A1, FLJ13220, PSAT1, BRIP1, STAT1, RIF1, SCC-112, U2AF2	73%	86%	73%	76%	81%	79%
321	HNRPD, WARS, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, DCK, CDC40, SLC4A4, CXCL9, CXCL10, FAS, PLK4, TRIM25, SLC25A11, NDUFA9, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, IFT20, RBM25, AK2, BRRN1, SFRS2, DDAH2, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, CD8A, GTF2H2, C14orf156, BIRC5	77%	83%	81%	79%	81%	76%
322	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, CXCL9, RABIF, CXCL10, FAS, TRIM25, NDUFA9, KPNB1, WHSC1, CA2, ME2, RBBP4, SLC4A4, RBM25, NUP210, hCAP-D3, SOCS6, BAZ1A, PBK, PSAT1, BRIP1, KLHL24, MAX, HADHSC	77%	79%	81%	83%	88%	76%
323	WARS, SFRS2, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, ARF6, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, TRIM25, SLC25A11, C1QBP, NDUFA9, CA2, ME2, CXCL11, GZMB, SLC4A4, RBM25, AK2, NUP210, BRRN1, ATP5A1, DDAH2, FAS, MARCH5, SEC10L1, PBK, HNRPD, ETNK1, STAT1, AP1G1	88%	83%	88%	76%	85%	79%
324	WARS, STAT1, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, ARF6, MAD2L1, CDC40, CXCL9, CXCL10, FAS, PLK4, TRIM25, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, HNRPD, ME2, FUT4, CXCL11, RBM25, CAMSAP1L1, hCAP-D3, BRRN1, ATP5A1, SOCS6, RBBP4, SEC10L1, PBK, BRIP1, KLHL24, ETNK1, MIS12, RBMS3, RUNX1, TTC19	73%	76%	81%	83%	85%	86%
325	HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, MAD2L1, CXCL10, FAS, HNRPA3P1, NDUFA9, SLC25A11, CA2, ME2, GZMB, CXCL11, hCAP-D3, RBBP4, BAZ1A, AGPAT5, FLJ10534, ETNK1, STAT1, JAK2, RNGTT	85%	76%	92%	76%	85%	76%
326	WARS, PAICS, EIF4E, SFPQ, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, TES, ARF6, CDC40, CXCL9, RABIF, CXCL10, FAS, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, FUT4, CXCL11, SLC4A4, RBM25, CAMSAP1L1, hCAP-D3, CDC42BPA, AGPAT5, PBK, PSAT1, HNRPD, BRIP1, STAT1, CDC2, ATP13A3, ZC3HAV1, FANCA	73%	76%	81%	79%	77%	66%
327	WARS, EIF4E, MTHFD2, PSME2, TK1, GMFB, TYMS, CXCL9, CXCL10, FAS, SLC25A11,	77%	79%	85%	79%	69%	79%

		SVM		3NN		1NN	
	WHSC1, C17orf25, CA2, ME2, RBM25, NUP210, BAZ1A, FLJ10534, MARCH5, SEC10L1, HNRPD, BRIP1, KLHL24, ETNK1, STAT1, SGPP1, CLCA4, FOXM1						
328	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, TES, LMAN1, DCK, ARF6, CDC40, CXCL9, CXCL10, FAS, PLK4, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, TLK1, CXCL11, SLC4A4, RBM25, AK2, hCAP-D3, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, KLHL24, ETNK1, MCAM, BUB3, YTHDC2, APOL6, NUP210	88%	83%	85%	79%	81%	76%
329	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, USP4, TES, LMAN1, ARF6, CDC40, CXCL9, IRF8, GTSE1, RABIF, CXCL10, FAS, HNRPA3P1, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, SLC4A4, RBM25, AK2, SOCS6, CDC42BPA, RBBP4, AGPAT5, MARCH5, SEC10L1, PSAT1, BRIP1, KLHL24, ETNK1, STAT1, CACNB3, BUB1B, ESPL1, H2AFZ	88%	86%	85%	76%	77%	72%
330	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, USP4, CXCL9, CXCL10, NDUFA9, KPNB1, SLC25A11, C17orf25, ME2, CXCL11, RBBP4, hCAP-D3, ATP5A1, FAS, AGPAT5, FLJ10534, PBK, PSAT1, HNRPD, BRIP1, ETNK1, STAT1, LHCGR	77%	79%	73%	79%	65%	69%
331	WARS, EIF4E, MTHFD2, PSME2, GBP1, DLGAP4, TYMS, CTSS, CDC40, SLC4A4, IRF8, CXCL10, FAS, TRIM25, SLC25A11, C1QBP, NDUFA9, ME2, FUT4, RBBP4, TLK1, RBM25, AK2, FLJ10534, MARCH5, FLJ13220, ETNK1, STAT1, C18orf9, C10orf3, AURKB, IFI16, PTPRC	69%	72%	73%	86%	81%	76%
332	HNRPD, WARS, PAICS, EIF4E, PRDX3, MTHFD2, TK1, GMFB, TYMS, CTSS, CXCL9, FAS, KITLG, NDUFA9, SLC25A11, C17orf25, ME2, FUT4, CXCL11, IFT20, SLC4A4, RBM25, CDC42BPA, SFRS2, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, STAT1, AK2	77%	83%	88%	76%	77%	72%
333	WARS, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, CXCL9, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, SLC25A11, WHSC1, ME2, CXCL11, IFT20, SLC4A4, RBM25, BAZ1A, AGPAT5, DKFZp762E1312, SEC10L1, PBK, HNRPD, BRIP1, ETNK1, STAT1, TOP2A, NUSAP1, USP14, PRF1, SCYL2	88%	86%	85%	66%	65%	79%
334	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CXCL10, FAS, WHSC1, C17orf25, ME2, IFT20, TLK1, CXCL11, SLC4A4, RBM25, AK2, CDC42BPA, HNRPD, ETNK1, STAT1, HLA-DRA, POLE2, PAICS, NUP210	88%	93%	88%	86%	73%	83%

		SVM		3NN		1NN	
335	HNRPD, WARS, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, CDC40, CXCL9, PLK4, SLC25A11, WHSC1, C17orf25, CA2, ME2, IFT20, CXCL11, RBM25, hCAP-D3, FAS, FLJ10534, DKFZp762E1312, SEC10L1, ETNK1, STAT1, WDHD1	81%	83%	92%	79%	88%	83%
336	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GBP1, GMFB, DLGAP4, TYMS, USP4, CTSS, MAD2L1, CXCL9, IRF8, GTSE1, CXCL10, FAS, CHEK1, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, TLK1, SLC4A4, RBM25, hCAP-D3, BAZ1A, MARCH5, DKFZp762E1312, SEC10L1, FLJ13220, PSAT1, HNRPD, BRIP1, KLHL24, ETNK1, STAT1, CUTL1, FAM64A	77%	86%	85%	76%	81%	76%
337	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CTSS, LMAN1, CDC40, CXCL9, IRF8, SLC25A11, C1QBP, NDUFA9, CA2, ME2, FUT4, CXCL11, RBM25, AK2, CDC42BPA, FAS, RBBP4, AGPAT5, MARCH5, SEC10L1, PBK, HNRPD, BRIP1, TRMT5, STAT1, TMEPA1, ZNF304, KLF7	77%	79%	92%	69%	92%	79%
338	WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, CDC40, SLC4A4, CXCL9, RAB1F, CXCL10, FAS, CHEK1, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, HNRPD, ME2, GZMB, RBBP4, CXCL11, RBM25, AK2, NUP210, BRRN1, ATP5A1, CDC42BPA, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, MCM10, HLA-DMA, RABEP1, YARS, P15RS	81%	93%	92%	79%	81%	72%
339	WARS, STAT1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, MAD2L1, FAS, PLK4, TRIM25, KITLG, SLC25A11, KPNB1, WHSC1, ME2, CXCL11, SLC4A4, RBM25, AK2, AGPAT5, KLHL24, CDKN1C, RFC5, FEN1, TFRC	73%	79%	77%	79%	69%	83%
340	WARS, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, LMAN1, DCK, CDC40, CXCL9, IRF8, GTSE1, CXCL10, FAS, PLK4, TRIM25, SLC25A11, C1QBP, NDUFA9, C17orf25, CA2, ME2, FUT4, CXCL11, SLC4A4, RBM25, AK2, CDC42BPA, RBBP4, BAZ1A, AGPAT5, FLJ10534, SEC10L1, FLJ13220, PBK, PSAT1, HNRPD, KLHL24, ETNK1, STAT1, SPFH1, SP3, CDC20, RAP1GDS1, M11S1	73%	79%	85%	83%	81%	72%
341	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, ARF6, SLC4A4, CXCL9, CXCL10, FAS, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, HNRPD, ME2, GZMB, TLK1, CXCL11, RBM25, AK2, BRRN1, DDAH2, AGPAT5, FLJ10534, SEC10L1, FLJ13220, PBK, PSAT1, TRMT5, KLHL24, ETNK1, STAT1, AVEN, HLA-DPA1, CD59	96%	90%	81%	72%	73%	72%

			SVM		3NN		1NN	
342		WARS, SFRS2, EPAS1, PRDX3, MTHFD2, TK1, GMFB, DLGAP4, TYMS, TES, LMAN1, SLC4A4, GTSE1, CXCL10, FAS, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, FUT4, CXCL11, RBM25, CDC42BPA, RBBP4, BAZ1A, AGPAT5, MARCH5, SEC10L1, BRIP1, TRMT5, KLHL24, STAT1, MPP5, EIF4A1, TRIP13, APOL3	81%	83%	92%	79%	85%	79%
343		WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, CDC40, CXCL9, CXCL10, FAS, CHEK1, HNRPAP3P1, SLC25A11, C1QBP, WHSC1, CA2, HNRPD, ME2, CXCL11, TLK1, SLC4A4, RBM25, AK2, ATP5A1, SOCS6, BAZ1A, AGPAT5, MARCH5, DKFZp762E1312, SEC10L1, PBK, BRIP1, KLHL24, STAT1, GPR161, SGCD	69%	79%	85%	83%	88%	76%
344		WARS, SFRS2, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, TYMS, USP4, MAD2L1, CDC40, SLC4A4, CXCL10, FAS, CHEK1, KITLG, NDUFA9, KPNB1, SLC25A11, CA2, HNRPD, ME2, FUT4, GZMB, CXCL11, RBM25, BRRN1, CDC42BPA, MARCH5, KLHL24, ETNK1, STAT1, ADH1C, WHSC1, HIP2	77%	86%	92%	79%	88%	86%
345		WARS, SFRS2, EPAS1, PAICS, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, DCK, ARF6, SLC4A4, CXCL9, RABIF, CXCL10, FAS, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, HNRPD, ME2, FUT4, GZMB, IFT20, CXCL11, RBM25, AK2, CAMSAP1L1, BRRN1, DDAH2, RBBP4, AGPAT5, PBK, PSAT1, BRIP1, KLHL24, STAT1, XPO7, TRAFD1, YTHDC2, RNF138	81%	86%	88%	83%	88%	72%
346		WARS, SFRS2, EPAS1, PRDX3, MTHFD2, PSME2, MCM6, DLGAP4, TYMS, USP4, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, SLC25A11, C1QBP, NDUFA9, WHSC1, CA2, ME2, CXCL11, RBM25, NUP210, BRRN1, DDAH2, RBBP4, BAZ1A, DKFZp762E1312, SEC10L1, PSAT1, HNRPD, KLHL24, ETNK1, STAT1, ACADSB, AMIGO2, CCL5, KIAA0286	81%	83%	85%	76%	81%	72%
347		SFRS2, EPAS1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, DCK, ARF6, CDC40, CXCL9, GTSE1, CXCL10, FAS, SLC25A11, KPNB1, WHSC1, CA2, HNRPD, ME2, CXCL11, SLC4A4, RBM25, AK2, ATP5A1, CDC42BPA, BAZ1A, FLJ10534, FLJ13220, PBK, BRIP1, KLHL24, STAT1, PSMB9, HBP1, CPD, AIM2	81%	83%	92%	79%	85%	79%
348		WARS, EPAS1, EIF4E, PRDX3, MTHFD2, MCM6, GMFB, DLGAP4, CDC40, CXCL10, CHEK1, KPNB1, CA2, ME2, RBBP4, CXCL11, SLC4A4, RBM25, CDC42BPA, FAS, FLJ10534, SEC10L1, FLJ13220, HNRPD, STAT1, TTK, YBX2, BCL7C, SI	73%	86%	73%	86%	73%	79%
349		WARS, SFRS2, STAT1, EIF4E, PRDX3, MTHFD2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, CTSS, CXCL9, CXCL10, FAS, SLC25A11,	88%	79%	96%	69%	88%	76%

