Title: METHOD FOR ASSESING PRODUCTION STRATEGY PLANS

Abstract: The invention relates to a method that generates well location plans and field development plans assessing and ranking the potential of the different plans with a small number of parameters or initial conditions, thus considerably reducing the decision time for taking a particular strategy when compared with the techniques described in the art.
METHOD FOR ASSESING PRODUCTION STRATEGY PLANS

DESCRIPTION

OBJECT OF THE INVENTION

The present invention is related to generating production strategy plans, assessing and ranking the potential of the different plans, with a small number of parameters or initial conditions, thus considerably reducing the decision time for taking a particular strategy when compared with the techniques described in the art.

PRIOR ART

A typical state of the art hydrocarbon reservoir production strategy provides production decisions for a given planning horizon on a drilling schedule to maximize production. A typical planning horizon may locate production and injection wells. The drilling schedule may indicate which wells are to be drilled and when, and the production rate at which the wells are to operate. Varying the position, schedule and/or control of each well may vary production to have a multi million-dollar impact. Thus, evaluating reservoir production potential and economic performance over a wide range of alternative oil and gas production strategies is crucial. Also, because there are a large number of variables in selecting the strategy, it has been a time-consuming activity. Frequently, available information is limited, and based on uncertain reservoir geological and petro-physical properties. Typically, major investment decisions must be made on this limited information, especially when subterranean flooding (e.g., with water) is the main production strategy.

Previously, experienced reservoir engineers heuristically defined and ranked complex production development plans, using trial-and-error to deal with problem components, separately and sequentially. After selecting drilling locations, for example, engineers heuristically defined a well drilling schedule. However, these ad hoc heuristic solutions frequently have application only within the limited framework for which they were developed. Additionally, rather than arriving at the best overall or optimum realization, separately and sequentially dealing components may have
discarded the most attractive or optimal solutions.

Thus, there is a need for dramatically reducing the number of drilling configurations that must be considered for a comprehensive reservoir production strategy and more particularly for rapidly generating and ranking several representative development plans under uncertainty to quickly converge on plans that jointly encompass all available production aspects.

DESCRIPTION OF THE INVENTION

The present invention relates to a system, method and computer program product for generating well location plans and field development plans, assessing and ranking the potential of the different plans with a small number of parameters or initial conditions, thus considerably reducing the decision time for taking a particular strategy when compared with state of the art techniques.

The present invention solves the problems identified above by providing method of generating production strategies suitable for the exploitation of a reservoir of hydrocarbon in a natural environment, wherein said natural environment is limited in its surface by a domain (Ω). It should be noted that if hydrocarbon reservoir is surrounded by water then the domain (Ω) may be defined in such a way the hydrocarbon reservoir is completely located within the domain (Ω). The method comprises the following steps:

- determining a reference system in the domain (Ω),

- determining an opportunity index 0 1 as a function defined in the domain (Ω) providing the local production potential as a function of the location and the local properties;

- determining a radius of drainage rd providing the radius of drainage of the hydrocarbon at the end of life of a production well as a function of the opportunity index rd=rd(OI);

- identifying production behavior zone cluster or clusters as locations with similar local production behavior;

- for each cluster to be exploited:
  
  - determining a representative value of the opportunity index 0 1 and its corresponding radius of drainage rd=rd(OI);
providing an angle \( a \);

- generating a discretization of the cluster according to a grid with a regular pattern wherein the distance between the closest nodes of the pattern is \( 2^{rd} \), and the orientation of the grid, selecting a reference line in the grid, in the reference system is the angle \( a \);

- determining the production well locations in the cluster as the coordinates of the nodes of the grid located within the cluster.

Determining the location of production wells as the production strategy according to this method reduces the number of potential development plans in a certain domain (\( \Omega \)) necessary to achieve an accurate reservoir simulation.

