

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

WIPO | PCT

(10) International Publication Number

WO 2015/123222 A1

(43) International Publication Date

20 August 2015 (20.08.2015)

(51) International Patent Classification:

H01L 21/66 (2006.01)

(21) International Application Number:

PCT/US2015/015270

(22) International Filing Date:

10 February 2015 (10.02.2015)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

61/939,131 12 February 2014 (12.02.2014) US

(71) Applicant: KLA-TENCOR CORPORATION [US/US]; Legal Department, One Technology Drive, Milpitas, California 95035 (US).

(72) Inventors: EFRATY, Boris; 12/15 Habroshim St., 2163201 Carmiel (IL). BISHARA, Nassim; 20651 Forge Way, Apt. 142, Cupertino, California 95014 (US). SIMKIN, Arkadi; Hermon St. 49, 20692 Yokneam Iilit (IL). ISH-SHALOM, Yaron; Zevulun 11, 36080 Kyryat Tivon (IL).

(74) Agents: MCANDREWS, Kevin et al.; KLA-Tencor Corp., Legal Department, One Technology Drive, Milpitas, California 95035 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: WAFER NOTCH DETECTION



Figure 1

(57) Abstract: Notch detection methods and modules are provided for efficiently estimating a position of a wafer notch. Capturing an image of specified region(s) of the wafer, a principle angle is identified in a transformation, converted into polar coordinates, of the captured image. Then the wafer axes are recovered from the identified principle angle as the dominant orientations of geometric primitives in the captured region. The captured region may be selected to include the center of the wafer and/or certain patterns that enhance the identification and recovering of the axes. Multiple images and/or regions may be used to optimize image quality and detection efficiency.

WO 2015/123222 A1

WAFER NOTCH DETECTION

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 61/939,131 filed on February 12, 2014, which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. TECHNICAL FIELD

[0002] The present invention relates to the field of semiconductor technology, and more particularly, to identification of the position of the wafer notch.

2. DISCUSSION OF RELATED ART

[0003] Typically, the wafer orientation is conveyed by the position of the notch, which indicates the crystallographic orientation of wafer. In the prior art, wafer orientation computation based on notch orientation is time consuming, as it requires exhaustive search in the full angular range of 360 degrees. Typically, the result of wafer orientation based on notch alone is limited in accuracy and requires additional step of “Fine Alignment”, which is time consuming. In order to avoid long mechanical movements, some of the existing solutions require additional hardware such as extra sensors, or an additional camera which covers a large part of the wafer within its field of view or several cameras. All those exhibit added complexity and cost.

SUMMARY OF THE INVENTION

[0004] One aspect of the present invention provides a method of estimating a position of a wafer notch, the method comprising capturing an image of one or more specified region(s) of the wafer, identifying a principle angle in a transformation of the captured image which is converted into polar coordinates, and recovering one or more wafer axis(es) from identified principle angle.

[0005] These, additional, and/or other aspects and/or advantages of the present invention are set forth in the detailed description which follows; possibly inferable from the detailed description; and/or learnable by practice of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] For a better understanding of embodiments of the invention and to show how the same may be carried into effect, reference will now be made, purely by way of example, to the accompanying drawings in which like numerals designate corresponding elements or sections throughout.

[0007] In the accompanying drawings:

[0008] **Figure 1** is a high level schematic illustration of a wafer with its notch and a notch detection module associated with an optical system within a metrology system, according to some embodiments of the invention.

[0009] **Figure 2** is a high level schematic illustration of intermediate steps in a street orientation algorithm, operable by the notch detection module, according to some embodiments of the invention.

[0010] **Figure 3** is an illustration of exemplary inputs onto which the street orientation algorithm may be applied, displaying increasing levels of noise, according to some embodiments of the invention.

[0011] **Figure 4** is an illustration of exemplary input images from different wafer regions for selection according to their characteristics, according to some embodiments of the invention.

[0012] **Figure 5** is a high level schematic flowchart of a method, according to some embodiments of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0013] Prior to the detailed description being set forth, it may be helpful to set forth definitions of certain terms that will be used hereinafter.

[0014] The term “geometric primitives” in an image, as used in this application refers to basic forms, objects and patterns in the image, such as lines, simple shapes or recurring elements.

[0015] The term “street orientation” as used in this application refers to orientations of geometric primitives in the image, e.g., with respect to a given grid. The term “street orientation algorithm” as used in this application refers to ways of deriving the street orientation.

[0016] It is further noted, that there is a strong geometrical correlation between one wafer axis and the other wafer axes, and respectively between the principle angle to one wafer axis and the principle angles to the other wafer axes. Geometrically, the wafer axes are separated by multiples of 90° as are the principle angles with respect to the wafer axes. Hence, in the following description, any aspect relating to one wafer axis and/or one principle angle is to be understood as potentially relating to any number of wafer axes and/or principle angles. For example, any orientation measurement may be carried out with respect to one or more wafer axes.

[0017] With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.

[0018] Before at least one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is applicable to other

embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

[0019] Notch detection methods and modules are provided for efficiently estimating a position of a wafer notch. Capturing an image of specified region(s) of the wafer, a principle angle is identified in a transformation, converted into polar coordinates, of the captured image. Then the wafer axes are recovered from the identified principle angle as the dominant orientations of geometric primitives in the captured region. The captured region may be selected to include the center of the wafer and/or certain patterns that enhance the identification and recovering of the axes. Multiple images and/or regions may be used to optimize image quality and detection efficiency. The angular orientation of the wafer is measured with high accuracy in minimal time, by simultaneous minimization of algorithmic complexity and mechanical movements of the vision system with respect to the wafer. The notch position may be detected implicitly, without directly sensing it. Certain embodiments overcome the challenges produced by the tool architecture such as: limited field of view of the vision system and the time-consuming mechanical movements for positioning of the camera with respect to the wafer both lateral and rotational, as well as image corruption by various types of noise.