		SVM		3NN		1NN	
	KPNB1, C17orf25, ME2, GZMB, SLC4A4, NUP210, hCAP-D3, HNRPD, TRMT5, KLHL24, PRO2730						
350	EPAS1, EIF4E, PRDX3, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, SLC4A4, CXCL10, HNRPA3P1, KITLG, SLC25A11, WHSC1, CA2, HNRPD, ME2, FUT4, RBM25, CAMSAP1L1, FAS, AGPAT5, FLJ10534, MARCH5, SEC10L1, PSAT1, BRIP1, KLHL24, STAT1, MCM2, GGA2, SPAG5, VRK1, EBNA1BP2	73%	83%	92%	79%	81%	76%
351	WARS, SFRS2, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, LMAN1, MAD2L1, SLC4A4, CXCL9, RABIF, CXCL10, FAS, CHEK1, KITLG, SLC25A11, NDUFA9, C17orf25, CA2, ME2, IFT20, CXCL11, RBM25, hCAP-D3, CDC42BPA, AGPAT5, MARCH5, HNRPD, KLHL24, STAT1, MYCBP, GBP1, ITGA4, PBXIP1, CENPA	85%	76%	88%	83%	88%	76%
352	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CTSS, ARF6, CDC40, SLC4A4, CXCL9, CXCL10, FAS, TRIM25, KITLG, NDUFA9, SLC25A11, C17orf25, CA2, ME2, FUT4, GZMB, CXCL11, BRRN1, SOCS6, CDC42BPA, BAZ1A, DKFZp762E1312, SEC10L1, PBK, PSAT1, BRIP1, TRMT5, ETNK1, STAT1, PPIG, NUP98, FUSIP1, SH3GLB1	77%	79%	92%	76%	77%	76%
353	WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, DCK, CDC40, CXCL9, GTSE1, RABIF, CXCL10, KITLG, C1QBP, NDUFA9, SLC25A11, C17orf25, CA2, ME2, GZMB, IFT20, SLC4A4, RBM25, DDAH2, FAS, AGPAT5, FLJ10534, MARCH5, FLJ13220, PBK, HNRPD, KLHL24, ETNK1, STAT1, C5orf4, KIF23, SSPN	85%	83%	88%	79%	73%	72%
354	HNRPD, WARS, SFRS2, STAT1, EIF4E, SFPQ, PSME2, GBP1, GMFB, DLGAP4, TYMS, CTSS, ARF6, CDC40, SLC4A4, CXCL10, FAS, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, IFT20, RBBP4, CXCL11, RBM25, NUP210, BAZ1A, AGPAT5, MARCH5, PBK, KLHL24, MAP2K4, UBE2L6	85%	83%	92%	83%	81%	76%
355	HNRPD, WARS, EIF4E, MTHFD2, MCM6, DLGAP4, TYMS, CDC40, CXCL9, CXCL10, FAS, TRIM25, C1QBP, ME2, CXCL11, RBM25, AK2, CDC42BPA, SEC10L1, PBK, KLHL24, ETNK1, STAT1, DNA2L, TAP2, SYNPO	88%	90%	73%	79%	73%	76%
356	HNRPD, WARS, EIF4E, MTHFD2, GBP1, GMFB, DLGAP4, TYMS, USP4, DCK, CDC40, CXCL9, IRF8, GTSE1, CXCL10, HNRPA3P1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, FUT4, CXCL11, RBBP4, TLK1, SLC4A4, RBM25, AK2, NUP210, ATP5A1, SFRS2, FAS, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, KLHL24, ETNK1, STAT1, EXOSC9, KIF15, FBXL14, ABCE1	69%	83%	85%	83%	81%	79%

		SVM		3NN		1NN	
357	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, LMAN1, CDC40, SLC4A4, CXCL9, IRF8, CXCL10, FAS, PLK4, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, RBM25, AK2, CDC42BPA, RBBP4, AGPAT5, FLJ10534, SEC10L1, FLJ13220, PBK, BRIP1, STAT1, CCL5, FLJ20516, BUB1, MRPL42	85%	86%	88%	79%	81%	72%
358	HNRPD, WARS, EIF4E, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, USP4, ARF6, MAD2L1, CDC40, SLC4A4, CXCL9, CXCL10, FAS, PLK4, C1QBP, SLC25A11, WHSC1, CA2, ME2, CXCL11, RBBP4, RBM25, AK2, CDC42BPA, BAZ1A, AGPAT5, SEC10L1, PBK, PSAT1, BRIP1, ETNK1, STAT1, GZMA, EIF4A1, PSMA3, CD2, CCNB1	77%	83%	85%	79%	81%	69%
359	WARS, PSME2, GMFB, DLGAP4, TYMS, CDC40, CXCL9, GTSE1, CXCL10, FAS, TRIM25, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, ME2, CXCL11, RBM25, CAMSAP1L1, AGPAT5, FLJ13220, PSAT1, TRMT5, KLHL24, ETNK1, STAT1, RRM1, CXCL13, NKG7, MGAT2, LCP2	77%	79%	81%	76%	77%	66%
360	HNRPD, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CXCL9, CXCL10, FAS, CHEK1, HNRPA3P1, KPNB1, SLC25A11, WHSC1, C17orf25, ME2, CXCL11, IFT20, TLK1, SLC4A4, RBM25, CDC42BPA, BAZ1A, AGPAT5, MARCH5, SEC10L1, PBK, PSAT1, KLHL24, C1orf112, TCF7L2, RARRES3, SERBP1, TBX2	88%	90%	85%	79%	73%	76%
361	HNRPD, WARS, EIF4E, SFPQ, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CTSS, ARF6, CXCL9, IRF8, RAB1F, CXCL10, FAS, PLK4, HNRPA3P1, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, ME2, CXCL11, IFT20, TLK1, RBM25, AK2, NUP210, hCAP-D3, CDC42BPA, DDAH2, AGPAT5, FLJ10534, SEC10L1, PBK, KLHL24, STAT1, PTGER3, HCAP-G	81%	83%	88%	76%	77%	69%
362	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, CTSS, LMAN1, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, CXCL11, GZMB, IFT20, RBBP4, SLC4A4, RBM25, hCAP-D3, BRRN1, FAS, FLJ10534, SEC10L1, PSAT1, KLHL24, NUP50, MCCC2, RABGEF1	81%	90%	85%	79%	77%	83%
363	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, GMFB, DLGAP4, TYMS, USP4, CDC40, CXCL9, CXCL10, FAS, HNRPA3P1, TRIM25, C1QBP, SLC25A11, ME2, CXCL11, IFT20, RBM25, AK2, hCAP-D3, CDC42BPA, RBBP4, BAZ1A, DKFZp762E1312, SEC10L1, PBK, HNRPD, ETNK1, STAT1, PSMA6, ZNF345, UBAP1	92%	90%	77%	83%	69%	72%
364	WARS, EPAS1, PAICS, EIF4E, MTHFD2, PSME2, GMFB, TYMS, TES, LMAN1, SLC4A4,	77%	86%	88%	76%	85%	76%

		SVM		3NN		1NN	
	CXCL9, RABIF, FAS, CHEK1, HNRPA3P1, TRIM25, SLC25A11, C1QBP, WHSC1, ME2, CDC42BPA, FLJ10534, SEC10L1, PBK, STAT1, ZBTB20, NAT2						
365	WARS, SFRS2, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, MAD2L1, CXCL9, CXCL10, FAS, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, ME2, IFT20, SLC4A4, RBM25, AK2, CDC42BPA, DDAH2, PSAT1, HNRPD, BRIP1, KLHL24, ETNK1, STAT1, HMMR, CTSL	85%	86%	85%	76%	81%	69%
366	WARS, EIF4E, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, CXCL9, CXCL10, FAS, TRIM25, WHSC1, C17orf25, CA2, ME2, FUT4, IFT20, CXCL11, SLC4A4, RBM25, CDC42BPA, RBBP4, AGPAT5, MARCH5, FLJ13220, PBK, HNRPD, TRMT5, KLHL24, ETNK1, STAT1, PBX1, ZDHHC3, CLEC2D	88%	83%	85%	72%	69%	76%
367	HNRPD, WARS, SFRS2, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, LMAN1, ARF6, CDC40, CXCL9, IRF8, GTSE1, RABIF, CXCL10, FAS, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, TLK1, SLC4A4, CXCL11, RBM25, hCAP-D3, DDAH2, RBBP4, BAZ1A, AGPAT5, SEC10L1, PBK, TRMT5, KLHL24, ETNK1, STAT1, NEK2, KIAA0841, RNMT, C4orf16	73%	83%	85%	83%	73%	66%
368	WARS, SFRS2, EPAS1, STAT1, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, TRIM25, C1QBP, KPNB1, SLC25A11, WHSC1, CA2, HNRPD, ME2, FUT4, RBBP4, CXCL11, RBM25, NUP210, SOCS6, CDC42BPA, FLJ10534, MARCH5, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, APOL1, PDGFA, FBXO5, CACYBP, ABCE1	73%	83%	81%	79%	81%	72%
369	WARS, SFRS2, EPAS1, STAT1, PAICS, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, DCK, CDC40, SLC4A4, CXCL9, GTSE1, CXCL10, PLK4, SLC25A11, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, FUT4, IFT20, TLK1, CXCL11, RBM25, AK2, CDC42BPA, DDAH2, FAS, BAZ1A, AGPAT5, SEC10L1, FLJ13220, PBK, PSAT1, HNRPD, BRIP1, BMP5, ETNK1, PTGER3, VAMP4, CCNB2	88%	86%	81%	83%	81%	79%
370	WARS, EPAS1, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, CTSS, MAD2L1, CDC40, SLC4A4, CXCL9, GTSE1, RABIF, CXCL10, FAS, PLK4, TRIM25, KITLG, SLC25A11, C1QBP, CA2, ME2, CXCL11, RBBP4, TLK1, RBM25, AK2, BRRN1, SFRS2, BAZ1A, AGPAT5, FLJ13220, PSAT1, HNRPD, BRIP1, KLHL24, STAT1, TAP1, LCP2, ITGAL, CCNT2, FYB	81%	79%	81%	79%	81%	76%
371	HNRPD, WARS, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, DCK,	88%	79%	85%	79%	73%	72%

