(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
11 January 2007 (11.01.2007)

(10) International Publication Number
WO 2007/005951 A2

(51) International Patent Classification:
C07D 401/12 (2006.01) A61P 1/00 (2006.01)
A61K 31/435 (2006.01)

(21) International Application Number:
PCT/US2006/026166

(22) International Filing Date:
5 July 2006 (05.07.2006)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
60/696,662 5 July 2005 (05.07.2005) US

(72) Inventor; and
(75) Inventor/Applicant (for US only): DRUZGALA, Pascal [US/US]; 120 Hatona Drive, Santa Rose, CA 95403 (US).

(74) Agent: CRAWFORD, Bradley, W.; MCDONNELL BOEHNEHULBERT & BERGHOFF LLP, 300 SOUTH WACKER DRIVE, Suite 3100, Chicago, IL 60606 (US).

(54) Title: STEREOISOMERS PYRIDYL AND PYRIDONYL COMPOUNDS AND METHODS FOR THE TREATMENT OF GASTROINTESTINAL AND CENTRAL NERVOUS SYSTEM DISORDERS

(57) Abstract: The subject invention provides stereoisomeric compounds of formulae Xa and Xb, wherein the variables are as defined herein, and compositions for the safe and effective treatment of various gastrointestinal disorders including, but not limited to, gastroparesis, gastroesophageal reflux and related conditions. The compounds of the subject invention are also useful in treating a variety of conditions involving the central nervous system.
DESCRIPTION

STEREOISOMERIC PYRIDYL AND PYRIDONYL COMPOUNDS AND METHODS FOR THE TREATMENT OF GASTROINTESTINAL AND CENTRAL NERVOUS SYSTEM DISORDERS

Background of Invention

Cisapride is one of a class of compounds known as benzamide derivatives, the parent compound of which is metoclopramide. U.S. Patent Nos. 4,962,115 and 5,057,525 (collectively "Van Daele" and incorporated by reference in their entireties) disclose N-(3-hydroxy-4-piperidenyl) benzamides of cisapride. Van Daele discloses that these compounds, the pharmaceutically acceptable acid addition salts thereof and the stereochemically isomic forms thereof, stimulate the motility of the gastrointestinal system.

As a class, these benzamide derivatives have several prominent pharmacological actions. The prominent pharmacological activities of the benzamide derivatives are due to their effects on the neuronal systems which are modulated by the neurotransmitter serotonin. The role of serotonin, and thus the pharmacology of the benzamide derivatives, has been broadly implicated in a variety of conditions for many years. Thus, research has focused on locating the production and storage sites of serotonin as well as the location of serotonin receptors in the human body in order to determine the connection between these sites and various disease states or conditions.

In this regard, it was discovered that a major site of production and storage of serotonin is the enterochromaffin cell of the gastrointestinal mucosa. It was also discovered that serotonin has a powerful stimulating action on intestinal motility by stimulating intestinal smooth muscle, speeding intestinal transit, and decreasing absorption time, as in diarrhea. This stimulating action is also associated with nausea and vomiting.

Because of their modulation of the serotonin neuronal system in the gastrointestinal tract, many of the benzamide derivatives are effective anti-emetic agents and are commonly used to control vomiting during cancer chemotherapy or radiotherapy, especially when highly emetogenic compounds such as cisplatin are used. This action is almost certainly the result of the ability of the compounds to block the actions of serotonin (5HT) at specific sites of action, called the 5HT3-receptor, which was classically designated in the scientific literature as the serotonin M-receptor. Chemotherapy and radiation therapy may induce nausea and
vomiting by the release of serotonin from damaged enterochromaffin cells in the gastrointestinal tract. Release of the neurotransmitter serotonin stimulates both afferent vagal nerve fibers (thus initiating the vomiting reflex) and serotonin receptors in the chemoreceptor trigger zone of the area postrema region of the brain. The anatomical site for this action of the benzamide derivatives, and whether such action is central (CNS), peripheral, or a combination thereof, remains unresolved (Barnes et al., J. Pharm. Pharmacol. 40: 586-588, 1988). Cisapride, like the other benzamide derivatives would appear to be an effective antiemetic agent based on its ability to modulate the activity of serotonin at the 5HT3 receptor.

A second prominent action of the benzamide derivatives is in augmenting gastrointestinal smooth muscle activity from the esophagus through the proximal small bowel, thus accelerating esophageal and small intestinal transit as well as facilitating gastric emptying and increasing lower esophageal sphincter tone (Decktor et al., Eur. J. Pharmacol. 147: 313-316, 1988). Although the benzamide derivatives are not cholinergic receptor agonists per se, the aforementioned smooth muscle effects may be blocked by muscarinic receptor blocking agents such as atropine or neuronal transmission inhibitors of the tetrodotoxin type which affect sodium channels. Similar blocking activity has been reported for the contractile effects of serotonin in the small intestine. It is currently believed that the primary smooth muscle effects of the benzamide derivatives are the result of an agonist action upon a new class of serotonin receptors referred to as 5HT4 receptors which are located on interneurons in the myenteric plexus of the gut wall. Activation of these receptors subsequently enhances the release of acetylcholine from parasympathetic nerve terminals located near surrounding smooth muscle fibers, and it is the combination of acetylcholine with its receptors on smooth muscle membranes which is the actual trigger for muscle contraction.

A discussion of various 5HT receptors, including the 5HT4 receptor can be found in, for example, U.S. Patent Nos. 6, 331,401 and 6,632,827, which are incorporated by reference herein in their entirety.

Cisapride has been used primarily to treat gastroesophageal reflux disease (GERD). This disease is characterized as the backward flow of the stomach contents into the esophagus. One of the most important factors in the pathogenesis of gastroesophageal reflux disease is a reduction in the pressure barrier due to the failure of the lower esophageal sphincter. Failure of the lower esophageal sphincter can arise due to a low basal pressure,
sphincter relaxation, or to a non-compensated increase in intragastric pressure. Other factors in the pathogenesis of the disease are delayed gastric emptying, insufficient esophageal clearing due to impaired peristalsis and the corrosive nature of the reflux material which can damage esophageal mucosa. Cisapride is thought to strengthen the anti-reflux barrier and improve esophageal clearance by increasing the lower esophageal sphincter pressure and enhancing peristaltic contractions.

Because of its activity as a prokinetic agent, cisapride would also appear to be useful to treat dyspepsia, gastroparesis, constipation, post-operative ileus, and intestinal pseudo-obstruction. Dyspepsia is a condition characterized by an impairment of the power or function of digestion that can arise as a symptom of a primary gastrointestinal dysfunction or as a complication due to other disorders such as appendicitis, gallbladder disturbances, or malnutrition. Gastroparesis is a paralysis of the stomach brought about by a motor abnormality in the stomach or as a complication of diseases such as diabetes, progressive systemic sclerosis, anorexia nervosa or myotonic dystrophy. Constipation is a condition characterized by infrequent or difficult evacuation of feces resulting from conditions such as lack of intestinal muscle tone or intestinal spasticity. Post-operative ileus is an obstruction in the intestine due to a disruption in muscle tone following surgery. Intestinal pseudo-obstruction is a condition characterized by constipation, colicky pain, and vomiting, but without evidence of physical obstruction.

Drug toxicity is an important consideration in the treatment of humans and animals. Toxic side effects (adverse effects) resulting from the administration of drugs include a variety of conditions which range from low grade fever to death. Drug therapy is justified only when the benefits of the treatment protocol outweigh the potential risks associated with the treatment. The factors balanced by the practitioner include the qualitative and quantitative impact of the drug to be used as well as the resulting outcome if the drug is not provided to the individual. Other factors considered include the physical condition of the patient, the disease stage and its history of progression, and any known adverse effects associated with a drug.

Drug elimination is typically the result of metabolic activity upon the drug and the subsequent excretion of the drug from the body. Metabolic activity can take place within the vascular supply and/or within cellular compartments or organs. The liver is a principal site of drug metabolism. The metabolic process can be categorized into synthetic and nonsynthetic
reactions. In nonsynthetic reactions, the drug is chemically altered by oxidation, reduction, hydrolysis, or any combination of the aforementioned processes. These processes are collectively referred to as Phase I reactions.

In Phase II reactions, also known as synthetic reactions or conjugations, the parent drug, or intermediate metabolites thereof, are combined with endogenous substrates to yield an addition or conjugation product. Metabolites formed in synthetic reactions are, typically, more polar and biologically inactive. As a result, these metabolites are more easily excreted via the kidneys (in urine) or the liver (in bile). Synthetic reactions include glucuronidation, amino acid conjugation, acetylation, sulfocorjugation, and methylation.

More than 90% of a dose of cisapride is metabolized by oxidative N-dealkylation at the piperidine nitrogen or by aromatic hydroxylation occurring on either the 4-fluorophenoxy or benzamide rings.

The administration of cisapride to a human has been found to cause serious adverse effects including CNS disorders, increased systolic pressure, interactions with other drugs, diarrhea, and abdominal cramping. Further, it has been reported that intravenous administration of cisapride demonstrates the occurrence of additional adverse effects not experienced after oral administration of cisapride (Stacher et al. [1987] Digestive Diseases and Sciences 32(11): 1223-1230). It is believed that these adverse effects are caused by the metabolites that result from the oxidative dealkylation or aromatic hydroxylation of the compound which occurs in the cytochrome P450 detoxification system. Cisapride is also subject to a number of undesirable drug/drug interactions that are also a result of metabolism by the cytochrome P450 system.

Between July 1993 and December 1999, cisapride (PROPULSID, Janssen Pharmaceutica Products, L.P.) was reportedly associated with at least 341 serious cardiac arrhythmias. These arrhythmias include ventricular tachycardia, ventricular fibrillation, torsades de pointes, and QT prolongation. Eighty (80) deaths have been reported. As a result of these adverse effects, the product was voluntarily withdrawn from the open market in the United States; however, the drug is available through an investigational limited access program.

The safety of 5HT₄ receptor agonists with gastrointestinal (GI) prokinetic activity has been limited due to cardiac effects (prolongation of QTc intervals, tachycardia, torsades de pointes) and adverse drug interactions due to hepatic cytochrome P-450 metabolism. A GI
prokinetic agent of this class that lacks these liabilities would be very valuable in several therapeutic areas including GERD and gastric emptying disorders. Certain cisapride derivatives have been described in U.S. Pat. No. 6,552,046 and WO 01/093849 (incorporated by reference herein in their entireties), however further compounds with even more advantageous properties would be desirable.

It has now been discovered that certain stereoisomers of one such esterified structural and/or functional analogs of cisapride have distinct and particularly advantageous properties.

Brief Summary

The subject invention provides compounds and compositions of formulae Xa and Xb, which are stereoisomeric, functional and/or structural analogs of cisapride, for the safe and effective treatment of various gastrointestinal disorders including, but not limited to, gastroparesis, gastroesophageal reflux and related conditions. The compounds of the subject invention are also useful in treating a variety of conditions involving the central nervous system.

The compounds of the invention comprise compounds of formulae Xa and/or Xb:

![Formula Xa](image)

![Formula Xb](image)

and pharmaceutically acceptable salts thereof, wherein

the bonds at positions 3 and 4 are cis relative to each other;
L is -(C₁-C₆ alkyl)- (in one aspect, -(C₃-C₅ alkyl)-), -(Ci-C₆ alkyl)-C(O)-, or -C(O)-(C₁-C₆ alkyl)-, wherein each of the alkyl groups is optionally substituted with 1 or 2 groups that are independently halogen, Ci-C₄ alkoxy, or OH and wherein one carbon in the alkyl portion of L may be replaced by -N(R_g)-; or

L is -(Ci-C₄ alkyl)-NR_g-(Ci-C₄ alkyl)-, -(Ci-C₄ alkyl)-C(O)NR_g-, -(Ci-C₄ alkyl)-, -(Ci-C₄ alkyl)-NR_g-(C₁-C₄ alkyl)-;

R₁ is halogen;
R₂ is amino, NH(Ci-C₄ alkyl) or N(C₁C₄ alkyl)(Ci-C₄ alkyl);
R₃ is H, Ci-C₄ alkyl, Ci-C₄ alkoxy, or OH;
R₄ is H or Ci-C₄ alkyl, and in one preferred aspect, methyl; and
Rs is -O-Ci-C₈ alkyl, -O-C₂-C₈ cycloalkyl, -O-heterocycloalkyl, heterocycloalkyl, aryl, -O-aryl, -N(R_g)-(C₁-C₆ alkyl)-(C₄)-aryl, or -N(R_g)-C₁-C₆ alkyl-aryl, -O-heteroaryl, -N(R_g)-Ci-C₆(O)-heteroaryl, or -N(R_g)-Co-C₆ alkyl-heteroaryl, wherein each of the cyclic groups is unsubstituted or substituted at one or more substitutable positions with Ci-C₆ alkyl, Ci-C₆ alkoxy, halogen, C₁-C₆ haloalkyl, Ci-C₆ haloalkoxy, hydroxyl, hydroxy-Ci-C₄-alkyl, amino, -NH(Ci-C₆ alkyl), -N(C₁-C₆ alkyl)(Ci-C₆ alkyl), -N(C₁-C₆ alkyl)C(O)Rn, -0-(C₀-C₆ alkyl)C(O)Rn, methylsulfone, C₀-C₆-sulfonamide, NO₂, -CO₂R_n or -(C₁-C₄ alkyl)-CO₂R_n wherein

R₉ at each occurrence is independently H or Ci-C₄ alkyl;
R₁₀ at each occurrence is independently H, Ci-C₄ alkyl optionally substituted with one group that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -(C₀O)NH₂, -(C₀O)NH(Ci-C₄ alkyl), -(C₀O)N(Ci-C₄ alkyl)(Ci-C₄ alkyl) or piperidinyl optionally substituted with Ci-C₄ alkyl;
R_n is Ci-C₆ alkyl, or OH; or
R_n is NH₂, -NH(Ci-C₆ alkyl), or -N(C₁-C₆ alkyl)(Ci-C₆ alkyl); or
R_n is Ci-C₆ alkoxycarbonyl, -(C₀O)H, -(C₀O)CF₃, or -(C₀O)OCF₃, or

the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, hydroxy C₁-C₆ alkyl, Ci-C₆ alkoxy carbonyl, -(C₀O)H, CF₃, or OCF₃.
the heteroaryl group is optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁⁻C₆ alkyl, Ci-C₆ alkoxy, hydroxy, hydroxy Ci-C₆ alkyl, Ci-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃; or

Rn is heterocycloalkyl or -O-heterocycloalkyl wherein the heterocycloalkyl is optionally substituted with 1, 2, or 3 groups that are independently halogen, Ci-C₆ alkyl, C₁⁻C₆ alkoxy, hydroxy, hydroxy Ci-C₆ alkyl, Ci-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃; and

R₂o is -H, Ci-C₆ alkoxy (preferably Ci-C₄ alkoxy, more preferably methoxy), or OH.

The invention also encompasses compositions comprising at least one compound of formulae Xa and Xb and at least one pharmaceutically acceptable excipient, adjuvant, carrier, or solvent.

The compounds of formulae Xa and Xb are useful in the treatment or prevention of gastroesophageal reflux disease and substantially reduce adverse effects associated with the administration of cisapride. These adverse effects include, but are not limited to, diarrhea, abdominal cramping and elevations of blood pressure and heart rate.

Additionally, the compounds and compositions of the invention are useful in treating emesis and other conditions, including but not limited to dyspepsia, gastroparesis, constipation, post-operative ileus and intestinal pseudo-obstruction. As an added benefit, adverse effects associated with the administration of cisapride are also reduced in these methods of treatment.

Advantageously, the compounds of the subject invention are ligands for the 5HT₄ receptor and, accordingly, can be used to treat conditions mediated through this receptor. These receptors are located in several areas of the central nervous system and the modulation of these receptors can be used to effect desired modulations of the CNS.

Advantageously, the subject invention provides stereoisomeric compounds which contain an ester moiety that does not detract from the ability of these compounds to provide a therapeutic benefit, but which makes them more susceptible to degradation by serum and/or cytosolic esterases, thereby avoiding the cytochrome P450 drug detoxification system associated with adverse effects caused by cisapride and reducing the incidence of such adverse events.

The subject invention further provides methods of treatment comprising the administration of the compounds of formulae Xa and Xb and therapeutically effective amounts to individuals in need of treatment for gastroesophageal reflux disease, dyspepsia,
gastroparesis, constipation, post-operative ileus, and intestinal pseudo-obstruction; and related conditions.

Advantageously, the therapeutic compounds of the subject invention are stable in storage and provide for safer metabolism of the drugs as compared to other drugs; therefore, the compounds of the subject invention can be used with a lower incidence of side effects and toxicity.

In a further aspect, the subject invention pertains to the breakdown products (preferably metabolic breakdown products) which are formed when the therapeutic compounds of the subject invention are acted upon by esterases. These breakdown products can be used as described herein to monitor the clearance of the therapeutic compounds from a patient.

In yet a further aspect, the subject invention provides methods for synthesizing the therapeutic stereoisomeric compounds of the subject invention, as well as intermediates useful in preparing the compounds of interest.

Detailed Disclosure

In a further aspect, the invention provides compounds of Formulae Xa and Xb, wherein

\[R_5 \text{ is } -O-C_1-Q-alkyl, -O-C_5-Cs \text{ cycloalkyl}, -O-heterocycloalkyl, \text{ heterocycloalkyl,} \]

wherein the heterocycloalkyl group is selected from piperidinyl, piperazinyl, pyrrolidinyl, aza-bicyclo-octyl, in certain embodiments aza-bicyclo[2.2.2]octyl, aza-bicyclo[3.2.1]octyl, aza-bicyclo-nonyl, aza-bicyclo-decyl, indolinyl, morpholinyl, thiomorpholinyl, S,S-dioxothiomorpholinyl, and imidazolidinyl, -O-aryl, -N(R_9)-C(O)-aryl, or -N(R_9)-Co-C_6 alkyl-aryl, wherein each of the cyclic groups is unsubstituted or substituted at one or more substitutable positions with C_1-C_6 alkyl, C_1-C_6 alkoxy, halogen, C_1-C_6 haloalkyl, C_1-C_6 haloalkoxy, hydroxyl, hydroxy-Q-Q-alkyl, amino, -NH(C_1-C_6 alkyl), -N(C_1-C_6 alkyl)(C_1-C_6 alkyl), -C(O)Rn, or NO_2; wherein

\[R_9 \text{ at each occurrence is independently } H \text{ or } C_1-C_4 alkyl; \text{ and} \]

\[R_n \text{ is } C_i-C_6 alkyl, OH, \text{ or} \]

\[R_n \text{ is } C_i-C_6 alkoy, \text{ optionally substituted with } 1 \text{ or } 2 \text{ groups that are independently} \]

C_1-C_4 alkoxy, amino, -NH(Ci-C_6 alkyl), -N(C_1-C_6 alkyl)(Ci-C_6 alkyl), -C(O)N(R_9)-heterocycloalkyl, heterocycloalkyl or heteroaryl, wherein
the heterocycloalkyl group is selected from pyrrolidinyl, piperidinyl, piperazinyl, morpholinyl, aza-bicyclo-octyl, in certain embodiments aza-bicyclo[2.2.2]octyl, aza-bicyclo[3.2.1]octyl, aza-bicyclo-nonyl and aza-bicyclo-decyl, wherein the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, hydroxy C₁-C₆ alkyl, C₁-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃.

the heteroaryl group is selected from pyridyl, pyrimidyl, quinolinyl, isoquinolinyl, and indolyl, wherein the heteroaryl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, hydroxy C₁-C₆ alkyl, Ci-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃; or

Rᵣ is -O-heterocycloalkyl wherein the heterocycloalkyl is selected from piperidinyl, pyrrolidinyl, imidazolidinyl, morpholinyl, aza-bicyclo-octyl, in certain embodiments aza-bicyclo[2.2.2]octyl, aza-bicyclo[3.2.1]octyl, aza-bicyclo-nonyl, aza-bicyclo-decyl, and tetrahydrofuranyl, and wherein each heterocycloalkyl group is optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, hydroxy C₁-C₆ alkyl, Ci-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃.