For that purpose, an opportunity index is defined as a function that quantifies, for every location, the hydrocarbon production potential taking into account the local properties of every location - for example, as a function proportional to the amount of hydrocarbon trapped in that location and inversely proportional to the ability of hydrocarbon to flow thorough the rocks in that location. The information about the local properties of every location retrieved from the collected data may be obtained by averaging a set of geological models, named as "reservoir realizations" taking into account the uncertainty wherein each model may be simulated using CFD (Computational Fluid Dynamic) codes. Departing from deterministic data, tools like interpolation, Design of Experiments and others, provide a set of reservoir realizations taking into account the uncertainty. Statistic variables as average values or dispersion measures may be evaluated over the whole set of reservoir realizations. In the particular case of the opportunity index, the value taken in a predetermined location is the average measured on the whole set of reservoir realizations computed by means of simulations.

The locations with a similar opportunity index are grouped in zones called clusters, each one thus having similar behavior in terms of hydrocarbon production potential. It is understood that 'locations with similar \( 01/ \) locations whose \( 01 \) is within a certain range of values. It is possible to provide only one cluster if the whole domain has a similar behavior in terms of hydrocarbon production potential.

A new function, the radius of drainage, is determined from the \( 01 \) and, in some cases,
also as a function of other variables to be explained in the detailed description of the invention. The radius of drainage is a measure of the optimal radius of extraction for every well, since it provides for each well the radius of extraction at the end of the life of extraction under ideal conditions in such a way that the circumference determined by such radius with center in every well are tangent one each other.

This association between a function of the potentiality of a location for hydrocarbon production and the radius of extraction of every well is an advantageous way of generating a well location plan with a number of parameters low enough as to not needing important computational resources.

For every cluster, a representative value of the $0_1$ is taken (for example, the arithmetic mean of the extremes of the range that defines a cluster) and the subsequent $r_d$ is then calculated.

The number of parameters to generate a well location plan is relatively small, and therefore the every plan can be quickly obtained from a set of parameters. Some of these parameters, as has been stated, relate the $0_1$ and the $r_d$, as a function of the local properties. Others define a reference system and the planned well location with reference to this system such as the location of a first point of each patterned grid and the angle of a reference line of such grid.

Once the reference system is defined, since the radiuses of drainage are tangent one each other, the well must be located at a distance of $2r_d$ to comply with this condition. Keeping this condition, and starting at the origin of the first point, the grid is generated to discretize the cluster - the nodes are the possible location of the wells themselves, separated as has been said a distance $2r_d$. The grid is therefore a patterned grid, and its orientation with respect to the reference system is given by an angle $a$ and is one of the parameters of the well location plan taking a reference line of the grid. Once this angle $a$ is provided, the well location is given by the position of the nodes of the patterned grid with respect to the reference system.

**DESCRIPTION OF THE DRAWINGS**

These and other features and advantages of the invention will be seen more clearly
from the following detailed description of a preferred embodiment provided only by way of illustrative and non-limiting example in reference to the attached drawings.

Figure 1 This figure shows a domain where an oil field development is carried out.

Figure 2 This figure shows a domain discretized in cells according to a regular grid in a Cartesian reference system.

Figure 3a, 3b These figures show several nodes of the grid where the production wells are located, and the radius of drainage of these production wells at the end of their productive lives. Figure 3a shows a square patterned grid and figure 3b shows a equilateral triangle patterned grid.

Figure 4 This figure shows the location of the production wells, separated one each other a distance twice the radius of drainage, for a grid defined with respect to a reference system by an angle \( \alpha \).

Figure 5 This figure shows a domain divided in two clusters, each of them with an associated opportunity index, radius of drainage and angle \( \alpha \).

Figure 6 This figure shows the position of injection wells when these are inside of certain cluster, when a square pattern of four production wells are within the domain and when at least one of the production well of the pattern falls beyond the boundary.

Figure 7 This figure shows a domain divided in two zones - one with hydrocarbon and another one with water, wherein a strip-shaped region has been defined along the boundary between both zones in the water zone.