		SVM	3NN		1NN	
	ARF6, CXCL9, CXCL10, C1QBP, NDUFA9, SLC25A11, ME2, IFT20, CXCL11, RBM25, AK2, BRRN1, ATP5A1, CDC42BPA, SFRS2, FAS, BAZ1A, AGPAT5, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, STAT1, NEIL3, PCDHGC3, NUSAP1					
372	SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, TES, DCK, MAD2L1, CXCL9, IRF8, CXCL10, FAS, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, HNRPD, ME2, CXCL11, IFT20, RBBP4, SLC4A4, RBM25, AK2, CDC42BPA, DDAH2, BAZ1A, AGPAT5, FLJ10534, MARCH5, SEC10L1, FLJ13220, PBK, KLHL24, ETNK1, STAT1, TNFAIP2	77%	79%	81%	83%	85% 79%
373	WARS, STAT1, EIF4E, SFPQ, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, ARF6, CDC40, SLC4A4, CXCL9, RABIF, CXCL10, FAS, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, FUT4, CXCL11, GZMB, TLK1, RBM25, AK2, FLJ10534, FLJ13220, HNRPD, BRIP1, GEMIN4, PTPRC	85%	86%	92%	79%	81% 72%
374	WARS, SFRS2, EPAS1, PAICS, EIF4E, MTHFD2, PSME2, MCM6, GBP1, GMFB, DLGAP4, TYMS, TES, CTSS, DCK, MAD2L1, CDC40, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, FAS, PLK4, TRIM25, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, CA2, ME2, CXCL11, RBM25, AK2, hCAP-D3, CDC42BPA, DDAH2, AGPAT5, MARCH5, SEC10L1, FLJ13220, PBK, HNRPD, BRIP1, KLHL24, STAT1, APOBEC3G, KIF11, GBP2, RAB6A, ITGB5	77%	90%	81%	76%	85% 76%
375	WARS, EIF4E, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, MAD2L1, CDC40, CXCL9, CXCL10, FAS, SLC25A11, C1QBP, NDUFA9, ME2, FUT4, CXCL11, RBM25, hCAP-D3, BRRN1, MARCH5, SEC10L1, FLJ13220, HNRPD, STAT1, AP2B1, KIF2, K-ALPHA-1, GPHN	73%	72%	85%	90%	81% 83%
376	HNRPD, WARS, SFRS2, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, CXCL9, IRF8, RABIF, CXCL10, FAS, HNRPA3P1, KITLG, SLC25A11, C1QBP, NDUFA9, WHSC1, ME2, CXCL11, TLK1, SLC4A4, RBM25, ATP5A1, RBBP4, FLJ10534, MARCH5, FLJ13220, PSAT1, BRIP1, KLHL24, STAT1, KIF18A, KIF2C, NF2, DLG7, PSMA5	77%	83%	77%	86%	73% 86%
377	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CDC40, CXCL9, CXCL10, FAS, PLK4, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, HNRPD, ME2, CXCL11, IFT20, RBM25, ATP5A1, DDAH2, AGPAT5, FLJ13220, PSAT1, BRIP1, KLHL24, STAT1, SLC4A4, CD7, DNM1L, RPL39, CDKN3	81%	90%	85%	90%	88% 72%
378	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E,	85%	90%	85%	72%	73% 79%

		SVM		3NN		1NN	
	PRDX3, MTHFD2, PSME2, TK1, DLGAP4, TYMS, USP4, LMAN1, DCK, MAD2L1, CDC40, SLC4A4, CXCL9, GTSE1, RABIF, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, TRIM25, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, CXCL11, GZMB, IFT20, RBBP4, TLK1, RBM25, AK2, ATP5A1, AGPAT5, KLHL24, ETNK1, CD3Z, DHX15, MTHFD1						
379	WARS, STAT1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, DCK, SLC4A4, CXCL9, IRF8, RABIF, CXCL10, FAS, TRIM25, NDUFA9, SLC25A11, WHSC1, HNRPD, ME2, CXCL11, TLK1, RBM25, CAMSAP1L1, CDC42BPA, RBBP4, MARCH5, SEC10L1, FLJ13220, PSAT1, BRIP1, KLHL24, ETNK1, ATF6, RRM2, KPNA2	81%	83%	77%	83%	77%	79%
380	HNRPD, WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GBP1, TK1, DLGAP4, TYMS, LMAN1, MAD2L1, CXCL9, IRF8, CXCL10, FAS, HNRPA3P1, KITLG, NDUFA9, KPNB1, SLC25A11, ME2, CXCL11, TLK1, SLC4A4, RBM25, AK2, AGPAT5, FLJ10534, MARCH5, SEC10L1, PBK, PSAT1, BRIP1, KLHL24, STAT1, BTN3A3	73%	83%	81%	86%	69%	72%
381	WARS, EIF4E, PRDX3, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, TES, CDC40, CXCL9, CXCL10, FAS, KITLG, NDUFA9, SLC25A11, WHSC1, CA2, ME2, RBM25, AK2, ATP5A1, SEC10L1, PBK, HNRPD, BRIP1, KLHL24, STAT1, CHEK1, C20orf45, CKS2	85%	83%	92%	86%	85%	76%
382	WARS, SFRS2, EPAS1, EIF4E, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, USP4, ARF6, MAD2L1, CXCL9, RABIF, CXCL10, FAS, PLK4, CHEK1, HNRPA3P1, KITLG, SLC25A11, WHSC1, C17orf25, ME2, FUT4, CXCL11, IFT20, SLC4A4, RBM25, ATP5A1, CDC42BPA, RBBP4, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, ETNK1, STAT1, HMGN2, SFRS10	92%	90%	81%	79%	73%	76%
383	WARS, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, GMFB, DLGAP4, TYMS, USP4, DCK, CDC40, CXCL9, IRF8, RABIF, CXCL10, FAS, PLK4, HNRPA3P1, TRIM25, KITLG, C1QBP, NDUFA9, SLC25A11, C17orf25, CA2, HNRPD, ME2, CXCL11, RBM25, SFRS2, DDAH2, RBBP4, AGPAT5, FLJ13220, PBK, ETNK1, STAT1, TMEM48	85%	83%	88%	76%	81%	72%
384	WARS, SFRS2, EPAS1, EIF4E, SFPQ, GMFB, DLGAP4, TYMS, USP4, SLC4A4, CXCL9, RABIF, CXCL10, FAS, KPNB1, CA2, ME2, FUT4, CXCL11, RBM25, CAMSAP1L1, KLHL24, STAT1, TRAF3IP3, SOS1	88%	90%	88%	83%	81%	76%
385	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, USP4, MAD2L1, SLC4A4, CXCL9, GTSE1, RABIF, CXCL10, FAS, HNRPA3P1, TRIM25, SLC25A11, NDUFA9, WHSC1, CA2, ME2, GZMB, TLK1, CXCL11, RBM25, AK2, BRRN1, ATP5A1, DDAH2,	85%	86%	88%	79%	73%	79%

			SVM	3NN		1NN	
	AGPAT5, MARCH5, SEC10L1, PBK, PSAT1, HNRPD, BRIP1, KLHL24, STAT1, C16orf30						
386	WARS, SFRS2, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, LMAN1, CXCL9, IRF8, GTSE1, CXCL10, FAS, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, HNRPD, ME2, CXCL11, IFT20, RBBP4, TLK1, SLC4A4, RBM25, CAMSAP1L1, ATP5A1, DDAH2, FLJ10534, MARCH5, DKFZp762E1312, SEC10L1, PBK, TRMT5, STAT1, PGD, ZNF148	69%	76%	69%	86%	81%	86%
387	HNRPD, WARS, EPAS1, PRDX3, MTHFD2, PSME2, TK1, DLGAP4, TYMS, USP4, TES, LMAN1, CXCL9, CXCL10, FAS, PLK4, TRIM25, C1QBP, SLC25A11, WHSC1, ME2, RBBP4, TLK1, SLC4A4, NUP210, SFRS2, SEC10L1, ETNK1, STAT1, SNRPC, RAC2	73%	86%	88%	83%	81%	83%
388	WARS, SFRS2, PAICS, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, TES, LMAN1, CDC40, CXCL10, NDUFA9, KPNB1, SLC25A11, ME2, CXCL11, SLC4A4, RBM25, NUP210, hCAP-D3, FAS, RBBP4, ETNK1, STAT1, DHX40, KIAA0090	73%	79%	73%	86%	77%	83%
389	HNRPD, WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, LMAN1, ARF6, CXCL10, FAS, PLK4, TRIM25, SLC25A11, C1QBP, NDUFA9, ME2, CXCL11, GZMB, TLK1, SLC4A4, RBM25, hCAP-D3, ATP5A1, CDC42BPA, DDAH2, AGPAT5, FLJ10534, MARCH5, FLJ13220, SLA	85%	86%	88%	76%	81%	83%
390	WARS, EPAS1, EIF4E, PRDX3, TK1, GMFB, DLGAP4, USP4, CXCL9, CXCL10, FAS, CHEK1, KITLG, C1QBP, NDUFA9, SLC25A11, WHSC1, ME2, IFT20, RBM25, HNRPD, BRIP1, ETNK1, STAT1, MASA, SYDE1, C9orf76, ZNF518	88%	86%	81%	83%	81%	86%
391	WARS, SFRS2, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, CXCL9, RABIF, CXCL10, HNRPA3P1, TRIM25, KITLG, SLC25A11, ME2, RBBP4, CXCL11, RBM25, SOCS6, FAS, AGPAT5, MARCH5, SEC10L1, HNRPD, BRIP1, STAT1, KIAA0265, CCNA2, LRP8, CNAP1	85%	79%	92%	79%	88%	76%
392	HNRPD, WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, USP4, CTSS, ARF6, CXCL9, IRF8, GTSE1, CXCL10, TRIM25, C1QBP, SLC25A11, WHSC1, CA2, ME2, FUT4, CXCL11, GZMB, SLC4A4, RBM25, AK2, CAMSAP1L1, ATP5A1, SOCS6, CDC42BPA, FAS, RBBP4, BAZ1A, AGPAT5, MARCH5, SEC10L1, PBK, BRIP1, KLHL24, STAT1, GTPBP3, MOBK1B, MDS032, WDR45L	85%	90%	88%	79%	85%	69%
393	HNRPD, WARS, SFRS2, STAT1, EIF4E, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, TES, DCK, CDC40, CXCL9, IRF8, CXCL10, FAS, PLK4, SLC25A11, C1QBP, NDUFA9, KPNB1, C17orf25, ME2, IFT20, RBBP4, TLK1, SLC4A4, CXCL11, RBM25, AK2, NUP210, ATP5A1, CDC42BPA, SEC10L1,	81%	79%	77%	86%	69%	66%