In another aspect, the invention provides compounds of Formulae Xa and Xb, wherein R₁ is chloro.

In yet another aspect, the invention provides compounds of Formulae Xa and Xb, wherein R₂ is amino.

In still another aspect, the invention provides compounds of Formulae Xa and Xb, wherein R₃ is methyl.

In another aspect, the invention provides compounds of Formulae Xa and Xb, wherein R₄ is H or methyl.

In still yet another aspect, the invention provides compounds of Formulae Xa and Xb, wherein Rᵣ is chloro; R₂ is amino; R₃ is methyl; and R₄ is H or methyl.

In yet another aspect, the invention provides compounds of Formulae Xa and Xb, wherein Rᵣ is chloro; R₂ is amino; R₃ is methyl; R₄ is H, and L is -(C₄-C₆ alkyl)-C(O)-.

In another aspect, the invention provides compounds of Formulae Xa and Xb, wherein two or more previously described aspects are combined.

In another aspect, the invention provides compounds of Formulae XIa and XIb, which are compounds of Formulae Xa and Xb wherein R₂₀ is OCH₃ and L is -(CH₂)₅-C(O)-:
In yet still another aspect, the invention provides compounds of Formulae XIa and XIb, wherein R_1 is chloro; R_2 is amino; R_3 is methyl; and R_4 is H or methyl.

In still another aspect, the invention provides compounds of Formulae XIa and XIb, wherein R_5 is -O-heterocycloalkyl, wherein the heterocycloalkyl group is selected from aza-bicyclo-octyl, in certain embodiments l-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen, is optionally substituted with methyl or ethyl; and R_4 is H or methyl.

In yet another aspect, the invention provides compounds of Formulae XIa and XIb, wherein R_5 is -O-heterocycloalkyl, wherein the heterocycloalkyl group is selected from piperidinyl, piperazinyl, or pyrrolidinyl, each of which is unsubstituted or substituted at one or two positions with groups that are independently C_1-C_4 alkyl, C_1-C_4 alkoxy, halogen, C_1-C_4 haloalkyl (in one aspect, CF$_3$), C_1-C_4 haloalkoxy (in one aspect OCF$_3$), hydroxy, hydroxy C_1-C_4 alkyl, amino, -NH(C_1-C_4 alkyl), -N(C_1-C_4 alkyl)(d-C_4 alkyl), -(OC_1-C_4 alkyl)-C(O)R$_n$, or NO$_2$; and R_4 is H or methyl.

In yet another aspect, the invention provides compounds of Formulae XIa and XIb, wherein R_5 is -O-phenyl, N(R$_g$)-(C$_0$-C_6 alkyl)-C(O)-phenyl, or -N(R$_g$)-C_0-C_4 alkyl-phenyl.
wherein the phenyl group is substituted with one or two groups that are independently C\textsubscript{1}-C\textsubscript{4} alkyl, C\textsubscript{1}-C\textsubscript{4} alkoxy, halogen, C\textsubscript{1}-C\textsubscript{4} haloalkyl (in one aspect, CF\textsubscript{3}), Ci-C\textsubscript{4} haloalkoxy (in one aspect OCF\textsubscript{3}), hydroxyl, hydroxy Ci-C\textsubscript{4} alkyl, amino, \(-\text{NH(Ci-C\textsubscript{4} alkyl)}, \text{-N(Ci-C\textsubscript{4} alkyl)(Ci-C\textsubscript{4} alkyl)}, \text{-N(Ci-C\textsubscript{6} alkyl)-C(O)R π, or NO}_2; \text{and R}_4 \text{ and R}_9 \text{ are independently H or methyl.}

In another aspect, the invention provides compounds of Formulae XIa and XIb, wherein \(R_4\) is H.

In yet another aspect, the invention provides compounds of Formulae XIa and XIb, wherein \(R_n\) is Ci-C\textsubscript{6} alkoxy, optionally substituted with 1 or 2 groups that are independently Ci-C\textsubscript{4} alkoxy, amino, \(-\text{NH(Ci-C\textsubscript{6} alkyl)}, \text{-N(Ci-C\textsubscript{6} alkyl)(d-C\textsubscript{6} alkyl)}, \text{-N(Ci-C\textsubscript{6} alkyl)-C(O)R π-heterocycloalkyl, or heterocycloalkyl wherein the heterocycloalkyl group is selected from pyrrolidinyl, piperidinyl, piperazinyl, and morpholinyl, wherein the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, C\textsubscript{1}-C\textsubscript{6} alkyl, Ci-C\textsubscript{6} alkoxy, hydroxy, hydroxy CpC\textsubscript{6} alkyl, Ci-C\textsubscript{6} alkoxy carbonyl, \(-\text{CO}_2\text{H, CF}_3, \text{or OCF}_3\).

In another aspect, the invention provides compounds of Formulae XIa and XIb, wherein two or more previously described aspects are combined.

In another aspect, the invention provides compounds of Formulae XIIa and XIIb, i.e., compounds of Formulae Xa and Xb, of the formulae:

![Formula XIIa](image)

![Formula XIIb](image)

wherein \(R_5\) is H, Ci-C\textsubscript{6} alkyl, Ci-C\textsubscript{6} alkoxy, halogen, Ci-C\textsubscript{6} haloalkyl (in one aspect CF\textsubscript{3}), Ci-C\textsubscript{6} haloalkoxy (in one aspect OCF\textsubscript{3}), hydroxyl, hydroxy Ci-C\textsubscript{4} alkyl, amino, \(-\text{NH(Ci-C\textsubscript{6}}}
alkyl), -N(Ci-C_{6} alkylXQ-Ce alkyl), methylsulfone, C_{0}-C_{6} sulfonamide OrNO_{2}, and R_{16} is H or -O-(C_{0}-C_{6} alkyl)-C(O)R_{6}. In another aspect, R_{15} is H.

In yet another aspect, the invention provides compounds of Formulae XIIa and XIIb, wherein R_{4} and R_{9} are independently H or methyl and R_{n} is OH.

In still another aspect, the invention provides compounds of Formulae XIIa and XIIb, wherein R_{4} and R_{9} are independently H or methyl and R_{11} is Ci-C_{6} alkoxy, optionally substituted with 1 or 2 groups that are independently Ci-C_{4} alkoxy, amino, -NH(Ci-C_{6} alkyl), -N(Ci-C_{6} alkyl)(Ci-C_{6} alkyl), -(C_{0}-C_{6} alkyl)-C(O)N(R_{9})-heterocycloalkyl, or heterocycloalkyl wherein the heterocycloalkyl group is selected from aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl, pyrrolidinyl, piperidinyl, piperazinyl, and morpholinyl, wherein the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, Ci-C_{6} alkyl, Ci-C_{6} alkoxy, hydroxy, hydroxy Ci-C_{6} alkyl, Ci-C_{6} alkoxycarbonyl, -CO_{2}H, CF_{3}, or OCF_{3}, and R_{4} and R_{9} are independently H or methyl. In another aspect, R_{4}, R_{9}, and R_{n} are as previously defined and R_{15} is H, R_{2} is chloro; R_{3} is amino; and R_{3} is methyl.

In yet another aspect, the invention provides compounds of Formulae XIIa and XIIb, wherein R_{4} and R_{9} are independently H or methyl and R_{n} is Ci-C_{6} alkoxy, optionally substituted with 1 or 2 groups that are independently Ci-C_{4} alkoxy, amino, -NH(Ci-C_{6} alkyl), -N(Ci-C_{6} alkyl)(Ci-C_{6} alkyl), or heteroaryl, wherein the heteroaryl group is selected from pyridyl, pyrimidinyl, quinolinyl, isoquinolinyl, and indolyl, wherein the heteroaryl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, Ci-C_{6} alkyl, Ci-C_{6} alkoxy, hydroxy, hydroxy Cj-C_{6} alkyl, Ci-C_{6} alkoxycarbonyl, -CO_{2}H, CF_{3}, or OCF_{3}, and R_{4} and R_{9} are independently H or methyl. In another aspect, R_{4}, R_{9}, and R_{n} are as previously defined and R_{15} is H, R_{2} is chloro; R_{3} is amino; and R_{3} is methyl.

In another aspect, the invention provides compounds of Formulae XIIa and XIIb, wherein at least one OfR_{4} and R_{9} is H.

In another aspect, the invention provides compounds of Formulae XIIa and XIIb, wherein two or more previously described aspects are combined.

In another aspect, the invention provides compounds of Formulae XIIIa and XIIIb, i.e., compounds of Formula XIIa and XIIb, of the formulae:
wherein R_{15} is H, Ci-C$_6$ alkyl, Ci-C$_6$ alkoxy, halogen, Ci-C$_6$ haloalkyl (in one aspect CF$_3$), Ci-C$_6$ haloalkoxy (in one aspect OCF$_3$), hydroxyl, hydroxy Ci-C$_4$ alkyl, amino, -NH(Ci-C$_6$ alkyl), -N(Ci-C$_6$ alkyl)(Ci-C$_6$ alkyl), or methylsulfone, Co-C$_6$-sulfonamide, NO$_2$, and R_{16} is H Or-O-(C$_0$-C$_6$ alkyl)-C(O)R_u. In another aspect, R_{15} is H.

In yet another aspect, the invention provides compounds of Formulae XIIIa and XIIIb, wherein, R_4 and R_9 are independently H or methyl, and R_n is OH, Ci-C$_4$ alkoxy (in another aspect, Ci-C$_3$ alkoxy), or Ci-C$_2$ alkoxy-Ci-C$_3$ alkoxy-. In another aspect, R_4, R_9, and R_{11} are as previously defined and R_i is chloro; R_2 is amino; and R_3 is methyl.

In still yet another aspect, the invention provides compounds of Formulae XIIIa and XIIIb, wherein R_4 and R_9 are independently H or methyl, and R_n is Ci-C$_4$ alkoxy substituted with amino, -NH(Ci-C$_6$ alkyl), -N(Ci-C$_6$ alkyl)(Ci-C$_6$ alkyl), aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl; and R_i is H or methyl, pyrrolidinyl, piperidinyl, morpholinyl, pyridyl, or -(C$_0$-C$_6$ alkyl)-C(O)NH-pyrid-4-yl. In another aspect, R_4, R_9, and R_n are as previously defined and R_i is chloro; R_2 is amino; and R_3 is methyl.

In still another aspect, the invention provides compounds of Formulae XIIIa and XIIIb, wherein R_4 and R_9 are independently H or methyl, and R_n is Ci-C$_4$ alkoxy substituted
with amino, -NH(C\textsubscript{6} alkyl), or -N(C\textsubscript{1}-C\textsubscript{6} alkyl)(C\textsubscript{6} alkyl). In another aspect, R\textsubscript{4}, R\textsubscript{9}, and R\textsubscript{n} are as previously defined and R\textsubscript{i} is chloro; R\textsubscript{2} is amino; and R\textsubscript{3} is methyl.

In yet another aspect, the invention provides compounds of Formulae XIIIa and XIIIb, wherein R\textsubscript{4} and R\textsubscript{9} are independently H or methyl, and R\textsubscript{11} is C\textsubscript{4} alkoxy substituted with pyrrolidinyl, piperidinyl, morpholinyl, pyridyl, or -(Co-C\textsubscript{6} alkyl)-C(O)NH-pyrid-4-yl. In another aspect, R\textsubscript{4}, R\textsubscript{9}, and R\textsubscript{n} are as previously defined and R\textsubscript{i} is chloro; R\textsubscript{2} is amino; and R\textsubscript{3} is methyl.

In still another aspect, the invention provides compounds of Formulae XIIIa and XIIIb, wherein at least one of R\textsubscript{4} and R\textsubscript{9} is H.

In another aspect, the invention provides compounds of Formulae XIIIa and XIIIb, wherein two or more previously described aspects are combined.

In another aspect, the invention provides compounds of Formulae XIVa and XIVb, i.e., compounds of Formulae Xa and Xb, of the formulae:

\[
\text{Formula XIVa}
\]

\[
\text{Formula XIVb}
\]

wherein R\textsubscript{i} is H, C\textsubscript{6} alkyl, C\textsubscript{6} alkoxy, halogen, C\textsubscript{6} haloalkyl (in one aspect C\textsubscript{F}3), C\textsubscript{6} haloalkoxy (in one aspect OCF\textsubscript{3}), hydroxyl, hydroxy C\textsubscript{4} alkyl, amino, -NH(C\textsubscript{6} alkyl), -N(C\textsubscript{1}-C\textsubscript{6} alkyl)(C\textsubscript{6} alkyl), methylsulfone, C\textsubscript{0}-C\textsubscript{6}-sulfonamide, or NO\textsubscript{2}, and R\textsubscript{i6} is H or -O-(Co-C\textsubscript{6} alkyl)-C(O)Rii. In another aspect, R\textsubscript{i} is H.
In still another aspect, the invention provides compounds of Formulae XIVa and XIVb, wherein R₄ and R₅ are independently H or methyl, and R₆ is OH, C₃₋C₄ alkoxy (in another aspect, C₁₋C₃ alkoxy or C₁₋C₂ alkoxy-C₁₋C₃ alkoxy). In another aspect, R₄, R₅, and R₆ are as previously defined and R₁ is chloro; R₂ is amino; and R₃ is methyl. In still another aspect, at least one of R₄ and R₅ is H.

In yet still another aspect, the invention provides compounds of Formulae XIVa and XIVb, wherein R₄ and R₅ are independently H or methyl, and R₆ is C₁₋C₄ alkoxy substituted with amino, -NH(Ci-C₆ alkyl), -N(Ci-C₆ alkyl)(Ci-C₆ alkyl), aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl; and R₄ is H or methyl, pyrrolidinyl, piperidinyl, morpholinyl, pyridyl, or -(C₆₋C₆ alkyl)-C(O)NH-pyrid-4-yl. In another aspect, R₄, R₅, and R₆ are as previously defined and R₁ is chloro; R₂ is amino; and R₃ is methyl.

In still another aspect, the invention provides compounds of Formulae XIVa and XIVb, wherein R₄ and R₅ are independently H or methyl, and R₆ is C₁₋C₄ alkoxy substituted with amino, -NH(Ci-C₆ alkyl), or -N(Ci-C₆ alkyl)(Ci-C₆ alkyl). In another aspect, R₄, R₅, and R₆ are as previously defined and R₁ is chloro; R₂ is amino; and R₃ is methyl.

In yet another aspect, the invention provides compounds of Formulae XIVa and XIVb, wherein R₄ and R₅ are independently H or methyl, and R₆ is C₁₋C₄ alkoxy substituted with pyrrolidinyl, piperidinyl, morpholinyl, pyridyl, or -(Co-C₆ alkyl)-C(O)NH-pyrid-4-yl. In another aspect, R₄, R₅, and R₆ are as previously defined and R₁ is chloro; R₂ is amino; and R₃ is methyl.

In still another aspect, the invention provides compounds of Formulae XIVa and XIVb, wherein at least one of R₄ and R₅ is H.

In another aspect, the invention provides compounds of Formulae XIVa and XIVb, wherein two or more previously described aspects are combined.

In another aspect, the invention provides compounds of Formulae XVa and XVb, i.e., compounds of Formulae Xa and Xb of the formulae:
wherein \(n \) is 1 or 2.

In still another aspect, the invention provides compounds of Formulae XVa and XVb, wherein \(R_4 \) is H or methyl, and \(R_{11} \) is OH, Ci-C_4 alkoxy (in another aspect, C_1-C_3 alkoxy) or Ci-C_2 alkoxy-Ci-C_3 alkoxy-. In another aspect, \(R_4 \) and \(R_n \) are as previously defined and \(R_1 \) is chloro; \(R_2 \) is amino; and \(R_3 \) is methyl. In still another aspect, at least one of \(R_4 \) and \(R_9 \) is H.

In another aspect, \(R_4 \), \(R_9 \), and \(R_n \) are as previously defined and \(R_1 \) is chloro; \(R_2 \) is amino; and \(R_3 \) is methyl.

In yet another aspect, the invention provides compounds of Formulae XVa and XVb, wherein \(R_4 \) and \(R_9 \) are independently H or methyl, and \(R_n \) is C_1-C_4 alkoxy substituted with amino, -NH(C_1-C_6 alkyl), -N(C_1-C_6 alkylXQ-Ce alkyl), aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl; and \(R_4 \) is H or methyl, pyrrolidinyl, piperidinyl, morpholinyl, pyridyl, or -C(0)NH-pyrid-4-yl. In another aspect, \(R_4 \), \(R_9 \), and \(R_n \) are as previously defined and \(R_1 \) is chloro; \(R_2 \) is amino; and \(R_3 \) is methyl.

In still another aspect, the invention provides compounds of Formulae XVa and XVb, wherein \(R_4 \) and \(R_9 \) are independently H or methyl, and \(R_{11} \) is C_1-C_4 alkoxy substituted with amino, -NH(Ci-C_6 alkyl), or -N(Ci-C_6 alkyl)(Ci-C_6 alkyl). In another aspect, \(R_4 \), \(R_9 \), and \(R_n \) are as previously defined and \(R_1 \) is chloro; \(R_2 \) is amino; and \(R_3 \) is methyl.
In yet another aspect, the invention provides compounds of Formulae XVa and XVb, wherein R_4 is H or methyl, and R_{11} is C$_4$-alkoxy substituted with aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl; and R_4 is H or methyl, pyrrolidinyl, piperidinyl, morpholinyl, pyridyl, or -(C$_0$-C$_6$ alkyl)-C(O)NH-pyrid-4-yl. In another aspect, R_4, R_9, and R_n are as previously defined and R_i is chloro; R_2 is amino; and R_3 is methyl.

In another aspect, the invention provides compounds of Formulae XVa and XVb, wherein two or more previously described aspects are combined.

In another aspect, the invention provides compounds according to any one of Formulae Xa, Xb, XIa, XIb, XIIa, XIIb, XIIIa, XIIIb, XIVa, XIVb, XVa or XVb, wherein R_i, and R_2 are oriented on the pyridyl and pyridonyl ring as follows:

In another aspect, the invention provides compounds according to any one of Formulae Xa, Xb, XIa, XIb, XIIa, XIIb, XIIIa, XIIIb, XIVa, XIVb$_5$, XVa or XVb, wherein bond 3 of the core piperidine ring has the "S" configuration and bond 4 has the "R" configuration.

In still another aspect, the invention provides compounds according to any one of Formulae Xa, Xb, XIa, XIb, XIIa, XIIb, XIIIa, XIIIb, XIVa, XIVb, XVa or XVb, wherein R_i and R_2 are oriented on the pyridyl and pyridonyl ring as follows:
and bond 3 of the core piperidine ring has the "S" configuration and bond 4 has the "R" configuration.

In another aspect, the invention provides compounds according to any one of Formulae Xa, Xb, XIa, XIb, XIIa, XIIb, XIIIa, XIIIb, XIVa, XIVb, XVa or XVb, wherein bond 3 has the "R" configuration and bond 4 has the "S" configuration.

In another aspect, the invention provides compounds according to any one of Formulae Xa, Xb, XIa, XIb, XIIa, XIIb, XIIIa, XIIIb, XIVa, XIVb, XVa or XVb, wherein R_i and R₂ are oriented on the pyridyl and pyridonyl ring as follows:

and bond 3 of the core piperidine ring has the "R" configuration and bond 4 has the "S" configuration.

In still another aspect, the invention provides compounds of Formulae Xa and Xb, wherein:

R_i is chloro; R₂ is amino; R₃ (for Xb) is methyl; R₄ is H, and R_i and R₂ have the following orientation on the pyridyl and pyridonyl ring:
L is -(C₃-C5 alkyl)- wherein one carbon may be replaced by -N(Rg)-, or -(C₂-C₆ alkyl)-C(O)-. In yet another aspect, the R₁, R₂, and R₃ (R₄ for the pyridyl ring) are as defined and oriented on the pyridyl and pyridonyl rings as previously described, R₄ is as previously defined and Rs is-O-heterocycloalkyl, wherein the heterocycloalkyl group is selected from aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl, piperidinyl, piperazinyl, and pyrrolidinyl, wherein the piperidinyl, piperazinyl, and pyrrolidinyl groups are unsubstituted or substituted at one or two positions with groups that are independently C₁-C₄ alkyl, C₁-C₄ alkoxy, halogen, C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, hydroxyl, hydroxy C₁-C₄ alkyl, amino, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyi)(d-C₆ alkyi), -(C₀-C₆ alkyl)-C(O)Rₙ, OrNO₂, wherein

Rₙ is C₁-C₆ alkoxy, optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkoxy, amino, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)(d-C₆ alkyi), -(C₀-C₆ alkyl)-C(0)N(R₉)-heterocycloalkyl, or heterocycloalkyl wherein the heterocycloalkyl group is selected from aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl; and R₄ is H or methyl, pyrrolidinyl, piperidinyl, piperazinyl, and morpholinyl, wherein the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxyl, hydroxy C₁-C₆ alkyl, C₁-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃.

