

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 0 904 434 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

20.09.2000 Bulletin 2000/38

(21) Application number: **97924396.1**

(22) Date of filing: **06.06.1997**

(51) Int Cl.⁷: **D01F 6/60, C08G 69/02**

(86) International application number:
PCT/NL97/00323

(87) International publication number:
WO 97/46746 (11.12.1997 Gazette 1997/53)

(54) ACID-DYEABLE FIBRE

MIT SAUREN FARBSTOFFEN FÄRBBARE FASER

FIBRE A TEINTURE PAR COLORANT ACIDE

(84) Designated Contracting States:

AT BE CH DE ES FR GB GR IE IT LI LU NL PT SE

Designated Extension States:

LT LV SI

(30) Priority: **06.06.1996 BE 9600513**

(43) Date of publication of application:

31.03.1999 Bulletin 1999/13

(73) Proprietor: **DSM N.V.**

6411 TE Heerlen (NL)

(72) Inventors:

• **ARNAUTS, Jan, Eugeen, Frederic**
B-3530 Houthalen (BE)

• **NIJENHUIS, Atze, Jan**

NL-6132 HB Sittard (NL)

• **VERSLUIS, Cornelis**

NL-6171 ET Stein (NL)

• **ABERSON, Rene**

NL-6137 KD Sittard (NL)

(56) References cited:

EP-A- 0 462 476

EP-A- 0 682 057

WO-A-93/25736

US-A- 2 904 536

US-A- 3 296 214

US-A- 3 304 289

US-A- 3 386 967

US-A- 3 890 286

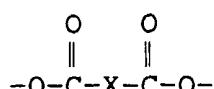
US-A- 4 075 271

Description

[0001] The invention relates to an acid-dyeable polyamide fibre. The acid dyeing of polyamide fibres takes place by ion exchange in aqueous medium. For this purpose, the dye is dissolved in an aqueous medium and attached to the fibre by means of ion exchange. In the case of acidic dyestuffs, which form by far the greater part of the dyestuffs used for polyamide fibres, the amino end groups of the polyamide chains serve as ionexchange sites in this process. In order to obtain sufficient colour intensity, the concentration of amino end groups in the polyamide should be in the order of at least 20 meq/kg, see for instance EP-A-0,462,476.

[0002] The end group concentration in a polyamide fibre is determined by various conditions and imposes very high demands on the reproducibility of the production process of the polyamide and of the fibre. Interferences during the production process of the polyamide and its spinning to form fibre have a great influence on the end group content. As a result, it is difficult to achieve very reproducible colours which are demanded by the consumer.

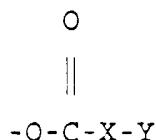
[0003] The subject of the invention is a polyamide fibre whose affinity for dyestuffs is not influenced or influenced only to a small extent by the production process for the polyamide and the spinning to form fibre. A further subject of the invention is a polyamide fibre having a high thermal and light stability.

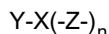

[0004] The inventors have succeeded in producing such a fibre by starting from a polyamide having a very low amino end group content, i.e. less than 10 meq/kg, preferably less than 5 meq/kg, still more preferably less than 3 meq/kg. The greatest preference is given to a polyamide in which the amino end groups are virtually completely absent.

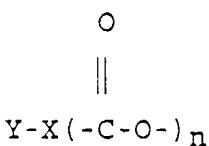
[0005] Such polyamides having a very low amino end group content are obtainable by using, in the polymerization process for the preparation of the polyamide, a quantity of a monofunctional, difunctional, trifunctional or more highly functional acid as chain stopper or chain extender, which quantity is such that the amino end groups have been removed by reaction with the acid at the desired degree of polymerization.

[0006] Polyamides having a very low amino end group content are known from for instance US-A-3,386,967.

[0007] If no additional measures are taken, the fibre obtained from such a polyamide will not be acid-dyeable or will be acid-dyeable only to a very limited extent as a result of the virtual absence of amino end groups.