		SVM		3NN		1NN	
	FLJ13220, PBK, PSAT1, BRIP1, KLHL24, ETNK1, FLJ20641, PIK3CD						
394	WARS, SFRS2, EIF4E, PRDX3, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, MAD2L1, CDC40, CXCL9, IRF8, CXCL10, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, SLC4A4, RBM25, AK2, FAS, SEC10L1, KLHL24, STAT1, KIAA0907	81%	90%	85%	79%	85%	72%
395	WARS, SFRS2, EPAS1, PAICS, EIF4E, PRDX3, MTHFD2, PSME2, DLGAP4, TYMS, TES, DCK, CDC40, SLC4A4, IRF8, CXCL10, PLK4, C1QBP, NDUFA9, SLC25A11, WHSC1, CA2, ME2, FUT4, GZMB, TLK1, CXCL11, RBM25, hCAP-D3, FAS, AGPAT5, MARCH5, SEC10L1, PSAT1, HNRPD, BRIP1, STAT1, NUMB, HMGB2	85%	86%	85%	72%	69%	76%
396	WARS, EIF4E, MTHFD2, GMFB, DLGAP4, CTSS, CDC40, CXCL10, FAS, HNRPA3P1, C1QBP, NDUFA9, SLC25A11, HNRPD, ME2, FUT4, CXCL11, RBM25, ATP5A1, FLJ10534, SEC10L1, FLJ13220, PBK, BRIP1, STAT1, KPNA2, IBRDC3, RIG, NP	81%	83%	81%	90%	73%	79%
397	WARS, EPAS1, EIF4E, MTHFD2, PSME2, TK1, GMFB, DLGAP4, TYMS, USP4, LMAN1, DCK, CDC40, CXCL9, IRF8, GTSE1, CXCL10, FAS, TRIM25, KITLG, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, GZMB, RBM25, AK2, NUP210, ATP5A1, DDAH2, FLJ10534, MARCH5, FLJ13220, PBK, PSAT1, BRIP1, TRMT5, KLHL24, ETNK1, STAT1, SFRS7, SMURF2, SCC-112	81%	83%	92%	76%	73%	76%
398	WARS, SFRS2, PRDX3, PSME2, TK1, GMFB, DLGAP4, TYMS, TES, MAD2L1, CXCL9, GTSE1, CXCL10, PLK4, TRIM25, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, CXCL11, GZMB, IFT20, SLC4A4, RBM25, AK2, hCAP-D3, ATP5A1, FAS, MARCH5, PBK, HNRPD, ETNK1, STAT1, HEM1, DKK1, PRDX1, ELOVL6, CD86	92%	97%	88%	76%	81%	79%
399	HNRPD, WARS, SFRS2, EPAS1, EIF4E, PRDX3, MTHFD2, PSME2, MCM6, GMFB, DLGAP4, TYMS, USP4, LMAN1, CDC40, SLC4A4, CXCL9, GTSE1, CXCL10, FAS, PLK4, SLC25A11, C1QBP, NDUFA9, KPNB1, WHSC1, C17orf25, CA2, ME2, CXCL11, IFT20, RBM25, BRRN1, CDC42BPA, RBBP4, AGPAT5, MARCH5, SEC10L1, PBK, TRMT5, KLHL24, STAT1, PEG3, ASPM, NR5A2	85%	79%	88%	79%	88%	76%
400	WARS, SFRS2, PAICS, EIF4E, SFPQ, PRDX3, MTHFD2, PSME2, GMFB, DLGAP4, TYMS, USP4, CTSS, LMAN1, DCK, MAD2L1, CXCL9, IRF8, CXCL10, PLK4, KITLG, C1QBP, NDUFA9, KPNB1, SLC25A11, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, TLK1, SLC4A4, RBM25, AK2, ATP5A1, FAS, RBBP4, BAZ1A, FLJ10534, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, STAT1, AMD1	65%	79%	92%	86%	85%	76%

		SVM		3NN		1NN	
401	HNRPD, WARS, EIF4E, MTHFD2, PSME2, GBP1, TK1, GMFB, DLGAP4, TYMS, USP4, TES, MAD2L1, CXCL9, CXCL10, FAS, TRIM25, NDUFA9, WHSC1, C17orf25, CA2, ME2, CXCL11, TLK1, SLC4A4, RBM25, BRRN1, DDAH2, MARCH5, PBK, PSAT1, BRIP1, KLHL24, STAT1, LOC146909, ECT2, BM039, GTF3C4	85%	79%	85%	86%	81%	76%
402	WARS, EPAS1, STAT1, EIF4E, MTHFD2, TK1, GMFB, DLGAP4, TYMS, USP4, CTSS, DCK, ARF6, CDC40, CXCL9, CXCL10, PLK4, HNRPA3P1, TRIM25, KITLG, SLC25A11, NDUFA9, WHSC1, C17orf25, CA2, HNRPD, ME2, CXCL11, IFT20, TLK1, SLC4A4, RBM25, AK2, CAMSAP1L1, ATP5A1, SOCS6, SFRS2, DDAH2, FAS, RBBP4, MARCH5, SEC10L1, FLJ13220, PBK, PSAT1, BRIP1, KLHL24, MS4A12, SMCHD1, RANBP2L1, SP110, SE57-1	81%	79%	88%	79%	81%	79%
403	WARS, SFRS2, EPAS1, STAT1, EIF4E, MTHFD2, PSME2, MCM6, TK1, GMFB, DLGAP4, TYMS, TES, CDC40, SLC4A4, CXCL9, IRF8, GTSE1, CXCL10, FAS, CHEK1, SLC25A11, C1QBP, NDUFA9, WHSC1, C17orf25, CA2, ME2, FUT4, TLK1, RBM25, CAMSAP1L1, hCAP-D3, DDAH2, RBBP4, FLJ10534, PBK, PSAT1, BRIP1, KLHL24, ETNK1, CAND1	73%	86%	81%	83%	69%	79%

Example 20: Specific Application of Prediction Methods

- 5 In selection of the gene signatures described here, two different statistical methods were used to characterise the signatures: k-nearest neighbours, and support vector machines. These methods are provided as packages to the R statistical software system (ref), through the packages *class* (ref) and *e1071* (ref)..
- The signatures described in this document were tested as follows. In both cases, the
- 10 data used to develop the prediction models for a given signature were the gene expression values (raw normalised intensities from the Affymetrix array data) for the probes corresponding to genes that comprise that signature, across both recurrent and non-recurrent samples:
- For k-nearest neighbours, we used leave-one-out cross validation with k=1 and
- 15 k=3 to obtain sensitivity (proportion of positive, i.e. recurrent, samples correctly classified) and specificity (proportion of negative samples, i.e. non-recurrent samples correctly classified) described in table 9

- The dataset was used to generate leave-one-out cross-validation sensitivity and specificity data using the following support-vector machine parameters: The support vector machine models were generated using a linear kernel, and all other parameters used were the default values obtained from the *svm* function of the *e1071* package.

5 Note the genes comprising the signatures were themselves obtained from the list of significantly differentially expressed probes, and those from the list of genes which were found to correlate with genes from the NZ 22-gene signature. In some cases there was more than one significant (or correlated) probe per gene. In these cases, the 10 prediction models used the median intensity data across all significant probes (i.e. those in the significant probe list, see table 1) for that gene.

References

1. Arnold CN, Goel A, Blum HE, Richard Boland C. Molecular pathogenesis of 15 colorectal cancer. *Cancer* 2005;104:2035-47.
2. Anwar S, Frayling IM, Scott NA, Carlson GL. Systematic review of genetic influences on the prognosis of colorectal cancer. *Br J Surg* 2004;91:1275-91.
3. Wang Y, Jatkoe T, Zhang Y, et al. Gene expression profiles and molecular 20 markers to predict recurrence of Dukes' B colon cancer. *J Clin Oncol* 2004;22:1564-71.
4. Eschrich S, Yang I, Bloom G, et al. Molecular staging for survival prediction of colorectal cancer patients. *J Clin Oncol* 2005;23:3526-35.
5. Barrier A, Lemoine A, Boelle PY, et al. Colon cancer prognosis prediction by 25 gene expression profiling. *Oncogene* 2005;24:6155-64.
6. Simon R. Roadmap for developing and validating therapeutically relevant genomic classifiers. *J Clin Oncol* 2005;23:7332-41.
7. Michiels S, Koscielny S, Hill C. Prediction of cancer outcome with 30 microarrays: a multiple random validation strategy. *Lancet* 2005;365:488-92.
8. Marshall E. Getting the noise out of gene arrays. *Science* 2004;306:630-31.
9. Birkenkamp-Demtroder K, Christensen LL, Olesen SH, et al. Gene expression 35 in colorectal cancer. *Cancer Res* 2002;62:4352-63.
10. Ihaka R, Gentleman R. R: A language for data analysis and graphics. *Journal of Computational and Graphical Statistics* 1996;5:299-314.

11. Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. *Statistical Applications in Genetics and Molecular Biology* 2004;3:Article 3.
12. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol* 2004;5:R80.
13. Smyth GK, Speed TP. Normalization of cDNA microarray data. In: Carter D, ed. *METHODS: Selecting Candidate Genes from DNA Array Screens: Application to Neuroscience*. Vol. 31; 2003:265-73.
14. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics* 2003;4:249-64.
15. Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. *Biometrika* 1982;69:553-66.
16. Barnes CJ, Li F, Mandal M, Yang Z, Sahin AA, Kumar R. Heregulin induces expression, ATPase activity, and nuclear localization of G3BP, a Ras signaling component, in human breast tumors. *Cancer Res* 2002;62:1251-55.
17. Niki T, Izumi S, Saegusa Y, et al. MSSP promotes ras/myc cooperative cell transforming activity by binding to c-Myc. *Genes Cells* 2000;5:127-41.
18. Rein DT, Roehrig K, Schondorf T, et al. Expression of the hyaluronan receptor RHAMM in endometrial carcinomas suggests a role in tumor progression and metastasis. *J Cancer Res Clin Oncol* 2003;129:161-64.
19. Fernandez P, Carretero J, Medina PP, et al. Distinctive gene expression of human lung adenocarcinomas carrying LKB1 mutations. *Oncogene* 2004;23:5084-91.
20. Frey UH, Eisenhardt A, Lummen G, et al. The T393C polymorphism of the G alpha s gene (GNAS1) is a novel prognostic marker in bladder cancer. *Cancer Epidemiol Biomarkers Prev* 2005;14:871-77.
21. Niimi T, Vettentranta K, Hollmen J, et al. Expression of myeloid-specific genes in childhood acute lymphoblastic leukemia - a cDNA array study. *Leukemia* 2002;16:2213-21.
22. Yasui K, Mihara S, Zhao C, et al. Alteration in copy numbers of genes as a mechanism for acquired drug resistance. *Cancer Res* 2004;64:1403-10.

