wo 2015/139670 A1 | I 0N T OO OO0 A RO RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property

Organization é OO 00 O 0T 00T

International Bureau) L.
_").//)/ (10) International Publication Number

WO 2015/139670 A1l

\

(43) International Publication Date
24 September 2015 (24.09.2015) WIPO | PCT

(51) International Patent Classification: CHEN, Mengmeng; 130 Descanso Dr.Unit 459, San Jose,
GOG6F 17/30 (2006.01) CA California 95134 (US).

(21) International Application Number: (81) Designated States (uniess otherwise indicated, for every

PCT/CN2015/074819 kind of national protection available). AE, AG, AL, AM,

(22) Imternational Filing Date: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

g : BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

21 March 2015 (21.03.2015) DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

. KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,

(26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

(30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

61/968.793 21 March 2014 (21.03.2014) Us SD, SE, SG, SK, SL, SM, ST, 8V, S8Y, TH, TJ, TM, TN,
14/663,210 19 March 2015 (19.03.2015) US IR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: HUAWEI TECHNOLOGIES CO., LTD. (84) Designated States (unless otherwise indicated, for every

[CN/CN]; Yu Chan B1-3A Intellectual Property Dept., kind of regional protection available): ARIPO (BW, GH,

Huawei Administration Building, Bantian,Longgang Dis- GM, KE, LR, LS, MW, MZ’ NA, RW, SD, SL, ST, SZ,

trict, Shenzhen, Guangdong 518129 (CN). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

(72) Imventors: KU, Chi young; 531 Huckleberry Way, San DK, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

Ramon, CA California 94582 (US). HU, Ron-Chung; 37 LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

Erstwild Ct., Palo Alto, CA California 94303 (US).

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR COLUMN-SPECIFIC MATERIALIZATION SCHEDULING

(57) Abstract: A method of dynamically computing an optim-
al materialization schedule for each column in a column ori-

JFE———

N ’\ STSRT ented RDBMS. Dynamic column-specific materialization
=] scheduling in a distributed column oriented RDBMS is op-
— . = - 0 timized by choosing a materialization strategy based on exe-
| GUERY TEXT IS TRAMBEFORIELHNTG SYNTAX TREE |>“"
cution cost including central processing unit (CPU), disk, and
l s network costs for each individual exchange operator. The dy-
| SYHTAN TREE 18 CHECKED FOR SEMANTIC CORRECTNESS } namic programming approach is computationally feasible be-
l cause the optimal schedule for a sub-plan is path independent.
A3
| SYNTAN TREE I TRANSFOFRED INTO REL MG |—A"
l Etd
| 1 EAR NODES OF REL DAR ARE SMROTATED WITH CLUBTERIMNG 8EQ l\"’

l

408
EXCHARGE NODE 15 NSERTED BETIWEEN PARENT AND CHED RELS |—"

l

SLEORITHY IS PERFORAED FOR GRTHME MATERIMUITATION SOHEDILE

l

A48T
FARALLEL REL A0 TRANSFORMED NTO DAS OF FLINCTION 0A1L S |—"'

l

208

HIG
| STATERENT DRG IS GENERATED (DRORIINATOR STATEAENT FOREET) Iw"

0%
| FOREST OF BAT UPERATOR LIETS I8 FORMEDR }w"’

.

~
}
;

i

FIG. 4

WO 2015/139670 A1 WK 00TV VAT UK AR

SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, Published:
GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))
Declarations under Rule 4.17:

— as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

WO 2015/139670 PCT/CN2015/074819

SYSTEM AND METHOD FOR COLUMN-SPECIFIC MATERIALIZATION
SCHEDULING
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Application No. 61/968,793,
filed on March 21, 2014 and entitled “COLUMN-SPECIFIC MATERIALIZATION
SCHEDULING” and U.S. Non-Provisional Application No. 14/663,210, filed on March 19, 2015
and entitled “SYSTEM AND METHOD FOR COLUMN-SPECIFIC MATERIALIZATION
SCHEDULING”. Each of these applications is incorporated herein by reference as if reproduced
in its entirety.
TECHNICAL FIELD

[0002] The present disclosure is generally directed to relational database management
systems (RDBMSs), and more specifically to a system and method for column-specific

materialization in a column oriented RDBMS.

BACKGROUND
[0003] A column oriented RDBMS is a DBMS that stores data tables as sections of
columns of data, rather than as rows of data. During query execution in a column oriented
RDBMS, it is often necessary to stitch together multiple columns of a record. Some of the columns
are added to intermediate results during the query execution. This process is called materialization.
How columns are materialized is an important factor in determining query performance in a
column oriented RDBMS. Existing column oriented RDBMSs typically employ either fixed early
materialization or fixed late materialization. In early materialization, columns referenced in a

query are fetched at the leaf nodes of an operator graph and they are transmitted from a child
-1-

WO 2015/139670 PCT/CN2015/074819

operator to a parent operator if required by up-stream operators. In late materialization, columns
needed by an operator are fetched from their sources just before processing and discarded
afterwards. For most column oriented RDBMSs, the column materialization strategy is hard
coded.

