Title: PURE NON-INVASIVE METHOD FOR IDENTIFICATION OF ORGAN DISEASES OR IMPAIRED ORGAN FUNCTION BY INVESTIGATION OF MARKER SUBSTANCES IN EXHALED AIR STIMULATED BY INHALED MARKER SUBSTANCES

Abstract: The invention relates to a method for providing original data that can be used for subsequently determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism. This method is characterized by several steps, one of which is administering a marker substance to a living organism by inhalation, wherein the marker substance has a vapor pressure above 0.01 mmHg at 37 °C. In other method steps, the concentration of this marker substance in exhaled air is determined at at least two different time points. Then, a difference in marker substance concentration is calculated.
Pure non-invasive method for identification of organ diseases or impaired organ function by investigation of marker substances in exhaled air stimulated by inhaled marker substances

Description

The invention relates to a method for providing original data that can be used for subsequently determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism according to the preamble of claim 1, to the use of specific substances in such a method according to the preamble of claim 8 as well as to the further medical use of such substances in a diagnostic method according to the preamble of claim 10.

Non-invasive determination of organ diseases, such as liver diseases, or impaired organ function, such as impaired liver function, is an important field of medicine and hepatology. The liver is the organ where most catalytic processes, metabolic reactions, and decomposition of toxic marker substances take place. Thus, the actual metabolic power and overall status of the liver is a crucial information for physicians treating a patient.

Over the last years several new methods were developed to measure the liver function and to identify liver diseases or impaired liver functions. The two most important methods for identification of the liver function are the so-called LiMAx test and the ICG (indocyanine green) test. Both tests are based on a marker substance administered to the patients. The LiMAx-test tracks the metabolization of the 13C-labelled substrate methacetin as marker substance by detecting the metabolic product 13C02, while the ICG test simply detects the clearing of ICG via the liver and kidney (cf. US 2012/03301 16 A1).

The information on the liver status is limited for the ICG test, since the function of the kidney influences the clearing dynamics, and more important the slow clearing dynamics also depend on redistribution processes of ICG within the body, altering the time constant measured. Thus, the ICG test is not able to provide precise information on the liver status.

In contrast, the fast LiMAx test tracks the metabolic product of 13C-methacetin in real time, gaining information on the liver metabolic dynamics not influenced by redistribution processes.
within the body. However, the LiMAx test could be influenced by lung function in case of patients with altered lung function or severe lung diseases.

For both tests intravenous administration of the marker substance (ICG or methacetin) is optimal, and oral or intestinal administration is possible. According to current knowledge, none of these tests allows an administration of the marker substance by inhalation. One reason is the necessary high concentration of the marker substance that cannot be achieved by inhalation in case of ICG or methacetin. In addition, neither methacetin nor ICG have a measurable vapor pressure, making a direct inhalation of these substances impossible.

The LiMAx test induces metabolization of 13C-methacetin and thus belongs to methods using induced metabolization processes after administering a marker substance by tracking a part of the metabolization process. In case of the LiMAx test, a metabolization product is tracked to follow metabolization dynamics. This is exemplarily described in WO 2007/000145 A2, WO 201 1/076803 A1, and WO 201 1/076804 A2. Some further references relating to scientific literature about the LiMAx test and related liver diseases are given below:

2. Bednarsch J, Jara M, Lock JF, Malinowski M, Pratschke J, Stockmann M.; Noninvasive diagnosis of chemotherapy induced liver injury by LiMAx test - two case reports and a review of the literature; BMC Res Notes. 2015;8:99

WO 2012/140213 A2 describes a method in which a marker substance is administrated, wherein the metabolization products are detected in real time.

It is an object of the present invention to provide a method that can be used in organ function diagnostics or in (quantitative) diagnostics of organ diseases, wherein the method allows for totally non-invasive administration of a marker substance to a living organism.