[0020] It is assumed that the orientation of the wafer at the beginning of the procedure is arbitrary and that the wafer deviation from the chuck center is limited to a 2mm error. The computation of wafer orientation may be triggered in the system as part of either “Train” or “Run” sequences. The time optimization of the “Run” sequence is the most critical because it directly affects the throughput of the tool. Disclosed modules and methods use a Street Orientation Algorithm to reduce the search space of orientation and notch position to four points, for example, a robust algorithm for Street Orientation may be used to enable skipping the fine alignment step. In addition, anchor points may be used to avoid long mechanic movements from center of wafer, as described below.

[0021]Figure 1 is a high level schematic illustration of a wafer **60** with its notch **70** and a notch detection module **107** associated with an optical system **105** within a metrology system **100**, according to some embodiments of the invention. It is noted that disclosed methods and modules may be applied to systems in the semiconductor industry other than metrology systems and that the latter merely serve in the present disclosure as a non-limiting example.

[0022]The orientation of wafer **60** is uniquely defined by the position of its notch **70**. The periodic layout of devices printed on wafer **60** and the borders of dies are aligned along the Cartesian axes **61**, **62**, with notch **70** is at the end-point of y axis **62**.

[0023]Instead of detecting notch **70** visually at the periphery of wafer **60**, e.g., by imaging whole wafer **60** with respective axes **61**, **62** and center **65**, or imaging the wafer periphery, notch detection module **107** merely images **(110)** a central region **115** of wafer **60**, which may include wafer center **65** or not, and derives from the imaged region the orientations **111**, **112** of wafer axes **61**, **62**. For example, central region **115** may comprise unique pattern(s) with known position with respect to center of wafer **65**. Notch detection module **107** uses derived orientations **111**, **112** to suggest possible locations **(71A-71D)** for notch **70**, and in certain embodiments also proceeds to determine which of locations **71A-71D** is the actual notch location. Image(s) **110** of central region(s) **115** may be selected from multiple image(s) **110** and/or multiple regions **115**, e.g., according to image quality, derivation quality, or derivations from multiple image(s) **110** and/or multiple regions **115** may be statistically analyzed to derive more accurate location estimations.

[0024]In certain embodiments, the orientation of main axes **61**, **62** may be found up to integer multiples of 90°, leaving the exact position of notch **70** to be defined as one out of four possible locations **71A-71D**. In certain embodiments, pattern analysis may be applied to region **115** near or at center **65** of wafer **60** to avoid long mechanical movements when recovering wafer orientation.

[0025] Notch detection module **107** may implement any of the following components of the orientation computation task:

- i. A “street orientation algorithm” may be used to find the dominant orientation (designated by the angle θ) of geometric primitives in the field of view (FOV) of imaging device **100**, for example with respect to image **110** acquired at an estimated center of wafer **60**.
- ii. A “notch detection algorithm” may comprise searching specified notch pattern(s) in up to three (out of four) possible locations **71A-71D** at the edge of wafer **60** according to detected orientations **111, 112**.
- iii. An “anchor point training algorithm” may comprise searching and defining the unique pattern(s) for selection of region **115**, e.g., in the near proximity to center **65** of wafer **60**.
- iv. An “anchor point detection algorithm” may comprise pattern searching of anchor point template(s) near center **65** of wafer **60** as basis for the anchor point training algorithm.

[0026] It is noted that the estimation of street orientation and hence of the orientation of the wafer axes may be carried out by itself. Additionally, estimation of the notch location and/or usage of anchor points or patterns as proxies for the notch location may be applied to derive the notch location from the street orientation without applying direct imaging of the notch region.

[0027] **Figure 2** is a high level schematic illustration of intermediate steps in a street orientation algorithm **101**, operable by notch detection module **107**, according to some embodiments of the invention. In certain embodiments, street orientation algorithm **101** relies on image analysis in the Fourier domain. Unlike other edge-based approaches the inventors found this method to be extremely fast and robust to noisy, out-of-focus and low-contrast inputs (images **110**). The steps of proposed algorithm **101** are illustrated in **Figure 2**.

[0028] Upon captured image **122**, shown in schematic wafer coordinates and designated $I(x,y)$, the 2D (two dimensional) Discrete Fourier Transform is applied and the absolute value of the Fourier coefficients are computed and presented as

an image **124**, denoted $J(w,u)$. Then, $J(w,u)$ is converted to polar coordinates to yield $J_P(r, \theta)$ (illustrated in image **126**) and the orthogonal projection thereof onto the θ axis **128** is used for the orientation recovery using the resulting peaks separated by 90° , giving θ and $\theta+90^\circ$. Deriving θ , rotated image **130** may be generated from captured image **122**, with rotated image **130** characterized by orientations **111**, **112** that are congruent to wafer axes **61**, **62**. Notch **70** is located at one of the ends of one of orientations **111**, **112**. In certain embodiments, an ambiguity in the relative angle between orientations **111**, **112** and wafer axes **61**, **62** (among θ **71A**, $\theta+90^\circ$ **71C**, $\theta+180^\circ$ **71D** and $\theta+270^\circ$ **71B**) may be resolved via notch pattern search (in “Train” sequences) or anchor pattern search (in “Run” sequences), both possibly implemented as multi-scale rigid template matching with known scale and orientation.

[0029]The inventors have performed an accuracy and time requirements analysis, exemplified in the following by a few experimental results which demonstrate the robustness of proposed street orientation approach **101** to eliminate the need for any additional fine alignment step.