23. Nomura J, Matsumoto K, Iguchi-Ariga SM, Ariga H. Positive regulation of Fas gene expression by MSSP and abrogation of Fas-mediated apoptosis induction in MSSP-deficient mice. *Exp Cell Res* 2005;305:324-32.
24. Mayeur GL, Fraser CS, Peiretti F, Block KL, Hershey JW. Characterization of 5 eIF3k: a newly discovered subunit of mammalian translation initiation factor eIF3. *Eur J Biochem* 2003;270:4133-39.
25. Hsieh YJ, Wang Z, Kovelman R, Roeder RG. Cloning and characterization of two evolutionarily conserved subunits (TFIIC102 and TFIIC63) of human TFIIC and their involvement in functional interactions with TFIIB and RNA polymerase III. 10 *Mol Cell Biol* 1999;19:4944-52.
26. Matsumoto S, Abe Y, Fujibuchi T, et al. Characterization of a MAPKK-like protein kinase TOPK. *Biochem Biophys Res Commun* 2004;325:997-1004.
27. Dong VM, McDermott DH, Abdi R. Chemokines and diseases. *Eur J Dermatol* 2003;13:224-30.
- 15 28. Abe Y, Matsumoto S, Kito K, Ueda N. Cloning and expression of a novel MAPKK-like protein kinase, lymphokine-activated killer T-cell-originated protein kinase, specifically expressed in the testis and activated lymphoid cells. *J Biol Chem* 2000;275:21525-31.
29. Logan GJ, Smyth CM, Earl JW, et al. HeLa cells cocultured with peripheral 20 blood lymphocytes acquire an immuno-inhibitory phenotype through up-regulation of indoleamine 2,3-dioxygenase activity. *Immunology* 2002;105:478-87.
30. Lubeseder-Martellato C, Guenzi E, Jorg A, et al. Guanylate-binding protein-1 expression is selectively induced by inflammatory cytokines and is an activation marker of endothelial cells during inflammatory diseases. *Am J Pathol* 25 2002;161:1749-59.
31. Phillips SM, Banerjea A, Feakins R, Li SR, Bustin SA, Dorudi S. Tumor-infiltrating lymphocytes in colorectal cancer with microsatellite instability are activated and cytotoxic. *Br J Surg* 2004;91:469-75.
32. Oliveira SH, Taub DD, Nagel J, et al. Stem cell factor induces eosinophil 30 activation and degranulation: mediator release and gene array analysis. *Blood* 2002;100:4291-97.
33. Xanthoulea S, Pasparakis M, Kousteni S, et al. Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance

- opposing TNF functions in infectious and inflammatory diseases. *J Exp Med* 2004;200:367-76.
34. Brennan DJ, O'Brien SL, Fagan A, et al. Application of DNA microarray technology in determining breast cancer prognosis and therapeutic response. *Expert Opin Biol Ther* 2005;5:1069-83.
35. Canna K, McArdle PA, McMillan DC, et al. The relationship between tumor T-lymphocyte infiltration, the systemic inflammatory response and survival in patients undergoing curative resection for colorectal cancer. *Br J Cancer* 2005;92:651-54.
- 10 36. Rossi D, Zlotnik A. The biology of chemokines and their receptors. *Annu Rev Immunol* 2000;18:217-42.
37. Miyazaki M, Nakatsura T, Yokomine K, et al. DNA vaccination of HSP105 leads to tumor rejection of colorectal cancer and melanoma in mice through activation of both CD4 T cells and CD8 T cells. *Cancer Sci* 2005;96:695-705.
- 15 38. Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set? *Bioinformatics* 2005;21:171-78.
39. Becker RA, Chambers JM and Wilks AR. *The New S Language*. Wadsworth & Brooks/Cole 1988.
40. Gentleman R., Carey VJ, Huber W., Irizarry RA, Dudoit S. *Bioinformatics and Computational Biology Solutions Using R and Bioconductor*. Springer 2005.
- 20 41. Bauer DF. Constructing confidence sets using rank statistics. *Journal of the American Statistical Association* 1972;67:687-690.
42. Lönnstedt I. and Speed TP. Replicated microarray data. *Statistica Sinica* 2002;12:31-46.
- 25 43. Efron, B. and Tibshirani, R. *An Introduction to the Bootstrap*. Chapman & Hall. 2005
44. Harraway J. *Introductory Statistical Methods and the Analysis of Variance*. University of Otago Press 1993.
45. McCabe GP, Moore DS. *Introduction to the Practice of Statistics* W.H. 30 Freeman & Co. 2005
46. Casella G, Berger RL. *Statistical Inference* Wadsworth 2001
47. McLaughlan GJ, Do K, Ambroise C. *Analyzing Microarray Gene Expression Data* (Wiley Series in Probability and Statistics) 2004

48. Wright GW, Simon RM A random variance model for detection of differential gene expression in small microarray experiments. *Bioinformatics* 2003;19:2448-2455
49. Hastie T, Tibshirani R, Friedman J *The Elements of Statistical Learning Data Mining, Inference and Prediction* Springer 2003
- 5 50. Neter J, Kutner MH, Wasserman W, Nachtsheim CJ, *Applied Linear Statistical Models* McGraw-Hill/Irwin 1996
51. Venables, WN, Ripley, BD *Modern Applied Statistics with S*. 4th ed.. Springer 2002.
52. Ripley, B. D. *Pattern Recognition and Neural Networks* Cambridge University Press 1996
- 10 53. Cristianini N, Shawe-Taylor J *An Introduction to Support Vector Machines (and other kernel-based learning methods)* Cambridge University Press 2000
54. Breiman L, Friedman J, Stone CJ, Olshen RA *Classification and Regression Trees* Chapman & Hall/CRC 1984
- 15 55. Good, PI *Resampling Methods: A Practical Guide to Data Analysis* Birkhauser 1999

Wherein in the description reference has been made to integers or components having known equivalents, such equivalents are herein incorporated as if individually set
20 fourth.

Although the invention has been described by way of example and with reference to possible embodiments thereof, it is to be appreciated that improvements and/or modifications may be made without departing from the scope thereof.

CLAIMS

1. Use of one or more oligonucleotide probes or primers for malic enzyme 2 (ME2) and TNF receptor superfamily, member 6 (FAS) for determining the progression of colorectal cancer (CRC), wherein a decrease in expression of ME2 and FAS is indicative of an increased likelihood of CRC recurrence after standard treatment, and an increase in expression of ME2 and FAS is indicative of a decreased likelihood of CRC recurrence after standard treatment, wherein if a tumour sample from a patient shows decreased expression of ME2 and FAS by comparison to samples of non-recurrent cancer, or if the tumour sample shows no increase in expression of ME2 and FAS, by comparison to samples of recurrent cancer, then an increased likelihood of CRC recurrence after standard treatment is indicated.
2. Use according to claim 1, which comprises detecting a prognostic signature comprising the expression level of the genes ME2 and FAS.
3. Use according to claim 1 or 2 which is carried out in a CRC tumour sample from a patient.
4. Use of a device for determining the progression of colorectal cancer (CRC), comprising a substrate having one or more locations thereon, each location having two or more oligonucleotides thereon, each oligonucleotide selected from a group consisting of malic enzyme 2 (ME2) and TNF receptor superfamily, member 6 (FAS), wherein a decrease in expression of ME2 and FAS is indicative of an increased likelihood of CRC recurrence after standard treatment, and wherein an increase in expression of ME2 and FAS is indicative of a decreased likelihood of CRC recurrence after standard treatment, wherein if a tumour sample from a patient shows decreased expression of ME2 and FAS by comparison to samples of non-recurrent cancer, or if the tumour sample shows no increase in expression of ME2 and FAS, by comparison to samples of recurrent cancer, then an increased likelihood of CRC recurrence after standard treatment is indicated.

5. Use according to claim 4, wherein the oligonucleotide is a probe selected from
210154_at;
210153_s_at;
209397_at;
215719_x_at;
216252_x_at;
204780_s_at; and
204781_s_at.
6. One or more oligonucleotide probes or primers for malic enzyme 2 (ME2) and TNF receptor superfamily, member 6 (FAS) for use in a method for determining the progression of colorectal cancer (CRC), wherein a decrease in expression of ME2 and FAS is indicative of an increased likelihood of CRC recurrence after standard treatment, and wherein an increase in expression of ME2 and FAS is indicative of a decreased likelihood of CRC recurrence after standard treatment.
7. A method for determining the progression of colorectal cancer (CRC) or the prognosis of CRC in a patient, comprising using one or more oligonucleotide probes or primers to detect expression levels of malic enzyme 2 (ME2) and TNF receptor superfamily, member 6 (FAS) in a sample from a patient, wherein a decrease in expression of ME2 and FAS is indicative of an increased likelihood of CRC recurrence after standard treatment, and wherein an increase in expression of ME2 and FAS is indicative of a decreased likelihood of CRC recurrence after standard treatment, wherein if the sample shows decreased expression of ME2 and FAS by comparison to samples of non-recurrent cancer, or if the sample shows no increase in expression of ME2 and FAS, by comparison to samples of recurrent cancer, then an increased likelihood of CRC recurrence after standard treatment is indicated.
8. A method according to claim 7 comprising:

- (i) determining the expression level of at least two colorectal cancer prognostic markers (CCPMs) of a prognostic signature comprising the CCPMs ME2 and FAS in a CRC tumour sample from the patient;
- (ii) comparing said expression level of the CCPMs ME2 and FAS in samples of recurrent and non-recurrent cancer;
- (iii) establishing a prognosis, wherein if a tumour sample from a patient shows a decrease in expression of ME2 and FAS a negative prognosis is implicated, and wherein if a tumour sample from a patient shows an increase in expression of ME2 and FAS a positive prognosis is implicated.

9. The method of claim 8, wherein the signature either further comprises one or more genes selected from Tables 1 and 2, or where the signature is selected from any one of the signatures in Table 9.