SUMMARY
[0004] This disclosure is directed to determining an optimal materialization schedule for
each column in a query execution in a column oriented RDBMS.
[0005] One example embodiment includes a method of dynamically establishing a
materialization schedule in a RDBMS. The method includes receiving a query text, transforming
the query text into a Rel directed acyclic graph (DAG), performing a bottom-up transversal of the
Rel DAG to create a parallel Rel DAG, and computing a column specific materialization schedule
of the parallel Rel DAG. The parallel Rel DAG is transformed into a DAG of function calls and
data re-shuffling actions to create a parallel statement forest. A coordinator statement forest is
generated that invokes the function calls and the data re-shuffling actions according to the parallel
statement forest. The parallel statement forest and the coordinator statement forest are
transformed into a forest of binary association table (BAT) operator lists to compute an optimal
materialization schedule for each column of a table.
[0006] In another example embodiment, a RDBMS is configured to dynamically establish
a materialization schedule.
[0007] In another example embodiment, a relational data base management system
(RDBMS) is configured to dynamically establish a materialization schedule. The RDBMS
includes: a receiving means configured to receive a query text, a transforming means configured to

transform the query text into a Rel directed acyclic graph (DAG), a performing means configured
_2.

WO 2015/139670 PCT/CN2015/074819

to perform a bottom-up transversal of the Rel DAG to create a parallel Rel DAG, and a computing
means configured to compute a column specific materialization schedule of the parallel Rel DAG.
The parallel Rel DAG is transformed into a DAG of function calls and data re-shuffling actions to
create a parallel statement forest. A coordinator statement forest is generated that invokes the
function calls and the data re-shuffling actions according to the parallel statement forest. The
parallel statement forest and the coordinator statement forest are transformed into a forest of
binary association table (BAT) operator lists to compute an optimal materialization schedule for
each column of a table.
BRIEF DESCRIPTION OF THE DRAWINGS

[0008] For a more complete understanding of the present disclosure, and the advantages
thereof, reference is now made to the following descriptions taken in conjunction with the
accompanying drawings, wherein like numbers designate like objects, and in which:

[0009] FIGURE 1 illustrates a table schema from the Transaction Processing Performance

Council (TPC) Benchmark H (TPC-H);

[0010] FIGURE 2 illustrates a syntax tree of a query plan for a structured query language
(SQL) statement;
[0011] FIGURE 3 illustrates an example column-specific materialization algorithm in

accordance with this disclosure;

[0012] FIGURE 4 illustrates an example method for parallel query optimization in
accordance with this disclosure;

[0013] FIGURE 5 illustrates an example parallel statement forest;

[0014] FIGURE 6 illustrates an example coordinator statement forest; and

-3

WO 2015/139670 PCT/CN2015/074819

[0015] FIGURE 7 illustrates an example of a computing device for parallel query
optimization according to this disclosure.

DETAILED DESCRIPTION
[0016] FIGURES 1 through 7, discussed below, and the various embodiments used to
describe the principles of the present invention in this patent document are by way of illustration
only and should not be construed in any way to limit the scope of the invention. Those skilled in
the art will understand that the principles of the invention may be implemented in any type of
suitably arranged device or system.
[0017] In a given query in a column oriented RDBMS, different columns are accessed by
different sets of operators. Therefore, using a single materialization approach for all columns in
the query would likely result in some columns not being materialized in an optimal fashion.
Embodiments of this disclosure provide a method and apparatus for dynamic column-specific
materialization scheduling in a distributed column oriented RDBMS. The materialization schedule
is optimized by selecting a materialization strategy based on an execution cost including central
processing unit (CPU), disk, and network costs for each individual exchange operator. The
disclosed embodiments use dynamic programming techniques to determine the optimal
materialization schedule. Dynamic programming is computationally feasible for the disclosed
embodiments because the optimal schedule for a sub-plan is path independent.
[0018] As described earlier, conventional materialization schemes include early
materialization and late materialization. To better illustrate these materialization schemes,

examples of each will now be described.

WO 2015/139670 PCT/CN2015/074819

[0019] To illustrate an example of early materialization, consider the following example
Query 1, which is based on existing tables in the Transaction Processing Performance Council
(TPC) Benchmark H (TPC-H) table schema shown in FIGURE 1.

[0020] Example Query 1:

SELECT 1_suppkey from lineitem, part
WHERE 1_partkey = p_partkey
AND 1_shipdate > '2008-01-017;

[0021] For the purposes of this example, it is assumed that the table PART is partitioned by
the column p_partkey, and that the table LINEITEM is partitioned by the column 1_orderkey.
Based on the known data in the PART and LINEITEM tables, it can be shown that, for Query 1,
the join selectivity is approximately 50%. As known in the art, join selectivity is a measure of how
much variation (i.e., how many different values) exists between records in a join result. Low
selectivity means that there is not a lot of variation in the values in a column, while high selectivity
means there is substantial variation in the values in the column. Before a shuffle of the records in
the table LINEITEM, the join selectivity can be examined to determine the cost of early
materialization and late materialization. After computing the cost, it is found that early
materialization (i.e., stitch |_suppkey with 1_partkey, and then shuffle) is better for Query 1. This is
because the communication/CPU cost of sending 50% of Row IDs and 1_suppkey column data
would be more costly than re-shuffling the entire 1_suppkey column data.

[0022] To illustrate an example of late materialization, consider the following example
Query 2, which is also based on the TPC-H table schema shown in FIGURE 1.