It was surprisingly found that inhalation of a marker substance is a suited way of administration, if not a metabolization product of the marker substance, but the marker substance itself is
detected afterwards in air exhaled by the living organism. Specifically, a reduction of the concentration of the marker substance in the exhaled air can be directly linked to a metabolization of a part of the marker substance by the living organism in a specific organ. Thereby, the kind of marker substance is the decisive factor for the organ, the function of which is to be determined.

Specifically, the object is solved by a method for providing original data that can be used for subsequently determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism. This method is characterized by the following steps:

a) administering a marker substance to a living organism by inhalation, wherein the marker substance has a vapor pressure above 0.01 mmHg at 37 °C,

b) determining a concentration of the marker substance in exhaled air which is exhaled by the living organism at a first time point,

c) determining the concentration of the marker substance in the exhaled air which is exhaled by the living organism at a second time point after the first time point,

d) determining a difference between the concentration of the marker substance determined at the first time point and the concentration of the marker substance determined at the second time point.

The living organism can be, e.g., a rodent or a mammal, such as a human.

Inhalation is a highly non-invasive method to administer a marker substance and guarantees that the lung condition of the living organism is reflected in the uptake/inhalation and release/exhalation of the marker substance.

The method steps can be performed in the sequence indicated above or in any other sequence. If the method steps are performed in the sequence indicated above, the first time point is a time point after inhalation of the marker substance. E.g., it can be a time point directly after inhalation of the marker substance. In this circumstance, "directly" means within less than 1 minute, in particular less than 45 seconds, in particular less than 30 seconds, in particular less than 15 seconds after the end of inhalation of the marker substance.
Such a method step sequence is particularly suited for providing original data to be used in liver function diagnostics or in diagnosing liver diseases.

The second time point is always after the first time point. The time difference between the first time point and the second time point can be, e.g., between from 30 seconds to 2 days. At least two measurements have to be taken, but increasing the number of data points (measurements) increases the certainty of the metabolism dynamics observed indirectly by a decrease of the concentration of the marker substance in the exhaled air.

Suitable time points for a measurement (and therewith also suited differences between the first time point and the second time point) are 30 seconds, 1 minute, 2 minutes, 3 minutes, 5 minutes, 7 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 70 minutes, 100 minutes, 200 minutes, 300 minutes, 400 minutes, 500 minutes, 700 minutes, 1000 minutes, 2000 minutes, or 2800 minutes after beginning of inhalation, before the inhalation, or after the end of inhalation.

Information on the metabolism dynamics of the marker substance can be generally gathered from measurements before inhaling the enriched air, while inhaling the enriched air, directly after inhaling the enriched air, and after inhalation of the enriched air at different time points.

In an embodiment, step a) is performed between steps b) and c). Thus, in this embodiment, the first measurement (at the first time point) takes place before the marker substance is inhaled. This means that the first measurement reflects the situation of the living organism before inhalation of the marker substance. Afterwards, the marker substance is inhaled. Then, the concentration of the marker substance is again determined (at the second time point) so that afterwards the difference between the marker substance concentration before inhalation and after inhalation can be calculated. Such a method step sequence is particularly suited for providing original data to be used in lung function diagnostics or in diagnosing lung diseases.

In an embodiment, the marker substance is used in its natural abundance, in a non-radioactive isotopically labelled form (e.g., labelled by ^{13}C, ^2H and/or ^{15}N), or in a mixture of both. The vapor enriched with the marker substance can be generated by a vaporizer, directly from a solution, or by mixing different gases (one with the marker substance).
The enriched vapor can be inhaled via a filled breath bag, an open or closed system with a breath mask connected to the vapor reservoir, or other systems enriching the air with the marker substance vapor.

The marker substance concentration can be measured at any time, namely before inhaling the enriched air, while inhaling the enriched air, directly after inhaling the enriched air, and after inhalation of the enriched air.

Information on the lung properties and the ability for marker substance uptake via the lungs are taken from the measurements before inhaling the enriched air, while inhaling the enriched air, and/or directly after inhaling the enriched air.