In still yet another aspect, the invention provides compounds of Formulae Xa and Xb, wherein:

R₁ is chloro; R₂ is amino; R₃ (for Xb) is methyl; R₄ is H, and R₁, R₂, and R₃ have the following orientation on the pyridyl and pyridonyl rings:
L is -(C₃-C₅ alkyl)- wherein one carbon may be replaced by -N(Rg)-, or -(C₂-C₆ alkyl)-C(O)-. In yet another aspect, the R₁, R₂, and R₃ are as defined and oriented on the pyridyl and pyridonyl ring as previously described, R₄ is as previously defined and R₅ is heterocycloalkyl, which is selected from aza-bicyclo-octyl, in certain embodiments 1-aza-bicyclo[2.2.2]oct-3-yl or 8-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo-nonyl, aza-bicyclo-decyl, where the aza nitrogen, is optionally substituted with methyl or ethyl.

In still yet another aspect, the invention provides compounds of Formulae Xa and Xb, wherein

R₁ is chloro; R₂ is amino; R₃ (for Xb) is methyl; R₄ is H, and R₁, R₂, and R₃ have the following orientation on the pyridyl and pyridonyl rings:

L is -(C₃-C₅ alkyl)- wherein one carbon may be replaced by -N(Rg)-, or -(C₂-C₆ alkyl)-C(O)-. In yet another aspect, the R₁, R₂, and R₃ are as defined and oriented on the pyridyl and pyridonyl ring as previously described, R₄ is as previously defined and R₅ is N(Rg)-C₀-C₄ alkyl-aryl or -N(Rg)-(Co-C₆ alkyl)-C(O)-aryl, wherein the aryl group is unsubstituted or substituted at one or more substitutable positions with C₁-C₆ alkyl, C₁-C₆ alkoxy, halogen, C₁-C₆ haloalkyl, Cᵢ-C₆ haloalkoxy, hydroxyl, hydroxyalkyl, amino, -NH(Cj-C₆ alkyl), -N(Cᵢ-C₆ alkyl)(Ci-C₆ alkyl), -(C₀-C₆ alkyl)-C(O)Rₙ, or NO₂. In still another aspect, the aryl group is a phenyl substituted with -(Co-C₆ alkyl)-C(O)R π and optionally substituted with 1 or 2 groups independently selected from Cᵢ-C₆ alkyl, Cj-C₆ alkoxy,
halogen, CF₃, OCF₃, hydroxyl, hydroxyalkyl, amino, -NH(C₁-C₄ alkyl), -N(C₁-C₄ alkyl)(d-C₄ alkyl), or NO₂, wherein

Rᵢ is C₁-C₆ alkoxy, optionally substituted with 1 or 2 groups that are independently C₁-C₄ alkoxy, amino, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)(C₁-C₆ alkyl), -(C₀-C₆ alkyl)-C(O)N(R₉)-heterocycloalkyl, or heterocycloalkyl wherein the heterocycloalkyl group is selected from pyrrolidinyl, piperidinyl, piperazinyl, and morpholinyl, wherein the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, hydroxy, hydroxy C₁-C₆ alkyl, C₁-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃. In a preferred aspect the -(C₀-C₆ alkyl)-C(O)R₇ group is attached to position 4 of the phenyl ring.

In still another aspect, the orientation of bonds 3 and 4 of the core piperidine ring is as follows:

![Diagram of bond orientation]

In a preferred aspect, the orientation of bonds 3 and 4 of the core piperidine ring is as follows:

![Diagram of bond orientation]

The compounds of the invention comprise compounds of formulas XX-a or XX-b, i.e., compounds of formulas Xa and/or Xb having the formulas:

XX-a, or
or pharmaceutically acceptable salts thereof, wherein
L is -(C\textsubscript{1}-C\textsubscript{4} alkyl)-NR\textsubscript{9}-(C\textsubscript{1}-C\textsubscript{4} alkyl)-, -(Cj-C\textsubscript{4} alkyl)-C(O)NR\textsubscript{9}-, -(C\textsubscript{1}-C\textsubscript{4} alkyl)-NR\textsubscript{9}C(O)- or -C(O)NR\textsubscript{9}(C\textsubscript{1}-C\textsubscript{4} alkyl)-;
R\textsubscript{1} is halogen;
R\textsubscript{2} is amino or mono or (ii(C\textsubscript{1}-C\textsubscript{4} alkyl)amino;
R\textsubscript{3} is C\textsubscript{1}-C\textsubscript{4} alkyl, Ci-C\textsubscript{4} alkoxy, or OH;
R\textsubscript{4} is H or Ci-C\textsubscript{4} alkyl;
R\textsubscript{5} is phenyl or naphthyl, each of which is substituted with 1 or 2 groups that are
independently Ci-C\textsubscript{4} alkyl, Ci-C\textsubscript{4} alkoxy, OH, -0-C\textsubscript{2}-C\textsubscript{4} alkanoyl, halogen, halo C\textsubscript{1}-C\textsubscript{4} alkyl, halo C\textsubscript{1}-C\textsubscript{4} alkoxy, -CO\textsubscript{2}R\textsubscript{10}, -(Ci-C\textsubscript{4} alkyl)-CO\textsubscript{2}R\textsubscript{10};
R\textsubscript{9} is H or Ci-C\textsubscript{4} alkyl;
R\textsubscript{10} at each occurrence is independently H, Ci-C\textsubscript{4} alkyl optionally substituted with one group
that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH\textsubscript{2}, -C(O)NH(C\textsubscript{1}-C\textsubscript{4} alkyl), -C(O)N(C\textsubscript{1}-C\textsubscript{4} alkyl)(Ci-C\textsubscript{4} alkyl) or piperidinyl optionally substituted with C\textsubscript{1}-C\textsubscript{4} alkyl; and
R\textsubscript{10} is Ci-C\textsubscript{4} alkyl, or Ci-C\textsubscript{4} alkoxy.

In yet another aspect, the invention provides compounds of Formula (XX-2a) or
Formula (XX-2b) i.e., compounds of Formula (XX-a) or Formula (XX-b) having the formula:
where

R_{i7} is C_i-C_4 alkyl, C_1-C_4 alkoxy, OH, -O-C_2-C_4 alkanoyl, halogen, halo C_1-C_4 alkyl, halo C_1-C_4 alkoxy, -CO$_2$-R_{i7}, or -(Ci-C_4 alkyl)-CO$_2$-R_{i7}; and

R_{i8} is H, C_i-C_4 alkyl, C_i-C_4 alkoxy, OH, -O-C_2-C_4 alkanoyl, halogen, halo C_i-C_4 alkyl (such as C_F_3), halo C_i-C_4 alkoxy (such as OCF$_3$), -CO$_2$-R_{i8}, or -(Ci-C_4 alkyl)-CO$_2$-R_{i8}.

In still another aspect, the invention provides compounds of either Formula (XX-2a) or Formula (XX-2b) wherein the bonds at positions 3 and 4 of the piperidinyl ring are cis to each other.

In still another aspect, the orientation of bonds 3 and 4 is as follows:

In a preferred aspect, the orientation of bonds 3 and 4 is as follows:

In yet still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C_2 alkyl)-NR$_9$-(Ci-C_2 alkyl)-; R_{17} is C_i-C_4 alkyl, C_i-C_4 alkoxy, or halogen; and R_{18} is H, C_i-C_4 alkyl, C_i-C_4 alkoxy, OH, or -O-C_2-C_4 alkanoyl. Preferably, one of R_{i7} or R_{i8} is at the 4-position of the phenyl group.

In still yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C_2 alkyl)-NR$_9$-(Ci-C_2 alkyl)-; R_{i7} is halogen, halo C_i-C_4 alkyl, or halo C_i-C_4 alkoxy; and R_{i8} is H, C_i-C_4 alkyl, C_i-C_4 alkoxy, OH. Preferably, one of R_{17} or R_{18} is at the 4-position of the phenyl group.

23
In another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C \textsubscript{2} alkyl)-NR \textsubscript{9}-(Ci-C \textsubscript{2} alkyl)-; R \textsubscript{17} is OH, or -0-C \textsubscript{2}-C \textsubscript{4} alkanoyl; and R \textsubscript{18} is H, Ci-C \textsubscript{4} alkyl, Ci-C \textsubscript{4} alkoxy, or OH. Preferably, one of R \textsubscript{17} or R \textsubscript{18} is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C \textsubscript{2} alkyl)-NR \textsubscript{9}-(Ci-C \textsubscript{2} alkyl)-; R \textsubscript{n} is OH, or -0-C \textsubscript{2}-C \textsubscript{4} alkanoyl; and R \textsubscript{18} is 0-C \textsubscript{2}-C \textsubscript{4} alkanoyl, halogen, halo Ci-C \textsubscript{4} alkyl, or halo Ci-C \textsubscript{4} alkoxy. Preferably, one of R \textsubscript{17} or R \textsubscript{18} is at the 4-position of the phenyl group.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C \textsubscript{2} alkyl)-NR \textsubscript{9}-(Ci-C \textsubscript{2} alkyl)-; R \textsubscript{10} is H, C \textsubscript{1}-C \textsubscript{4} alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH \textsubscript{2}, or piperidinyl optionally substituted with C \textsubscript{1}-C \textsubscript{3} alkyl; R \textsubscript{17} is -CO \textsubscript{2}R \textsubscript{10}, or -(Ci-C \textsubscript{4} alkyl)-CO \textsubscript{2}R \textsubscript{10}; and R \textsubscript{18} is Ci-C \textsubscript{4} alkyl, Ci-C \textsubscript{4} alkoxy, or OH. Preferably, one of R \textsubscript{17} or R \textsubscript{18} is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C \textsubscript{2} alkyl)-NR \textsubscript{9}-(Ci-C \textsubscript{2} alkyl)-; R \textsubscript{10} is H, C \textsubscript{1}-C \textsubscript{4} alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH \textsubscript{2}, or piperidinyl optionally substituted with C \textsubscript{1}-C \textsubscript{3} alkyl; R \textsubscript{17} is -CO \textsubscript{2}R \textsubscript{10}; and R \textsubscript{18} is Ci-C \textsubscript{4} alkyl (such as methyl), Ci-C \textsubscript{4} alkoxy (such as methoxy), or OH. Preferably, one of R \textsubscript{17} or R \textsubscript{18} is at the 4-position of the phenyl group.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C \textsubscript{2} alkyl)-NR \textsubscript{9}-(Ci-C \textsubscript{2} alkyl)-; R \textsubscript{10} is H, Ci-C \textsubscript{4} alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH \textsubscript{2}, or piperidinyl optionally substituted with C \textsubscript{1}-C \textsubscript{3} alkyl; R \textsubscript{17} is -(Ci-C \textsubscript{4} alkyl)-CO \textsubscript{2}R \textsubscript{10}; and R \textsubscript{18} is C \textsubscript{1}-C \textsubscript{4} alkyl, Ci-C \textsubscript{4} alkoxy, or OH. Preferably, one of R \textsubscript{17} or R \textsubscript{18} is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C \textsubscript{3} alkyl)-NR \textsubscript{9}-(Ci-C \textsubscript{3} alkyl)-; R \textsubscript{10} is H, CpC \textsubscript{4} alkyl optionally substituted with one group that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH \textsubscript{2}, or piperidinyl optionally substituted with CpC \textsubscript{3} alkyl;
R\textsubscript{i7} is OH, -O-C\textsubscript{2}-C\textsubscript{4} alkanoyl, -CO\textsubscript{2}R\textsubscript{i0}, Or-(Ci-C\textsubscript{4} alkyl)-CO\textsubscript{2}R\textsubscript{i0}; and
R\textsubscript{i8} is H; and
R\textsubscript{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet still another aspect, the invention provides compounds of either of Formula
(XX-2a) or Formula (XX-2b), wherein
L is -(Ci-C\textsubscript{3} alkyl)-NR\textsubscript{9}-(Ci-C\textsubscript{3} alkyl)-;
R\textsubscript{i0} is H, quinuclidinyl, -C(O)NH\textsubscript{2}, or piperidinyl optionally substituted with Ci-C\textsubscript{3} alkyl;
R\textsubscript{i7} is OH, -O-C\textsubscript{2}-C\textsubscript{4} alkanoyl, -CO\textsubscript{2}R\textsubscript{i0}, or -(Ci-C\textsubscript{4} alkyl)-CO\textsubscript{2}R\textsubscript{i0}; and
R\textsubscript{i8} is H; and
R\textsubscript{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet still another aspect, the invention provides compounds of either of Formula
(XX-2a) or Formula (XX-2b), wherein
L is -(Ci-C\textsubscript{3} alkyl)-NR\textsubscript{9}-(Ci-C\textsubscript{3} alkyl)-;
R\textsubscript{i0} is H; R\textsubscript{i7} is OH, or -O-
R\textsubscript{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet still another aspect, the invention provides compounds of either of Formula
(XX-2a) or Formula (XX-2b), wherein
L is -(Ci-C\textsubscript{3} alkyl)-NR\textsubscript{9}-(Ci-C\textsubscript{3} alkyl)-;
R\textsubscript{i0} is H; R\textsubscript{i7} is OH, or -O-C\textsubscript{2}-C\textsubscript{4} alkanoyl; and R\textsubscript{i8} is H, methyl, methoxy, OH, F, or Cl.

In yet still another aspect, the invention provides compounds of Formula (XX-3a) or
Formula (XX-3b), i.e., compounds of Formula (XX-2a) or Formula (XX-2b) having the
formula:
In still yet another aspect, the invention provides compounds of Formula (XX-3a) or Formula (XX-3b), wherein R_{17} is -CO_2R_{10}, or -(C$_1$-C$_4$ alkyl)-CO_2R_{10}; R_8 is H or methyl; and R_9 is H, Ci-C$_4$ alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidiny, and OH, quinuclidinyl, -C(O)NH$_2$, or piperidinyl optionally substituted with C$_1$-C$_2$ alkyl.

In another aspect, the invention provides compounds of Formula (XX-2a) or Formula (XX-2b), wherein

L is -(C$_2$-C$_4$ alkyl)-;

R_i is H, Ci-C$_4$ alkyl optionally substituted with one group that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH$_2$, or piperidinyl optionally substituted with C$_1$-C$_3$ alkyl;

R_{17} is OH, -O-C$_2$-C$_4$ alkanoyl, -CO$_2$R$_{10}$, or-(Ci-C$_4$ alkyl)-CO_2R_{10};

R_{18} is H; and

R_{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C$_2$-C$_4$ alkyl)-; R_{17} is Ci-C$_4$ alkyl, Ci-C$_4$ alkoxy, or halogen; and R_{18} is H, Ci-C$_4$ alkyl, Ci-C$_4$ alkoxy, OH, or -O-C$_2$-C$_4$ alkanoyl. Preferably, one of R_{17} or R_{18} is at the 4-position of the phenyl group.

In still yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C$_2$-C$_4$ alkyl)-; R_{17} is halogen, halo C$_1$-C$_4$ alkyl, or halo Ci-C$_4$ alkoxy; and R_{18} is H, Ci-C$_4$ alkyl, Ci-C$_4$ alkoxy, OH. Preferably, one of R_{17} or R_{18} is at the 4-position of the phenyl group.
In another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein \(L \) is -(C\(_2\)-C\(_4\) alkyl)-; \(R_{17} \), is OH, or -0-C\(_2\)-C\(_4\) alkanoyl; and \(R_{18} \) is H, C\(_1\)-C\(_4\) alkyl, Ci-C\(_4\) alkoxy, or OH. Preferably, one of \(R_{17} \), or \(R_{18} \) is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein \(L \) is -(C\(_2\)-C\(_4\) alkyl)-; \(R_{17} \) is OH, or -0-C\(_2\)-C\(_4\) alkanoyl; and \(R_{18} \) is 0-C\(_2\)-C\(_4\) alkanoyl, halogen, halo C\(_1\)-C\(_4\) alkyl, or halo C\(_1\)-C\(_4\) alkoxy. Preferably, one of \(R_{17} \), or \(R_{18} \) is at the 4-position of the phenyl group.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein \(L \) is -(C\(_2\)-C\(_4\) alkyl)-; \(R_{18} \) is H, Ci-C\(_4\) alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH\(_2\), or piperidinyl optionally substituted with Ci-C\(_3\) alkyl; \(R_{17} \) is -CO\(_2\)R\(_{10}\) or-(C\(_1\)-C\(_4\) alkyl)-CO\(_2\)R\(_{10}\); and \(R_{18} \) is Ci-C\(_4\) alkyl, CpC\(_4\) alkoxy, or OH. Preferably, one of \(R_{17} \), or \(R_{18} \) is at the 4-position of the phenyl group.

In still yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein \(L \) is -(C\(_2\)-C\(_4\) alkyl)-; \(R_{18} \) is H, Q-C\(_4\) alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH\(_2\), or piperidinyl optionally substituted with Ci-C\(_3\) alkyl; \(R_{17} \) is -CO\(_2\)R\(_{10}\); and \(R_{18} \) is Ci-C\(_4\) alkyl (such as methyl), C\(_1\)-C\(_4\) alkoxy (such as methoxy), or OH. Preferably, one of \(R_{17} \), or \(R_{18} \) is at the 4-position of the phenyl group.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein \(L \) is -(C\(_2\)-C\(_4\) alkyl)-;
R_{10} is H, C_{1-4} alkyl optionally substituted with one group that is selected from a 5 or 6
membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH_{2}, or
piperidinyl optionally substituted with C_{1-3} alkyl;
R_{8} is OH, -O-C_{2-4} alkanoyl, -CO_{2}R_{10}, or -(C_{1-4} alkyl)-CO_{2}R_{10}; and
R_{18} is H; and
R_{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet another aspect, the invention provides compounds of either of Formula
(XX-2a) or Formula (XX-2b), wherein
L is -(C_{2-4} alkyl)-;
R_{10} is H, quinuclidinyl, -C(O)NH_{2}, or piperidinyl optionally substituted with Ci-C_{3} alkyl;
R_{17} is OH, -O-C_{2-4} alkanoyl, -CO_{2}R_{10}, Or-(C_{1-4} alkyl)-CO_{2}R_{10}; and
R_{18} is H; and
R_{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet another aspect, the invention provides compounds of either of Formula
(XX-2a) or Formula (XX-2b), wherein L is -(C_{2-4} alkyl)-; R_{10} is H; R_{17} is -CO_{2}R_{10}, or -(Ci-
C_{4} alkyl)-CO_{2}R_{10}; and R_{18} is H.

In still another aspect, the invention provides compounds of either of Formula (XX-
2a) or Formula (XX-2b), wherein L is -(C_{2-4} alkyl)-; R_{17} is OH, or -O-C_{2-4} alkanoyl; and
R_{18} is H, methyl, methoxy, OH, F, or Cl.