10. The method of claim 8, wherein the signature is signature 151 or 205 from Table 9.

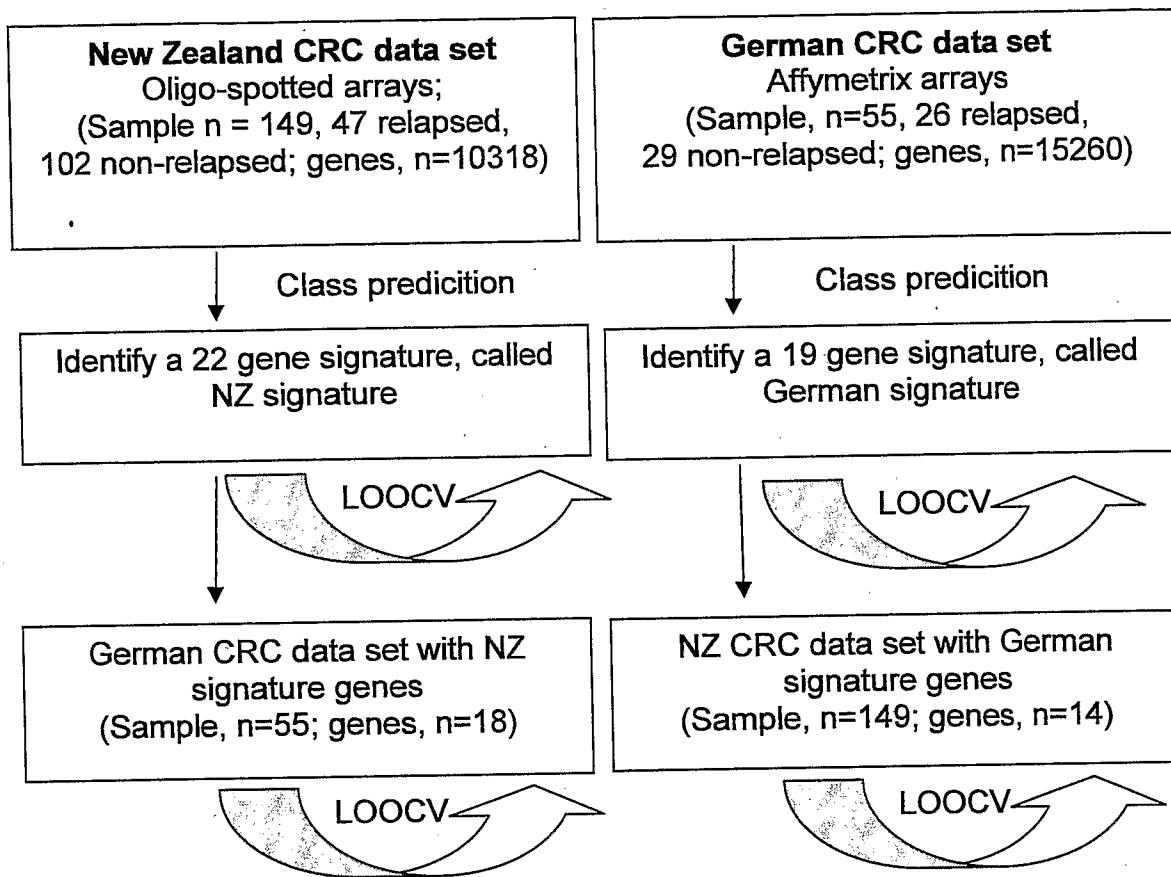
11. The method of claim 8, wherein said step of comparing said expression levels of a prognostic signature involves the use of a statistical method selected from the group consisting of linear models, support vector machines, neural networks, classification and regression trees, ensemble learning methods, discriminant analysis, nearest neighbour method, bayesain networks and independent components analysis.

12. The method of any one of claims 8 to 11, wherein the step of determining the expression level of the genes in a prognostic signature is carried out by detecting the expression level of mRNA of each gene or by detecting the expression level of cDNA of each gene.

13. The method of claim 12, wherein the step of determining the expression level of a prognostic signature is carried out either using a nucleotide complementary to at least a portion of said cDNA or by using a qPCR method using a forward primer and a reverse primer.

14. The method of claim 12, wherein the step of determining the expression level of a prognostic signature is by using a device comprising a substrate having one or more locations thereon, each location having two or more oligonucleotides thereon, each oligonucleotide selected from a group consisting of ME2 and FAS.

15 The method of any one of claims 8 to 13, wherein the expression of each CCPM is detected using one or more probes for that CCPM.


16. The method according to claim 15 , wherein in detecting the expression of each CCPM from Tables 1 and 2, one or more corresponding probe(s) from Table 1 and 2 are used.

17. The method according to claim 16, wherein the expression of ME2 is detected using one or more of Affymetrix™ probes: 210154_at, 210153_s_at, and 209397_at.

18. The method according to claim 16 or 17, wherein the expression of FAS is detected using one or more of the Affymetrix™ probes: 215719_x_at, 216252_x_at, 204780_s_at, and 204781_s_at.

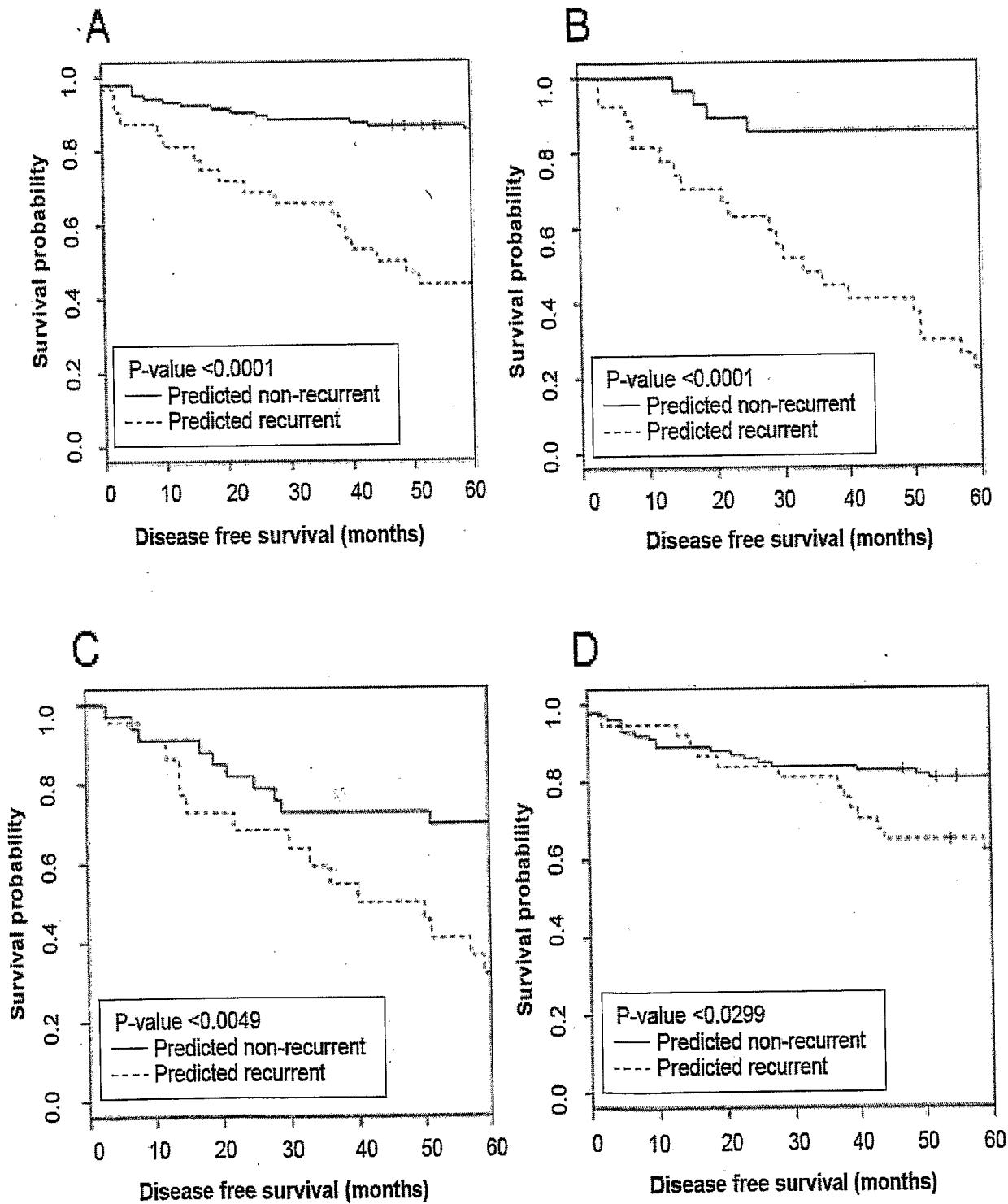

TOR_LAW\9332834\1

FIG. 1

2/9

FIG. 2

3/9

FIG. 3

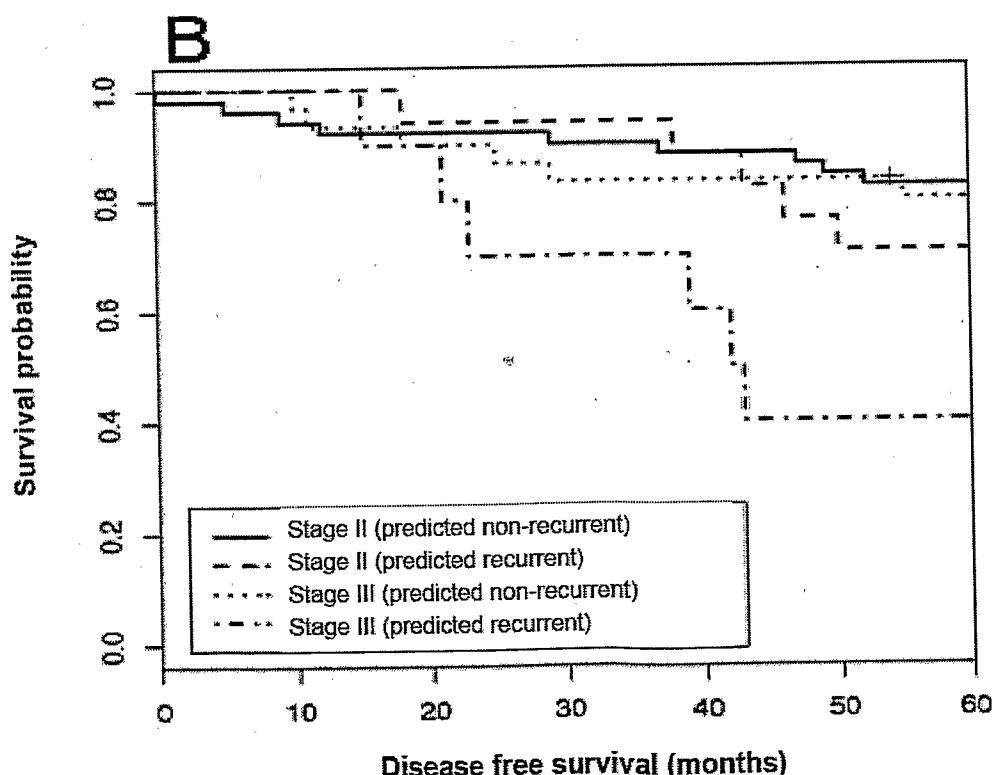
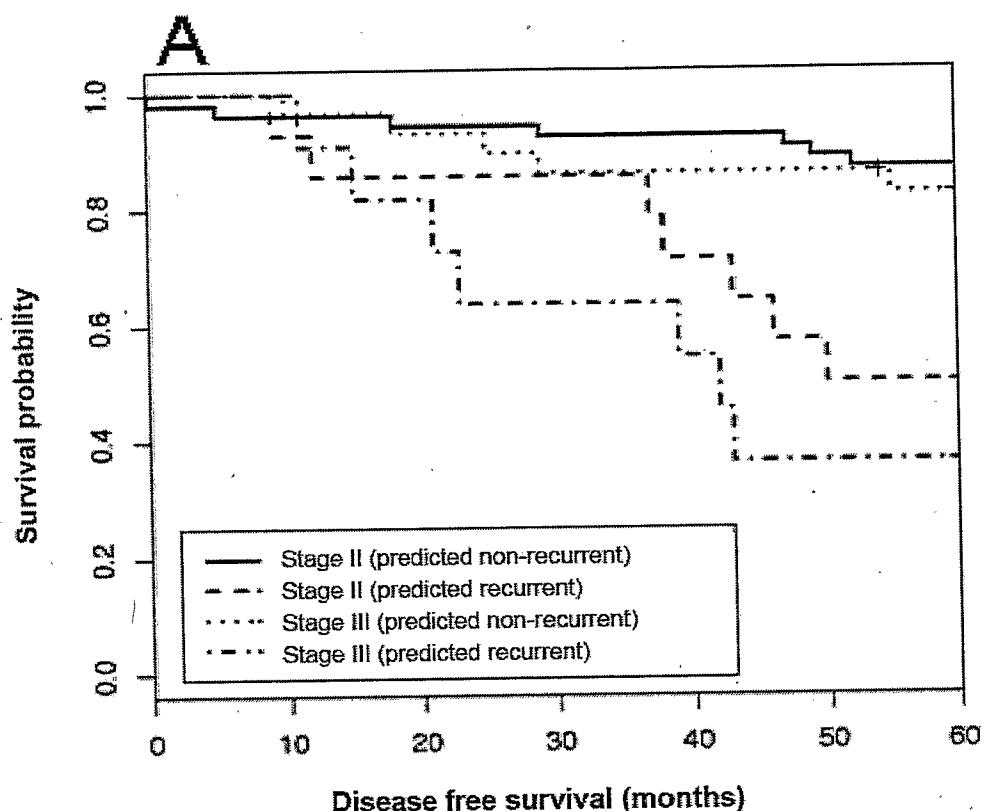