Using isotopically labelled marker substances for inhalation allows for separation of naturally occurring marker substance levels and inhalation induced marker substance levels. In case of some marker substances there is a naturally occurring marker substance level in the blood (i.e., a natural abundance), varying for example with the time of the year. Isotopically labelled marker substances can be used to distinguish between the natural occurrence and the induced occurrence of the marker substance in the blood.

In an embodiment, the organ is at least one from the group consisting of liver, kidney, spleen, and lung. Thereby, the liver is particularly suited as organ, the function of which is to be tested. In addition, the lung is also particularly suited as organ, the function which is to be tested. Liver and lung are a particularly suited combination of organs.

In an embodiment, the marker substance is a volatile organic compound (VOC). Such volatile organic compounds are small organic molecules having a comparatively low boiling point. They occur - in different compositions - almost everywhere and are (in comparatively low doses) inhaled and again expired by all organisms. Thereby, a metabolism of these compounds can occur within the subject.

In an embodiment, the marker substance has a vapor pressure above 0.02 mmHg, in particular above 0.03 mmHg, in particular above 0.05 mmHg, in particular above 0.1 mmHg, in particular above 0.2 mmHg, in particular above 0.3 mmHg, in particular above 0.5 mmHg, and especially above 1 mmHg (always at a temperature of 37 °C).

In an embodiment, the marker substance is metabolized by the living organism. Then, the reduction of the marker substance concentration in the exhaled air can be directly related to
the metabolization dynamics of the marker substance in the respective organ of the living organism.

The following substances are generally suited as marker substances. They are ordered according to their mass over charge ratio m/z (without H+):

- m/z = 60: carbonyl sulfide, dimethylsilane, acetic acid, propanol
- m/z = 108: bis(methylthio)methane, 3-mercaptopropane-1,2,3-diol
- m/z = 121: cysteine
- m/z = 168: selenocysteine
- m/z = 114: octane, furan-2-ylmethanethiol
- m/z = 80: 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine), 1,4-diazine (pyrazine)
- m/z = 136: limonene, a-pinene, β-pinene, γ-pinene
- m/z = 86: 2-pentanone, hexane
- m/z = 156: 4-hydroxynonenal
- m/z = 128: nonane, naphthalene

Since not all of the before-mentioned marker substances can be equally well inhaled by living organism without causing undesired side effects, the marker substance is, in an embodiment, chosen from the group consisting of octane, furan-2-ylmethanethiol, 1,2-diazine, 1,3-diazine, 1,4-diazine, a terpene, 2-pentanone, hexane and 4-hydroxynonenal. Combinations of these substances are possible.

In an embodiment, the marker substance is at least one diazine, namely 1,2-diazine, 1,3-diazine and/or 1,4-diazine.

In an embodiment, the marker substance is a terpene. In another embodiment, the terpene is chosen from the group consisting of limonene, a-pinene, β-pinene and γ-pinene. Limonene is particularly suited as marker substance.

In an aspect, the invention also relates to a method for determining the function of an organ of a living organism having the features as explained above. Thereby, the method encompasses an additional step of determining the function of the organ based on the concentration difference determined in step d). In an embodiment, the method also comprises the step of reporting the function of the organ. In an embodiment, the method comprises determining the health status of the living organism with respect to and based on the determined organ
function. In an embodiment, the method also comprises the step of reporting the health status of the living organism.

In an aspect, the invention also relates to a method for diagnosing a disease or for diagnosing a severity of a disease of an organ of a living organism having the features explained above. Thereby, the method encompasses an additional step of making a diagnosis based on the concentration difference determined in step d).

In an aspect, the invention also relates to the use of at least one substance chosen from the group consisting of octane, furan-2-ylmethanethiol, 1,2-diazine, 1,3-diazine, 1,4-diazine, a terpene, 2-pentanone, hexane and 4-hydroxynonenal as marker substance to be administered to a living organism by inhalation in a method for providing original data that can be used for subsequently determining the function of an organ of the living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of the living organism.