[0030]**Figure 3** is an illustration of exemplary inputs **150** onto which street orientation algorithm **101** may be applied, displaying increasing levels of noise, according to some embodiments of the invention. Street orientation algorithm **101** is applied on input image **122** with synthetically added noise of varying level (single run) to yield images **122A-122F** with increasing levels of noise (the black and white illustrations miss some of the color coded information, especially in images **122C**, **122D**). The mean and the standard deviation of the intensities of input images **122** are standardized to be between 0 and 1 with noise standard deviation ranging from 0 (**122A**, resulting in accurate $\theta=-40.481^\circ$ for the specifically illustrated example) through 1 (**122B**, $\theta=-40.486^\circ$), 2 (**122C**, $\theta=-40.471^\circ$) and 4 to 6 (**122D-F** and $\theta=-40.486^\circ$, $\theta=-40.504^\circ$ and $\theta=-45.000^\circ$ respectively). The inventors thus observed that even under very heavy added white noise with standard deviation 5 (**122E**), the error in θ resulting from street orientation algorithm **101** and/or notch detection module **107** is much

smaller than 0.25°, which practically eliminates the need of fine alignment in system **100** under many circumstances.

[0031]Figure 4 is an illustration of exemplary input images **155** from different wafer regions **115**, for selection of image **122** according to their characteristics, according to some embodiments of the invention. It is noted that different wafer regions **115** may comprise different regions on one wafer **60** or on different wafers **60**.

[0032]In certain embodiments, multiple images **122G-J** may be captured from different regions **115** on wafer and one or more images **122** may be selected therefrom by notch detection module **107** for applying the notch detection analysis such as street orientation algorithm **101**. In illustrated non-limiting example **155**, input images **122G-J** may be acquired on wafer **60** with arbitrary orientations at a specified number of different locations. Since no additional rotation of wafer **60** is applied between acquisitions the orientation result (θ and/or notch position) is expected to be the same so that the results from multiple images **122** may be compared and analyzed, e.g., statistically by measuring scattering metrics of the results. Experiments may be repeated for several wafers **60**, at various orientations, various imaging conditions (contrast and focus) to optimize the selection of region(s) **115**. In addition, comparing edge-based algorithm (EB) to Fourier Transform-based algorithms (FTB) **101** illustrate the superiority of the latter.

[0033]In 29 images **122** taken from different wafers **60** and/or different regions **115**, and with respect to accuracy metrics of range (of measured angles θ) $>0.3^\circ$ and standard deviation (of measured angles θ) $>0.2^\circ$, all FTB measurements conformed with both metrics, while in 11 and 9 EB measurements the metric's threshold were exceeded (respectively). Figure 4 illustrates as examples image **122G** suffering from insufficient illumination and low contrast (in FTB $\theta_{\text{range}}=0.050$ $\theta_{\text{STD}}=0.018$ while in EB $\theta_{\text{range}}=0.200$ $\theta_{\text{STD}}=0.057$), image **122H** suffering from saturation and low contrast (in FTB $\theta_{\text{range}}=0.112$ $\theta_{\text{STD}}=0.032$ while in EB $\theta_{\text{range}}=0.400$ $\theta_{\text{STD}}=0.119$), image **122I** being out of focus (in FTB $\theta_{\text{range}}=0.031$

$\theta_{STD}=0.032$ while in EB $\theta_{range}=0.780$ $\theta_{STD}=0.266$) and image **122J** exhibiting atypical wafer design (in FTB $\theta_{range}=0.105$ $\theta_{STD}=0.032$ while in EB $\theta_{range}=0.390$ $\theta_{STD}=0.168$), all exhibiting the better performance of the disclosed invention. It is noted that the results of street orientation algorithm **101** were stable even for out-of-focus and low-contrast inputs **122** and way below the limits which require additional refinement steps. It is further noted that while from a theoretical point of view, the most time-consuming operator is the Fourier Transform ($O(NlogN)$), where N is the number of pixels in input image **122**, yet in practice, the computation time is negligible with comparison to the time required for the mechanical movement of the camera in optical system **100** with respect to wafer **60**.

[0034]Figure 5 is a high level schematic flowchart of a method **200**, according to some embodiments of the invention. Method **200** comprises estimating a position of a wafer notch (stage **210**) and may be at least partially carried out by at least one computer processor (stage **280**).

[0035]Method **200** may comprise capturing an image of a specified region of the wafer (stage **220**), e.g., capturing an image of a central region of the wafer (stage **222**), and possibly capturing multiple images and selecting images for further processing according to image characteristics (stage **225**). Method **200** may employ any algorithm for finding the dominant orientation (designated by the angle θ) of geometric primitives in the field of view (FOV) of imaging device **100**, for example with respect to image **110** acquired at an estimated center of wafer **60** (stage **228**).

[0036]Method **200** may further comprise transforming the captured image (stage **230**), calculating Fourier transform coefficients for the captured image (stage **235**), converting the transformed image into polar coordinates (stage **240**) and projecting the converted transformed image orthogonally (stage **245**), and may further comprise identifying principle angle(s) in the transformation of the captured image which is converted into polar coordinates (stage **250**).

[0037] In certain embodiments, method **200** comprises recovering wafer axis(es) from the identified principle angle(s) (stage **260**) and identifying the wafer notch from the recovered wafer axis(es) (stage **270**), for example by searching specified notch pattern(s) along the recovered wafer axis(es) (stage **272**), by searching and defining unique pattern(s) to be captured in the image, which allow notch identification (stage **274**) and respective selection of the captured region, e.g., in the near proximity to the center of the wafer and/or by pattern searching of anchor point template(s) that indicate the axis along which the notch is located (stage **276**).

[0038] Advantageously using street orientation **101** to calculate wafer orientation narrows down the search space of orientations to four possibilities and the quality of street orientation **101** exemplified above eliminates the need for extra time required for a fine alignment step. Consecutively, using anchor points allows performing short mechanical movement to identify the quadrate, i.e., and respectively the axis along which the notch is located. For example, an anchor point close to the center of wafer may be selected to allow little or no travelling of the optical head, which is advantageous with respect to prior art movement to the location of the notch at the edge of wafer. Method **200** thus requires short stroke movements and hence shorter operation time.

[0039] In the above description, an embodiment is an example or implementation of the invention. The various appearances of "one embodiment", "an embodiment", "certain embodiments" or "some embodiments" do not necessarily all refer to the same embodiments.