Figure 8 This figure shows a strip-shaped region corresponding to a domain with peripheral injection, the region being divided in injection clusters each one with its corresponding injectivity index and radius of injection.
Figure 9  This figure shows a method of determining the first injection well in a
development plan with peripheral injection.

Figure 10  This figure shows a flow chart diagram of a development plan with n
parameters as initial condition and N development plans to be ranked.

DETAILED DESCRIPTION OF THE INVENTION

The present invention proposes a well location plan which is advantageous with re-
spect to those of the state of the art since it provides accurate heuristic solutions that
need less design parameters and therefore a less complex (and less time-consuming)
forecast.

The opportunity index defines the hydrocarbon production potential of certain loca-
tion of a domain ($\Omega$), and then the radius of drainage $rd$ for such location is defined as
a function of the $Ol$ so that the higher the $Ol$ the higher the $rd$.

In a particular embodiment of the invention, the relation between $Ol$ and $rd$ is
$rd=a*Ol^b$ where $a$ and $b$, positive constants based on local properties of every cluster,
are, in this example, two of the parameters used to calculate the potential well loca-
tion plans.

In a further particular embodiment, the well location plan is controlled by five param-
ters per cluster, a number small enough as to allow that the domain ($\Omega$) can be ex-
plored by means of experimental design techniques in a relatively exhaustive manner
in a matter of a few hours. Apart from $a$ and $b$, in a particular embodiment other pa-
rameter are space parameters referred to the reference system (the coordinates of the
first point of the patterned grid i and j and the aforementioned angle $a$ of every clus-
ter). Further, the same five parameters may be common to all cluster, such that the
total number of parameters is five, regardless of the number of clusters being consid-
ered.

As it is shown in figure 2, the domain ($\Omega$) is discretized in cells for computational pur-
poses. The computational grid shown in figure 2 has been chosen very coarse and reg-
ular intentionally in order to be clearer. For every cell, the $Ol$ must be estimated or
calculated. This is the case when the numerical simulations of the flow carried out over
the domain are based on finite volume methods or finite element methods just as an example. At this stage only the reservoir geological and petro-physical properties are needed.

The domain (Ω) is divided into clusters (Cl, C2), as in figure 5, whose locations have an opportunity index comprised within a particular range. A representative 0 is associated to each cluster (Cl, C2), for instance the average value over the cluster, and, as has been already explained, a representative rd is calculated, for example, according to the formula \( rd = a^*OI^b \).

As it is shown in figure 3a and 3b, once the rd has been calculated the grid spacing is determined. The nodes of the grid are taken as production well locations, and therefore the grid spacing is chosen as 2-rd in order to optimize the well locations as, at the end of its production life, each well production would drain the maximum area not overlapping the surrounding drainage areas of contiguous production wells. Figure 3a shows a pattern of the center of the circumferences made of squares and figure 3b shows a pattern made of equilateral triangles. Both are represented in a reference system \((x, y)\) and oriented according to the angle \(a=0\) selecting a reference line of the grid.

Once the different clusters, with its 0 and rd, have been defined, the location of the production wells (P) for this particular plan (calculated with a particular set of initial parameters) is obtained for each cluster defining a patterned grid in which the distance between closest nodes is twice the radius of drainage (rd) - this can be seen in the examples of figures 4 and 5 wherein square patterns are used, the latter for a case with two clusters (Cl, C2) with its corresponding radius of drainage (rd1, rd2); then, the first point of the grid is located in a particular location of the cluster, and the grid is placed with reference to this system by providing another parameter, an angle \(a\), which relates one of the axis of the reference system and the direction of a preselected line of the grid. The location of the first point of the grid with respect to the reference system in a bidimensional domain (Ω) and the angle \(a\) make a total of three parameters that added to the parameters \(a\) and \(b\) make, for a particular example, five parameters per cluster to characterize a well location plan.
Since a reduced number of parameters characterizes every well location plan, and each plan provides a good proposal for the exploitation of the reservoir, a much smaller number of well location plans suffices as opposed to prior approaches that very often required several thousands of plans or more. As a result, a reduced number of computational flow simulations are required reducing the total computational effort.