In an embodiment, the terpene is at least one of the group consisting of limonene, opinene, β-pinene and γ-pinene.

In an aspect, the invention also relates to the further medical use of a substance chosen from the group consisting of octane, furan-2-ylmethanethiol, 1,2-diazine, 1,3-diazine, 1,4-diazine, a terpene, 2-pentanone, hexane and 4-hydroxynonenal, namely for use as marker substance to be administered to a living organism by inhalation in a diagnostic method for determining the function of an organ of the living organism or for diagnosing a disease or a severity of a disease of an organ of the living organism.

In an embodiment, the terpene is at least one of the group consisting of limonene, opinene, β-pinene and γ-pinene.

All embodiments explained with respect to the described methods, uses and further medical uses can be combined in any desired way. Thereby, embodiments of the described methods can be transferred to the respective other method, described use and further medical use of the marker substances and vice versa.

Aspects of the instant invention will now be explained with respect to exemplary embodiments and accompanying Figures. In the Figures:
Figure 1A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to compounds having an m/z value of 137 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 1B shows the results of PTR-MS of exhaled breath with respect to compounds having an m/z value of 137 of exhaled breath of the same individuals as in Figure 1A in dependence on the liver power (expressed as LiMAx value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 2A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to compounds having an m/z value of 61 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 2B shows the results of PTR-MS of exhaled breath with respect to compounds having an m/z value of 61 of exhaled breath of the same individuals as in Figure 2A in dependence on the liver power (expressed as LiMAx value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 3A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to compounds having an m/z value of 109 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 3B shows the results of PTR-MS of exhaled breath with respect to compounds having an m/z value of 109 of exhaled breath of the same individuals as in Figure 3A in dependence on the liver power (expressed as LiMAx value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 4A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to cysteine having an m/z value of 122 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 4B shows the results of PTR-MS of exhaled breath with respect to cysteine having an m/z value of 122 of exhaled breath of the same individuals as in Figure 4A in dependence on the liver power (expressed as LiMAx value) that has been determined for these individuals independently on the PTR-MS measurement;
Figure 5A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to selenocysteine having an m/z value of 169 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 5B shows the results of PTR-MS of exhaled breath with respect to selenocysteine having an m/z value of 169 of exhaled breath of the same individuals as in Figure 5A in dependence on the liver power (expressed as LiMAX value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 6A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to compounds having an m/z value of 115 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 6B shows the results of PTR-MS of exhaled breath with respect to compounds having an m/z value of 115 of exhaled breath of the same individuals as in Figure 6A in dependence on the liver power (expressed as LiMAX value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 7A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to compounds having an m/z value of 129 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 7B shows the results of PTR-MS of exhaled breath with respect to compounds having an m/z value of 129 of exhaled breath of the same individuals as in Figure 7A in dependence on the liver power (expressed as LiMAX value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 8A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to compounds having an m/z value of 81 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 8B shows the results of PTR-MS of exhaled breath with respect to compounds having an m/z value of 81 of exhaled breath of the same individuals as in Figure
8A in dependence on the liver power (expressed as LiMAx value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 9A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to compounds having an m/z value of 87 of exhaled breath of individuals having divers health conditions or nutritional states;

Figure 9B shows the results of PTR-MS of exhaled breath with respect to compounds having an m/z value of 87 of exhaled breath of the same individuals as in Figure 9A in dependence on the liver power (expressed as LiMAx value) that has been determined for these individuals independently on the PTR-MS measurement;

Figure 10A shows the results of proton-transfer reaction mass spectrometry (PTR-MS) with respect to 4-hydroxynonenal having an m/z value of 157 of exhaled breath of individuals having divers health conditions or nutritional states; and

Figure 10B shows the results of PTR-MS of exhaled breath with respect to 4-hydroxynonenal having an m/z value of 157 of exhaled breath of the same individuals as in Figure 10A in dependence on the liver power (expressed as LiMAx value) that has been determined for these individuals independently on the PTR-MS measurement.