[0008] The inventors have overcome this in that, in each polyamide chain in the case of polyamide chains containing units derived from a diamine and a dicarboxylic acid, at least one unit derived from a dibasic acid having the formula -Z-X-Z-, preferably a dicarboxylic acid having the formula


35 is present in the chain, or the chain is terminated by at least one unit having the formula


40 preferably

50 and, in the case of polyamides containing units derived from an α,ω -aminocaproic acid or obtainable by ring-opening polymerization of lactams, at least one unit

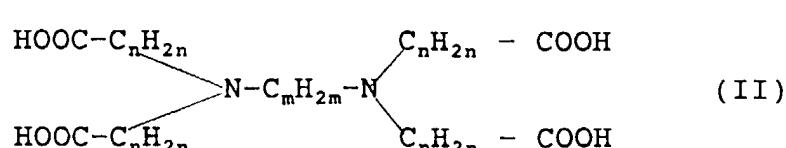
55 preferably

is present, where Y = H or ZH, preferably COOH, X = an organic radical having a basic nature, n = 1 - 20 and Z = an acid radical, preferably of a sulphonic acid or carboxylic acid.

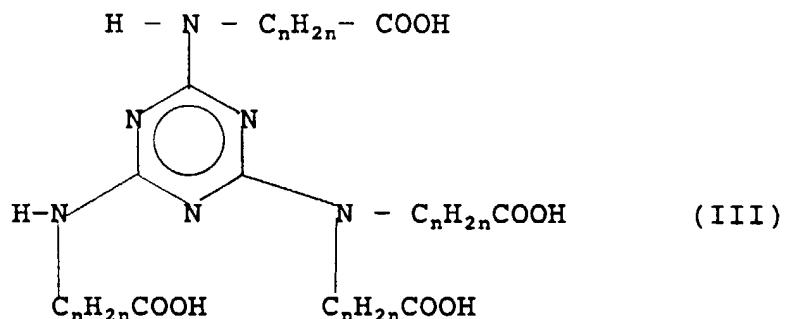
[0009] By a basic nature is meant that the organic radical reacts as a base against an acidic dye.

[0010] Such polyamides can be obtained conventionally by copolymerization of the respective acids with the monomers for the polyamide under the conditions for the polycondensation of diamines and dicarboxylic acids to form polyamides of the AABB type and polycondensation of α,ω -amino acids or ring-opening polymerization of lactams to form polyamides of the AB type. Preferably, the polyamides are subjected in this process to a postcondensation in the solid phase.

[0011] It is known from US-A-3,296,214 to improve dyeability of polyamides by copolymerising a viscosity stabilizer consisting of piperidine-N-acetic acid. However the polyamides disclosed in this reference do not contain less than 10 meq amine end groups/kg, nor is any indication given of the advantageous effects of lowering the amino end group content with respect to the improved inertness against deviations in the production process of the polyamide, the fibre thereof and the dyeing of the fibre.

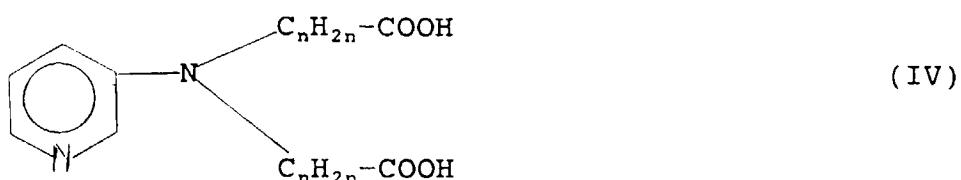

[0012] Organic radicals having a basic nature are, inter alia, radicals of compounds which contain nitrogen or oxygen or both nitrogen and oxygen. Suitable compounds are, for example, heterocyclic compounds, preferably with nitrogen in the ring. Examples of such nitrogen-containing heterocyclic compounds are pyridine, piperidine, quinoline, quinoxaline, acridine, indole, phenanthridine, 1,4-diazines, for example 1,4-piperazine, 1,3,5-triazines, for example melamine and melam, furan and proline, which have been substituted, if desired. Of these compounds, melamine is strongly preferred. Particular advantage is offered by 1,3,5-triazine-2,4,6-trisaminocarboxylic acid in a polyamide of the AB type. In this case, the amino acid preferably corresponds to the aminocarboxylic acid from which the units of the polyamide chains have been derived. Such polyamides, which have a degree of branching of at least 3, are exceptionally suitable for high spinning speeds.