FIG. 4

FC pre-Filter cut-off = 1.25
Combined with T-test

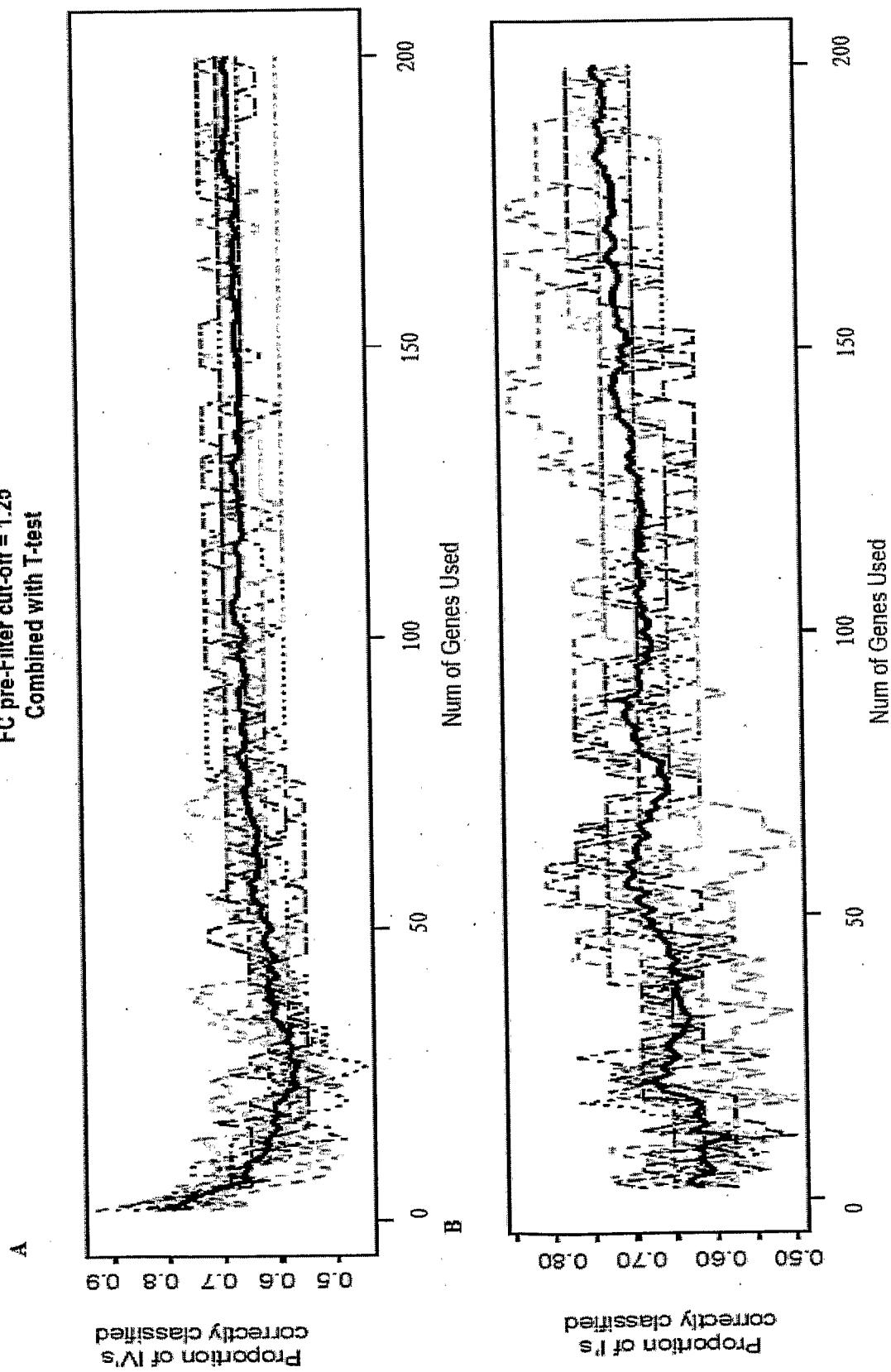


FIG. 4 (continued)