Exemplary embodiments

Suited marker substances were identified by re-evaluating the experimental data of the dissertation "Analysis of breath allows for non-invasive identification and quantification of diseases and metabolic dysfunction" of Suha Adel Al-Ani that is freely available under the following internet address:

www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000100227

Further details of the concrete experimental work that has been done to obtain the data explained in the following can be found in chapter 4 of this dissertation. This dissertation, in particular chapter 4 regarding the experimental work, chapter 3 regarding details of DOB kinetics, and the graphically depicted results of chapter 5, is hereby incorporated by reference.
Briefly, the exhaled breath of healthy individuals belonging to two groups of different nutritional states (namely based on a normal diet on the one hand and based on a vegan diet on the other hand) as well as of patients suffering from a liver disease has been measured by proton-transfer reaction mass spectrometry (PTR-MS) for quantitatively identifying different volatile organic compounds (VOCs) in the measured exhaled breath.

Figure 1A shows the results of according PTR-MS measurements regarding limonene and different pinenes as marker substances that are typically inhaled from the surrounding to identify liver diseases or impaired liver function. The concentration of limonene, α-pinene, β-pinene and γ-pinene (all having an m/z ratio of 137 including an additional H⁺; their mass without a proton is 136 au) is almost identical for all three groups of individuals tested (taking into account the error bars).

In addition, the liver power of the same individuals was tested by determining the LiMAx value on the basis of a breath test after 13C-methacetin administration. Thereby, the LiMAx value was calculated according to the following formula:

$$LiMAx = \frac{DOB_{\text{max}} \cdot RPDB \cdot PCO_2 \cdot M}{BW},$$

wherein

- the unit of the LiMAx value is $\text{g/kg/h},$
- DOB_{\text{max}} denotes the maximum value of the DOB (delta over baseline) kinetics,
- RPDB is the Pee Dee Belemnite standard and is 0.01 1237,
- PCO₂ denotes the CO₂ production rate that is to be calculated by (300 mmol/h) * BSA, wherein BSA means body surface area; it is indicated in m² and is calculated according to the Du Bois formula: BSA = 0.007184 * W⁰⁴²⁵ * H⁰.⁷₂⁵, wherein W is the weight in kg and H is the height in cm of the respective individual;
- M is the molar mass of 13C-methacetin (166.19 g/mol),
- BW is the body weight of the individual in kg.

Figure 1B shows the results of PTR-MS measurements in dependence on an according determination of the LiMAx value. It can be seen from Figure 1B that the concentration of limonene, α-pinene, β-pinene and γ-pinene is significantly increased in the expiratory air of patients that have a strongly impaired liver function represented by a LiMAx value of below 176 (both bars on the left) as compared to patients with only slightly impaired liver function represented by a LiMAx value of 176 to 351 (both bars in the middle) or individuals with normal liver function represented by a LiMAx value of above 351 (both bars on the right) that were...
erroneously grouped as patients suffering from a liver disease but that have in fact no decreased liver function. Thereby, the LiMAx value has been determined by two independent devices, namely by a modified non-dispersive isotope-selective infrared spectrometer of Fischer Analysen Instrumente GmbH (black bars, abbreviated by FANci or FANci2-db16) or by a Flow-through Fast Liver Investigation Packet available from Humedics GmbH (grey bars, abbreviated by FLIP).

The modified non-dispersive isotope-selective infrared spectrometer FANci2-db16 has a frequency of approximately 1/min. It was used to draw and analyze breath samples. This spectrometer measures the 13C02 to 12C02 ratio. As a light source, a black body radiator is used. Two detection chambers are filled with 13C02 or 12C02, respectively, wherein a microphone is present in each detection chamber. Between the light source and the detection chamber there is a chopper to modulate the IR radiation. A measuring chamber is filled with the gas to be tested. The molecules in the detection chambers absorb the modulated IR radiation and convert it to thermal energy. The so-modulated density fluctuations cause sound waves, and each is measured with a microphone.