[0023] Example Query 2:

SELECT 1_suppkey from lineitem, part
-5-

WO 2015/139670 PCT/CN2015/074819

WHERE 1_partkey = p_partkey
AND 1_shipdate > '2014-10-017;

[0024] Once again, it is assumed that the table PART is partitioned by the column
p_partkey, and that the table LINEITEM is partitioned by the column 1_orderkey. Because of the
different shipdate value in Query 2, it can be shown that the join selectivity for Query 2 is
approximately 1%. The cost to shuffle the records in the table LINEITEM using early
materialization and late materialization can be determined. After computing the cost, it is found
that late materialization (i.e., join first, and then fetch the useful 1_suppkey data) is better for Query
2. This is because the communication/CPU cost of sending 1% of Row IDs and 1_suppkey column
data separately would be less costly than re-shuffling the entire 1_suppkey column with 1_partkey
data.

[0025] For some queries that have multiple table joins, a mixed materialization scheme in
accordance with this disclosure can be used. For example, consider the example Query 3, which is
also based on the TPC-H table schema shown in FIGURE 1.

[0026] Example Query 3:

SELECT 1_suppkey from lineitem, part a, part b
WHERE 1_partkey = a.p_partkey

AND 1_suppkey = b.p_partkey

AND 1_shipdate > '2008-10-01';

[0027] Once again, it is assumed that the table PART is partitioned by the column
p_partkey, and that the table LINEITEM is partitioned by the column 1_orderkey. In Query 3, there
are two table joins. For the known data in the tables, it can be shown that the join selectivity for
“l_partkey = a.p_partkey” (the first table join) is 50%, and that the join selectivity for “l_suppkey =

b.p_partkey” (the second table join) is 1%. After computing costs to shuffle the records in the table
-6 -

WO 2015/139670 PCT/CN2015/074819

LINEITEM, it is found that mixed materialization is better for Query 3. That is, the optimal
materialization scheme for Query 3 is to use early materialization in the first table join, and use late
materialization in the second table join.

[0028] FIGURE 2 illustrates a syntax tree of a query plan for example Query 3. As shown
in FIGURE 2, the syntax tree 200 includes a node for each operator in Query 3. The syntax tree
200 is a directed acyclic graph (DAG) that includes a plurality of nodes 201-207. The node 201
represents the LINEITEM table in Query 3. The node 201 is at the bottom of the syntax tree 200
because LINEITEM is the first operator in Query 3. The node 202 is an exchange node that
represents a data shuffling or redistribution operation in Query 3. Here, the data in the LINEITEM
table is shuffled before its join to the PART table. The node 203 represents the first instance
(instance A) of the PART table. The node 204 represents the join of the shuffled LINEITEM table
and instance A of the PART table, as well as the SELECT statement. The node 205 is another
exchange node that represents a data shuffling of the result set from the node 204. The node 206
represents the second instance (instance B) of the PART table. The node 207 represents the join of
shuffled result set from the node 205 and instance B of the PART table.

[0029] Materialization Cost

[0030] In the embodiments disclosed herein, a column-specific materialization algorithm
is part of a parallel query optimization compilation process that transforms a structured query
language (SQL) statement into a parallel execution plan. In accordance with the disclosed
embodiments, a decision to using early materialization or late materialization can be based on the
following recursive reasoning.

[0031] If the parallel execution plan is represented as a DAG of exchange nodes (such as

the syntax tree 200 shown in FIGURE 2), the best way to materialize a column C at an exchange
-7-

WO 2015/139670 PCT/CN2015/074819

node E (e.g., the exchange node 205) depends on whether the column is materialized at E’s child
exchange node, E_1 (e.g., the exchange node 202).

[0032] For example, if column C is materialized at exchange node E_1, the cost to
materialize column C at exchange node E would be the cost to materialize column C at exchange
node E_1 plus the communication/CPU cost to re-shuffle column C at exchange node E. If column
C is not materialized at exchange node E_1, the cost would be the cost of late materialization at
exchange node E, which is the communication/CPU cost of sending Row IDs and column C’s data.
[0033] Based on the preceding reasoning, the problem of computing the best
materialization schedule for a column C, given the exchange node E and the parallel execution
exchange node DAG, could be summarized as:

[0034] Choose the materialization schedule M so as to minimize the following cost at each

level L of Exchange node E in a recursive way:
Minimize (Cost of transferring C’s column data based on M[L-1]
+ the cost of materializing C at E[L-1] according to M[L-1])

where M[L-1] is the materialization choice at level L-1, and E[L-1] is the Exchange node at level
L-1.

[0035] Tuming again to FIGURE 2 and Query 3, it can be shown based on the preceding
reasoning, that the best way to materialize 1_suppkey at the node 202 (Exchange 1) is early
materialization, while the best way to materialize 1_suppkey at the node 205 (Exchange_2) is late
materialization.