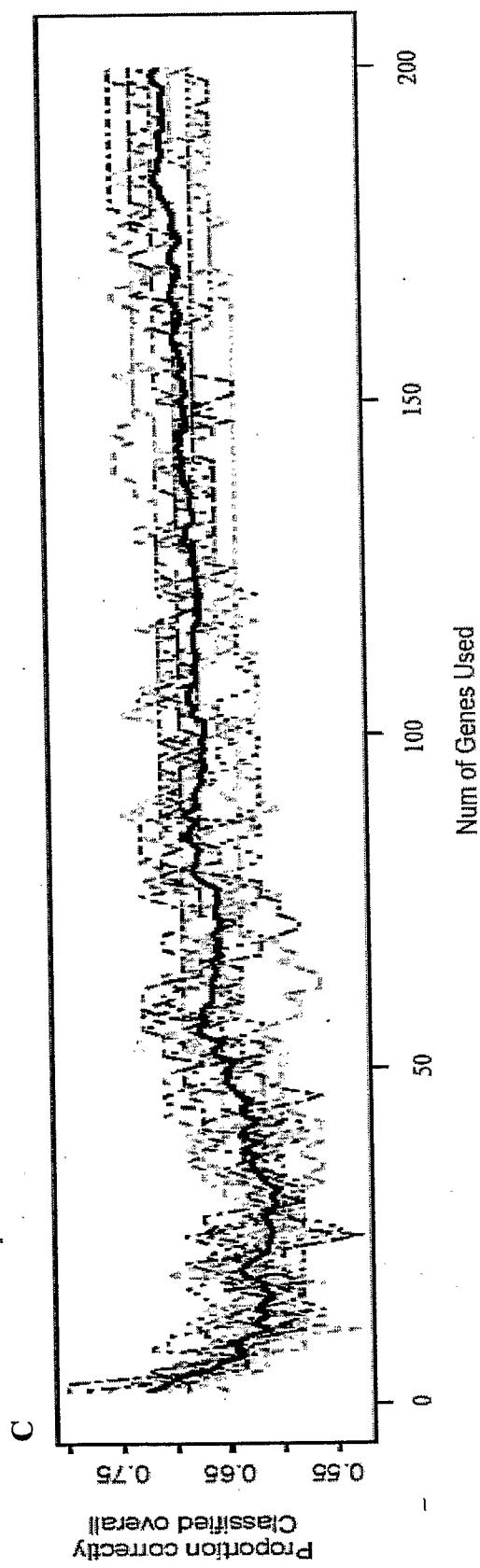
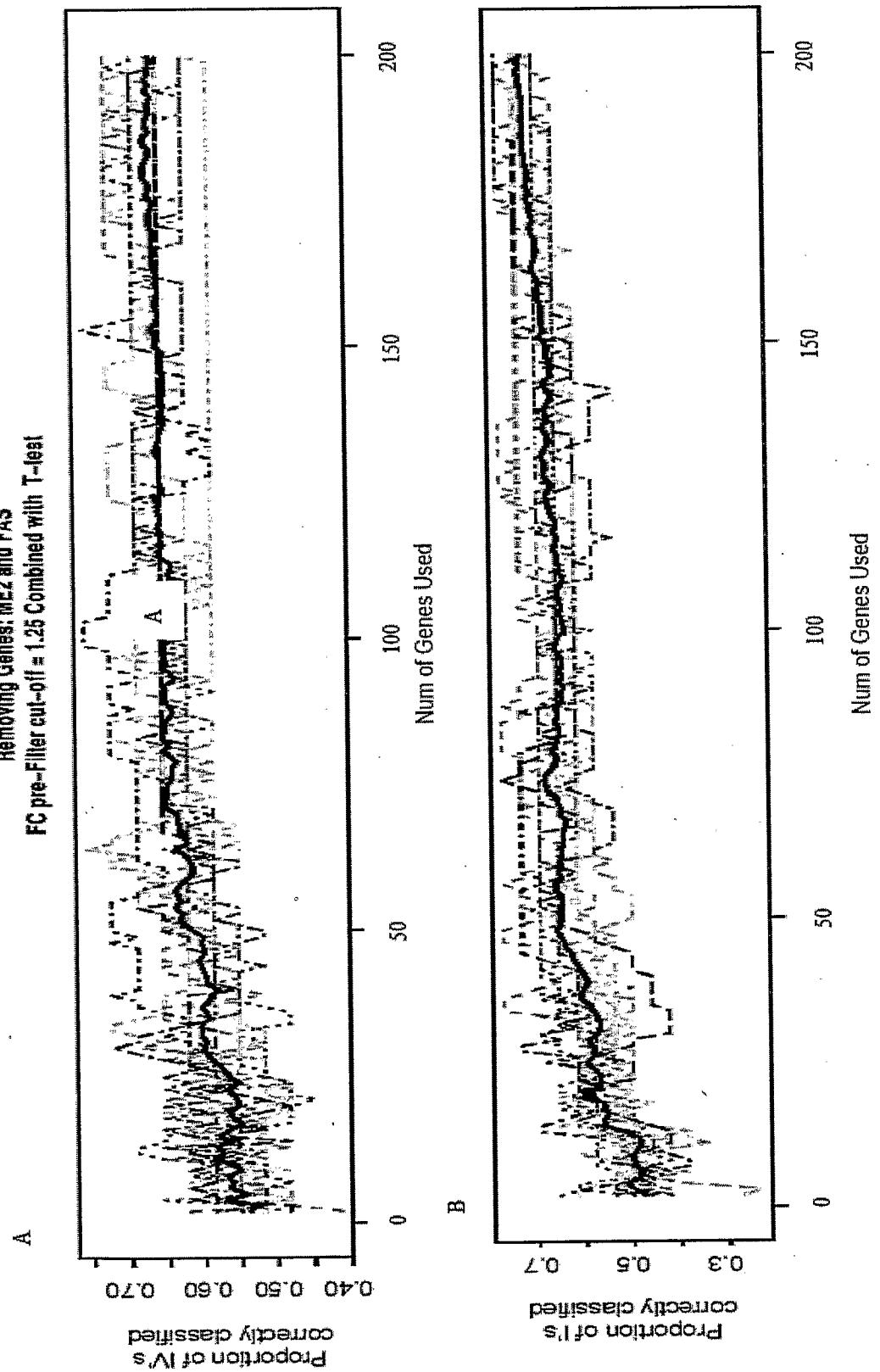
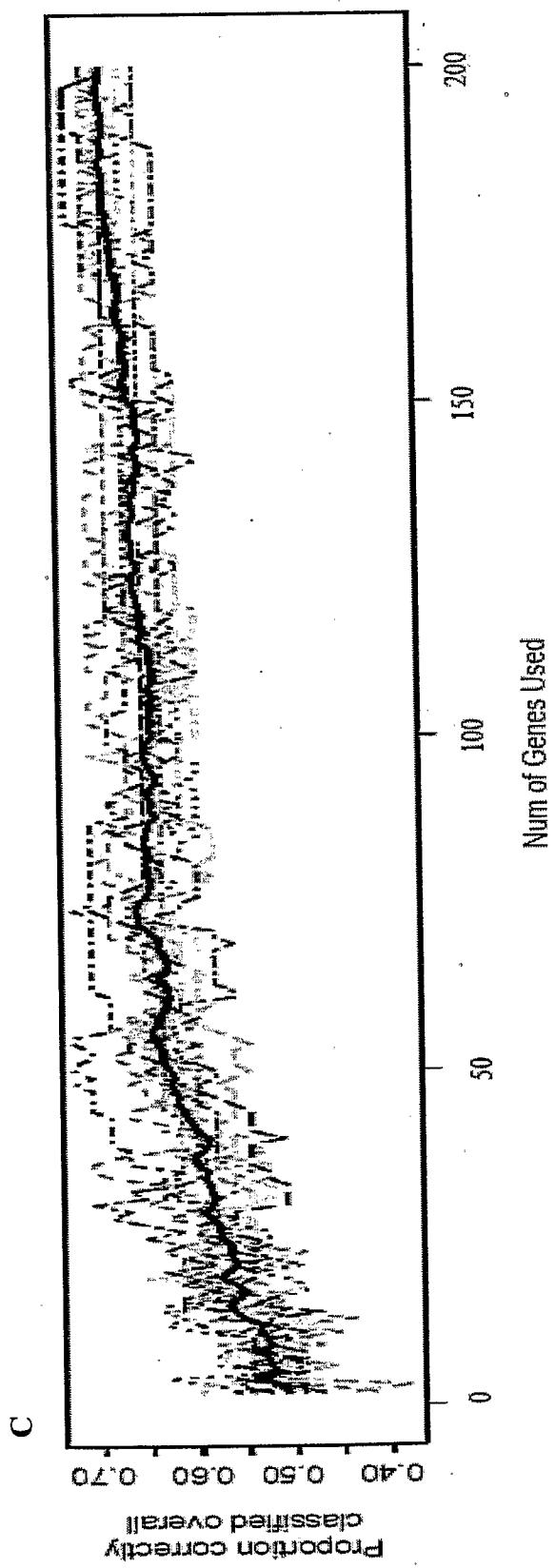
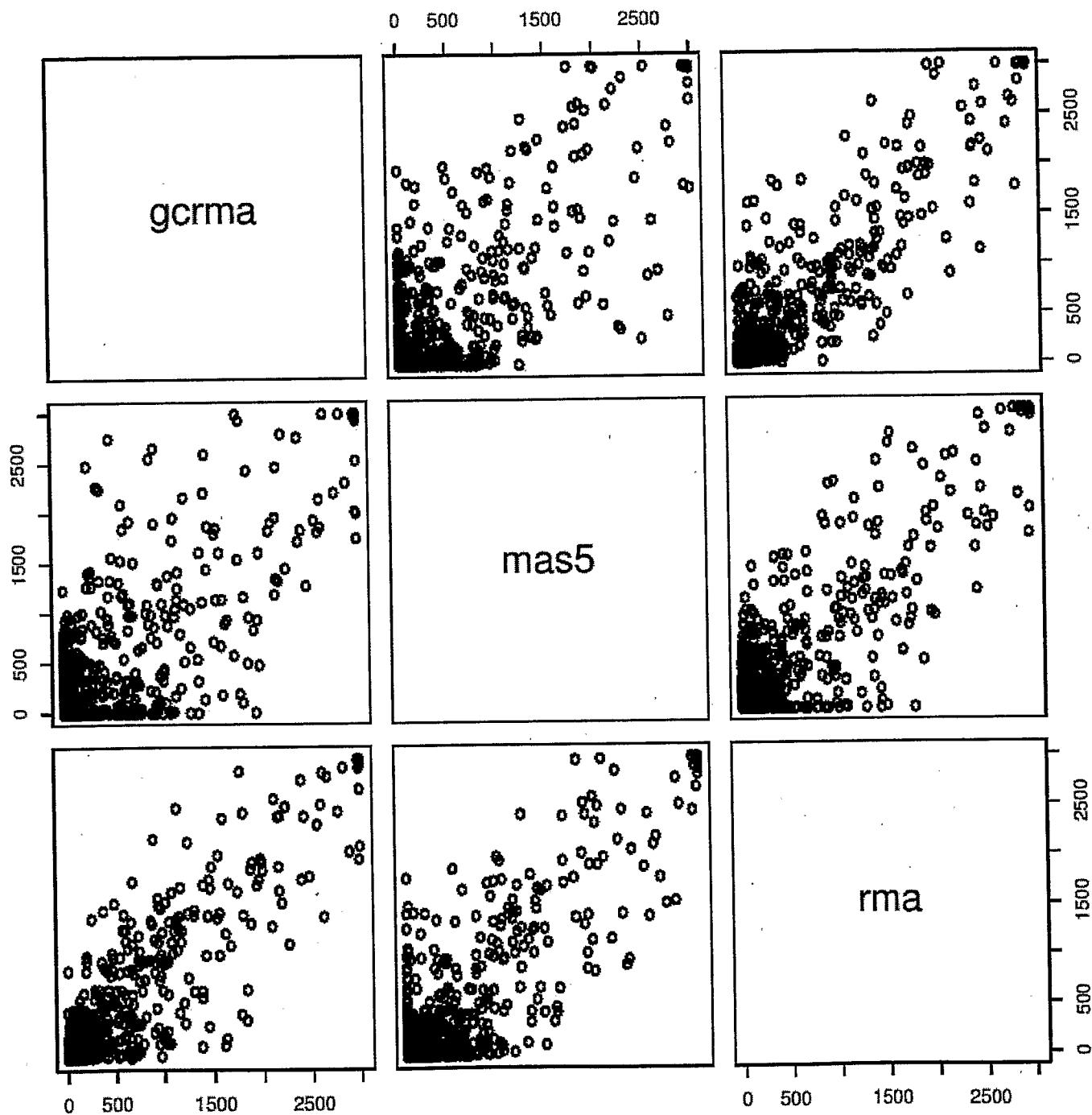


FIG. 5

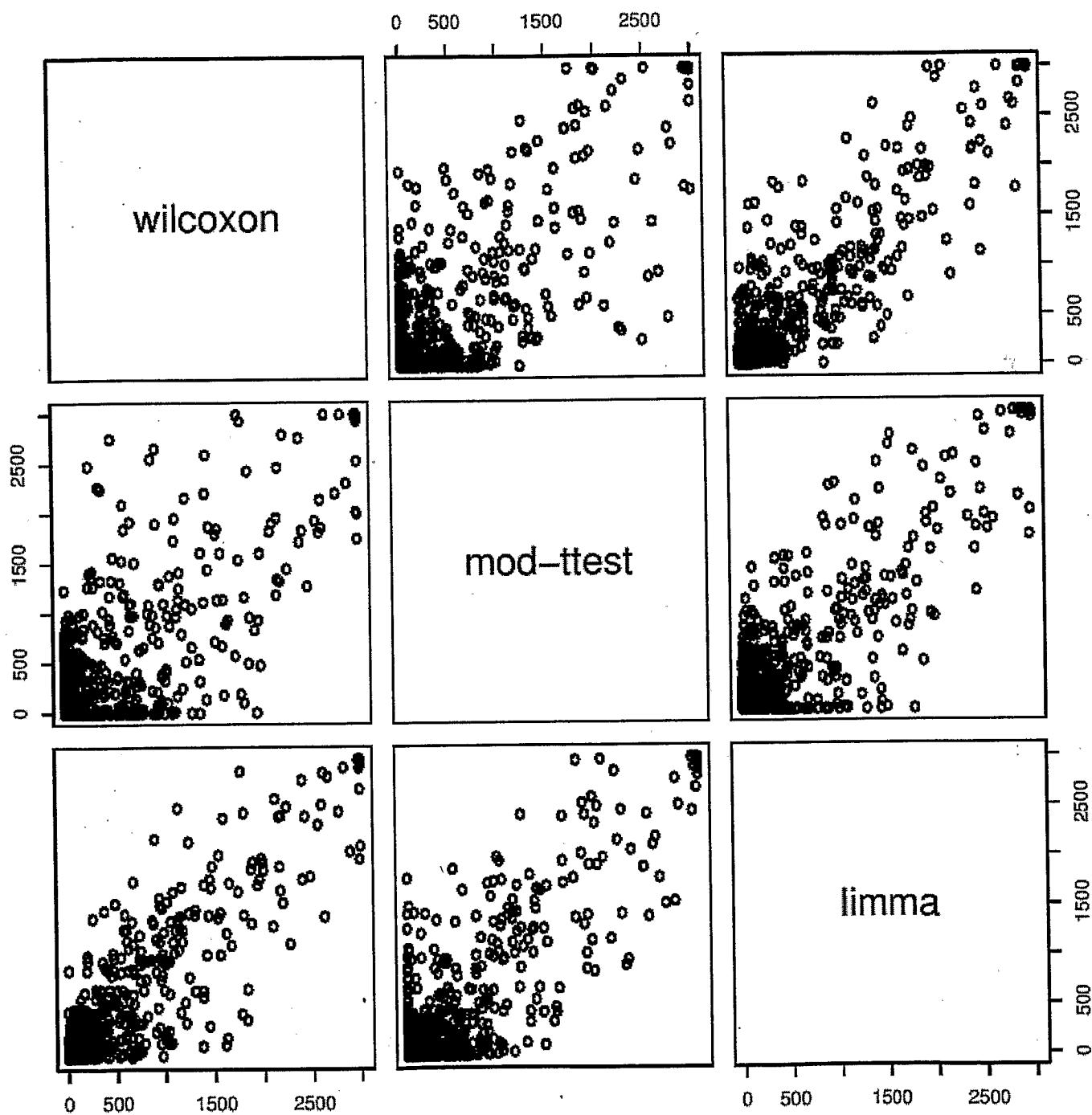
Removing Genes: ME2 and FAS
FC pre-Filter cut-off ≈ 1.25 Combined with T-test


FIG. 5 (continued)

8/9

FIG. 6


Number of Appearances in "Top 100" List

9/9

FIG. 7

Number of Appearances in "Top 100" List.