In another aspect, the invention provides compounds of either of Formula (XX-2a) or
Formula (XX-2b), wherein
L is -(C_{1-3} alkyl)-C(O)NR_{9};
R_{10} is H, Ci-C_{4} alkyl optionally substituted with one group that is selected from a 5 or 6
membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH_{2}, or
piperidinyl optionally substituted with Ci-C_{3} alkyl;
R_{17} is OH, -O-C_{2-4} alkanoyl, -CO_{2}R_{10}, Or-(C_{1-4} alkyl)-CO_{2}R_{10};
R_{18} is H; and
R_{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet another aspect, the invention provides compounds of either of Formula
(XX-2a) or Formula (XX-2b), wherein L is -(Ci-C_{2} alkyl)-C(O)NR_{9}; R_{17} is C_{1-4} alkyl, Q -
C₄ alkoxy, or halogen; and R₁₈ is H, C₁₋C₄ alkyl, C₁₋C₄ alkoxy, OH, or -0-C₂₋C₄ alkanoyl. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In still yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C₁₋C₂ alkyl)-C(O)NR; R₁₇ is halogen, halo C₁₋C₄ alkyl, or halo C₁₋C₄ alkoxy; and R₁₈ is H, Ci-C₄ alkyl, Ci-C₄ alkoxy, OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C₂ alkyl)-C(O)NR; R₁₇ is OH, or -0-C₂₋C₄ alkanoyl; and R₁₈ is H, H, Ci-C₄ alkyl, Ci-C₄ alkoxy, or OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C₂ alkyl)-C(O)NR; R₁₇ is OH, or -0-C₂₋C₄ alkanoyl; and R₁₈ is 0-C₂₋C₄ alkanoyl, halogen, halo C₁₋C₄ alkyl, or halo C₁₋C₄ alkoxy. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C₂ alkyl)-C(O)NR; R₁₇ is H, Ci-C₄ alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with Ci-C₃ alkyl; R₁₈ is -CO₂R₁₀; or-(Ci-C₄ alkyl)-CO₂R₁₀; and R₁₈ is Ci-C₄ alkyl, Ci-C₄ alkoxy, or OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In still yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C₂ alkyl)-C(O)NR; R₁₀ is H, Ci-C₄ alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with Ci-C₃ alkyl; R₁₈ is -CO₂R₁₀; and R₁₈ is C₄ alkyl (such as methyl), Ci-C₄ alkoxy (such as methoxy), or OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C₂ alkyl)-C(O)NR; R₁₀ is H, Ci-C₄ alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with Ci-C₃ alkyl; R₁₈ is -(Ci-C₄ alkyl)-CO₂R₁₀; and R₁₈ is Ci-C₄ alkyl, Ci-C₄ alkoxy, or OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.
In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein

L is -(C₁-C₂ alkyl)-C(O)NR₉;
Rio is H, C₁-C₄ alkyl optionally substituted with one group that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with C₁-C₃ alkyl;
R₁₇ is OH, -O-C₂-C₄ alkanoyl, -CO₂R_i, or-(C₁-C₄ alkyl)-CO₂R_i; and
R₁₈ is H; and
R₂₀ is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein

L is -(C₁-C₂ alkyl)-C(O)NR₉;
Rio is H, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with C₁-C₃ alkyl;
R₁₇ is OH, -O-C₂-C₄ alkanoyl, -CO₂R_i, or-(C₁-C₄ alkyl)-CO₂R_i; and
R₁₈ is H; and
R₂₀ is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C₁-C₂ alkyl)-C(O)NR₉; Rio is H; R₁₇ is -CO₂R_i, or -(C₁-C₄ alkyl)-CO₂Rio; and R₁₈ is H.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C₁-C₂ alkyl)-C(O)NR₉; Rio is OH, or -O-C₂-C₄ alkanoyl; and R₁₈ is H, methyl, methoxy, OH, F, or Cl.

In yet still another aspect, the invention provides compounds of Formula (XX-4a) or Formula (XX-4b), i.e., compounds of Formula (XX-2a) or Formula (XX-2b) having the formula:
In still yet another aspect, the invention provides compounds of Formula (XX-4a) or Formula (XX-4b), wherein R_{17} is $-\text{CO}_2\text{R}_{10}$, or $-(\text{C}_1\text{C}_4 \text{ alkyl})\text{-CO}_2\text{R}_{10}$; R_{9} is H or methyl; and R_{10} is H, $\text{C}_1\text{-C}_4 \text{ alkyl}$ optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, $-\text{C(O)NH}_2$, or piperidinyl optionally substituted with $\text{C}_1\text{-C}_2 \text{ alkyl}$.

In yet still another aspect, the invention provides compounds of Formula (XX-5a) or Formula (XX-5b), i.e., compounds of Formula (XX-2a) or Formula (XX-2b) having the formula:
In still yet another aspect, the invention provides compounds of Formula (XX-5a) or Formula (XX-5b), wherein R_{17} is -CO_2RiO, Or-(C_1-C_4 alkyl)-CO_2Ri_8; R_{10} is H or methyl; and Rio is H, C_1-C_4 alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH_2, or piperidinyl optionally substituted with C_1-C_4 alkyl.

In another aspect, the invention provides compounds of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C-C_4 alkyl)-NR_9C(O)s
Rio is H, C_1-C_4 alkyl optionally substituted with one group that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH_2, or piperidinyl optionally substituted with C_1-C_3 alkyl;
R_{17} is OH, -0-C_2-C_4 alkanoyl, -CO_2Ri_8, Or-(C-C_4 alkyl)-CO_2Ri_8; R_{18} is H; and
R_{20} is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C-C_4 alkyl)-NR_9C(O)s; R_{17} is C_1-C_4 alkyl, C_1-C_4 alkoxy, or halo; and R_{18} is H, C_6-C_4 alkyl, C_1-C_3 alkoxy, OH, or -0-C_2-C_4 alkanoyl.
Preferably, one of R_{17} or R_{18} is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C-C_4 alkyl)-NR_9C(O)s; R_{17} is halogen, halo C_1-C_4 alkyl, or halo C_1-C_3 alkoxy; and R_{18} is H, C_1-C_4 alkyl, C_1-C_3 alkoxy, OH. Preferably, one of R_{17} or R_{18} is at the 4-position of the phenyl group.

In another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C-C_4 alkyl)-NR_9C(O)s; R_{17} is OH, or -0-C_2-C_4 alkanoyl; and R_{18} is H, C_1-C_4 alkyl, C_1-C_3 alkoxy, or OH. Preferably, one of R_{17} or R_{18} is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C-C_4 alkyl)-NR_9C(O)s; R_{17} is OH, or -0-C_2-C_4 alkanoyl; and R_{18} is 0-C_2-C_4 alkanoyl, halo, halo C_1-C_4 alkyl, or halo C_1-C_3 alkoxy. Preferably, one of R_{17} or R_{18} is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C-C_4 alkyl)-NR_9C(O)s; R_{10} is H, C_1-C_4 alkyl
optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with C₁₋₃ alkyl; R₁⁰ is -CO₂R₁⁰, or -(C₁₋₃ alkyl)-CO₂R₁⁰; and R₁₈ is C₁₋₄ alkyl, C₁₋₄ alkoxy, or OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In still yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C₄ alkyl)-NR₉C(O)-; R₁⁰ is H, C₁₋₄ alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with C₁₋₃ alkyl; R₁⁰ is -CO₂R₁⁰; and R₁₈ is Ci-C₄ alkyl (such as methyl), C₁₋₄ alkoxy (such as methoxy), or OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(Ci-C₄ alkyl)-NR₉C(O)-; R₁⁰ is H, C₁₋₄ alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with Q-C₃ alkyl; Rₙ is-(Ci-C₄ alkyl)-CO₂R₁⁰; and R₁₈ is Ci-C₄ alkyl, Ci-C₄ alkoxy, or OH. Preferably, one of R₁₇ or R₁₈ is at the 4-position of the phenyl group.

In yet another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein

L is -(Ci-C₄ alkyl)-NR₉C(O)-;
R₁⁰ is H, Ci-C₄ alkyl optionally substituted with one group that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with C₁₋₃ alkyl;
R₁⁰ is OH, -0-C₂₋₄ alkanoyl, -CO₂R₁⁰, or -(Ci-C₄ alkyl)-CO₂R₁⁰;
R₁₈ is H; and
R₂₀ is methoxy or ethoxy (in one aspect, methoxy is preferred.)

In yet still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein

L is -(Ci-C₄ alkyl)-NR₉C(O)-;
R₁⁰ is H, quinuclidinyl, -C(O)NH₂, or piperidinyl optionally substituted with Ci-C₃ alkyl;
R₁⁰ is OH, -0-C₂₋₄ alkanoyl, -CO₂R₁⁰, or -(Ci-C₄ alkyl)-CO₂R₁⁰; and
R₁₈ is H; and
R₂₀ is methoxy or ethoxy (in one aspect, methoxy is preferred.)
In yet still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C\(_1\)\(-C_4\) alkyl)-NR\(_9\)C(O)-; R\(_{i0}\) is H; R\(_{17}\) is -CO\(_2\)R\(_{i0}\), or -(Ci-C\(_4\) alkyl)-CO\(_2\)R\(_{i0}\); and R\(_{i8}\) is H.

In still another aspect, the invention provides compounds of either of Formula (XX-2a) or Formula (XX-2b), wherein L is -(C\(_1\)\(-C_4\) alkyl)-NR\(_9\)C(O)-; R\(_{i0}\) is OH, or -(Ci-C\(_4\) alkyl)-CO\(_2\)R\(_{i0}\); and R\(_{i8}\) is H, methyl, methoxy, OH, F\(_5\) or Cl.

In yet still another aspect, the invention provides compounds of Formula (XX-6a) or Formula (XX-6b), i.e., compounds of Formula (XX-2a) or Formula (XX-2b) having the formula:

![Chemical Structure](image)

XX-6a, or

![Chemical Structure](image)

XX-6b.

In still yet another aspect, the invention provides compounds of Formula (XX-6a) or Formula (XX-6b), wherein R\(_{17}\) is -CO\(_2\)R\(_{i0}\), or -(Ci-C\(_4\) alkyl)-CO\(_2\)R\(_{i0}\); R\(_6\) is H or methyl; and R\(_{i0}\) is H, C\(_1\)\(-C_4\) alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH, quinuclidinyl, -C(O)NH\(_2\), or piperidinyl optionally substituted with Q - C\(_2\) alkyl.

In yet another aspect, the invention provides compounds of Formula (XX-6a) or Formula (XX-6b), wherein R\(_{i7}\) is -CO\(_2\)R\(_{i0}\), and R\(_{i0}\) is H, or Ci-C\(_4\) alkyl optionally substituted with one group that is selected from morpholinyl, pyrrolidinyl, and OH,

In still another aspect, the invention provides compounds of Formula (XX-6a) or Formula (XX-6b), wherein R\(_{n}\) is -CO\(_2\)R\(_{i0}\), and R\(_{i0}\) is quinuclidinyl, -C(O)NH\(_2\), or piperidinyl optionally substituted with Ci-C\(_2\) alkyl.
In a further aspect, the invention provides compounds of Formula \(\text{Formula (XX-6a)} \) or Formula \(\text{(XX-6b)} \), wherein \(R_{17} \) is \(-\text{CO}_2R_{10}\), and \(R_1 \) is \(\text{H or piperidinyl substituted with C}_1\text{-C}_2 \text{ alkyl} \).

The invention further provides methods for treating emesis, dyspepsia, gastroparesis, constipation, intestinal pseudo-obstruction, gastroesophageal reflux, or post-operative ileus, the method comprising administering a therapeutically effective amount of a compound or salt according of Formulae \(\text{Xa} \) and \(\text{Xb} \) to a patient in need of such treatment.

The subject invention provides compounds that are more susceptible to degradation by serum and/or cytosolic esterases than cisapride, thus avoiding the adverse effects associated with metabolism by cytochrome P450.

Advantageously, the therapeutic compounds of the subject invention are stable in storage but have a relatively short half-life in the physiological environment; therefore, the compounds of the subject invention can be used with a lower incidence of side effects and toxicity.

In a preferred aspect of the subject invention, therapeutic stereoisomeric compounds are provided that are useful in the treatment of gastroesophageal reflux disease and that contain an ester group, which is susceptible to degradation by esterases, thereby breaking down the compound and facilitating its efficient removal from the treated individual. In a preferred aspect, the therapeutic stereoisomeric compounds are metabolized by the Phase I drug detoxification system.

A further aspect of the subject invention pertains to the breakdown products (preferably metabolic breakdown products, i.e., metabolites, generally acids of parent esters) that are produced when the therapeutic compounds of the subject invention are acted upon by an esterase. The presence of these breakdown products in the urine or serum can be used to monitor the rate of clearance of the therapeutic compound from a patient.

Degradation of the compounds of the subject invention by esterases is particularly advantageous for drug metabolism because these enzymes are ubiquitously distributed and their activity is not dependent on age, gender, or disease state to the same extent as oxidative hepatic drug metabolism.

The subject invention further provides methods of treating disorders, such as gastroesophageal reflux disease comprising the administration of a therapeutically effective
amount of at least one stereoisomeric structural and/or functional analog of cisapride to an individual in need of treatment. In a specific aspect, the subject invention provides stereoisomeric structural and/or functional analogs of cisapride and pharmaceutical compositions of these esterified compounds.

The subject invention further provides materials and methods for the treatment of emesis and such other conditions, including but not limited to dyspepsia, gastroparesis, constipation, and intestinal pseudo-obstruction, while substantially reducing adverse effects associated with the administration of cisapride.

In a preferred aspect of the subject invention, therapeutic stereoisomeric compounds are provided which are useful in the treatment of gastroesophageal reflux, dyspepsia, gastroparesis, constipation, post-operative ileus, and intestinal pseudo-obstruction and which contain an ester group which is acted upon by esterases thereby breaking down the compound and facilitating its efficient removal from the treated individual.

The subject invention further provides methods of synthesizing the unique and advantageous compounds of the subject invention. Particularly, methods of producing and purifying such stereoisomeric compounds are taught. Methods of adding such ester moieties and of producing and purifying stereoisomers, are well known to the skilled artisan and can be readily carried out utilizing the guidance provided herein.

Preferred Compounds

In a preferred aspect, the present invention provides isolated stereoisomers of Compound I, which contains three chiral centers.

![Chemical Structure of Compound I](image)

| quinuelidin-3-yl 6-(4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoste | Ia |
Two of the chiral centers exist in cisapride and norcisapride and are in the cis configuration in the active drugs:

![Chemical structures of cisapride and norcisapride](image)

(±)-Cisapride (±)-Norcisapride

Thus, for example, pharmaceutically active norcisapride is a racemic mixture of the two cis enantiomers:

![Chemical structures of (-) and (+) norcisapride](image)

(-) Norcisapride (+) Norcisapride

In one aspect, the current invention is particularly concerned with the configuration at the third chiral center, in the quinuclidinol moiety, of the structural and/or functional analogs of cisapride. This group is eliminated in the conversion to the acid metabolite referred to herein as ± Compounda Ha and lib:
The preferred Compound Ia and Ib stereoisomers of the present invention are made by conjugating R or S quinuclidinol to a structural/functional analog of (+)- or (-)-norcisapride characterized by the substitution of a pyridyl or pyridonyl moiety for the phenyl moiety of norcisapride, giving Compounds IIa, IIb, IVa, IVb, Va, Vb, Via and VIb.

(R)-quinuclidin-3-yl 6-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

IIIa
Compounds IHa and IHb: (-)(R)-compounds of Ia and Ib

(R)-quinuclidin-3-yl 6-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

Compounds IVa and IVb: (+)(RV)-compounds

(R)-quinuclidin-3-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

(Va) -quinuclidin-3-yl 6-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate
Compounds Va and Vb: (-XS)-compounds

(S)-quinuclidin-3-yl 6-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

(Vb)

Compounds Via and Vlb: (+VS)-compounds

(S)-quinuclidin-3-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

Via

(S)-quinuclidin-3-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

Vlb
In a preferred aspect, the subject invention pertains to stereoisomerically isolated compounds, and compositions comprising the compounds. The isolated stereoisomeric forms of the compounds of the invention are substantially free from one another (i.e., in stereoisomeric excess). In other words, the "R" forms of the compounds are substantially free from the "S" forms of the compounds and are, thus, in stereoisomeric excess of the "S" forms. Conversely, "S" forms of the compounds are substantially free of "R" forms of the compounds and are, thus, in stereoisomeric excess of the "R" forms. In one aspect of the invention, the isolated stereoisomeric compounds are in at least about 80% stereoisomeric excess. In a preferred aspect, the compounds are in at least about 90% stereoisomeric excess. In a more preferred aspect, the compounds are in at least about 95% stereoisomeric excess. In an even more preferred aspect, the compounds are in at least about 97.5% stereoisomeric excess. In a most preferred aspect, the compounds are in at least about 99% stereoisomeric excess. Similarly, the "(+)" and "(-)" forms of the compounds are also provided in stereoisomeric excess.

As described herein, the various stereoisomers have particular unexpected properties that, advantageously, can be used to customize treatment for a particular set of circumstances. Thus, for example, compounds containing the (3'R)-isomer in the quinuclidinyl ester moiety, i.e., compounds Ila, IHB, IVa and IVb, can be rapidly metabolized by esterases in human plasma, whereas compounds containing the (3'S)-isomer of quinuclidinol, i.e., compounds Va and Vb and Via and Vlb, can undergo a much slower metabolism.

Thus, the (3'R)-isomers of compounds Ia and Ib can be used, for example, when a short-duration of action is preferred, for example stimulation of gastric motility in an acute episode, such as pulsatile administration to patients with acute gastroparesis, or in acute gastroesophageal reflux. Another advantage of rapid metabolism by esterases to an substantially less active metabolites, i.e., compound Ha or lib, is the very low probability of drug-drug interactions and toxicity. Therefore these shorter-acting (R)-isomers can be advantageously used, for example, as intravenous formulations for treating gastroesophageal reflux in premature newborn who notoriously are not able to metabolize drugs as well as adults because their CYP450 system is not fully developed. In these newborn, a drug having rapid metabolism by a system other than CYP450, e.g., esterases, is a great advantage. On the other hand, the (3'S)-isomers of compound I are best used in chronic situations of the same
ailments, for example gastroparesis in diabetic patients or cancer patients under opiates, or in chronic gastroesophageal reflux in patients who need 24-hour coverage.

In addition to their differences in metabolic fate, these separate isomers also can have different binding affinities for the 5-HT4 receptor, thus suggesting different activities as well, and therefore different therapeutic uses.

As a conclusion to these considerations: when the 3 and 4 positions are cis relative to each other, each compound (e.g., compound Ia) is a mixture of 4 isomers, consisting of 2 pairs of enantiomers. The first pair of enantiomers is (+)(R)-compound Ia and (-)(S)-compound Ia (compounds IVa and Va, respectively), the second pair of enantiomers is (-)(R)-compound I and (+)(S)-compound I (compounds Ila and Via, respectively). Within each enantiomeric pair, each separate enantiomer has different properties regarding both their rate of hydrolysis by esterases and regarding their affinity at the 5-HT4 receptor. These different properties give them separately advantageous therapeutic uses which are not interchangeable, i.e., which are specific to each isomer, and which are not applicable to the racemic mixture. These differences of affinity at the receptor and these differences in metabolic rates are not predictable and neither is it possible to dissect these properties when testing the racemic mixture.

Definitions

As used herein, the term "alkyl" includes those alkyl groups of a designed number of carbon atoms. Alkyl groups may be straight, or branched. Examples of "alkyl" include methyl, ethyl, propyl, isopropyl, butyl, iso-, sec- and tert-butyl, pentyl, hexyl, heptyl, 3-ethylbutyl, and the like. If the number of carbon atoms is not specified, the subject "alkyl" moiety has from 1 to 6 carbons.

The term "alkoxy" represents an alkyl group of indicated number of carbon atoms attached to the parent molecular moiety through an oxygen bridge. Examples of alkoxy groups include, for example, methoxy, ethoxy, propoxy and isopropoxy.

By "aryl" is meant an aromatic carbocyclic group having a single ring (e.g., phenyl) that is optionally fused or otherwise attached to other aromatic hydrocarbon rings or non-aromatic hydrocarbon rings. "Aryl" includes multiple condensed rings in which at least one is aromatic, (e.g., 1,2,3,4-tetrahydroanaphthyl, naphthyl), wherein each ring is optionally mono-, di-, or trisubstituted with the groups identified below, as well as multiple rings that are not fused, such as, for example, biphenyl or binaphthyl. Preferred aryl groups of the present
invention are phenyl, 1-naphthyl, 2-naphthyl, indanyl, indenyl, dihydroanaphthyl, fluorenyl,
tetralinyl or 6,7,8,9-tetrahydro-5H-benzo[a]cycloheptenyl. More preferred are phenyl,
biphenyl, and naphthyl. Most preferred is phenyl. The aryl groups herein are unsubstituted or,
as specified, substituted in one or more substitutable positions with various groups. For
example, such aryl groups may be optionally substituted with, for example, C₁-C₆ alkoxy, halogen, hydroxy, cyan, nitro, amino, InOnO(C₁-C₆)alkylamino, di(C₁-
C₆)alkylamino, C₂-C₆alkenyl, C₂-C₆alkynyl, C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, amino(C₁-
C₆)alkyl, mono(C₁-C₆)alkylamino(C₁-C₆)alkyl or di(C₁-C₆)alkylamino(C₁-C₆)alkyl.