[0036] In accordance with this disclosure, a method for computing the optimal

materialization schedule for a column is provided. The disclosed method assumes that the

-8 -

WO 2015/139670 PCT/CN2015/074819

distributed execution plan is represented by a DAG of exchange nodes and relational operators,
such as the syntax tree 200 shown in FIGURE 2. When the parent exchange node needs to
materialize a column, the parent exchange node materializes this column if it has a lower cost than
fetching the column from Row ID in the parent exchange node. The method can be summarized in
the following outline:
1. A choice is made at each exchange node whether to materialize the column. This is based
on cost comparisons.
a. If a column is materialized at the previous exchange node:
1. If the column is materialized at the next exchange node:
1. If the column is materialized at the current exchange node:
cost of materialization at the previous node =
the transfer cost of the column from next node to current node +
the cost of materialization at the next node.
2. 1If the column is not materialized at the current exchange node:
cost of materialization at the previous node =
the cost of sending the Row ID to the source nodes +
transfer cost of the resulting column.
ii. If the column is not materialized at the next exchange node:
cost of materialization at the previous node =
the cost of sending the Row ID to the source nodes +
transfer cost of the resulting column.
As a result of (a), the column is materialized at the current exchange node if it is required at the
current exchange node or if the cost at (a.i.1) is smaller than cost at (a.i.2).
b. If the column is not materialized at the previous exchange node:

1. If the column is materialized at the next exchange node:

1. If the column is materialized at the current exchange node:
-9.

WO 2015/139670 PCT/CN2015/074819

cost of not materializing at the previous node = 0.
2. 1If the column is not materialized at the current exchange node:
cost of not materializing at the previous node = 0.
ii. If the column is not materialized at the next exchange node:

cost of not materializing at the previous node = 0.
As a result of (b), the column is not materialized at the current exchange node.
[0037] Materialization Schedule Algorithm
[0038] FIGURE 3 illustrates an example column-specific materialization algorithm 300 in
accordance with this disclosure. The algorithm 300 is pseudocode of an acyclic algorithm that can
represent (or be represented by) a DAG. The algorithm 300 can be part of a parallel query
optimization compilation process that transforms a structured query language (SQL) statement
into a parallel execution plan. In particular embodiments, the algorithm 300 can be used to perform
a SQL operation that may include mixed materialization, such as Query 3. The algorithm 300 may
be performed using a computing device capable of RDBMS operations, such as the computing
device 700 of FIGURE 7 (described below).
[0039] The algorithm 300 includes three inputs: Exchange Node E, level L, and column C.
As described earlier, the exchange node is a database operator that is used to shuffle records in one
or more tables. The level L is provided by the system and is used to identify a level in a query tree.
Here, the levels in the query tree are numbered such that the lowest levels of the query tree are
shown or indicated at the bottom of the tree, and the highest levels of the query tree are shown or
indicated at the top of the tree.
[0040] Array K in the algorithm 300 contains materialization costs for the different levels.

That is, each element of the array K corresponds to a materialization cost for one level. The
-10 -

WO 2015/139670 PCT/CN2015/074819

IF-THEN-ELSE argument indicated at 301 in the algorithm 300 determines if an early schedule or
a late schedule will be used for level 1 based on the materialization cost for that level. Thus, the
schedule is determined first for level 1. The SET COST operation indicated at 302 is a recursive
function that calls the Materialization Schedule algorithm 300 to be performed on a next lower
level using Exchange Node E’s child as in input. For example, if a query tree includes four levels,
and the algorithm 300 is being performed for level 4, then the SET COST operation 302 is used to
call the algorithm 300 to be performed for level 3. The SET SCHEDULE operation indicated at
303 is used to set the schedule (early schedule or late schedule) for levels other than level 1 by
selecting the minimum cost between (a) the cost of the next lower level + the early materialization
cost, and (b) the cost of the next lower level + the late materialization cost. Then, the operation
indicated at 304 sets the cost at level L based on the cost of the next lower level (L — 1) and the
materialization cost at level L.

[0041] Dynamic Programming

[0042] The algorithm 300 is based on dynamic programming principles. Dynamic
programming is a technique for solving complex problems by breaking them down into simpler
sub-problems. Dynamic programming is often used in mathematics, computer science, economics,
and in other fields. One classic example of a complex problem for which dynamic programming is
frequently used is determining the shortest path between two cities or locations on a map, taking
into account the different roads and intermediate points available in the area.

[0043] In order to be able to use dynamic programming to solve a complex problem, the
complex problem itself must possess certain properties. First, the complex problem must include

overlapping sub-problems. Second the complex problem must have an optimal substructure. If a

-11 -

WO 2015/139670 PCT/CN2015/074819

problem does not possess these properties, then use of dynamic programming to solve the problem
may either be impossible or lead to a sub-optimal solution.

[0044] The materialization algorithm 300 includes overlapping sub-problems. For
example, the optimal schedule at level L is determined based on the optimal schedule at level L-1,
while the optimal schedule at level L-1 is determined based on the optimal schedule at level L-2,
and so on. Thus, the determinations of the different levels can be considered to overlap.

[0045] Similarly, the materialization algorithm 300 includes an optimal substructure. For
example, the IF-THEN-ELSE argument at 301 in the algorithm 300 determines an optimal
schedule for level 1 based on the materialization cost for that level, and then the algorithm 300
determines the optimal schedule for higher levels based on the schedule for the next lower level.
Thus, materialization algorithm 300 includes an optimal substructure based on a lowest
performance cost (i.e., a fastest execution time).