[0040] Although various features of the invention may be described in the context of a single embodiment, the features may also be provided separately or in any suitable combination. Conversely, although the invention may be described herein in the context of separate embodiments for clarity, the invention may also be implemented in a single embodiment.

[0041] Certain embodiments of the invention may include features from different embodiments disclosed above, and certain embodiments may incorporate

elements from other embodiments disclosed above. The disclosure of elements of the invention in the context of a specific embodiment is not to be taken as limiting their use in the specific embodiment alone.

[0042] Furthermore, it is to be understood that the invention can be carried out or practiced in various ways and that the invention can be implemented in certain embodiments other than the ones outlined in the description above.

[0043] The invention is not limited to those diagrams or to the corresponding descriptions. For example, flow need not move through each illustrated box or state, or in exactly the same order as illustrated and described.

[0044] Meanings of technical and scientific terms used herein are to be commonly understood as by one of ordinary skill in the art to which the invention belongs, unless otherwise defined.

[0045] While the invention has been described with respect to a limited number of embodiments, these should not be construed as limitations on the scope of the invention, but rather as exemplifications of some of the preferred embodiments. Other possible variations, modifications, and applications are also within the scope of the invention. Accordingly, the scope of the invention should not be limited by what has thus far been described, but by the appended claims and their legal equivalents.

CLAIMS

What is claimed is:

1. A method of estimating a position of a wafer notch, the method comprising:
 - capturing an image of at least one specified region of the wafer,
 - identifying at least one principle angle in a transformation of the captured image which is converted into polar coordinates, and
 - recovering at least one wafer axis from the at least one identified principle angle.
2. The method of claim 1, wherein at least one of the identifying and the recovering is carried out at least partially by a computer processor.
3. The method of claim 1, wherein the specified region of the wafer includes a center of the wafer.
4. The method of claim 1, wherein the transformation is a two dimensional Discrete Fourier Transform.
5. The method of claim 1, further comprising identifying the wafer notch from the recovered at least one wafer axis.
6. The method of claim 5, wherein the identifying the wafer notch is carried out by searching at least one specified notch pattern along the at least one recovered wafer axis.
7. The method of claim 1, further comprising searching and defining at least one unique pattern to be captured in the image, to facilitate notch identification.
8. The method of claim 1, further comprising capturing multiple images and selecting therefrom images for further processing according to image characteristics.
9. A notch detection module associated with an optical system, the notch detection module configured to identify at least one principle angle in a transformation, converted into polar coordinates, of an image captured by the optical system of at least one specified region of a wafer, and further configured to recover at least one wafer axis from the at least one identified principle angle.

10. The notch detection module of claim 9, wherein the transformation is a two dimensional Discrete Fourier Transform.
11. The notch detection module of claim 9, further configured to identify a position of a wafer notch of the wafer from the recovered at least one wafer axis.
12. The notch detection module of claim 11, configured to identify the wafer notch by searching at least one specified notch pattern along the at least one recovered wafer axis.
13. The notch detection module of claim 9, further configured to search and define at least one unique pattern to be captured in the image, to facilitate notch identification.
14. The notch detection module of claim 9, wherein the optical system is configured to capture multiple images and the notch detection module is further configured to select therefrom images for further processing according to image characteristics.

1/6

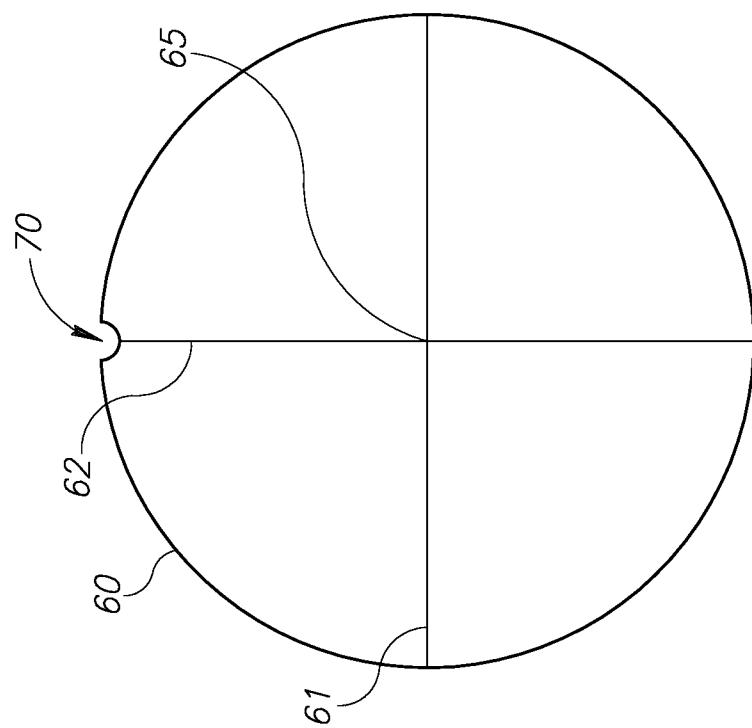
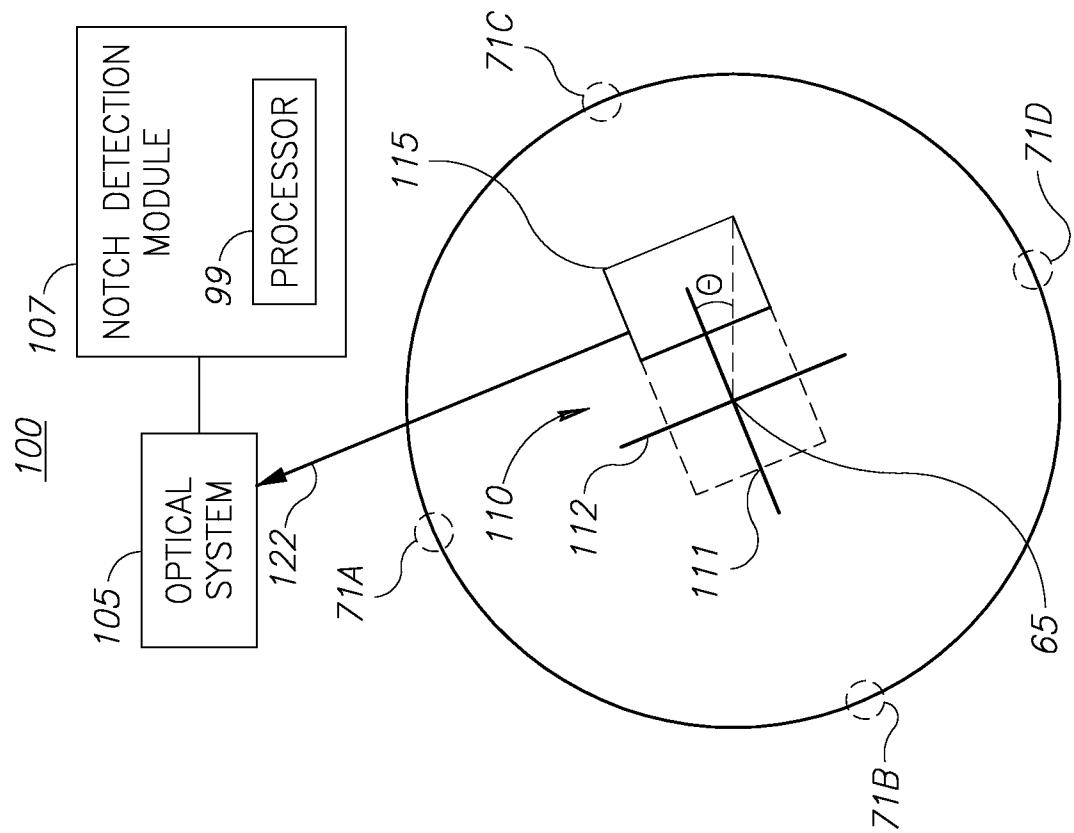