The term "haloalkoxy" refers to an alkoxy group substituted with at least one halogen atom and optionally further substituted with at least one additional halogen atom, where each halogen is independently F, Cl, Br or I. Preferred halogens are F or Cl. Preferred haloalkoxy groups contain 1-6 carbons, more preferably 1-4 carbons, and still more preferably 1-2 carbons. "Haloalkoxy" includes perhaloalkoxy groups, such as OCF₃ or OCF₂CF₃.

The term "heteroaryl" refers to an aromatic ring system containing at least one heteroatom selected from nitrogen, oxygen, and sulfur. The heteroaryl ring may be fused or otherwise attached to one or more heteroaryl rings, aromatic or non-aromatic hydrocarbon rings or heterocycloalkyl rings. Examples of heteroaryl groups include, for example, pyridyl, pyrimidinyl, quinolinyl, benzothienyl, indolyl, indoliny1, pyridazinyl, pyrazinyl, isoindolyl, isoquinolyl, quinazolinyl, phthalazinyl, imidazolyl, isoxazolyl, pyrazolyl, oxazolyl, thiazolyl, indoliziny1, indazolyl, benzothiazolyl, benzimidazolyl, benzofuranyl, furanyl, thienyl, pyrrolyl, oxadiazolyl, thiadiazolyl, benzol[1,4]oxazinyl, triazolyl, tetrazolyl, isothiazolyl, naphthyridinyl, isoaxazolyl, chroman, tetrahydrisoquinolinyl, isoindolinyl, isobenzotetrahydrofuranyl, isobenzotetrahydrothienyl, isobenzothienyl, benzoxazolyl, pyridopyridinyl, benzotetrahydrofuranyl, benzo[a]hydrothienyl, purinyl, benzodioxolyl, triazinyl, pteridinyl, benzothiazolyl, imidazopyridinyl, imidazothiazolyl, dihydrobenzisoxazinyl, benzisoxazinyl, dibenzoisothiazinyl, benzopyran, benzoepiopyran, chromon, chroman, pyridinyl-N-oxide, tetrahydroquinolinyl, dihydroquinolinol, dihydroisoquinolinyl, dihydroisoquinolinol, dihydrocoumarinyl, dihydroisocoumarinyl, isoindolinol, benzodioxan, benzoxazolinol, pyrrol N-oxide, pyrimidinyl N-oxide, pyridazinyl N-oxide, pyrazinyl N-oxide, quinolinyl N-oxide, indolyl N-oxide, indoliny1 N-oxide, isoquinolyl N-oxide, quinazolinyl N-oxide, quinoxalinyl N-oxide, phthalazinyl N-oxide, imidazolyl N-oxide, isoxazolyl N-oxide, oxazolyl
N-oxide, thiazolyl N-oxide, indolizinyl N-oxide, indazolyl N-oxide, benzothiazolyl N-oxide, benzimidazolyl N-oxide, pyrolyl N-oxide, oxadiazolyl N-oxide, thiadiazolyl N-oxide, triazolyl N-oxide, tetrazolyl N-oxide, benzothioypyranyl S-oxide, benzotheopyranyl S,S-dioxide. Preferred heteroaryl groups include pyridyl, pyrimidyl, quinolinyl, indolyl, pyrrolyl, furanyl, thiényl, and imidazolyl. More preferred heteroaryl groups include pyridyl, pyrrolyl, and indolyl. The heteroaryl groups herein are unsubstituted or, as specified, substituted in one or more substitutable positions with various groups. For example, such heteroaryl groups may be optionally substituted with, for example, Ci-C alkyl, Ci-C alkoxy, halogen, hydroxy, cyano, nitro, and/or unsubstitutable Ci-C haloalkyl, Ci-C haloalkoxy, amino(Ci-C alkylamino(Ci-C alkyl), mono(Ci-C alkylamino(Ci-C alkyl) or di(Ci-C alkylamino(Ci-C alkyl.

The term "heterocycloalkyl" refers to a ring or ring system containing at least one heteroatom that is preferably selected from nitrogen, oxygen, and sulfur, wherein said heteroatom is in a non-aromatic ring. The heterocycloalkyl ring is optionally fused to or otherwise attached to other heterocycloalkyl rings and/or non-aromatic hydrocarbon rings and/or phenyl rings. Preferred heterocycloalkyl groups have from 3 to 7 members. More preferred heterocycloalkyl groups have 5 or 6 members. Examples of heterocycloalkyl groups include, for example, aza-bicyclo[2.2.2]octyl (in each case also "quinuclidinyl" or a quinuclidine derivative), aza-bicyclo[3.2.1]octyl, morpholinyl, thiomorpholinyl, thiomorpholinyl S-oxide, thiomorpholinyl S,S-dioxide, piperazinyl, homopiperazinyl, pyrrolidinyl, pyrrolyl, tetrahydropyranyl, piperidinyl, tetrahydrofuranyl, tetrahydrothienyl, homopiperidinyl, homomorpholinyl, homothiomorpholinyl, homothiomorpholinyl S,S-dioxide, oxazolidinonyl, dihydroprazolyl, dihydroprrolyl, dihydroprazinyl, dihydroprydinyl, dihydroprimidinyl, dihydrofurlyl, dihydropryanl, tetrahydrothienyl S-oxide, tetrahydrothienyl S,S-dioxide and homothiomorpholinyl S-oxide. Preferred heterocycloalkyl groups include aza-bicyclo[2.2.2]octyl, aza-bicyclo[3.2.1]octyl, piperidinyl, piperazinyl, pyrrolidinyl, thiomorpholinyl, S,S-dioxothiomorpholinyl, morpholinyl, and imidazolidinyl. More preferred are aza-bicyclo[2.2.2]octyl, aza-bicyclo[3.2.1]octyl, piperidinyl, pipazinyl, pyrrolidinyl, imidazolidinyl, and morpholinyl. The heterocycle groups herein are unsubstituted or, as specified, substituted in one or more substitutable positions with various groups. For example, such heterocycle groups may be optionally substituted with, for example, Ci-C alkyl, Ci-C alkoxy, halogen, hydroxy, cyano, nitro,
amino, mono(C\textsubscript{1}-C\textsubscript{6})alkylamino, (\textit{ii}C\textsubscript{1}-C\textsubscript{6})alkylamino, C\textsubscript{2}-C\textsubscript{6} alkenyl, C\textsubscript{2}-C\textsubscript{6} alkynyl, C\textsubscript{1}-C\textsubscript{6} haloalkyl, C\textsubscript{1}-C\textsubscript{6} haloalkoxy, amino(C\textsubscript{i}-C\textsubscript{6})alkyl, mono(C\textsubscript{1}-C\textsubscript{6})alkylamino(Ci-C\textsubscript{6})alkyl, (\textit{ii}C\textsubscript{1}-C\textsubscript{6})alkylamino(C\textsubscript{1}-C\textsubscript{6})alkyl or =O.

The term "pharmaceutically acceptable salts" or "a pharmaceutically acceptable salt thereof" refer to salts prepared from pharmaceutically acceptable non-toxic acids or bases including inorganic acids and bases and organic acids and bases. Since the compound of the present invention is basic, salts may be prepared from pharmaceutically acceptable non-toxic acids. Suitable pharmaceutically acceptable acid addition salts for the compound of the present invention include acetic, benzenesulfonic (besylate), benzoic, camphorsulfonic, citric, ethanesulfonic, fumaric, gluconic, glutamic, hydrobromic, hydrochloric, isethionic, lactic, maleic, malic, mandelic, methanesulfonic, mucic, nitric, pamoic, pantothenic, phosphoric, succinic, sulfuric, tartaric, p-toluensulfonic, and the like. Preferred acid addition salts are the chloride and sulfate salts. In the most preferred aspect, structural and/or functional analogs of cisapride are administered as the free base or as the mono or dihydrochloride salt.

As used herein, the terms "treatment" and "treating" encompass prophylactic administration of the compound or a pharmaceutical composition comprising the compound ("prophylaxis") as well as remedial therapy to reduce or eliminate a disease or disorder mentioned herein. Prophylactic administration is intended for prevention of disorders and may be used to treat a subject that is at risk of having or suffering from one or more disorders mentioned herein. Thus, as used herein, the term "treatment", or a derivative thereof, contemplates partial or complete inhibition of the stated disease state, when an active ingredient of the invention is administered prophylactically or following the onset of the disease state for which such active ingredient of the is administered. "Prophylaxis" refers to administration of the active ingredient(s) to a mammal to protect the mammal from any of the disorders set forth herein, as well as others.

The term "therapeutically effective amount" refers to an amount necessary to achieve a derived therapeutic effect such as: 1) an amount sufficient to alleviate reflux disease, 2) an amount sufficient to alleviate nausea and vomiting, or 3) an amount sufficient to alleviate a condition caused by gastrointestinal motility dysfunction. Therapeutically effective amounts of structural and/or functional analogs of cisapride are encompassed by the above-described dosage amounts and dose frequency schedule.
A "mammal" may be, for example, a mouse, rat, pig, horse, rabbit, goat, cow, cat, dog, or human. In a preferred aspect, the mammal is a human.

The term "individual(s)" is defined as a single mammal to which is administered a compound of the present invention. The mammal may be, for example, a mouse, rat, pig, horse, rabbit, goat, cow, cat, dog, or human. In a preferred aspect, the individual is a human.

The term "esterified cisapride" means therapeutic compounds of the subject invention that are structural and/or functional analogs of cisapride, which contain a hydrolysable group, generally an ester, that does not detract from the ability of these compounds to provide a therapeutic benefit, but which makes these compounds more susceptible to degradation by hydrolases, particularly serum and/or cytosolic esterases, and which reduces the interaction of the cytochrome P-450 drug detoxification system with the cisapride compounds. Esterase-mediated metabolism of esterified cisapride compounds reduces the role of the cytochrome P-450 drug detoxification system in cisapride metabolism and reduces or eliminates adverse effects caused by cisapride.

The term "structural analog" as used herein means that a described compound shares structural characteristics with a parent compound. For example, a structural analog of cisapride may share one or more structural characteristics with the parent cisapride compound, such as a substituted aryl ring connected to a piperidine ring through an amide linker, but differ structurally in other ways, such as the inclusion or deletion of one or more other chemical moieties. Another example is the substitution of a pyridyl or pyridonyl ring for cisapride's phenyl ring.

The term "functional analog" as used herein means that a described compound shares a functional characteristic with a parent compound. For example, a functional analog of cisapride may share few, if any, structural characteristics with cisapride, but affect a similar function, for example, 5-HT4 agonism.

The term "adverse effects" includes, but is not limited to, gastrointestinal disorders such as diarrhea, abdominal cramping, and abdominal grumbling; tiredness; headache; increased systolic pressure; death; ventricular tachycardia; ventricular fibrillation; torsades de pointes; QT prolongation; increased heart rate; neurological and CNS disorders; and interaction of cisapride with other drugs given concurrently such as but not limited to digoxin, diazepam, ethanol, acenocoumarol, cimetidine, ranitidine, paracetamol, and propranolol.
The term "gastroesophageal reflux disease" as used herein means the incidence of, and the symptoms of, those conditions causing the backward flow of the stomach contents into the esophagus.

The terms "eliciting an anti-emetic effect" and "anti-emetic therapy" as used herein mean providing relief from or preventing the symptoms of nausea and vomiting induced spontaneously or associated with emetogenic cancer chemotherapy or irradiation therapy.

The term "treating a condition caused by gastrointestinal motility dysfunction" as used herein means treating the symptoms and conditions associated with this disorder which include, but are not limited to, gastroesophageal reflux disease, dyspepsia, gastroparesis, constipation, post-operative ileus, and intestinal pseudo-obstruction.

The term "prokinetic" as used herein means the enhancement of peristalsis in, and thus the movement through the gastrointestinal tract.

The term "dyspepsia" as used herein means a condition characterized by an impairment of the power or function of digestion that can arise as a symptom of a primary gastrointestinal dysfunction or as a complication due to other disorders such as appendicitis, gallbladder disturbances, or malnutrition.

The term "gastroparesis" as used herein means a paralysis of the stomach brought about by a motor abnormality in the stomach or as a complication of diseases such as diabetes, progressive systemic sclerosis, anorexia nervosa, or myotonic dystrophy.

The term "constipation" as used herein means a condition characterized by infrequent or difficult evacuation of feces resulting from conditions such as lack of intestinal muscle tone or intestinal spasticity.

The term "post-operative ileus" as used herein means an obstruction in the intestine due to a disruption in muscle tone following surgery.

The term "intestinal pseudo-obstruction" as used herein means a condition characterized by constipation, colicky pain, and vomiting, but without evidence of physical obstruction.

Preparation of Compounds

The chemical synthesis of various analogs of cisapride can be performed by the methods described in European Patent Application No. 0,076,530 A2 published Apr. 13, 1983, U.S. Pat. Nos. 4,962,115 and 5,057,525 and in Van Daele et al., Drug Development Res. 8: 225-232 (1986), the disclosures of which are incorporated herein by reference in their
entireties. Such syntheses can be modified, for example, by the incorporation of an ester group at a point convenient in the synthesis and by the substitution of an optionally substituted pyridyl- or pyridonyl-containing moiety for the substituted phenyl moiety of native cisapride. Exemplary, non-limiting synthesis schemes for certain esterified cisapride analogs of the subject invention are provided in WO 01/093849.

The invention is illustrated further by the following examples, which are not to be construed as limiting the invention in scope or spirit to the specific procedures described in them. Those having skill in the art will recognize that the starting materials may be varied and additional steps employed to produce compounds encompassed by the invention, as demonstrated by the following examples. Those skilled in the art will also recognize that it may be necessary to utilize different solvents or reagents to achieve some of the above transformations. In some cases, protection of reactive functionalities may be necessary to achieve the above transformations. In general, such need for protecting groups, as well as the conditions necessary to attach and remove such groups, will be apparent to those skilled in the art of organic synthesis. When a protecting group is employed, deprotection step may be required. Suitable protecting groups and methodology for protection and deprotection such as those described in Protecting Groups in Organic Synthesis by T. Greene are well known and appreciated in the art.

Unless otherwise specified, all reagents and solvents are of standard commercial grade and are used without further purification. The appropriate atmosphere to run the reaction under, for example, air, nitrogen, hydrogen, argon and the like, will be apparent to those skilled in the art.

(iR)-quinuclidin-3-yl 6-((35',4i')-4-(6-amino-5-chloro-2-methoxynicotamido)-3-methoxypiperidin-1-yl)hexanoate dihydrochloride salt is a small molecule structurally and/or functionally related to the 5-HT\textsubscript{4} receptor agonist, cisapride, which has been designed to reduce and/or eliminate QT prolongation and CYP450-dependent metabolism at anticipated
therapeutically relevant concentrations.

Example 1

Preparation of (i?)-quinuclidin-3-yl 6-((35;4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate, dihydrochloride salt (also referred to as N-7505 dihydrochloride)

N-7505 dihydrochloride contains three chiral centers and can be chemically synthesized as an enantiomerically and diastereomerically pure product. The chiral purities of key starting materials can be assessed by, for example, chiral HPLC or chiral GC methods to assure the diastereomeric purity of N-7505 dihydrochloride and other compounds of the invention with one or more chiral centers.

An exemplary synthetic process for (i?)-quinuclidin-3-yl 6-((35;4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate dihydrochloride salt (N-7505 dihydrochloride) is illustrated below. Racemic 6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide can be used as the starting material for the synthesis. An efficient chemical resolution process can be used to produce enantiomerically pure 6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide. The chiral purity of enantiomerically pure 6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide can be assessed by a chiral HPLC method to assure greater than or equal to, for example, 98% enantiomeric excess (e.e.) quality. Enantiomerically pure 6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide can then be reacted with ethyl 6-bromohexanoate under basic conditions to make the corresponding alkylated ethyl ester. A transesterification reaction between the ethyl ester and (R)-(−)-3-quinuclidinol (preferably greater than or equal to 98% e.e. by chiral GC), is used to make N-7505 dihydrochloride. The final product is isolated as a dihydrochloride salt.
Step 1: Resolution of Racemic 6-amino-5-chloro-2-methoxy- N-(3-methoxypiperidin-4-yl)nicotinamide

(-)-Dibenzoyl-L-tartaric acid ((-)DBT, about 1 part by weight) was dissolved in ethanol and filtered to remove residual particulates. Separately, racemic 6-amino-5-chloro-2-
methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide (about 0.8 part by weight) was dissolved in a mixture of ethanol and water and then filtered. The filtrate was heated to about 75°C before adding the (-)-DBT solution. After stirring at this temperature for about 30 minutes, the mixture was slowly cooled for several hours to about 5°C and the product salt was collected under vacuum filtration and washed with EtOH/THF mixture. The wetcake was recrystallized from EtOH/THF by heating to about 79°C and slow cooling to about 5°C as before. The product was collected on a vacuum filter and washed with EtOH/THF to give a wetcake.

The wetcake was suspended in water and the pH was adjusted to about 12 using 7% (W/W) aq. NaOH. The resulting suspension was stirred for about 3 hours at room temperature before filtering under vacuum and washing the solid material with water and drying under vacuum. The product was then retreated with (-)-DBT to form the salt by the same general procedure described above. The isolated salt was then neutralized with aq. NaOH as described above. The product was isolated on a filter and dried as before to provide (+)-6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide base (about 0.25 parts by weight). The e.e. by chiral HPLC analysis was about 100% (+)-6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide. The optical rotation was about +5° (methanol; 25°C and 589 nm), confirming the positive isomer of 6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide.

Step 2: Coupling with Ethyl 6-bromohexanoate

(--)-6-amino-5-chloro-2-methoxy-N-(3S,4R)-3-methoxypiperidin-4-yl)nicotinamide (about 1 part by weight), potassium carbonate (about 0.48 part by weight) and potassium iodide (about 0.063 part by weight) were suspended in anhydrous USP ethanol. Ethyl 6-bromohexanoate (about 0.76 part by weight) was added slowly to the suspension at room temperature. The mixture was heated to reflux until completion of the reaction. Subsequent cooling to room temperature the reaction mixture was filtered to remove, e.g., inorganic
solids, and the filtrate was concentrated under reduced pressure to about one-half the volume. The product was precipitated by slowly adding the crude material to cold water (about 13 parts by weight) with rapid stirring. The precipitate was filtered under vacuum and washed with water and then reprecipitated twice more by dissolution in anhydrous ethanol and slow addition into cold water as before. The resulting wet cake was washed with n-heptane and resuspended in ethyl acetate and n-heptane (1:9; v/v) and stirred for about 1 hour and before filtering and drying under vacuum to yield 0.73 parts by weight of the coupled product.

Step 3: Coupling with (R)-3-Quinuclidinol and Dihydrochloride Salt Formation

The ester product of step (1 part by weight) and (R)-3-Quinuclidinol (about 1.12 part by weight) were suspended in toluene before slowly adding titanium (IV) ethoxide (about 0.5 part by weight) to the stirred suspension. The mixture was heated to about 91°C under a stream of nitrogen, and partial vacuum was applied to the flask through a distillation apparatus in order to azeotropically remove the ethanol. Additional toluene was added as needed to maintain a minimum solvent volume in the flask. The reaction was considered complete after about 33 hours.