[0046] Use of dynamic programming has been shown to find a globally optimal solution
for a complex problem. Dynamic programming is different from a greedy algorithm. A greedy
algorithm may find a local optimal solution to a sub-problem, but often may arrive at a globally
sub-optimal solution. For example, considering the shortest path between two cities problem, a
greedy algorithm may find a locally optimal solution to a traffic jam at one intersection, but the
local solution may be optimal for only that intersection, and may result in a sub-optimal route
overall when the total route between the two cities is considered as a global solution.

[0047] As described above, the algorithm 300 can be part of a parallel query optimization
compilation process that transforms a SQL statement into a parallel execution plan. One approach

to this query-text to-parallel-plan transformation process to anchor the context within which the

- 12 -

WO 2015/139670 PCT/CN2015/074819

column specific algorithm 300 is performed can be summarized in the following method described
in FIGURE 4.

[0048] FIGURE 4 illustrates an example method for parallel query optimization in
accordance with this disclosure. For ease of explanation, the method 400 is described as being used
with the algorithm 300 of FIGURE 3. However, the method 400 could be used with any suitable
algorithm and in any suitable system. The method 400 may be performed using a computing
device capable of RDBMS operations, such as the computing device 700 of FIGURE 7 (described

below), or may be performed by another suitable device or system.

[0049] In operation 401, a query text is transformed into a syntax tree.
[0050] In operation 402, the syntax tree is checked for semantic correctness.
[0051] In operation 403, the syntax tree is transformed into a DAG of relational operators

(rels), which may be referred to as a Rel DAG, as known in the art.

[0052] In operation 404, the leaf nodes of the Rel DAG are annotated with clustering
information.
[0053] In operation 405, using a bottom-up traversal of the Rel DAG, an exchange node is

inserted between a parent Rel and a child Rel when the clustering properties of the output of the
child Rel is incompatible with the clustering properties of the input of the parent node. The
resulting DAG is called a parallel Rel DAG. The parallel Rel DAG may be similar to the DAG 200
shown in FIGURE 2.

[0054] In operation 406, a column-specific materialization algorithm (e.g., the algorithm
300) is performed to compute the optimal materialization schedule for each column.

[0055] In operation 407, the parallel Rel DAG is transformed into a DAG of function calls

and data re-shuffling actions according to the following details. Each function corresponds to a
-13 -

WO 2015/139670 PCT/CN2015/074819

fragment of the parallel Rel DAG between two adjacent exchange nodes. Each data re-shuffling
action corresponds to an exchange node. Each function is transformed into a statement forest,
where a statement represents a logical BAT operator. The logical BAT operator produces an
expression based on expressions produced by its children statements.

[0056] To produce the expression, the logical BAT operator makes a depth-first traversal
of the Rel DAG fragment. Then, for each Rel, for each expression exported by the Rel, and for
each combination of the source tables’ partitions, a statement DAG is generated for the expression.
[0057] Each function takes the columns’ data exported from its children exchange nodes
as an input. The outputs of each function are expressions exported by the top Rel of the function.
The output of the function becomes the input of the data re-shuffling action of its parent exchange
node. Note that Row IDs are always exported by a Rel.

[0058] Each data re-shuffling action re-shuffles columns to be materialized at this
exchange node. Columns to be materialized but not exported by a child exchange node are fetched
by using Row IDs. Each data re-shuffling action is transformed into a statement forest containing
one statement DAG for each re-shuffled column. The resulting statement forest is called the
parallel statement forest. An example parallel statement forest 500 is shown in FIGURE 5.
[0059] Then, in operation 408, a statement DAG is generated that invokes the functions
and data re-shuffling actions according to the depth-first traversal sequence of the parallel
statement forest. The resulting statement DAG is called the coordinator statement forest. An
example coordinator statement forest 600 is shown in FIGURE 6.

[0060] In operation 409, the parallel statement forest and the coordinator statement forest
are transformed into a forest of BAT operator lists. Each list corresponds to a function, a data

re-shuffling action, or the coordinator program.
-14 -

WO 2015/139670 PCT/CN2015/074819

[0061] Although FIGURE 4 illustrates one example of a method 400 for parallel query
optimization, various changes may be made to FIGURE 4. For example, while shown as a series of
steps, various steps in FIGURE 4 could overlap, occur in parallel, occur in a different order, or
occur any number of times.

[0062] FIGURE 7 illustrates an example of a computing device 700 for performing the
materialization algorithm 300 of FIGURE 3 or the parallel query optimization method 400 of
FIGURE 4. As shown in FIGURE 7, the computing device 700 includes a computing block 703
with a processing block 705 and a system memory 707. The processing block 705 may be any type
of programmable electronic device for executing software instructions, but will conventionally be
one or more microprocessors. The system memory 707 may include both a read-only memory
(ROM) 709 and a random access memory (RAM) 711. As will be appreciated by those of skill in
the art, both the read-only memory 709 and the random access memory 711 may store software
instructions for execution by the processing block 705.