As for selecting the set of parameters (five per cluster in the particular example) that gives as a result a particular well location (P) plan, in a particular example the technique known in the art as Design of Experiments is used. Each set of parameters determine a well location plan. The use of Design of Experiments provides a plurality of different plans according to the disclosed method.

Some development plans comprise, aside from production wells (P), injection wells (I) through which water is added to sweep the different regions of the domain (Ω). The injection wells (I) are, in one particular example, placed at the centroid of the pattern of the grid, for instance the square pattern formed by every four neighbor nodes, that set the locations of the production wells (P) for a certain cluster, as can be seen in figure 6. When one of the nodes (P) falls outside of the cluster, at the other side of its boundary, the centroid (I) is calculated with the remaining nodes (P) inside the cluster.

Alternatively, if the reservoir is susceptible to peripheral injection, injectors (I) can be located at a strip-shaped region (S) extending along a boundary (I) of the interface between water (W) and hydrocarbon (0) phases of the reservoir and located in the water side of the interface, as shown in figure 7. For determining the distance between injection wells (I) in the strip-shaped region, a new function, the injectivity index (II), is defined. The II takes into account the local sweeping potential as a function of the location and its local properties, as the 0 did with the oil production potential.

As in the case of the 01, the locations of the strip-shaped region (S) with II within a determined range of values, which is to say locations with a relatively similar behavior, are grouped in injection clusters (S1, S2, S3) in the strip-shaped region (S). A II representative for each injection cluster (S1, S2, S3) is taken, for instance the average value of the II in such cluster.

Likewise, a radius of injection (ri) is calculated from the II for every injection cluster
(SI, S2, S3), so that the higher the \( r \) the higher the \( r_d \), that is, the bigger surface that a single injector (II, 12, 13) of said cluster (SI, S2, S3) is able to sweep. In a particular example, the \( r_i \) is expressed as \( r_i = c \cdot l^d \) wherein \( c, d \) are positive constants depending on the local properties for each injection cluster.

The spacing between consecutive injectors (II, 12, 13) in the strip-shaped region (S), starting from a first injection well location (II) of the strip-shaped region (S), is calculated as twice the radius of injection (r1, r2, r3) of the injection cluster (SI, S2, S3) where the injection well (II, 12, 13) is, as can be seen in figure 8. When a different injection cluster (SI, S2, S3) is reached, the radius of injection considered is the one of the cluster (SI, S2, S3) of the strip-shaped region (S) where the former injection well (II, 12, 13) is located. Further injection wells (II, 12, 13) are located according to the present injection cluster (SI, S2, S3) until a new cluster (SI, S2, S3) is reached.

In a particular example, this generation of injection wells (II, 12, 13) is continued this way until all the clusters in the strip-shaped regions are exhausted or until the first injection well (II) is reached (when the strip-shaped region (S) is a close region).

In a further example, the strip-shaped region (S) is the width of a cell of the discretized domain (as the cells in figure 2) for computational simulation purposes.

In a further example, the width of the strip-shaped region (S) is a fraction of the distance between a neighbor producer (P) well and the center of its corresponding pattern.

With respect to determining the first injection well (II) of a strip-shaped region (S) for a peripheral injection, in one example this first location is calculated as shown in figure 9, that is, defining a polyhedron with the external production wells (P) of the oil region, calculating the center of mass (CM) of this polyhedron and determining the orthogonal projection of the center of mass with respect to the boundary between the hydrocarbon (O) and the water (W). In a further example, the center of mass is calculated over the whole production wells (P) of the oil region of the cluster.

In a further example, the location of the first injection well (II) of the strip-shaped region (S) for a peripheral injection is calculated determining the orthogonal projection
of the production well (P) having higher opportunity index 0 1 with respect to the boundary between the hydrocarbon (O) and the water (W).

Once all injectors and producers are arranged in the domain, a number of these wells may be removed from the production plan using measures of productivity or injectivity potential. Suitable productivity or injectivity potential measures may include, for example, the opportunity index and the injectivity index.