The disadvantage of the device is that it is very sensitive to vibrations and to temperature changes. Also, the breath cannot be measured when flowing so that it is instead kept stationary in an aluminum bag. In standard mode, the breath is collected in a bag and the bag is connected to the device, then it pumps the exhaled air into the measuring chamber. During exhaling air in to the bag, it is important to make sure that only the alveolar air is used. The air that does not reach the alveoli has the CO2 content of the inspired air. It would distort the measured values. With this measuring method an accuracy of ±2 DOB can be achieved according to the manufacturer, but it does not provide absolute values for exhaled CO2 volumes.

The FLIP device can measure the 13C02 to 12C02 ratio in exhaled breath. The ultra-sensitive laser spectroscopy system of the FLIP device can quickly and reliably determine the capacity of the liver function. The FLIP/LiMAx system greatly improves the surgical intervention planning. The laser based FLIP device detects a metabolic product (13C02) of the enzymatic conversion of the drug methacetin in the liver in the exhaled air. 13C02 is stable, non-radioactive and detected by the unique sensors in the device even at extremely low concentrations (100 ppb) in every single breath.

The FLIP device measures in real-time a continuous flow of air. It has been developed in cooperation with medical professionals and is adapted to various clinical situations. The FLIP
has unified the mobility, the usability and the practicality. It has been used successfully in various intensive care units, emergency rooms, operating theatres and outpatient stations.

The data shown in Figures 1A and 1B was interpreted in the above-mentioned dissertation such that the according substances were held to be no good biomarkers, since the amount of inhaled marker substance was typically not known, and thus the reference was missing.

However, it turned out that this statement is a misinterpretation of the data. In contrast to this statement, limonene is a well suited marker substance within the context of the present invention. Limonene has a low vapor pressure and a pleasant odor.

After inhalation of air with marker substance vapor (marker substance gas) the exhaled marker substance concentration is measured. This provides useful information on the lung status, when the concentration of the marker substance gas is known, because this provides direct information on the exchange rate of the lung.

After some time after the inhalation, the concentration of the marker substance in the exhaled air is measured again. A reduction in concentration (in particular the course of concentration overtime) of the marker substance directly reflects the metabolism of the marker substance and thus its decomposition within the living organism.

The marker substances referred to in Figures 1A and 1B are clearly decomposed slower in patients with impaired liver function. It was reported that limonene is metabolized by enzymes of the Cytochrome P450 family. [Mizayawa, M. et al. The American Society for Pharmacology and Experimental Therapeutics, Vol. 30, No. 5, (2002), 602-607] Thus, the higher concentration of the marker substance in the exhaled air in case of patients suffering from lung disease provides direct qualitative or quantitative information on the impaired liver function. Hence, measurement of exhaled marker substance concentration provides a fast test for severe liver diseases or impaired liver function.

Mizayawa et al. also reported that limonene is known to have chemopreventive activity, and is metabolized in human liver cells by CYP 2C9 and CYP 2C19 to carveol and perillyl alcohol. Other enzymes like CYP 2C8, 2C18, and 3A4 could also play a role in this metabolism.

Michael N. Gold reported in Environmental Health Perspectives, Vol. 105, Supplement 4, 1997, pages 977-979 that "Monoterpenes such as limonene and perillyl alcohol have been shown to prevent mammary, liver, lung, and other cancers".
The use of limonene as marker substances to detect liver diseases or an impaired liver function thus exhibits the additional advantage of preventing mammary, liver, lung and other cancers. Moreover, the liver metabolism product of limonene, perillyl alcohol, also prevents liver and other cancers.