The mixture was cooled to about room temperature and extracted five times with water. The organic layer was concentrated under reduced pressure and the resulting residue was redissolved in EtOH/zPrOH (about 1:1 v/v) and then filtered through a 0.45 micron membrane filter to remove any particulates. Concentrated hydrochloric acid was added slowly to the stirred filtrate to precipitate out the desired product, (iR)-quinuclidin-3-yl 6-
((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate as the dihydrochloride salt. The resulting suspension was stirred for several hours at room temperature and collected under vacuum filtration and rinsed with EtOH/zPrOH (1:1; v/v) to provide 0.53 part by weight of the crude product salt.

Crude (i?)-quinuclidin-3-yl 6-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate dihydrochloride salt was resuspended in ethanol and heated to reflux before cooling to room temperature over about 1 hour. The product was collected under vacuum filtration and rinsed with ethanol and then air-dried. The solids were resuspended in ethanol and warmed to about 55 0C to give a clear solution before adding warm isopropanol and the product was allowed to precipitate by slow cooling to room temperature. The resulting suspension was stirred for several hours before vacuum filtering and rinsing with, e.g., isopropanol. The product was vacuum dried, initially at room temperature for several hours and then at about 55 0C until a constant weight was achieved.

Example 2

Preparation of (i?)-quinuclidin-3-yl 6-((3S',4i?)-4-(6-amino-4-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

Step 1: Synthesis of ethyl 4-(dibenzylamino)-3-methoxypiperidine-1-carboxylate (1):

![Chemical structure](image)

To a solution of racemic ethyl 4-amino-3-methoxypiperidine-1-carboxylate (1 part by mole) in DMF were added benzyl bromide (about 2.2 part by mole), potassium carbonate (about 2.4 part by mole) and potassium iodide (about 0.2 part by mole) respectively. The reaction was heated to about 80 0C. After about 6 hours, the reaction was slowly diluted with water (about 12 parts by volume) and extracted with, for example, ethyl acetate. The organic layer was washed with brine and then dried over anhyd. Na2SO4. Subsequent filtration and concentration of the solvent provided the 1 as the yellow-orange oil (1 part by mole).
Step 2. Synthesis of N,N-dibenzyl-3-methoxypiperidin-4-amine (2):

To a solution of 1 was added NaOH (about 10 part by mole) in isopropanol and the mixture was stirred and heated to reflux. After about 3 to about 5 hours, the reaction was cooled to room temperature and the alcoholic solvent was removed via rotary evaporation. The mixture was diluted with water and extracted with ethyl acetate. The organic layer was brined washed before drying over anhyd. Na₂SO₄. Subsequent filtration and concentration of the solvent provided a crude oil which was purified over SiO₂ (CH₂Cl₂ : MeOH : NH₄OH; (about) 15:1:0.01) to furnish 2.

Step 3. Synthesis of (3S,4R)-N^V-dibenzyl-3-methoxypiperidin-4-amine (3):

(-)-Dibenzoyl-L-tartaric acid (about 1.2 part by weight) is dissolved in ethanol before slowly adding to a solution of 2 (about 1 part by weight). The solution is gently warmed and then allowed to cool to room temperature to crystallize the salt product. The salt is filtered and washed with EtOH/H₂O before suspending in water and basifying by adding aq. NaOH (7%, wt/wt) until the pH reaches about 12. The suspension is stirred vigorously at rt and the solid is filtered away, washed with water and vacuum dried to furnish the cis-isomer 3.

Step 4. Synthesis of ethyl 6-((3S,4R)-4-(dibenzylamino)-3-methoxypiperidin-1-yl)hexanoate (4):

To a solution of 3 (1 part by mole) in DMF are added ethyl bromohexanoate (about 1.2 part by mole), potassium carbonate (about 1.4 part by mole) and potassium iodide (about
0.2 part by mole) respectively. The reaction is then heated to 80 °C. After about 8 h, the reaction is slowly diluted with water (about 12 part by volume) and extracted with ethyl acetate. The organic layer is washed with brine and then dried over anhyd. Na₂SO₄. Subsequent filtration and concentration of the solvent furnishes the crude material. Purification over SiO₂ gives the alkylated material 4.

Step 5. Synthesis of (R)-quinuclidin-3-yl 6-((3S,4R)-4-(dibenzylamino)-3-methoxypiperidin-1-yl)hexanoate (5):

![Chemical Reaction Diagram]

Titanium tetraethoxide is added to a mixture of 4 (1 part by mole) and (i?)-(-)-3-quinuclidinol (1 part by mole) in toluene. The reaction mixture is equipped with a dean-stark apparatus before heating to about 90 °C and partial vacuum is then applied (additional toluene is added as needed to main the requisite solvent level). The mixture is then cooled to rt and the reaction is diluted with ethyl acetate and then water is added to the resulting mixture. The organic layer is separated, brine washed, dried over anhyd. Na₂SO₄, filtered and concentrated. Purification over SiO₂ gives the enantiomerically enriched 5.

Step 6. Synthesis of (R)-quinuclidin-3-yl 6-((3S,4R)-4-amino-3-methoxypiperidin-1-yl)hexanoate (6):

![Chemical Reaction Diagram]

A solution of 5 (1 part by mole) in EtOH is added to a reaction flask containing palladium on carbon (about 0.2 part by mole). The mixture is then evacuated of air before subjecting to hydrogenolysis condition by using atmospheric H₂. Upon completion of the reaction, the palladium is filtered off under a pad of celite followed by EtOH washes. The filtrated is concentrated via rotary evaporation to furnish 6.
Step 7. Synthesis of (R)-qumuclidin-3-yl 6-((3S,4R)-4-(6-amino-4-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate (7):

To a solution of, for example, ethyl chloroformate (1 part by mole) in THF at about 0°C is added the (optionally substituted) nicotinic acid (1 part by mole) in portions. The mixture is warmed to room temperature (rt) for about 1 hour before cooling to about 0°C and adding dropwise a solution of compound 6 (1 part by mole). The reaction is then warmed to rt. Upon completion of the reaction, reaction is quenched by addition of a saturated solution of NaHCO₃ and extracting over EA (ethyl acetate). The organic layer is brine washed, dried over anhydrous Na₂SO₄, filtered and concentrated to furnish the desired product 7 (R)-qumuclidin-3-yl 6-((3S,4R)-4-(6-amino-4-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate.

Example 3
Alternate synthesis of (R)-qumuclidin-3-yl 6-((3S,4R)-4-(6-amino-4-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate dihydrochloride salt (N-7505 dihydrochloride):
Under acidic conditions, l-benzylpiperidin-4-one (1) and hydrobromic acid are reacted in the presence of acetic acid to generate N-benzyl-3-bromopiperidin-4-one (2). Treatment of 2 with sodium methoxide and methanol solution provides 1-benzyl-4,4-dimethoxypiperidin-3-ol (3). [The presence of the beta-amino group negates the possibility of a Favorskii-type reaction.] Methylation of the hydroxyl group is done using a hydride base followed by treatment with iodomethane in the presence of DMF (dimethylformamide) as the solvent to furnish compound 4.
Subsequent acetal hydrolysis using 1% sulfuric acid in the presence of heat yields a piperidine 5, which can then undergo a reductive amination using, for example, sodium cyanoborohydride and ammonium acetate in methanol to yield l-benzyl-3-methoxypiperidin-4-amine (6). At this stage, 6 can undergo a chiral resolution technique. This can be accomplished, for example, using (-)-DBT or other variant of tartaric acid in the presence of the suitable solvent to afford exclusively asymmetrically pure compound 7. Boc group protection of the primary amine in 7 can be accomplished using Boc anhydride in the
presence of THF solvent to obtain 8. A debenzylation reaction by hydrogenolysis using Pd/C in methanol in the presence of atmospheric hydrogen gas set the stage for the alkylation step. Treatment of 6-bromohexanenitrile in the presence of mild base and DMF generates compound 10. A nitrile to ester conversion using (R)-quinuclidinol in the presence of dilute acid generates 11. Subsequent removal of the Boc group using TFA furnishes the free amine, which can undergo a coupling reaction with requisite nicotinic acid in the presence of a coupling reagent such as ethyl chloroformate to afford N-7505 dihydrochloride as an enantiomerically pure material.
Alternatively, compound 9 can be alkylated using ethyl 6-bromohexanoate in the presence of mild base. Subsequent removal of the Boc group yields compound 14. Titanium mediated transesterification of 14 using (R)-quinuclidinol and titanium tetraethoxide in toluene solvent generates 15 (i?)-quinuclidin-3-yl 6-((35,4i?)-4-amino-3-methoxypiperidin-1-yl)hexanoate. The free amine of 15 can undergo a coupling reaction with requisite nicotinic acid, in this exemplary case 6-amiino-5-chloro-2-methoxynicotinic acid, in the presence of a coupling
reagent such as ethyl chloroformate to afford 16, N-7505 dihydrochloride, as an enantiomerically pure material. Carlsburg esterase hydrolyzes esters that are of the S-configuration, therefore leaving intact esters that are of the R configuration. Therefore treatment of diasteriomic mixtures of 17 with the Carlsburg esterase may also yield 18, (R)-quinuclidin-3-yl 6-((3S,4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate dihydrochloride.

Example 4

(+)-6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide or (-)-6-amino-5-chloro-N-(3-methoxypiperidin-4-yl)-2-oxo-1,2-dihydropyridine-3-carboxamide can be made from their racemic mixtures by resolution of the enantiomers using conventional means such as optically resolving acids, according to the method described in US Patent 6,147,093, or in "Enantiomers, Racemates and Resolutions", by J. Jacques, A. Collet, and S.H. Wilen (Wiley-Interscience, New York, NY), or in S.H. Wilen et al., Tetrahedron (1977) 33:2725.

The 4 isomers of each of the above compounds can easily be obtained in low-milligram amounts by using preparative column chromatography followed by evaporation of the solvent. This method is useful for preparing small amounts for analytical and characterization purposes. This is a standard separation method used routinely in analytical labs in order to isolate and characterize metabolites.

Exemplary synthetic routes to Compound IVb, Compound VIb and (+)-Compound lib are described below using (+)-6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide as a starting material. The routes to Compound IHb, Compound Vb and (-)-Compound lib are identical except that they use (-)-6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide as a starting material.

Example 5

Production of (+)-Compound lib, ethyl ester

A equimolar mixture of (+)-6-amino-5-chloro-2-methoxy-N-(3-methoxypiperidin-4-yl)nicotinamide and ethyl 6-bromohexanoate (1 equivalent each), a catalytic amount of KI, and K$_2$CO$_3$ (2 equivalents) in DMF (dimethylformamide) is heated at about 60°C for several hours or until TLC analysis indicates that the reaction is over. After cooling to room temperature, water is added and the mixture is extracted with EtOAc. The combined organic
extracts are washed successively with water, 10% LiCl(aq) solution and brine, then dried over Na₂SO₄. Concentration gives (+)-compound lib, ethyl ester.

Production of (+)-Compound lib

A mixture of crude (+)-compound lib, ethyl ester, from above (1 eq.), KOH (2M, 5 eq.) in MeOH (methanol) and THF (tetrahydrofuran; enough to dissolve) is stirred at room temperature for approximately 1 to 2 hours. The MeOH and THF are removed under vacuum, and the residue is diluted with water. Wash with an organic solvent such as EtOAc. The aqueous layer is acidified to pH ~5 using HCl. The precipitate is filtered off and dried to give (+)-Compound Hb.

Production of Compound IVb and Compound VIb

A mixture of (+)-Compound lib (1 eq.), (R)-(−)-3-quinuclidinol HCl salt (1 eq.), EDAC (1-ethyl-3-(3-dimethylpropyl)-carbodiimide; 1 eq.) and DMAP (4-dimethylaminopyridine; 1 eq.) in DMF is heated at around 50°C overnight. After cooling and diluting with water, the mixture is purified by chromatography or by crystallization to provide Compound IVb. Similarly, using (S)-(−)-quinuclidinol, Compound VIb is obtained.

The following compounds are prepared essentially according to methods and procedures described above. The compound names were generated using either ChemDraw Ultra version 8.03 and/or 9.0, which is available from Cambridgesoft Corporation or ACD Namepro software, version 6.0.

![Chemical structure of 6-((35',4'i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoic acid](image)

6-((35',4'i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoic acid

![Chemical structure of 6-((35',4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoic acid](image)

6-((35',4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoic acid
6-((3i?,4$)$)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoic acid

6-((3i?,4$)$)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoic acid

(iQ-quinuclidin-3-yl 6-((3S,4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

(i?)-quinuclidin-3-yl 6-((3,S,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

(i?)-quinuclidin-3-yl 6-((3i?,4,S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

(o?-quinuclidin-5-yl o-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

(S)-quinuclidin-3-yl 6-((3,S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate
(S)-quinuclidin-3-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

(5)-quinuclidin-3-yl 6-((3R,4S)-((6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

(5)-quinuclidin-3-yl 6-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

(5)-quinuclidin-3-yl 6-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

(S)-quinuclidin-3-yl 6-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

(0S)-quinuclidin-3-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

(S)-quinuclidin-3-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

(i?)-quinuclidin-3-yl 6-((3i?,4,S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate
(i?)-quinuclidin-3-yl 6-((3i?,45)-4-
(6-amino-5-fluoro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)hexanoate

(i?)-quinuclidin-3-yl 6-((35,4i?)-4-
(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)hexanoate

(R)-quinuclidin-3-yl 6-((3S,4i?)-4-
(6-amino-5-fluoro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)hexanoate

8-methyl-8-azabicyclo[3.2.1]octan-
3-yl 6-((3_S;4/Q^-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)hexanoate

8-methyl-8-azabicyclo[3.2.1]octan-
3-yl 6-((3i?,4i?)-4-(6-amino-5-chloro-2-
oxo-1,2-dihydropyridine-3-carboxamido)-
3-methoxypiperidin-1-yl)hexanoate

8-methyl-8-azabicyclo[3.2.1]octan-
3-yl 6-((3i?,4,S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)hexanoate

8-methyl-8-azabicyclo[3.2.1]octan-
3-yl 6-((3i?,4,5)-4-(6-amino-5-chloro-2-
oxo-1,2-dihydropyridine-3-carboxamido)-
3-methoxypiperidin-1-yl)hexanoate
4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid

4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid

4-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid

methyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

methyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

methyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

methyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate
methyl 4-(2-((3S,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-y1)acetamido)benzoate

ethyl 4-(2-((3',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-y1)acetamido)benzoate

ethyl 4-(2-((3S,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-y1)acetamido)benzoate

ethyl 4-(2-((3i?,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-y1)acetamido)benzoate

ethyl 4-(2-((3i?,4,S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-y1)acetamido)benzoate

isopropyl 4-(2-((3S',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-y1)acetamido)benzoate
isopropyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

isopropyl 4-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

isopropyl 4-(2-((3S,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-methoxyethyl 4-(2-((35,4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-methoxyethyl 4-(2-((3S,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-methoxyethyl 4-(2-((3S,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate
2-methoxyethyl 4-(2-((3i?,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

2-(pyrrolidin-1-yl)ethyl 4-(2-
((3i?,4i?)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

2-(pyrrolidin-1-yl)ethyl 4-(2-
((3i?,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

2-(pyrrolidin-1-yl)ethyl 4-(2-
((3i?,4i?)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate
l-methylpiperidin-4-yl 4-(2-
((35',4i?)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

2-(pyridin-2-yl)ethyl 4-(2-((3S,4i?)-
4-(6-amino-5-chloro-2-
methoxynicotinamido)-3 -methoxypiperidin-1-
yl)acetamido)benzoate
2-(dimethylamino)ethyl 4-(2-
((3'i?,4'i?)4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

l-methylpiperidin-3-yl 4-(2-
((3'S',4'i?)4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

l-methylpiperidin-3-yl 4-(2-
((35',4'i?)4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

l-methylpiperidin-3-yl 4-(2-
((3'i?,4'i?)4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

l-methylpiperidin-3-yl 4-(2-
((3'i?,4'i?)4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate

2-morpholinoethyl 4-((35',4'i?)4-
(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
yl)acetamido)benzoate
2-morpholinoethyl 4-((3S,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-morpholinoethyl 4-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-morpholinoethyl 4-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

1,4-dimethylpiperidin-4-yl 4-((3S,4R)-4-(β-amino-S-chloro-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

1,4-dimethylpiperidin-4-yl 4-((35".4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

1,4-dimethylpiperidin-4-yl 4-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate
1,4-dimethylpiperidin-4-yl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

4-(2-((35',4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzolic acid

4-(2-((35',4i?)4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzolic acid

4-(2-((3i?,4,S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzolic acid

4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid

2-oxo-2-(piperidin-4-ylamino)ethyl
4-(2-((3,S,4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate
2-oxo-2-(piperidin-4-ylamino)ethyl 4-(2-((3'S,4'R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-oxo-2-(piperidin-4-ylamino)ethyl 4-(2-((3'S,4'R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-oxo-2-(piperidin-4-ylamino)ethyl 4-(2-((3'S,4'R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

1-(2-((3'S,4'R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid

1-(2-((3'S,4'R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid
l-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid

1-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid

methyl l-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

methyl l-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

methyl l-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate
methyl 1-(2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

ethyl 1-(2-((3S,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

ethyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

ethyl 1-(2-((3S,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

ethyl 1-(2-((3S,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

ethyl 1-(2-((3S,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

2-methoxyethyl 1-(2-((3S,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

2-methoxyethyl 1-(2-((3S,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate
2-methoxyethyl 1-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

2-methoxyethyl 1-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

4-(((2-((3S,4i?)4-6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid

4-(((2-((3S',4i?)4-6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid

4-(((2-((3i?,4^)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid

4-(((2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid

methyl 4-(((2-((3S,4i?)4-6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate
methyl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methylamino)methyl)benzoate

methyl 4-((2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methylamino)methyl)benzoate

methyl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

methyl 4-((2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

methyl 4-((2-((3R,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

methyl 4-((2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

methyl 4-((2-((3R,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate
methyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate dihydrochloride

isopropyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

isopropyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

isopropyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

isopropyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

isopropyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

ethyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate dihydrochloride

ethyl 4-((2-((3'S,4'R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate dihydrochloride
The following compounds may be prepared essentially according to methods and procedures described above. The compound names were generated using either ChemDraw Ultra version 8.03 and/or 9.0, which is available from Cambridgesoft Corp.
benzyl 3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate

isopropyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate

4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate

(tetrahydro-2H-pyran-2-yl)methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate

cyclohexyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate

neopentyl 3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate
4-methoxybenzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate

pyridin-4-ylmethyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate

2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetic acid

2-(pyrrolidin-1-yl)ethyl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate

1-methylpiperidin-4-yl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate
2-morpholinoethyl 4-(((2-
((3S,4R)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
yl)ethyl)(methyl)amino)methyl)b enzoate

4-fluorobenzyl 2-((3S,4R)-4-(6-
amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate

benzyl 2-((3S,4R)-4-(6-amino-5-
chloro-2-methoxynicotinamido)-
3-methoxypiperidin-1-yl)acetate

4-methylbenzyl 2-((3S,4R)-4-(6-amino-5-
chloro-2-methoxynicotinamido)-
3-methoxypiperidin-1-yl)acetate

2-methoxybenzyl 2-((3S,4R)-4-
(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate
4-chlorobenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

4-methoxybenzyl 2-((3R,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

piperidin-4-yl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-methoxyethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-hydroxyethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate
2-chlorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

4-((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoic acid

3-hydroxypropyl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

piperidin-4-yl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

4-(trifluoromethyl)benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

3-methylbenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate
3-chlorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-(trifluoromethyl)benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-morpholinoethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

(tetrahydro-2H-pyran-2-yl)methyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoic acid
piperidin-4-yl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate

3-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

3-methoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-(methylsulfonyl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

isopropyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-(pyridin-2-yl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate
pyridin-2-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

pyridin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

piperidin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

cyclohexyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-(4-(2-(((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetic acid

ethyl 2-(4-(2-(((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate

1-methylpiperidin-4-yl 2-(4-(2-(((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate
3-hydroxypropyl 2-(4-(2-
((3S,4R)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
-yl)acetamido)phenyl)acetate

quinuclidin-3-yl 2-(4-(2-
((3S,4R)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-
-yl)acetamido)phenyl)acetate