Similarly to the well location plan, other parameters are used to control the well dril-
ing schedule. The drilling schedule comprises generating a list comprising the produc-
tion wells (P); or both, production wells (P) and injection wells (I) wherein such list is sorted according to three criteria. In a particular example, three input parameters are used for this task and the list comprises both, production wells (P) and injection wells (I). In a further example, two of these parameters define the sequence of produc-
tion and injection followed to complete the exploitation of the domain (Ω) (for exam-
ple, a basic pattern of drilling two producers (P) followed by one injector (I), repeated until all wells (P, I) are considered), and the remaining parameter indicates the time interval between drilling two consecutive wells (assuming it is the same for all the drill-
ing sequence). The order of drilling for both the production wells (P) and the injection wells (I) is predetermined according to different criteria.

In a particular example, this criterion is as follows: the order is given by a list in which the wells (P, I) first in the list are those with higher index (O1 and II), those closer to the outer boundary of the domain (Ω) or to the interface boundary between hydrocarbon (O) and water (W) in the domain (Ω), or those having a lesser average distance with precedent or antecedent wells (P, I). With this criterion, there is an adequate choice in the exploitation of the wells (P, I), since the first to be drilled are the ones with more oil potential, the ones more easily reachable from the boundary, and the ones closer to each other. The three conditions can be taken into account at the same time, if weights are given to each one of them.

For the particular example in which both the well location plan and the well drilling location are taken into account, the n parameters (eight in this particular example) are selected by means of a technique such as the Design of Experiment to obtain a certain well location plan and drilling plan. In a further example, well controls are also provid-
ed based on estimations of the average potential recovery factor of the reservoir, on usual injection procedures, on standard economic constraints, etc. The number of well location plans and drilling locations, that is, the number of development plans (N) estimated according to the method which is the main inventive aspect of the invention, each one with a set of (n) parameters (for example, eight), may then be ranked, to select the most appropriate options, according to techniques such as the net present value (NPV).

The ranking measure is a measure averaged over all reservoir realizations, for instance those reservoir realizations used for the determination of the opportunity index. For example, if NPV is the ranking measure, for each field development plan the ranking measure is the average of all NPVs over all realizations. The computational cost for the evaluation of a development plan mainly depends on the computational cost of the flow simulation. In this case, the Design of Experiments only needs a reduced number of plans because each plan provides well distributions and drilling schedules selected in an efficient manner thanks to method of the main aspect of the present invention and therefore the Design of Experiments does not need to explore a large amount of well locations in order to reach the efficient ones. In the prior art, the well distribution is entrusted to the Design of Experiments therefore the number of proposals need to be large enough to obtain a reasonable result. Because each proposal requires a flow simulation the computational cost of the present invention is drastically reduced. For this example, the field development plan with the highest average NPV ranks highest or first.

Figure 10 shows a flow chart diagram in which N different ranking measures (105), for example, NPV-are calculated - one for each development plan starting with a set of n parameters (block 101) m of which generate well locations (102) and the rest, n-m, generating well scheduling plans (103), the development plan provided with well controls (104). Once the ranking measure is evaluated (105), the N different development plans are sorted. The development plan having the highest ranking measure is proposed as the result of the method.

In a further example, the distance between the injector locations within a cluster can be determined through a fixed relation that involves the distance between the injector locations in nearby cluster(s) and the injectivity index. In particular, this does not in-
introduce additional parameters for locating of the injectors.