In summary, by using limonene as marker substance, a natural product is used as marker substance to detect liver diseases or an impaired liver function. Limonene itself has a preventive influence on liver and other cancers. Moreover, limonene can be easily inhaled, thus allowing its use in a purely non-invasive method. Limonene is also comfortable for the patients, because of its pleasant odor. Furthermore, it provides direct information on the lung function by detecting the blood concentration change upon inhalation of the marker substance.

In contrast to prior art methods, in this exemplary embodiment limonene is administered as marker substance by inhalation. Afterwards, its metabolism via enzymes of the Cytochrome P450 enzyme family is followed by detecting the level of the administered marker substance in the exhaled air (not of the metabolized product).

Besides limonene and/or the pinenes referred to in the first exemplary embodiment, other marker substances can be used for the described methods. These marker substances are generally characterized by two properties that need to be fulfilled. First property: Comparison of the marker substance concentrations of the three groups of vegan persons, volunteers, and patients (cf. Figure 1A) shows no significant difference (within the error bars, i.e. taking the error bars into account). Second property: Comparison of the marker substance concentrations of three different liver function groups represented by three different ranges of the LiMAx value (cf. Figure 1B) shows differences (within the error bars, i.e. taking the error bars into account).

By applying these criteria to experimental data that has been previously obtained and already analyzed under a different point of view, more suited marker substances for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism were identified. The according data is shown in Figures 2A to 10B.

Thereby, all Figures indicate the m/z ratio of the substances identified in exhaled breath by considering an additional proton applied to the substances during PTR-MS for ionization purposes.
The results shown in Figures 2A, 3A, 4A, 5A, 6A, 7A, 8A, 9A, and 10A has been obtained in the same way as in case of Figure 1A. The results shown in Figures 2B, 3B, 4B, 5B, 6B, 7B, 8B, 9B, and 10B has been obtained in the same way as in case of Figure 1B.

Figures 2A and 2B indicate that carbonyl sulfide, dimethylsilane, acetic acid and/or propanol (having an m/z ratio of 61) are suited markers for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

Figures 3A and 3B indicate that bis(methylthio)methane and/or 3-mercapto propane-1,2-diol (having an m/z ratio of 109) are suited markers for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

Figures 4A and 4B indicate that cysteine (having an m/z ratio of 122) is a suited marker for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

Figures 5A and 5B indicate that selenocysteine (having an m/z ratio of 169) is a suited marker for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

Figures 6A and 6B indicate that octane and/or furan-2-ytmethanethiol (having an m/z ratio of 115) are suited markers for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

Figures 7A and 7B indicate that nonane and/or naphthalene (having an m/z ratio of 129) are suited markers for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

Figures 8A and 8B indicate that 1,2-diazine (pyridazine), 1,3-diazine (pyrimidine) and/or 1,4-diazine (pyrazine) (having an m/z ratio of 81) are suited markers for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.
Figures 9A and 9B indicate that 2-pentanone and/or hexane (having an m/z ratio of 87) are suited markers for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

Figures 10A and 10B indicate that 4-hydroxynonenal (having an m/z ratio of 157) is a suited marker for determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism.

* * * * *
Claims

1. Method for providing original data that can be used for subsequently determining the function of an organ of a living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of a living organism, characterized by the following steps:

a) administering a marker substance to a living organism by inhalation, wherein the marker substance has a vapor pressure above 0.01 mmHg at 37 °C,

b) determining a concentration of the marker substance in exhaled air which is exhaled by the living organism at a first time point,

c) determining the concentration of the marker substance in the exhaled air which is exhaled by the living organism at a second time point after the first time point,

d) determining a difference between the concentration of the marker substance determined at the first time point and the concentration of the marker substance determined at the second time point.

2. Method according to claim 1, characterized in that step a) is performed between steps b) and c).

3. Method according to claim 1 or 2, characterized in that the organ is at least one from the group consisting of liver, kidney, spleen, lung.

4. Method according to any of the preceding claims, characterized in that the marker substance is a volatile organic compound.