1-methoxypropan-2-yl 2-(
((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate

2,3,4-trimethoxybenzyl 2-(
((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate

2,3-dimethoxybenzyl 2-(3R,4S)-
4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate

1-(4-fluorophenyl)ethyl 2-
((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate

3-(4-fluorophenoxy)propyl 2-
((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate
3-fluoro-4-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

4-fluoro-3-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-fluoro-6-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

tetrahydro-2H-pyran-4-yl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

6-amino-5-chloro-N-((3S,4R)-1-(2-(4-hydroxyphenylamino)-2-oxoethyl)-3-methoxypiperidin-4-yl)-2-methoxynicotinamide

4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl acetate
2-(2-methoxyethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

neopentyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

2-(piperazin-2-yl)ethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

pyridin-4-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate

4-(3-(3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propyl benzoic acid
2-morpholinoethyl 4-(3-(3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propylbenzoate

2-(pyrrolidin-1-yl)ethyl 4-(3-(3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propylbenzoate

1-methylpiperidin-4-yl 4-(3-(3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propylbenzoate

(R)-3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoic acid

(R)-methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate

4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate
4-fluorobenzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate

(S)-4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate

(S)-3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoic acid

(S)-methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate

4-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)butanoic acid

4-fluorobenzyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate
2-methoxyethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

neopentyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

pyridin-2-ylmethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

2-(piperazin-1-yl)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate hydrochloride

2-(dimethylamino)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

1-adamantylmethyl 6-((3S,4K)-A-{{(6-amino-5-chloro-2-methoxypyrindin-3-yl)carbonyl}amino}-3-methoxypiperidin-1-yl)hexanoate
cyclohexyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

2-adamantyl 6-[(3S,4R)-4-{{(6-amino-5-chloro-2-methoxypyridin-3-yl)carbonyl}amino}-3-methoxypiperidin-1-yl]hexanoate

bicyclo[2.2.1]heptan-2-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate

2-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethoxy)acetic acid

methyl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethoxy)acetate

cyclohexyl 2-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethoxy)acetate
cyclohexyl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethoxy)acetate

piperidin-4-yl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethoxy)acetate hydrochloride

2-hydroxyethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-amino-2-oxoethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-(piperazin-1-yl)ethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid
methyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

ethyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

2-methoxyethyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

6-amino-5-chloro-N-((3R,4S)-1-(2-hydroxyethyl)-3-methoxypiperidin-4-yl)-2-methoxynicotinamide

6-amino-5-chloro-2-methoxy-N-((3R,4S)-3-methoxypiperidin-4-yl)nicotinamide

6-amino-5-chloro-N-((3R,4S)-1-(3-(4-fluorophenoxy)propyl)-3-methoxypiperidin-4-yl)-2-methoxynicotinamide
benzyl 3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate

isopropyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate

4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate

(tetrahydro-2H-pyran-2-yl)methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate

cyclohexyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate

neopentyl 3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate
4-methoxybenzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate

pyridin-4-ylmethyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate

2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetic acid

2-(pyrrolidin-1-yl)ethyl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate

1-methylpiperidin-4-yl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate

2-morpholinoethyl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate
4-fluorobenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

benzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

4-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-methoxybenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

4-chlorobenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate
4-methoxybenzyl 2-((3R,4R)-4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)acetate

piperidin-4-yl 2-((3S,4R)-4-(6-
amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)acetate

2-methoxyethyl 2-((3S,4R)-4-(6-
amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)acetate

2-hydroxyethyl 2-((3S,4R)-4-(6-
amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)acetate

2-chlorobenzyl 2-((3R,4S)-4-(6-
amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)acetate
4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoic acid

3-hydroxypropyl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

Piperidin-4-yl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate

4-(trifluoromethyl)benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

3-methylbenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

3-chlorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate
2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-morphinoethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

(tetrahydro-2H-pyran-2-yl)methyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoic acid

piperidin-4-yl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate
3-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

3-methoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-(methylsulfonyl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

isopropyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-(pyridin-2-yl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

pyridin-2-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate
pyridin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

piperidin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

cyclohexyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetic acid

ethyl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate

l-methylpiperidin-4-yl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate

3-hydroxypropyl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate
quinuclidin-3-yl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate

1-methoxypropan-2-yl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-raethoxy Piperidin-1-yl)acetate

2,3,4-trimethoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2,3-dimethoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

1-(4-fluorophenyl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

3-(4-fluorophenoxy)propyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

3-fluoro-4-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate
4-fluoro-3-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-fluoro-6-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

tetrahydro-2H-pyran-4-yl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

6-amino-5-chloro-N-((3S,4R)-1-(2-(4-hydroxyphenylamino)-2-oxoethyl)-3-methoxypiperidin-4-yl)-2-oxo-1,2-dihydropyridine-3-carboxamide

4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl acetate

2-(2-methoxyethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-(2-(2-methoxyethoxy)ethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate
neopentyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

2-(piperazin-2-yl)ethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

pyridin-4-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate

4-(3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propyl)benzoic acid

2-morpholinoethyl 4-(3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propyl)benzoate

2-(pyrrolidin-1-yl)ethyl 4-(3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propyl)benzoate
1-methylpiperidin-4-yl 4-(3-
((3S,4R)-4-(6-amino-5-chloro-2-
oxo-1,2-dihydropyridine-3-
carboxamido)-3-
methoxypiperidin-1-
yl)propyl)benzoate

(R)-3-((3R,4S)-4-(6-amino-5-
chloro-2-oxo-1,2-dihydropyridine-
3-carboxamido)-3-
methoxypiperidin-1-yl)-2-
methylpropanoic acid

(R)-methyl 3-((3R,4S)-4-(6-
amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)-2-
methylpropanoate

4-(methylsulfonyl)benzyl 3-
((3R,4S)-4-(6-amino-5-chloro-2-
oxo-1,2-dihydropyridine-3-
carboxamido)-3-
methoxypiperidin-1-yl)-2-
methylpropanoate

4-fluorobenzyl 3-((3R,4S)-4-(6-
amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)-2-
methylpropanoate

(S)-4-(methylsulfonyl)benzyl 3-
((3R,4S)-4-(6-amino-5-chloro-2-
oxo-1,2-dihydropyridine-3-
carboxamido)-3-
methoxypiperidin-1-yl)-2-
methylpropanoate
(S)-3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoic acid

(S)-methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate

4-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)butanoic acid

4-fluorobenzyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

2-methoxyethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

neopentyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate
pyridin-2-ylmethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

2-(piperazin-1-yl)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate hydrochloride

2-(dimethylamino)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

1-adamantylmethyl 6-{(3S,4R)-4-[(6-amino-5-chloro-2-oxo-1,2-dihydropyridin-3-yl)carbonyl]amino}-3-methoxypiperidin-1-yl)hexanoate

cyclohexyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate

2-adamantyl 6-[(3'S,4'R)-4-{[(6-amino-5-chloro-2-oxo-1,2-dihydropyridin-3-yl)carbonyl] amino} -3-methoxypiperidin-1-yl]hexanoate

bicyclo[2.2.1]heptan-2-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate
2-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethoxy)acetic acid

methyl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethoxy)acetate

cyclohexyl 2-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethoxy)acetate

cyclohexyl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethoxy)acetate

piperidin-4-yl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethoxy)acetate hydrochloride

2-hydroxyethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate
2-amino-2-oxoethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate

2-(piperazin-1-yl)ethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl) acetamido)benzoate

1-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid

methyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate

ethyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate
Formulation, Administration, and Uses

Dosage rates and routes of administration of the disclosed compounds are similar to those already used in the art and known to the skilled artisan (see, for example, Physicians' Desk Reference, 54th Ed., Medical Economics Company, Montvale, NJ, 2000).

The magnitude of a prophylactic or therapeutic dose of structural and/or functional analog of cisapride in the acute or chronic management of diseases and/or disorders described herein will vary with the severity of the condition to be treated, and the route of administration. The dose, and perhaps the dose frequency, will also vary according to the age, body weight, and response of the individual patient. In general, the total daily dose range for structural and/or functional analogs of cisapride, for the conditions described herein, is from about 1 mg to about 200 mg, in single or divided doses. Preferably, a daily dose range should be between about 5 mg to about 100 mg, in single or divided doses, while most preferably, a
daily dose range should be between about 5 mg to about 75 mg, in single or divided doses. It is preferred that the doses are administered from 1 to 4 times a day. In managing the patient, the therapy should be initiated at a lower dose, perhaps about 5 mg to about 10 mg, and increased up to about 50 mg or higher depending on the patient's global response. It is further recommended that children, and patients over 65 years, and those with impaired renal or hepatic function, initially receive low doses, and that they be titrated based on individual response(s) and blood level(s). It may be necessary to use dosages outside these ranges in some cases as will be apparent to those skilled in the art. Further, it is noted that the clinician or treating physician will know how and when to interrupt, adjust, or terminate therapy in conjunction with individual patient response.

The compounds of the subject invention can be formulated according to known methods for preparing pharmaceutically useful compositions. Formulations are described in detail in a number of sources which are well known and readily available to those skilled in the art. For example, Remington's Pharmaceutical Science by E.W. Martin describes formulations which can be used in connection with the subject invention. In general, the compositions of the subject invention are formulated such that an effective amount of the bioactive compound(s) is combined with a suitable carrier in order to facilitate effective administration of the composition.

The compositions of the subject invention include compositions such as suspensions, solutions and elixirs; aerosols; or carriers such as starches, sugars, microcrystalline cellulose, diluents, granulating agents, lubricants, binders, disintegrating agents, and the like, in the case of oral solid preparations (such as powders, capsules, and tablets) with the oral solid preparations being preferred over the oral liquid preparations. A preferred oral solid preparation is capsules. The most preferred oral solid preparation is tablets. Preferred amounts of active ingredient (i.e., an structural and/or functional analog of cisapride) in a solid dosage form are about 5 mg, 10 mg, and 25 mg.

Further, acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, pills, capsules, cachets, suppositories and dispersible granules. A solid carrier can be one or more substances which may act as diluents, flavoring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents or encapsulating materials.
The disclosed pharmaceutical compositions may be subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, such as packeted tablets, capsules, and powders in paper or plastic containers or in vials or ampules. Also, the unit dosage can be a liquid based preparation or formulated to be incorporated into solid food products, chewing gum, or lozenge.

In addition to the common dosage forms set out above, the compounds of the present invention may also be administered by controlled release means and/or delivery devices such as those described in U.S. Pat. Nos.: 3,845,770; 3,916,899; 3,536,809; 3,598,123; and 4,008,719, the disclosures of which are hereby incorporated by reference in their entirety.

Any suitable route of administration may be employed for providing the patient with an effective dosage of a structural and/or functional analog of cisapride. For example, oral, rectal, parenteral (subcutaneous, intramuscular, intravenous), transdermal, and like forms of administration may be employed. Dosage forms include tablets, troches, dispersions, suspensions, solutions, capsules, patches, and the like.

One aspect of the invention provides a method of treating gastroesophageal reflux disease in a mammal, while substantially reducing the concomitant adverse effects associated with the administration of cisapride, which comprises administering to a human in need of such treatment, a therapeutically effective amount of a structural and/or functional analog of cisapride, or a pharmaceutically acceptable salt thereof. A preferred aspect is the treatment of gastroesophageal reflux disease in humans.

Another aspect of the invention provides a composition for the treatment of a human suffering from gastroesophageal reflux disease, which comprises a therapeutically effective amount of a structural and/or functional analog of cisapride, or a pharmaceutically acceptable salt thereof.

Yet another aspect of the present invention provides a method of eliciting an anti-emetic effect in a mammal, while substantially reducing the adverse effects associated with the administration of cisapride, which comprises administering to a mammal in need of such anti-emetic therapy, a therapeutically effective amount of structural and/or functional analogs of cisapride, or a pharmaceutically acceptable salt thereof. Preferably, the mammal is a human.

In an additional aspect, the present invention encompasses an anti-emetic composition for the treatment of a mammal in need of anti-emetic therapy, which comprises a
therapeutically effective amount of a structural and/or functional analog of cisapride, or a pharmaceutically acceptable salt thereof.

A further aspect of the present invention includes a method of treating a condition caused by gastrointestinal motility dysfunction in a mammal which comprises administering to a mammal in need of treatment for gastrointestinal motility dysfunction, a therapeutically effective amount of a structural and/or functional analog of cisapride, or a pharmaceutically acceptable salt thereof. Conditions caused by gastrointestinal motility dysfunction include, but are not limited to, dyspepsia, gastroparesis, constipation, post-operative ileus, and intestinal pseudo-obstruction. Preferably, the mammal is a human.

The observation that cisapride enters the central nervous system and binds to 5HT$_4$ receptors indicates that cisapride may have centrally-mediated effects. Cisapride is a potent ligand at 5HT$_4$ receptors, and these receptors are located in several areas of the central nervous system. Modulation of serotonergic systems has a variety of behavioral effects. Accordingly, the compounds of the subject invention can be used in the treatment of: 1) cognitive disorders, including but not limited to Alzheimer's disease; 2) behavioral disorders, including but not limited to schizophrenia, mania, obsessive-compulsive disorder, and psychoactive substance use disorders; 3) mood disorders, including but not limited to depression and anxiety; and 4) disorders of control of autonomic function, including but not limited to essential hypertension and sleep disorders.

Accordingly, the present invention also provides methods of treating cognitive, behavioral, mood, or autonomic function control disorders in a mammal comprising the administration of a therapeutically effective amount of structural and/or functional analog of cisapride, or a pharmaceutically acceptable salt thereof. Preferably, the mammal is a human.

It should be understood that the examples and aspects described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and the scope of the appended claims. Further, all patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety to the extent they are not inconsistent with the explicit teachings of this specification.

The invention and the manner and process of making and using it, are now described in such full, clear, concise and exact terms as to enable any person skilled in the art to which
it pertains, to make and use the same. It is to be understood that the foregoing describes preferred aspects of the invention and that modifications may be made therein without departing from the spirit or scope of the invention as set forth in the claims. To particularly point out and distinctly claim the subject matter regarded as invention, the following claims conclude this specification.
What is claimed is:

1. A compound of the formula:

 ![Formula Xa](image)

 ![Formula Xb](image)

 and pharmaceutically acceptable salts thereof, wherein the bonds at positions 3 and 4 are cis relative to each other;

 L is \(-(C_1-C_6 \text{ alkyl})\text{-}, -(C_1-C_6 \text{ alkyl})\text{-C(O)}\text{-}, \text{ or } -(C_1-C_6 \text{ alkyl})\text{-C(O)}\text{-C(O)}\text{-}, \text{ wherein each of the alkyl groups is optionally substituted with 1 or 2 groups that are independently halogen, C}_1\text{-C}_4 \text{ alkoxy, or OH and wherein one carbon in the alkyl portion of L may be replaced by } -\text{N(R}_9\text{)_6}; \text{ or}

 L is \(-(C_1-C_4 \text{ alkyl})\text{-NR}_9\text{(C}_1\text{-C}_4 \text{ alkyl)}\text{-}, -(C_1-C_4 \text{ alkyl})\text{-C(O)NR}_9\text{-}, -(C_1-C_4 \text{ alkyl)}\text{-NR}_9\text{(C}_1\text{-C}_4 \text{ alkyl)}\text{-};

 \text{ R}_1 \text{ is halogen;}

 \text{ R}_2 \text{ is amino, NH(C}_1\text{-C}_4 \text{ alkyl) OrN(C}_1\text{-C}_4 \text{ alkyl)(C}_1\text{-C}_4 \text{ alkyl);}

 \text{ R}_3 \text{ is H or C}_1\text{-C}_4 \text{ alkyl;}

 \text{ R}_4 \text{ is H or methyl; and}

 \text{ R}_5 \text{ is } -\text{O-C}_1\text{-C}_6 \text{ alkyl, -O-C}_3\text{-C}_6 \text{ cycloalkyl, -O-heterocycloalkyl, heterocycloalkyl, aryl, -O-aryl, -N(R}_9\text{H C}_0\text{-C}_6 \text{ alkyl-C(O)-aryl, or } -\text{N(R}_9\text{-)C}_0\text{-C}_6 \text{ alkyl-aryl, -O-heteroaryl,}

 -\text{N(R}_9\text{-C}_1\text{-C}_6 \text{ alkoxy-heteroaryl, or } -\text{N(R}_9\text{-C}_0\text{-C}_6 \text{ alkoxy-heteroaryl, wherein each of the cyclic groups is unsubsti}
amino, -NH(C₁-C₆ alkyl), -N(C₁-C₆ alkyl)(C₁-C₆ alkyl), -(C₀-C₆ alkyl)-C(O)Rₙ, -O-(C₀-C₆ alkyl)-C(O)Rₙ, methylsulfone, C₀-C₆-sulfonamide, NO₂, -CO₂Rᵢₒ, Or-(Ci-C₄ alkyl)-CO₂R₁₀, wherein

Rᵦ at each occurrence is independently H or Cᵦ-C₄ alkyl;

Rᵦ at each occurrence is independently H, Ci-C₄ alkyl optionally substituted with one group that is selected from a 5 or 6 membered monocyclic heterocycloalkyl ring, and OH, quinuclidinyl, -C(O)NH₂, -C(O)NH(Ci-C₄ alkyl), -C(O)N(Ci-C₄ alkyl)(Ci-C₆ alkyl) or piperidinyl optionally substituted with Ci-C₄ alkyl;

Rᵦ is Ci-C₆ alkyl, OH, or

Rᵦ is Ci-C₆ alkoxy, optionally substituted with 1 or 2 groups that are independently Ci-C₄ alkoxy, amino, -NH(Ci-C₆ alkyl), -N(Ci-C₆ alkyl)(Ci-C₆ alkyl), -(C₀-C₆ alkyl)-C(O)N(R₉)-heterocycloalkyl, -O-heterocycloalkyl, -Ci-C₆(O)N(R₉)-heteroaryl, or heteroaryl, wherein

the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, Ci-C₆ alkyl, Ci-C₆ alkoxy, hydroxy, hydroxy Ci-C₆ alkyl, C₁-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃.

the heteroaryl group is optionally substituted with 1, 2, or 3 groups that are independently halogen, Ci-C₆ alkyl, Ci-C₆ alkoxy, hydroxy, hydroxy Ci-C₆ alkyl, Ci-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃; or

Rᵦ is O-heterocycloalkyl wherein the heterocycloalkyl is optionally substituted with 1, 2, or 3 groups that are independently halogen, Ci-C₆ alkyl, Ci-C₆ alkoxy, hydroxy, hydroxy Ci-C₆ alkyl, C₁-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃; and

R₂₀ is -H, Ci-C₆ alkoxy (preferably Ci-C₄ alkoxy, more preferably methoxy), or OH.

2. A compound according to claim 1, wherein Rᵢ is chloro.

3. A compound according to claim 1, wherein R₂ is amino.

4. A compound according to claim 1, wherein R₃ is methyl.

5. A compound according to claim 1, wherein R₄ is H.

6. A compound according to claim 1, wherein

Rᵦ is chloro; R₂ is amino; R₃ is methyl; R₄ is H, and Rᵦ and R₂ have the following orientation on the pyridyl or pyridonyl ring:
7. A Compound according to claim 6, wherein L is -(C₃₋C₅ alkyl)- wherein one carbon may be replaced by -N(R₉)-, or -(C₂₋C₆ alkyl)-C(O)-.