Figure 1

2/6

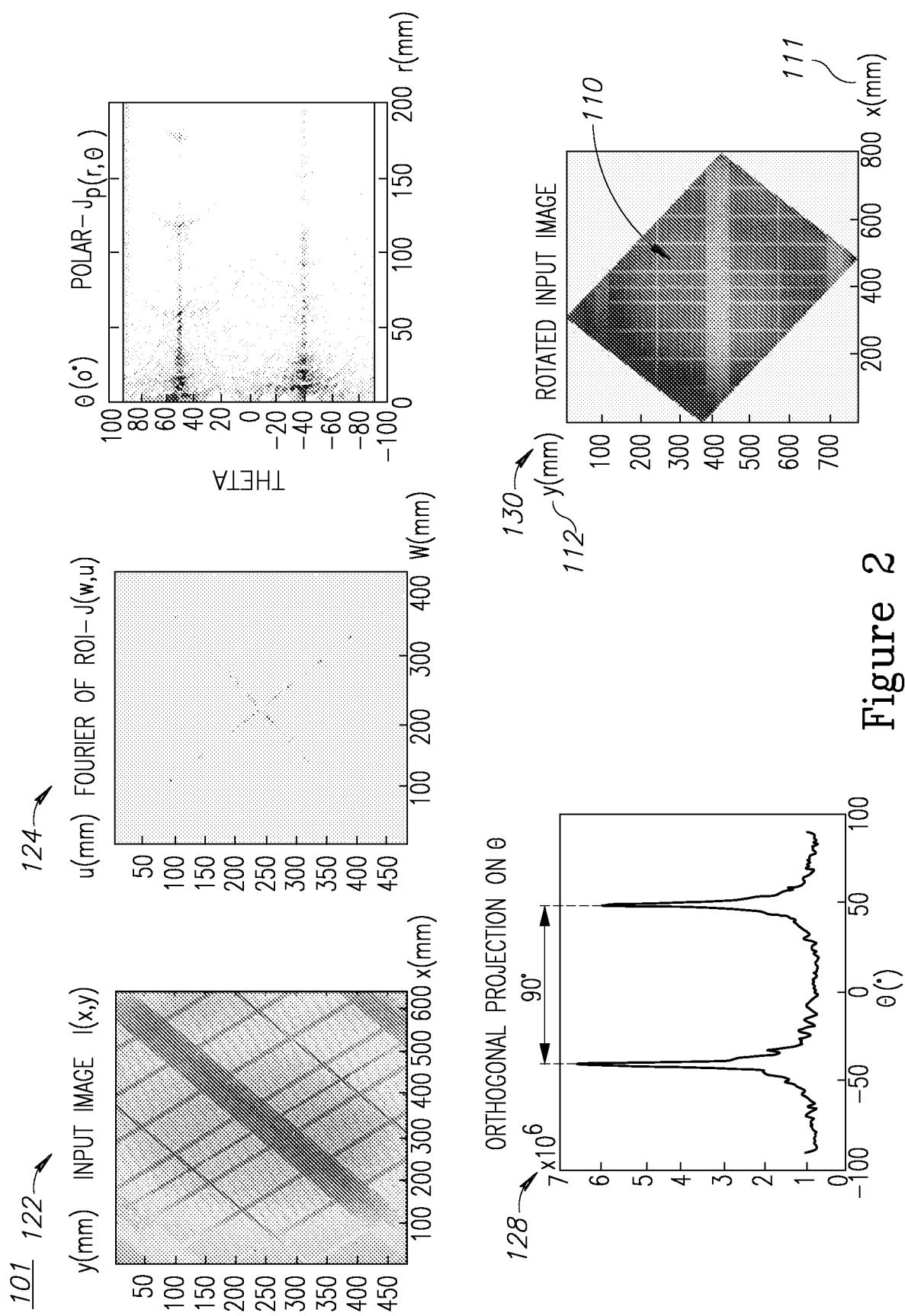


Figure 2

3/6

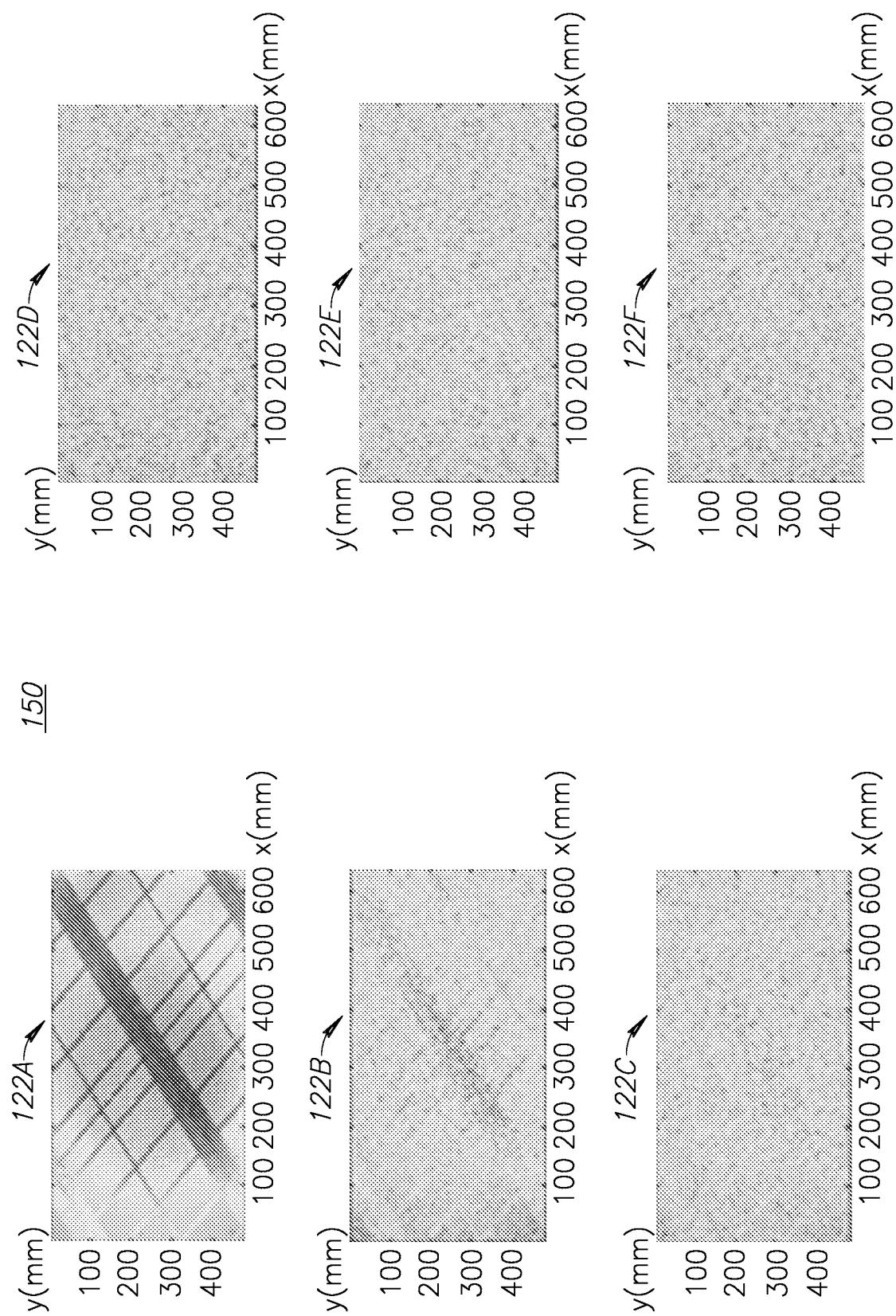


Figure 3

4/6

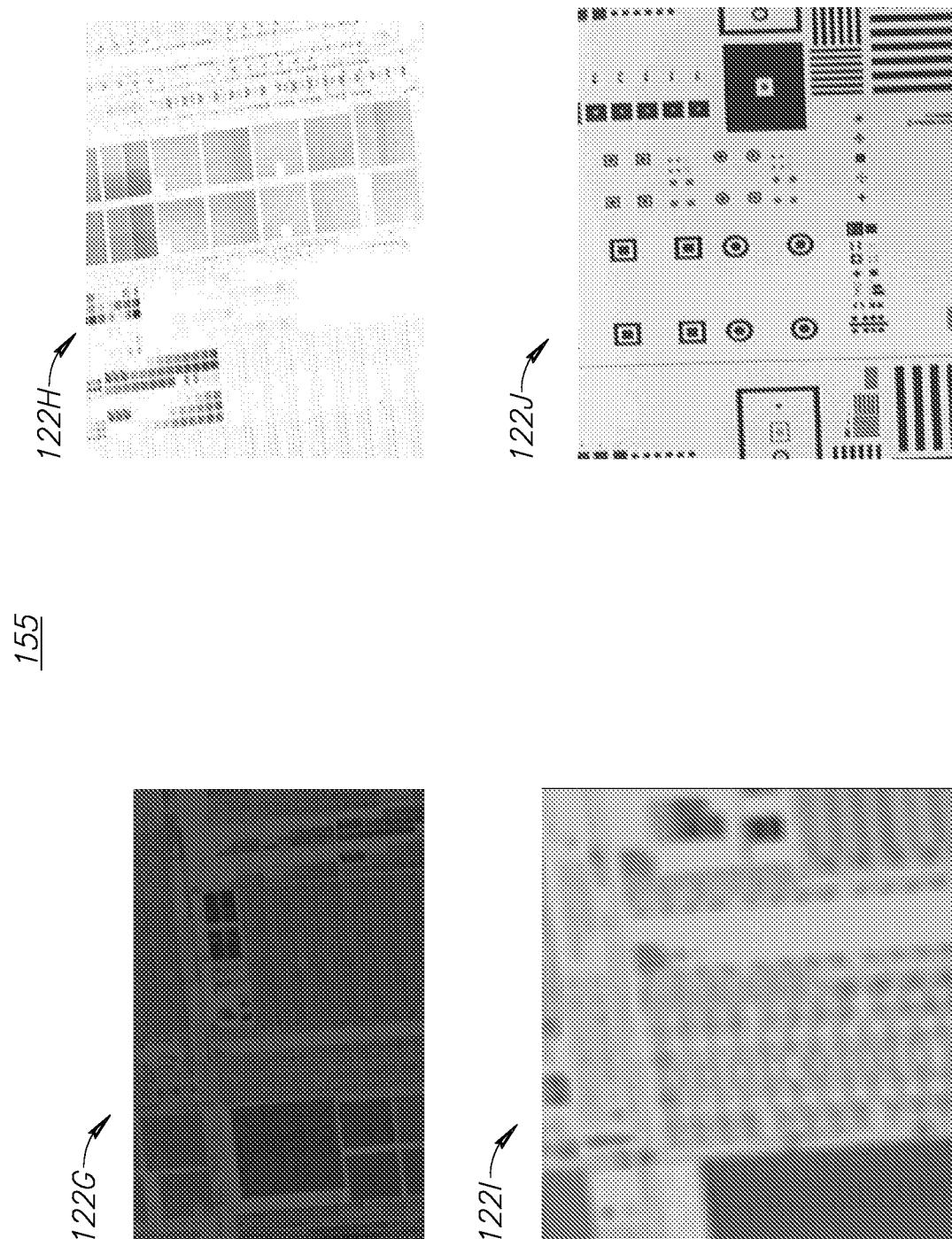


Figure 4

5/6

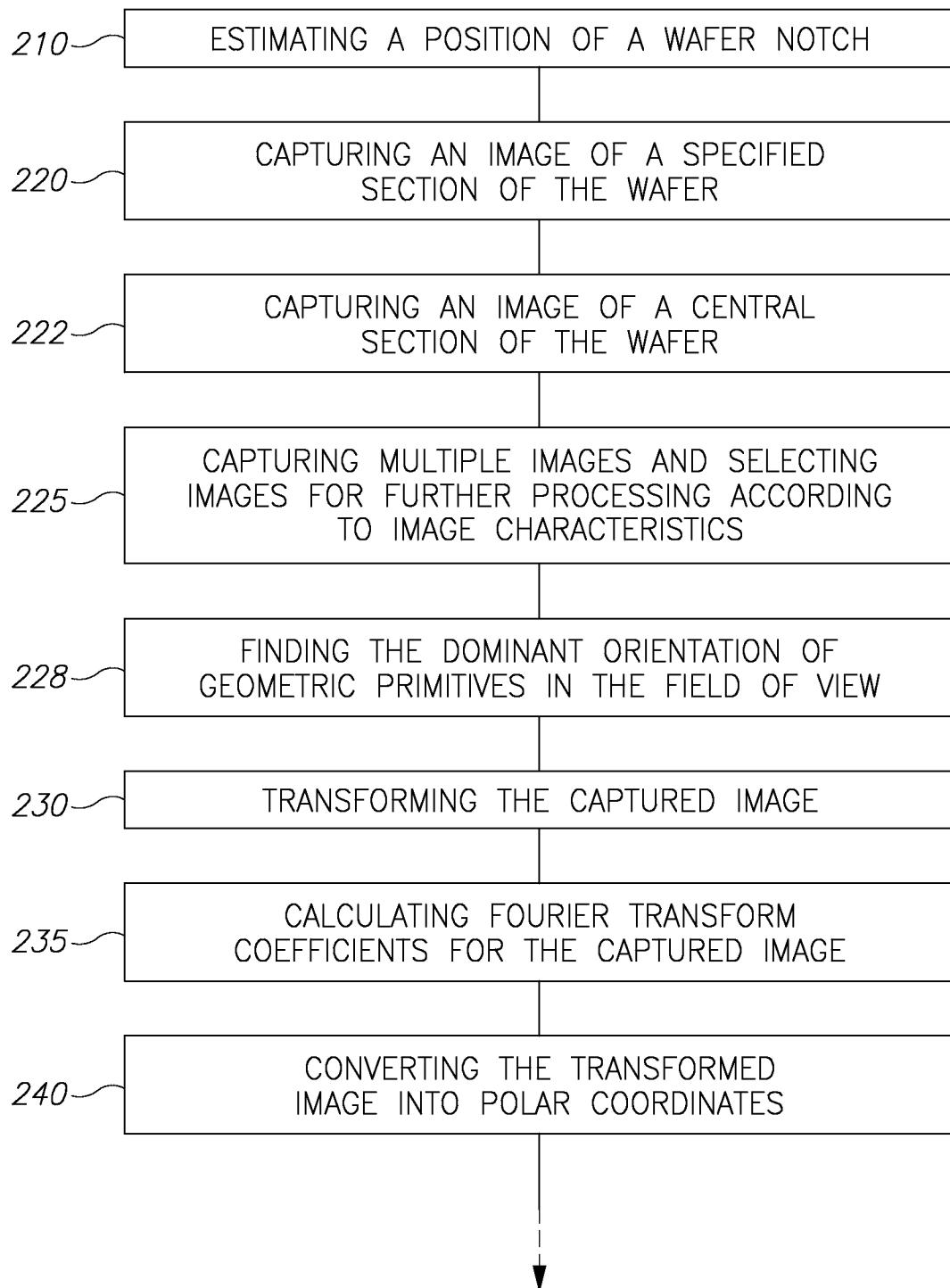

200

Figure 5

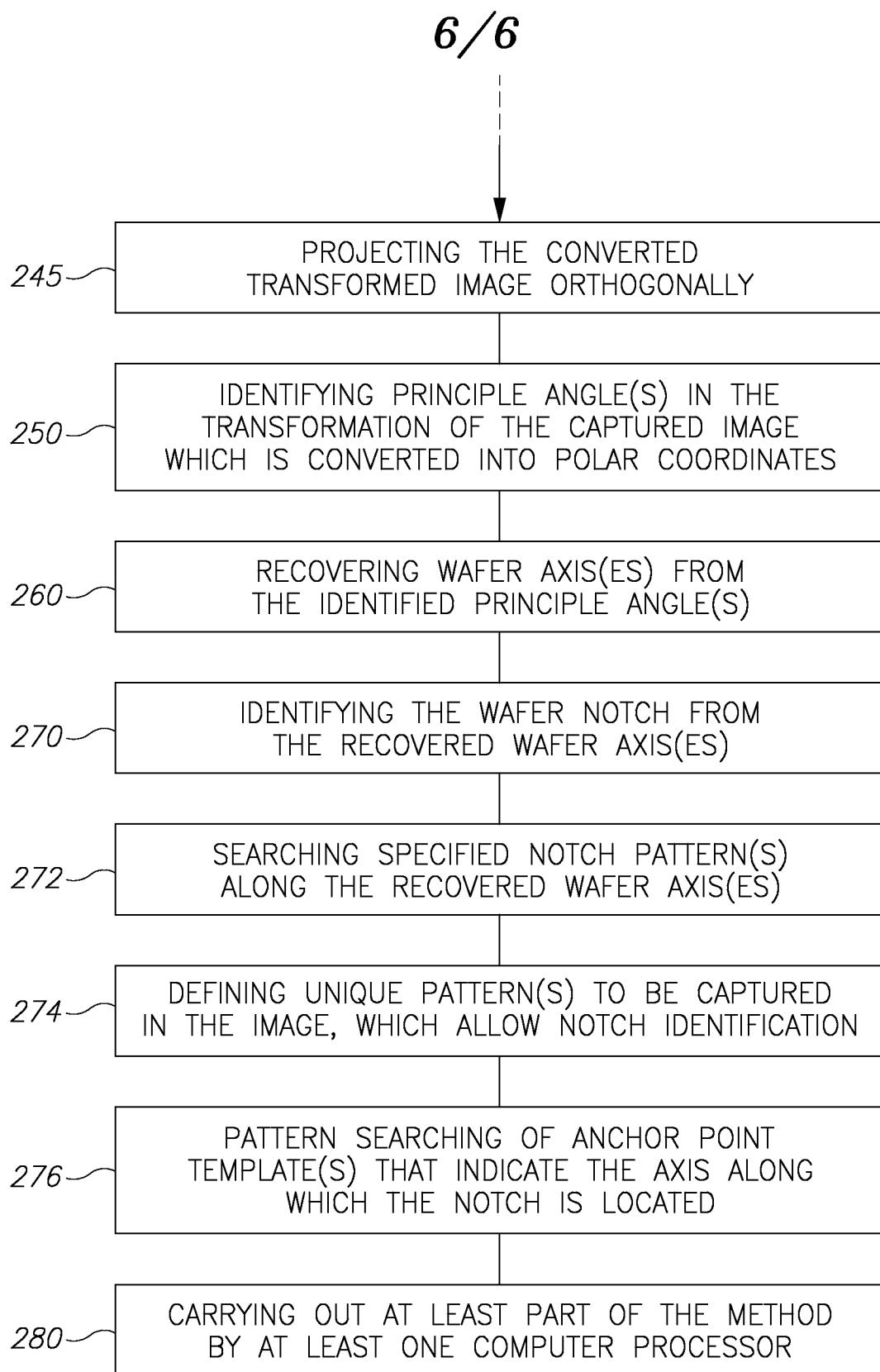


Figure 5 (cont. 1)

INTERNATIONAL SEARCH REPORT

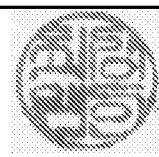
International application No.
PCT/US2015/015270

A. CLASSIFICATION OF SUBJECT MATTER

H01L 21/66(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED


Minimum documentation searched (classification system followed by classification symbols)