5. Method according to any of the preceding claims, characterized in that the marker substance is metabolized by the living organism.

6. Method according to any of the preceding claims, characterized in that the marker substance is at least one from the group consisting of octane, furan-2-ylmethanethiol, 1,2-diazine, 1,3-diazine, 1,4-diazine, a terpene, 2-pentanone, hexane and 4-hydroxynonenal.
Method according to claim 6, **characterized** in that the terpene is at least one of the group consisting of limonene, opinene, \(\beta \)-pinene and \(\gamma \)-pinene.

Use of at least one substance chosen from the group consisting of octane, furan-2-ylmethanethiol, 1,2-diazone, 1,3-diazone, 1,4-diazone, a terpene, 2-pentanone, hexane and 4-hydroxynonenal as marker substance to be administered to a living organism by inhalation in a method for providing original data that can be used for subsequently determining the function of an organ of the living organism or for subsequently diagnosing a disease or a severity of a disease of an organ of the living organism.

Use according to claim 8, **characterized** in that the terpene is at least one of the group consisting of limonene, opinene, \(\beta \)-pinene and \(\gamma \)-pinene.

Substance chosen from the group consisting of octane, furan-2-ylmethanethiol, 1,2-diazone, 1,3-diazone, 1,4-diazone, a terpene, 2-pentanone, hexane and 4-hydroxynonenal for use as marker substance to be administered to a living organism by inhalation in a diagnostic method for determining the function of an organ of the living organism or for diagnosing a disease or a severity of a disease of an organ of the living organism.

Substance for use according to claim 10, **characterized** in that the terpene is at least one of the group consisting of limonene, opinene, \(\beta \)-pinene and \(\gamma \)-pinene.
FIG 7A

FIG 7B
INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2016/071729

A. CLASSIFICATION OF SUBJECT MATTER

INV. A61B5/08 A61B5/00 G01N33/497 G06F19/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Minimum documentation searched</th>
<th>(classification system followed by classification symbols)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61B G01N</td>
<td></td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- **Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)**
 - EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A61B5/00</td>
<td>wo 2009/147576 (KONINKL PHILIPS ELECTRONICS NV [NL] ; VINK TEUNIS J [NL] ; COENE WILLEM) 10 December 2009 (2009-12-10) page 1, line 16 - line 17</td>
<td>1-6, 10</td>
</tr>
<tr>
<td></td>
<td>page 2, line 22</td>
<td>7,11</td>
</tr>
<tr>
<td></td>
<td>page 3, line 30 - line 32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 4, line 1 - line 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 5, lines 5-7 - lines 15-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 6, lines 3-5 - lines 13-15</td>
<td></td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) one or more of which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search

2 December 2016

Date of mailing of the international search report

09/12/2016

Name and mailing address of the ISA/PC

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040
Fax: (+31-70) 340-3016

Authorized officer

Almeida, Maria

See patent family annex.

Further documents are listed in the continuation of Box C.

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle of theory underlying the invention

*"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

*"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

*"S" document member of the same patent family
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. ☒ Claims Nos.: 8, 9
 because they relate to subject matter not required to be searched by this Authority, namely:

 see FURTHER INFORMATION sheet PCT/ISA/210

2. ☐ Claims Nos.:
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. ☐ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

This International Searching Authority found multiple inventions in this international application, as follows:

1. ☐ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. ☐ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.

3. ☐ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. ☐ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

☐ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

☐ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

☐ No protest accompanied the payment of additional search fees.
Conti nuation of Box II.1

Claims Nos.: 8, 9

Re Item III

Non-establishment of opinion with regard to novelty, inventive step and industrial applicability

No examination is carried out on claim 8 and its corresponding dependent claims because these claims relate to methods which involve a diagnostic process performed upon a living body and thus is covered by the provision of Rule 67(i)(iv) PCT (see also the PCT Guidelines, 9.08-9.10 and Rule 43bis.(i)(b) PCT).
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2009147576 A2</td>
<td>10-12-2009</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>