8. A compound according to claim 7, wherein R₅ is -O-heterocycloalkyl, wherein the heterocycloalkyl group is selected from aza-bicyclooctyl, aza-bicyclononyl, aza-bicyclo-decyl, where the aza nitrogen is optionally substituted with methyl or ethyl, is optionally substituted with methyl or ethyl, piperidinyl, piperazinyl, and pyrrolidinyl, wherein the piperidinyl, piperazinyl, and pyrrolidinyl groups are unsubstituted or substituted at one or two positions with groups that are independently C₁₋C₄ alkyl, C₁₋C₄ alkoxy, halogen, Ci-C₄ haloalkyl, Ci-C₄ haloalkoxy, hydroxyl, hydroxy Ci-C₄ alkyl, amino, -NH(C₁₋C₄ alkyl), -N(Ci-C₄ alkyl)(Ci-C₄ alkyl), -(C₀₋C₆ alkyl)-C(O)Rₙ, or NO₂, wherein

Rₙ is Ci-C₆ alkoxy, optionally substituted with 1 or 2 groups that are independently Ci-C₄ alkoxy, amino, -NH(Ci-C₆ alkyl), -N(Ci-C₆ alkyl)(Ci-C₆ alkyl), -(C₀₋C₆ alkyl)-C(O)N(Re)>-heterocycloalkyl, or heterocycloalkyl wherein the heterocycloalkyl group is selected from pyrrolidinyl, piperidinyl, piperazinyl, and morpholinyl, wherein the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, Ci-C₆ alkyl, CpC₆ alkoxy, hydroxy, hydroxy C₁₋C₆ alkyl, Ci-C₆ alkoxy carbonyl, -CO₂H, CF₃, or OCF₃.

9. A compound according to claim 7, wherein R₅ is heterocycloalkyl, which is selected from 1-aza-bicyclo[2.2.2]oct-3-yl, and 8-aza-bicyclo[3.2.1]oct-3-yl, where the nitrogen in the 8-aza-bicyclo[3.2.1]oct-3-yl group is optionally substituted with methyl or ethyl.
10. A compound according to claim 7, wherein

R = -N(Rg)-C_6H_4 alkyl-aryl or -N(R.9)-C(O)-aryl, wherein the aryl group is unsubstituted or substituted at one or more substitutable positions with C_1-C_6 alkyl, C_1-C_6 alkoxy, halogen, C_1-C_6 haloalkyl, C_1-C_6 haloalkoxy, hydroxyl, hydroxyalkyl, amino, -NH(C_1-C_6 alkyl), -N(C_1-C_6 alkyl)(C_6H_5 alkyl), -(C_6H_5 alkyl)(C_6H_5 alkyl), -C(O)N(C_1-C_6 alkyl)-C(O)R, or NO_2.

11. A compound according to claim 10, wherein

the aryl group is a phenyl substituted with -(C_0-C_6 alkyl)-C(O)R \pi and optionally substituted with 1 or 2 groups independently selected from C_1-C_6 alkyl, C_1-C_6 alkoxy, halogen, CF_3, OCF_3, hydroxyl, hydroxyalkyl, amino, -NH(C_4 alkyl), -N(C_4 alkyl)(C_4 alkyl), or NO_2, and

Rn is C_6H_5 alkoxy, optionally substituted with 1 or 2 groups that are independently C_1-C_4 alkoxy, amino, -NH(C_6H_5 alkyl), -N(C_6H_5 alkyl)(C_6H_5 alkyl), -(C_0-C_6 alkyl)-C(O)N(R.9)-heterocycloalkyl, or heterocycloalkyl wherein the heterocycloalkyl group is selected from pyrrolidinyl, piperidinyl, piperazinyl, and morpholinyl, wherein the heterocycloalkyl groups are optionally substituted with 1, 2, or 3 groups that are independently halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, hydroxyl, hydroxy C_1-C_6 alkyl, C_6H_5 alkoxy carbonyl, -CO_2H, CF_3, or OCF_3.

12. A compound according to claim 11, wherein the -(C_0-C_6 alkyl)-C(O)Rn group is attached to position 4 of the phenyl ring.

13. A compound according to claim 1 that is

6-((3S',4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoic acid;

6-((3S',4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoic acid;

6-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoic acid;

6-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
(i?)-quinuclidin-3-yl 6-((3'S,4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

(i?)-quinuclidin-3-yl 6-((3'i?,4'S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate;

(i?)-quinuclidin-3-yl 6-((3'i?,4'S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

(S)-quinuclidin-3-yl 6-((3S',4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

(5)-quinuclidin-3-yl 6-((3'S,4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

(s)-quinuclidin-3-yl 6-((3'i?,4'i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate;

(5)-quinuclidin-3-yl 6-((3'S,4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

(i?)-quinuclidin-3-yl 6-((3'i?,4'S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

(i?)-quinuclidin-3-yl 6-((3'i?,4'S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate;

(5)-quinuclidin-3-yl 6-((3'S,4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

(5)-quinuclidin-3-yl 6-((3'S,4'i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;

8-methyl-8-azabicyclo[3.2.1]octan-3-yl 6-((3S,4'i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate;
8-methyl-8-azabicyclo[3.2.1]octan-3-yl 6-((3S',4R')-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy-1-yl)hexanoate;
8-methyl-8-azabicyclo[3.2.1]octan-3-yl 6-((3R',4S')-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy-1-yl)hexanoate;
8-methyl-8-azabicyclo[3.2.1]octan-3-yl 6-((3S',4R')-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy-1-yl)hexanoate;

4-(2-((3S',4R')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoic acid;
4-(2-((3R',4S')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoic acid;
4-(2-((3S',4R')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoic acid;
4-(2-((3R',4S')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoic acid;

methyl 4-(2-((3S',4R')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;
methyl 4-(2-((3R',4S')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;
methyl 4-(2-((3S',4R')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;
methyl 4-(2-((3R',4S')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;

ethyl 4-(2-((3S',4R')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;
ethyl 4-(2-((3R',4S')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;
ethyl 4-(2-((3S',4R')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;
ethyl 4-(2-((3R',4S')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;

isopropyl 4-(2-((3S',4R')-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy-1-yl)acetamido)benzoate;
isopropyl 4-(2-((35',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

isopropyl 4-(2-((3i?,4.S)-4-(6-aniino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

isopropyl 4-(2-((3i?,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-methoxyethyl 4-(2-((35(4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-nitroxyethyl4-(2-((35',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-methoxyethyl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-methoxyethyl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-(pyrrolidin-1-yl)ethyl 4-(2-((3.S',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-(pyrrolidin-1-yl)ethyl 4-(2-((3.S',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-(pyrrolidin-1-yl)ethyl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-(pyrrolidin-1-yl)ethyl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-(pyridin-2-yl)ethyl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

2-(pyridin-2-yl)ethyl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

l-methylpiperidin-4-yl 4-(2-((36',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-(pyridin-2-yl)ethyl 4-(2-((35,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-(pyridin-2-yl)ethyl 4-(2-((3i?,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-(dimethylamino)ethyl 4-(2-((35',4i?)-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-(dimethylamino)ethyl 4-(2-((3S',4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1-methylpiperidin-3-yl 4-(2-((3,S',4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1-methylpiperidin-3-yl 4-(2-((3,S',4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1-methylpiperidin-3-yl 4-(2-((3i?,4S)-((6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1-methylpiperidin-3-yl 4-(2-((3i?,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-morpholinoethyl 4-(2-((3S,4i?)-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-morpholinoethyl 4-(2-((3S,4i?)-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-morpholinoethyl 4-(2-((3i?,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1,4-dimethylpiperidin-4-yl 4-(2-((3S,4i?)-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1,4-dimethylpiperidin-4-yl 4-(2-((3S,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1,4-dimethylpiperidin-4-yl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1,4-dimethylpiperidin-4-yl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
4-(2-((3S',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid;
4-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid;
4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid;
2-oxo-2-(piperidin-4-ylamino)ethyl 4-(2-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-oxo-2-(piperidin-4-ylamino)ethyl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-oxo-2-(piperidin-4-ylamino)ethyl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-oxo-2-(piperidin-4-ylamino)ethyl 4-(2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
1-(2-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid;
1-(2-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid;
1-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid;
1-(2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid;
methyl 1-(2-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
methyl L-(2-((3S',4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
methyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
ethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
ethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
ethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
ethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
2-methoxyethyl L-(2-((3S',4i?) -4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
2-methoxyethyl L-(2-((3S',4i?) -4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
2-methoxyethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
2-methoxyethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
2-methoxyethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
2-methoxyethyl L-(2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylate;
4-(((2-((3S',4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid;
4-(((2-((3S',4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid;
4-(((2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid;
4-(((2-((3S,4i?) -4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoic acid;
methyl 4-(((2-((3S',4i?) -4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;
methyl 4-((2-((3S,4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
methyl 4-((2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;
methyl 4-((2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
methyl 4-((2-((3S,4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
isopropyl 4-((2-((3S,4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
isopropyl 4-((2-((3i?,45)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
isopropyl 4-((2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
isopropyl 4-((2-((35',4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
isopropyl 4-((2-((3i?,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
isopropyl 4-((2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
ethyl 4-((2-((3S,4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzamide dihydrochloride;
ethyl 4-((2-((35',4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzamide dihydrochloride;
ethyl 4-((2-((3i?,45)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzamide dihydrochloride;
ethyl 4-((2-((3i?,4,5)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzamide dihydrochloride;
(i?-)quinuclidin-3-yl 4-((2-((3S,4i?)4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate;
(i?)-quinuclidin-3-yl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate;

(i?)-quinuclidin-3-yl 4-(2-((3i?,4j?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate;

(i?)-quinuclidin-3-yl 4-(2-((3i?,4j?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate;

2-(pyrrolidin-1-yl)ethyl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;

1-methylpiperidin-4-yl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;

2-morpholinoethyl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;

4-((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoic acid;

3-hydroxypropyl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;

piperidin-4-yl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;

4-((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoic acid;

piperidin-4-yl 4-(((2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate;

2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetic acid;

ethyl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;

1-methylpiperidin-4-yl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;

3-hydroxypropyl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;

quinuclidin-3-yl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;
6-amino-5-chloro-N-((3S,4R)-1-(2-(4-hydroxyphenylamino)-2-oxoethyl)-3-methoxy-piperidin-4-yl)-2-methoxynicotinamide;
4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)phenyl acetate;
4-(3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propyl)benzoic acid;
2-morpholinoethyl 4-((3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propyl)benzoate;
2-(pyrrolidin-1-yl)ethyl 4-(3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propyl)benzoate;
1-methylpiperidin-4-yl 4-((3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propyl)benzoate;
2-hydroxyethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-amino-2-oxoethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-(piperazin-1-yl)ethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-(pyrrolidin-1-yl)ethyl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;
1-methylpiperidin-4-yl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;
2-morpholinoethyl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethyl)(methyl)amino)methyl)benzoate;
4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoic acid;
3-hydroxypropyl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
piperidin-4-yl 4-((2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylamino)methyl)benzoate;
4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoic acid;
piperidin-4-yl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethylcarbamoyl)benzoate;
2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetic acid;
ethyl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;
1-methylpiperidin-4-yl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;
3-hydroxypropyl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;
quinuclidin-3-yl 2-(4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)phenyl)acetate;
6-amino-5-chloro-N-((3S,4R)-1-(2-(4-hydroxyphenylamino)-2-oxo-ethyl)-3-methoxypiperidin-4-yl)-2-oxo-1,2-dihydropyridine-3-carboxamide;
4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoic acid;
4-(3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propyl)benzoic acid;
2-moφ holinoethyl 4-(3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propyl)benzoate;
2-(pyrrolidin-1-yl)ethyl 4-(3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propyl)benzoate;
1-methylpiperidin-4-yl 4-(3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propyl)benzoate;
2-hydroxyethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;
2-amino-2-oxoethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate;

133
2-(piperazin-1-yl)ethyl 4-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetamido)benzoate; or a pharmaceutically acceptable salt thereof.

14. A compound according to claim 1 that is
 benzyl 3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 isopropyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 (tetrahydro-2H-pyran-2-yl)methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 cyclohexyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 neopentyl 3-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 4-methoxybenzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 pyridin-4-ylmethyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)propanoate;
 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetic acid;
 4-fluorobenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
 benzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
 4-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
 2-methoxybenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
4-chlorobenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
4-methoxybenzyl 2-((3R,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
piperidin-4-yl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-methoxyethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-hydroxyethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-chlorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
4-(trifluoromethyl)benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
3-methylbenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
3-chlorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-(trifluoromethyl)benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-morpholinoethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
(tetrahydro-2H-pyran-2-yl)methyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
3-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
3-methoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-(methylsulfonyl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;

isopropyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate;
ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate;
2-(pyridin-2-yl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-
3-methoxypiperidin-1-yl)acetate;
pyridin-2-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate;
pyridin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate;
piperidin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate;
cyclohexyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-
methoxypiperidin-1-yl)acetate;
1-methoxypropan-2-yl 2-((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2,3,4-trimethoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2,3-dimethoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-
3-methoxypiperidin-1-yl)acetate;
1-(4-fluorophenyl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
3-(4-fluorophenoxy)propyl 2-((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
3-fluoro-4-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
4-fluoro-3-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-fluoro-6-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
tetrahydro-2H-pyran-4-yl 2-((3R,4S)-4-(6-amino-5-chloro-2-
methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-(2-methoxyethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-(2-(2-methoxyethoxy)ethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
neopentyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-(2-(2-methoxyethoxy)ethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
neopentyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
2-(piperazin-2-yl)ethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
pyridin-4-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)acetate;
(R)-3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoic acid;
(R)-methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
4-fluorobenzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
(S)-4-((methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
(S)-3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoic acid;
(S)-methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
4-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)butanoic acid;
4-fluorobenzyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate;
2-methoxyethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate;
neopentyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate;
pyridin-2-ylmethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)hexanoate;
2-(piperazin-1-yl)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)hex anoate hydrochloride;
2-(dimethylamino)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)hexanoate;
1-adamantylmethyl 6-[(3S,4R)-4-{{(6-amino-5-chloro-2-methoxypyridin-3-yl)carbonyl}amino}-3-methoxy piperidin-1-yl]hexanoate;
cyclohexyl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)hexanoate;
2-adamantyl 6-[(3S,4R)-4-{{(6-amino-5-chloro-2-methoxypyridin-3-yl)carbonyl}amino}-3-methoxy piperidin-1-yl]hex anoate;
bicyclo[2.2.1]heptan-2-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)hex anoate;
2-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)ethoxy)acetic acid;
methyl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)ethoxy)acetate;
cyclohexyl 2-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)ethoxy)acetate;
cyclohexyl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)ethoxy)acetate;
piperidin-4-yl 2-(2-((3R,4S)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)ethoxy)acetate hydrochloride;
1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)acetyl)piperidine-4-carboxylic acid;
methyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)acetyl)piperidine-4-carboxylate;
ethyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)acetyl)piperidine-4-carboxylate;
2-methoxyethyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxy piperidin-1-yl)acetyl)piperidine-4-carboxylate;
6-amino-5-chloro-N-((3R,4S)-1-(2-hydroxyethyl)-3-methoxypiperidin-4-yl)-2-
methoxynicotinamide;
6-amino-5-chloro-2-methoxy-N-((3R,4S)-3-methoxypiperidin-4-
yl)nicotinamide;
6-amino-5-chloro-N-((3R,4S)-l-(3-(4-fluorophenoxy)propyl)-3-
methoxypiperidin-4-yl)-2-methoxynicotinamide;
benzyl 3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)propanoate;
isopropyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)propanoate;
4-(memylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate;
(tetrahydro-2H-pyran-2-yl)methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-
dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)propanoate;
cyclohexyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)propanoate;
neopentyl 3-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)propanoate;
4-methoxybenzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)propanoate;
pyridin-4-ylmethyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-
3-carboxamido)-3-methoxypiperidin-1-yl)propanoate;
2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-
methoxypiperidin-1-yl)acetic acid;
4-fluorobenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)acetate;
benzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)acetate;
4-methylbenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-methoxybenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-
carboxamido)-3-methoxypiperidin-1-yl)acetate;
4-chlorobenzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
4-methoxybenzyl 2-((3R,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
piperidin-4-yl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-methoxyethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-hydroxyethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-chlorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
4-(trifluoromethyl)benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
3-methylbenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
3-chlorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-(trifluoromethyl)benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-morpholinoethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
(tetrahydro-2H-pyran-2-yl)methyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
3-fluorobenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
3-methoxybenzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-(methylsulfonyl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
isopropyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
2-(pyridin-2-yl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
pyridin-2-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
pyridin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
piperidin-3-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
cyclohexyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
1-methoxy propan-2-yl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
2,3,4-trimethoxy benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
2,3-dimethoxy benzyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
1-(4-fluorophenyl)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
3-(4-fluorophenoxy) propyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
3-fluoro-4-methyl benzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
4-fluoro-3-methyl benzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
2-fluoro-6-methyl benzyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
tetrahydro-2H-pyran-4-yl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxy piperidin-1-yl)acetate;
2-(2-methoxyethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-(2-(2-methoxyethoxy)ethoxy)ethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
neopentyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
2-(piperazin-2-yl)ethyl 2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
pyridin-4-ylmethyl 2-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetate;
(R)-3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoic acid;
(R)-methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
4-fluorobenzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
(S)-4-(methylsulfonyl)benzyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
(S)-3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoic acid;
(S)-methyl 3-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)-2-methylpropanoate;
4-((3R,4S)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)butanoic acid;
4-fluorobenzyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
2-methoxyethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
neopentyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
pyridin-2-ylmethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
2-(piperazin-1-yl)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate hydrochloride;
2-(dimethylamino)ethyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
1-adamantylmethyl 6-((3S,4R)-4-{[(6-amino-5-chloro-2-oxo-1,2-dihydropyridin-3-yl)carbonyl]amino}-3-methoxypiperidin-1-yl]hexanoate;
cyclohexyl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
2-adamantyl 6-((3S,4R)-4-{[(6-amino-5-chloro-2-oxo-1,2-dihydropyridin-3-yl)carbonyl]amino}-3-methoxypiperidin-1-yl]hexanoate;
bicyclo[2.2.1]heptan-2-yl 6-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate;
2-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)ethoxy)acetic acid;
methyl 1-(2-((3S,4R)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)acetyl)piperidine-4-carboxylic acid;
6-amino-5-chloro-N-((3R,4S)-1-(2-hydroxyethyl)-3-methoxypiperidin-4-yl)-2-oxo-1,2-dihydropyridine-3-carboxamide;
6-amino-5-chloro-N-((3R,4S)-3-methoxypiperidin-4-yl)-2-oxo-1,2-dihydropyridine-3-carboxamide;
6-amino-5-chloro-N-((3R,4S)-1-(3-(4-fluorophenoxy)propyl)-3-methoxypiperidin-4-yl)-2-oxo-1,2-dihydropyridine-3-carboxamide; or a pharmaceutically acceptable salt thereof.

15. A compound according to claim 1 that is (i?)-quinuclidin-3-yl 6-((3S',4,2Z)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate or (i?)-quinuclidin-3-yl 6-((3S,4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate.

16. A salt according to claim 1 that is (i?)-quinuclidin-3-yl 6-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate or (i?)-quinuclidin-3-yl 6-((36',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-3-methoxypiperidin-1-yl)hexanoate.

17. A composition comprising a compound or pharmaceutically acceptable salt of claim 1 and at least one pharmaceutically acceptable carrier, solvent, adjuvant, or excipient.

18. A method of treating emesis, dyspepsia, gastroparesis, constipation, intestinal pseudo-obstruction, gastroesophageal reflux, or post-operative ileus, the method comprising administering a compound or salt according to claim 1 to a patient in need of such treatment.

19. A method according to claim 17, wherein the compound or salt is administered intravenously.

20. A composition comprising at least one of (i?)-quinuclidin-3-yl 6-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate, (i?)-quinuclidin-3-yl 6-((35',4i?)-4-(6-amino-5-chloro-2-methoxynicotinamido)-3-methoxypiperidin-1-yl)hexanoate dihydrochloride and (i?)-quinuclidin-3-yl 6-((35',4i?)-4-(6-amino-5-chloro-2-oxo-1,2-dihydropyridine-3-carboxamido)-
3-methoxypiperidin-l-yl)hexanoate dihydrochloride and at least one pharmaceutically acceptable carrier, solvent, adjuvant, or excipient.

21. A method of treating emesis, dyspepsia, gastroparesis, constipation, intestinal pseudo-obstruction, gastroesophageal reflux, or post-operative ileus, the method comprising administering a compound or salt according to claim 14 to a patient in need of such treatment.