[0063] The processing block 705 and the system memory 707 are connected, either
directly or indirectly, through a bus 713 or alternate communication structure, to one or more
peripheral devices. For example, the processing block 705 or the system memory 707 may be
directly or indirectly connected to one or more additional memory storage devices 715. The
memory storage devices 715 may include, for example, a “hard” magnetic disk drive, a solid state
disk drive, an optical disk drive, and a removable disk drive. The processing block 705 and the
system memory 707 also may be directly or indirectly connected to one or more input devices 717
and one or more output devices 719. The input devices 717 may include, for example, a keyboard,
a pointing device (such as a mouse, touchpad, stylus, trackball, or joystick), a touch screen, a

scanner, a camera, and a microphone. The output devices 719 may include, for example, a display
-15-

WO 2015/139670 PCT/CN2015/074819

device, a printer and speakers. Such a display device may be configured to display video images.
With various examples of the computing device 700, one or more of the peripheral devices
715-719 may be internally housed with the computing block 703. Alternately, one or more of the
peripheral devices 715-719 may be external to the housing for the computing block 703 and
connected to the bus 713 through, for example, a Universal Serial Bus (USB) connection or a
digital visual interface (DVI) connection.

[0064] With some implementations, the computing block 703 may also be directly or
indirectly connected to one or more network interfaces cards (NIC) 721, for communicating with
other devices making up a network. The network interface cards 721 translate data and control
signals from the computing block 703 into network messages according to one or more
communication protocols, such as the transmission control protocol (TCP) and the Internet
protocol (IP). Also, the network interface cards 721 may employ any suitable connection agent (or
combination of agents) for connecting to a network, including, for example, a wireless transceiver,
a modem, or an Ethernet connection.

[0065] It should be appreciated that the computing device 700 is illustrated as an example
only, and it not intended to be limiting. Various embodiments of this disclosure may be
implemented using one or more computing devices that include the components of the computing
device 700 illustrated in FIGURE 7, or which include an alternate combination of components,
including components that are not shown in FIGURE 7. For example, various embodiments of the
invention may be implemented using a multi-processor computer, a plurality of single and/or
multiprocessor computers arranged into a network, or some combination of both.

[0066] The algorithm described in this disclosure computes the best materialization

schedule for each column on every exchange operator within a query. This is advantageous over
-16 -

WO 2015/139670 PCT/CN2015/074819

existing materialization scheduling algorithms that employ either fixed early materialization or
fixed late materialization for all exchange operators in a query. The algorithm disclosed herein can
be implemented by traversing the parallel execution graph from the top down, identifying columns
that have not been scheduled. For each such column, dynamic programming is applied to compute
the materialization schedule in a recursive (or bottom up) fashion. The minimum materialization
costs at level L-1 do not change with the choice of materialization at levels greater or equal to L.
The computation complexity is linearly proportional to the height of the parallel execution graph
and number of columns.

[0067] Embodiments of this disclosure has been demonstrated in simulation tests to reduce
the interconnect bandwidth requirement for distributed query processing by an average of 10% -
30%. Assuming that the inter-node communication cost is about 25% of the total query processing
cost, this reduces the total cost of distributed query processing by 2.5% - 7.5%.

[0068] In some embodiments, some or all of the functions or processes of the one or more
of the devices are implemented or supported by a computer program that is formed from computer
readable program code and that is embodied in a computer readable medium. The phrase
“computer readable program code” includes any type of computer code, including source code,
object code, and executable code. The phrase “computer readable medium” includes any type of
medium capable of being accessed by a computer, such as read only memory (ROM), random
access memory (RAM), a hard disk drive, a compact disc (CD), a digital video disc (DVD), or any
other type of memory.

[0069] It may be advantageous to set forth definitions of certain words and phrases used

b

throughout this patent document. The terms “include” and “comprise,” as well as derivatives

thereof, mean inclusion without limitation. The term “or” is inclusive, meaning and/or. The
217 -

WO 2015/139670 PCT/CN2015/074819

phrases “associated with” and “associated therewith,” as well as derivatives thereof, mean to
include, be included within, interconnect with, contain, be contained within, connect to or with,
couple to or with, be communicable with, cooperate with, interleave, juxtapose, be proximate to,
be bound to or with, have, have a property of, or the like.

[0070] While this disclosure has described certain embodiments and generally associated
methods, alterations and permutations of these embodiments and methods will be apparent to
those skilled in the art. Accordingly, the above description of example embodiments does not
define or constrain this disclosure. Other changes, substitutions, and alterations are also possible

without departing from the spirit and scope of this disclosure, as defined by the following claims.

- 18 -

WO 2015/139670 PCT/CN2015/074819

WHAT IS CLAIMED 18S:

1. A method of establishing a materialization schedule using a dynamic programming
technique in a relational data base management system (RDBMS), the method comprising:

receiving a query text;

transforming the query text into a Rel directed acyclic graph (DAG);

performing a bottom-up transversal of the Rel DAG to create a parallel Rel DAG;

computing a column specific materialization schedule of the parallel Rel DAG;

transforming the parallel Rel DAG into a DAG of function calls and data re-shuffling
actions to create a parallel statement forest;

generating a coordinator statement forest that invokes the function calls and the data
re-shuffling actions according to the parallel statement forest; and

transforming the parallel statement forest and the coordinator statement forest into a forest
of binary association table (B AT) operator lists to compute an optimal materialization schedule for

each column of a table.

2. The method as specified in Claim 1, wherein:
each function call corresponds to a fragment of the parallel Rel DAG between two adjacent
exchange nodes; and

each data re-shuffling action corresponds to an exchange node.