Advantageously, the present invention dramatically provides accurate heuristic solutions from fewer design parameters than are required for other prior approaches, and therefore, provides a less complex (and less time-consuming) forecast.
CLAIMS

1.- A method of generating production strategy suitable for the exploitation of a reservoir of hydrocarbon in a natural environment, wherein said natural environment is limited in its surface by a domain (Ω), comprising the following steps:

- determining a reference system in the domain (Ω),
- determining an opportunity index (OI) as a function defined in the domain (Ω) providing the local production potential as a function of the location and the local properties;
- determining a radius of drainage (rd) providing the radius of drainage of the hydrocarbon at the end of life of a production well as a function of the opportunity index (rd = rd(OI));
- identifying production behavior zone cluster or clusters (C1, C2) as locations with similar local production behavior;

for each cluster (C1, C2) to be exploited:

- determining a representative value of the opportunity index (OI, O12) and its corresponding radius of drainage (rd = rd(OI), (rd1, rd2));
- providing an angle (al, a2);
- generating a discretization of the cluster according to a grid with a regular pattern wherein the distance between the closest nodes of the pattern is 2*rd, and the orientation of the grid, selecting a reference line in the grid, in the reference system is the angle a;
- determining the production well locations (P1, P2) in the cluster (C1, C2) as the coordinates of the nodes of the grid located within the cluster (C1, C2).

2.- A method according to claim 1 wherein the production behavior zone clusters (C1, C2) are defined responsive to the opportunity index (OI).

3.- A method according to claim 1 wherein after generating production well locations (P) in the domain (Ω), the method comprises generating injection well (I) locations according to the following steps:

- for a predetermined cluster (C1, C2) having production wells (P1, P2), defining a pattern in the patterned grid of said cluster (C1, C2), as a group of neighbor production wells (P) wherein the location of said production wells (P1, P2) defines a
4. A method according to claim 3 wherein the pattern in the patterned grid of at least one cluster has a square shape whose vertices correspond to four neighbor production well locations.

5. A method according to claim 3 wherein the pattern in the patterned grid of at least one cluster has an equilateral triangle shape whose vertices correspond to three neighbor production well locations.

6. A method according to any claim 3 to 5 wherein the determination of the injection well (II, 12) location in the predetermined cluster is carried out for all patterns having at least two production wells within said cluster.

7. A method according to any previous claim wherein after generating production well (P) locations in the domain (Ω), the method comprises generating injection well (I) locations according to the following steps:

- determining the reservoir limit between the hydrocarbon (0) and the water (W) phase in the domain (Ω);

- determining a strip-shaped region (S) extending along the boundary and located in the water side (W);

- identifying behavior zone clusters (SI, S2, S3) in the strip-shaped region (S) as locations with similar behavior responsive to an injectivity index (II) providing the local sweeping potential as a function of the location and the local properties;

- determining a radius of injection (ri) for water providing the radius of injection of an injection well as a function of the injectivity index ri=ri(II);

- determining a first injection well (II) location in the strip-shaped region; and,

- from the first injection well (II) location, generating further injection well (II, 12, 13) locations in the strip-shaped region (S), begin each further injection well (II, 12, 13) location at a distance 2*ri(II) wherein the injectivity index (II) is measured in the cluster (SI, S2, S3) of the strip-shaped region (S) where the former injection well (II, 12, 13) is located.
8. A method according to claim 7 wherein second and further injection well (II, 12, 13) locations are generated until the zone clusters (SI, S2, S3) in the strip-shaped region (S) are exhausted or, until the cluster (SI) having the first injection well location (II) is reached; the condition that is first met.

9. A method according to claims 7 or 9 wherein the first injection well location in the strip-shaped region is determined as one of the following options:
   • the orthogonal projection of the center of mass of the production well locations onto the interface boundary calculated over the whole production wells (P) of the oil region of the cluster,
   • the orthogonal projection of the center of mass of the production well locations onto the interface boundary calculated over the external production wells (P) of the oil region of the cluster, or,
   • the orthogonal projection of the location of the production well (P) having higher opportunity index onto the interface boundary.

10. A method according to any of claims 6 to 8 wherein the domain (Ω) is discretized in cells and wherein the width of the strip-shaped region (S) one of the following options:
    the width is of one cell,
    the width is a fraction of the distance between a neighbor producer (P) well and the center of its corresponding pattern.