H01L 21/66; G03F 9/00; G01B 1/00; G06K 9/36; G06K 9/00; H01J 37/20; G01B 11/26; H01L 21/68Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & keywords: wafer, notch, principle angle, transformation, polar coordinates

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5825913 A (FARIBORZ ROSTAMI et al.) 20 October 1998 See column 3, line 13 – column 6, line 61; claim 25; and figure 1.	1-14
A	US 2005-0013476 A1 (PATRICK SIMPKINS) 20 January 2005 See paragraphs [0031]–[0036]; claims 1–5; and figures 4, 6.	1-14
A	JP 2000-031245 A (KOBEL STEEL LTD. et al.) 28 January 2000 See paragraphs [0006]–[0010]; and figures 1–4.	1-14
A	US 2007-0139642 A1 (SATOSHI IKEDA et al.) 21 June 2007 See paragraphs [0093]–[0123]; and figures 5–10.	1-14
A	US 6559457 B1 (KHOI A. PHAN et al.) 06 May 2003 See column 7, line 50 – column 8, line 42; and figure 4.	1-14

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search
29 May 2015 (29.05.2015)Date of mailing of the international search report
29 May 2015 (29.05.2015)Name and mailing address of the ISA/KR
International Application Division
Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,
Republic of Korea
Facsimile No. +82-42-472-7140Authorized officer
CHOI, Sang Won
Telephone No. +82-42-481-8291

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2015/015270

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5825913 A	20/10/1998	None	
US 2005-0013476 A1	20/01/2005	US 2007-0202420 A1 US 2008-0002877 A1 US 7197178 B2 US 7684611 B2 US 8097966 B2 WO 2005-008735 A2 WO 2005-008735 A3	30/08/2007 03/01/2008 27/03/2007 23/03/2010 17/01/2012 27/01/2005 29/06/2006
JP 2000-031245 A	28/01/2000	None	
US 2007-0139642 A1	21/06/2007	CN 1975997 A JP 2007-157897 A JP 4522360 B2 KR 10-2007-0058354 A US 7519448 B2	06/06/2007 21/06/2007 11/08/2010 08/06/2007 14/04/2009
US 6559457 B1	06/05/2003	None	