3. The method as specified in Claim 1 or Claim 2, wherein leaf nodes of the Rel DAG

are annotated with clustering information.
-19-

WO 2015/139670 PCT/CN2015/074819

4. The method as specified in any one of Claims 1 - 3, wherein the bottom-up traversal
is performed by inserting an exchange node between a parent Rel node and a child Rel node when
a clustering property of an output of the child Rel node is incompatible with a clustering property

of an input of the parent Rel node.

5. The method as specified in any one of Claims 1 - 4, wherein each function call is
transformed into a statement forest, wherein a statement represents a BAT operator, to produce an

expression produced by a child statement of the function call.

6. The method as specified in Claim 5, wherein the expression is produced by:
making a depth-first traversal of a corresponding Rel DAG fragment, and
for each Rel, for each expression exported by the Rel, and for each combination of a source

tables’ partitions, generate a statement DAG for the expression.

-20 -

WO 2015/139670 PCT/CN2015/074819

7. The method as specified in any one of Claims 1 - 6, wherein:

each function call takes columns’ data exported from its child Rel nodes as an input,

an output of each function call is expression exported by a top Rel of the function call, and
the output of the function call is the input of the data re-shuffling action of its parent node,

wherein Row IDs are exported by a Rel.

8. The method as specified in Claim 4, wherein each data re-shuffling action
re-shuffles columns to be materialized at a respective Rel node, and columns materialized but not

exported by a child Rel node are fetched by using Row IDs.

9. The method as specified in Claim 8, wherein each data re-shuffling action is
transformed into a statement forest containing one statement DAG for each re-shuffled column to

create the parallel statement forest.

10. The method as specified in any one of Claims 1 - 9, further comprising generating a
statement DAG that invokes the function calls and data re-shuffling actions according to a
depth-first traversal sequence of the parallel statement forest to create the coordinator statement

forest.

-21 -

WO 2015/139670 PCT/CN2015/074819

11. A relational data base management system (RDBMS) configured to:

receive a query text;

transform the query text into a Rel directed acyclic graph (DAG);

perform a bottom-up transversal of the Rel DAG to create a parallel Rel DAG;

compute a column specific materialization schedule of the parallel Rel DAG;

transform the parallel Rel DAG into a DAG of function calls and data re-shuffling actions
to create a parallel statement forest;

generate a coordinator statement forest that invokes the function calls and the data
re-shuffling actions according to the parallel statement forest; and

transform the parallel statement forest and the coordinator statement forest into a forest of
binary association table (BAT) operator lists to compute an optimal materialization schedule for

each column of a table.

12. The RDBMS as specified in Claim 11, wherein:
each function call corresponds to a fragment of the parallel Rel DAG between two adjacent
exchange nodes; and

each data re-shuffling action corresponds to an exchange node.

13. The RDBMS as specified in Claim 11 or claim 12, wherein leaf nodes of the Rel

DAG are configured to be annotated with clustering information.

14. The RDBMS as specified in any one of Claims 11 - 13, wherein the bottom-up

traversal is performed by inserting an exchange node between a parent Rel node and a child Rel
-2

WO 2015/139670 PCT/CN2015/074819

node when a clustering property of an output of the child Rel node is incompatible with a

clustering property of an input of the parent Rel node.

15. The RDBMS as specified in any one of Claims 11 - 14, wherein each function call
is configured to be transformed into a statement forest, wherein a statement represents a BAT

operator, to produce an expression produced by a child statement of the function call.

16. The RDBMS as specified in Claim 15, wherein the expression is configured to be
produced by:

making a depth-first traversal of a corresponding Rel DAG fragment, and

for each Rel, for each expression exported by the Rel, and for each combination of a source

tables’ partitions, generating a statement DAG for the expression.

17. The RDBMS as specified in any one of Claims 11 - 16, wherein:

each function call takes columns’ data exported from its child Rel nodes as an input,

an output of each function call is expression exported by a top Rel of the function call, and
the output of the function call is the input of the data re-shuffling action of its parent node,

wherein Row IDs are exported by a Rel.

18. The RDBMS as specified in Claim 14, wherein each data re-shuffling action
re-shuffles columns to be materialized at a respective Rel node, and columns materialized but not

exported by a child Rel node are fetched by using Row IDs.

-23 -

WO 2015/139670 PCT/CN2015/074819

19. The RDBMS as specified in Claim 18, wherein each data re-shuffling action is
transformed into a statement forest containing one statement DAG for each re-shuffled column to

create the parallel statement forest.

20. A method of establishing a materialization schedule using a dynamic programming
technique in a relational database management system (RDBMS), the method comprising:
receiving a query text;
transforming the query text into a Rel directed acyclic graph (DAG);
performing a bottom-up transversal of the Rel DAG to create a parallel Rel DAG;
computing a column specific materialization schedule of the parallel Rel DAG;
transforming the parallel Rel DAG into a DAG of function calls and data re-shuffling
actions to create a parallel statement forest, wherein:
each function call takes columns’ data exported from its child Rel nodes as an
input,
output of each function call is expression exported by a top Rel of the function call,
and
the output of the function call is the input of a data re-shuffling action of its parent
node, wherein Row IDs are exported by a Rel;
generating a coordinator statement forest that invokes the function calls and the data
re-shuffling actions according to the parallel statement forest; and
transforming the parallel statement forest and the coordinator statement forest into a forest
of binary association table (B AT) operator lists to compute an optimal materialization schedule for