11. A method according to any of claims 1 to 10 wherein the radius of drainage of hydrocarbon at the end of life of a production well as a function of the opportunity index is expressed as \( r_d = a \cdot O_l^b \) wherein \( a, b \) are positive constants dependent on the local properties.

12. A method according to any of claims 1 to 11 wherein the radius of injection \( r_i \) for water as a function of the injectivity index \( I_l \) is expressed as \( r_i = c \cdot I_l^d \) wherein \( c, d \) are positive constants dependent on the local properties.

13. A method according to any previous claim wherein the method, after production well (P) locations and, if any, injection well (I) locations has been determined, further
comprises generating a well drilling schedule.

14.- A method according to claim 13 wherein generating a well drilling schedule comprises generating a list comprising the production wells (P); or both, production wells (P) and injection wells (I) wherein such list is sorted according to one of the following criteria:
- the first wells (P, I) in the list are those having higher index,
- the first wells (P, I) in the list are those closer to the boundary of the domain (Ω) or the interface boundary between the hydrocarbon (0) and the water (W) in the domain (Ω),
- the first wells (P, I) in the list are those having a lesser average distance with a predetermined number of precedent and antecedent wells (P, I).

15.- A method according to claim 13 or 14 wherein the method, after generating a well drilling schedule, further comprises generating production well controls for controlling well production.

16.- A method of assessing hydrocarbon energy production development strategies for retrieving hydrocarbon from its natural environment that comprises:
- generating a plurality of production development plans each plan comprising the following steps:
  - generating a production well (P) location and, if any, an injection well location (I) according to any of claims 1 to 12;
  - generating a drilling schedule for production wells (P) and, if any, for injection wells (I), according to any of claims 13 to 14;
  - generating production well (P) and, if any, injection wells (I) controls for controlling well production according to claim 15;
- making the ranked said plurality of production development plans available.

17.- A method according to claims 16 wherein a Design of Experiment technique is applied for generating the plurality of production development plans.

18.- A method according to claim 16 or 17 wherein determining said average ranking measure comprises averaging dynamic property such as net present value (NPV), re-
covery factor, etc. for said each production development plan.

19. - A data processing system comprising means for carrying out a method according to any of claims 1 to 18.

20. - A computer program product adapted to perform a method according to any of claims 1 to 18.
Any reference to figures 3A and 3B shall be considered non-existent.
### INTERNATIONAL SEARCH REPORT

PCT/EP2014/061820

#### A. CLASSIFICATION OF SUBJECT MATTER

**INV. E21B43/00**

According to International Patent Classification (IPC) or to both national classification and IPC

#### B. FIELDS SEARCHED

**Minimum documentation searched (classification system followed by classification symbols)**

E21B  G06Q

**Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched**

#### Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal , WPI Data, TULSA

#### C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>A MOLINA ET AL: &quot;Exploitati on Plan Design Based on Opportunity Index Analysi s in Numerical Simulation Model s&quot;, SOCIETY OF PETROLEUM ENGINEERS, SPE, 3 June 2009 (2009-06-03) , pages 1-8, XP055087204, Introduction; page 1 pages 2,3 ----- */-</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:
  - "A" document defining the general state of the art which is not considered to be of particular relevance
  - "E" earlier application or patent but published on or after the international filing date
  - "L" document which may throw doubts on priority claim(s) on which the published date is cited to establish the publication date of another citation or other special reason (as specified)
  - "O" document referring to an oral disclosure, use, exhibition or other means
  - "P" document published prior to the international filing date but later than the priority date claimed

**Date of the actual completion of the international search**

1 September 2014

**Date of mailing of the international search report**

09/09/2014

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Schneidbauer, K
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>----------------------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 7657494 B2</td>
<td>02-02-2010</td>
<td>AU 2007299906 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0716865 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2662245 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101517560 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 200970305 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2064630 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008082469 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wo 2008036664 A2</td>
</tr>
<tr>
<td>US 2011307227 A1</td>
<td>15-12-2011</td>
<td>CA 2737572 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EA 201100780 Al</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2011307227 A1</td>
</tr>
</tbody>
</table>