each column of a table.
224 -

WO 2015/139670 PCT/CN2015/074819

21. A relational data base management system (RDBMS) configured to dynamically
establish a materialization schedule, wherein the RDBMS comprises:

a receiving means, configured to receive a query text;

a transforming means, configured to transform the query text into a Rel directed acyclic
graph (DAG);

a performing means, configured to perform a bottom-up transversal of the Rel DAG to
create a parallel Rel DAG;

a computing means, configured to compute a column specific materialization schedule of
the parallel Rel DAG;

the transforming means, configured to transform the parallel Rel DAG into a DAG of
function calls and data re-shuffling actions to create a parallel statement forest;

a generating means, configured to generate a coordinator statement forest that invokes the
function calls and the data re-shuffling actions according to the parallel statement forest; and

the transforming means, configured to transform the parallel statement forest and the
coordinator statement forest into a forest of binary association table (BAT) operator lists to

compute an optimal materialization schedule for each column of a table.

-25-

WO 2015/139670

PART R §
SN AN

FARTSIFP IFE)

PCT/CN2015/074819

TESAGINR

TREY

STENESE

FRTRMNNEY

PHONE

SCTRY E1
ACOTVBAL

HG.

AT
§

|-t

SMERTEM 3

SR ———
SHTENDRIPRINS

PRIGRTY

Sk

SRIQRITY

STRANENT

| BRPRONE

{ooNENT

TGN IR)

X

4

PCT/CN2015/074819

WO 2015/139670

P

ket

RSP S

7

& A

WO 2015/139670 PCT/CN2015/074819

P
3

gt

¥

3

165,

208

R

§ M ot

oo

8 ad

& &
DY

bk B oCmisne

Py

WO 2015/139670 PCT/CN2015/074819

457
200 T ™
N { START 1

¥ 301

CHERY TERT IS TRANSSORMED INTO SYNTAX TREE Lot
2 L0z
HYNTAXY THEE I8 CHECHED FOT SEMANTYY CORRECTNESS st
3
SYRTAY TREE 12 TRAMSFORAED WD SEL DA o

))
$04
LEAF NODES OF BEL O&3 ARE ANRNOTATED WITH CLURTERBG NFQ =

¥ {05
EXCHANGE NODE (S NSERTED BETWEEN PARENT AND CHILD RELS -

* <
AL CORITHY S PERFOEMED FOR TR THAAL MATERIAUITATION SCHEDIRE |

L 3

FARALLEL REL DAG TRANSFORMED: T DAG OF FUNGCTION GaLLS —

k.
435
STATEMENT DG 15 CERERATER OOURIMAATOR STATEMENT FORESTY |

¥ -

S0%
o X -
i .

WO 2015/139670 PCT/CN2015/074819

e

SIS S U RIS I

H
H
H
H
H
H
H
H
H
N

_piniiineies BID, gare ¥

s

Rk

WO 2015/139670

m
-4

ot
[

FIG. &

PCT/CN2015/074819

WO 2015/139670

n
e

COMPUTING BLOCK

P

PROCEIRING BLOIR

FERT
FHF -

Sl

SYSTEM MEMORY

ROM

e

S .?Gg

el
Py
b

PCT/CN2015/074819

510

MEMGRY
Fx,&{;‘\ B DEVIG

G

QUTRUT DEVC

s
Fi8

743
NIG
£a
R

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2015/074819

A. CLASSIFICATION OF SUBJECT MATTER

GOG6F 17/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CPRSABS,CNKI,VEN: establish+, creat+, materializ+, schedul+, relational data base management system, RDBMS, receiv+,
query, Rel DAG, DAG, directed acyclic graph, transversal, parallel, column, specific, oriented, comput+, transform, re-shuffl+,

statement, forest, BAT, optimal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

the whole document

US 2014075350 A1 (GAUTHIER, A. ET AL.) 13 March 2014 (2014-03-13)

1-21

GMBH) 25 March 2009 (2009-03-25)
the whole document

EP 2040180 A1 (HASSO PLATTNER INST FUER SOFTWARESYSTEMTECHNIK

the whole document

US 2009150413 A1 (ORACLE INTERNATIONAL CORP.) 11 June 2009 (2009-06-11)

D Further documents are listed in the continuation of Box C.

See patent family annex.

Special categories of cited documents:

. document defining the general state of the art which is not considered

A to be of particular relevance

“gr earlier application or patent but published on or after the international
filing date

“ document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“«0 document referring to an oral disclosure, use, exhibition or other
means

«pr document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

wp

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

wy»

“&”

Date of the actual completion of the international search

Date of mailing of the international search report

06 June 2015 19 June 2015
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA YUAN,Cui

6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing
100088, China

Facsimile No. (86-10)62019451

Telephone No. (86-10)62089566

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.

PCT/CN2015/074819
. Patf:nt document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
UsS 2014075350 Al 13 March 2014 CN 103678452 A 26 March 2014
EP 2706494 Al 12 March 2014
P 2040180 Al 25 March 2009 Nome
vs 2009150413 Al 117une2009 US 8078652 B2 13 December 2011

us 2012036111 Al

09 February 2012

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