[0013] For polyamides of the AABB type, use of monocarboxylic or dicarboxylic acids derived from nitrogen-containing heterocyclic compounds is advantageous. Examples of these are picolinic acid, nicotinic acid, piperidine dicarboxylic acids, 2- or 4-piperidine carboxylic acid, acridine carboxylic acids, for example 9-acridine carboxylic acid and 4,9-acridine dicarboxylic acid, quinoline carboxylic acid, in particular 2-, 4- or 8-quinoline carboxylic acid and quinoxaline carboxylic acid. Such acids are available commercially. Preferred are dicarboxylic acids, with which polyamides are obtained which lend themselves better to spinning the fibres according to the invention at high speed.

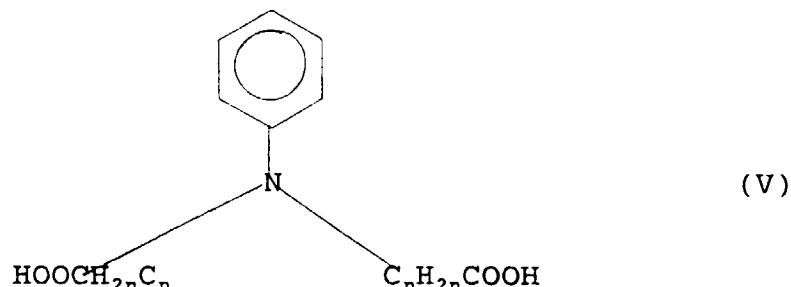

[0014] Other nitrogen-containing carboxylic acids suitable for copolymerization are compounds containing secondary and tertiary amines having the formula

in which R = H, alkyl or aryl. In this formula, n = 1-6 preferably n = 1-3, most preferably n = 2;

in which m = 2 - 10, preferably 3 - 6, and n preferably = 1 - 3, most preferably n = 2. Instead of being substituted by 4 carboxylic acid groups, the diamine may also be substituted by 2 or 3 groups. Carboxylic acids derived from melamine by substitution of 1 - 6 carboxylic acid groups at the amine groups are, for example,



15 n = 1-20


[0015] The above carboxylic acids are generally easy to obtain by addition of a nitrile, for example, acrylonitrile to the amine, followed by hydrolysis to form carboxylic acid.

[0016] Other amine-substituted heterocyclic and aromatic compounds in which one or two aliphatic carboxylic acids are substituted at the amine are, for example,

20

35

[0017] However these amine-substituted compounds in which the substituted N is the only center that can be protonated in the acid dyeing process are less effective, and are very sensitive to dyeing conditions as for instance pH.

[0018] The above summary is not exhaustive but only an illustration of the many possibilities for achieving the object of the invention.

45

[0019] A requirement of the acids used as comonomer is that they are at least stable under the conditions of the polymerization and the processing to form fibre. In some cases, for example nicotinic acid, which is unstable under the conditions of the polymerization, the stability can be improved by first producing, at lower temperature, an oligomer by reaction with, for example, aminocaproic acid, which is then used in the ring-opening polymerization of caprolactam to form polyamide-6 at higher temperature.

50

[0020] From WO-93/25736 it is known that high-speed spun polyamide-6 fibres having good properties can be obtained if the caprolactam is polymerized in the presence of a dicarboxylic acid chosen from a specific group of dicarboxylic acids or specific diamines. The content of chemically bound dicarboxylic acid for the extracted and dried final product is between 5 and 60 mmol/kg, preferably between 10 and 50 mmol/kg. Should the affinity for dyestuffs be inadequate, a specific diamine can, if desired, be added (page 6, lines 17 - 21). If, on the other hand, the melt stability is inadequate, it is advisable to use, in addition to the dicarboxylic acid, a primary amine as chain regulator.

55

[0021] It will be clear for the person skilled in the art that this method of polymer production is very sensitive to variations and reproducibility is doubtful.

[0022] As will be evident from the experiments, in the case of the fibre according to the invention, no change in the solution viscosity occurs during the spinning, as a result of which there is no change in the end group content, and the melt viscosity is equally little subject to alteration if the polyamide is kept in the melt for a fairly long time. All this implies that the polymer is extremely stable and that the affinity for dyestuffs is not influenced by the spinning process and that the spinning process itself is also less susceptible to faults and short interruptions in the spinning process and for instance the failure of one or more spinning heads in a production line has no influence on the properties of the fibre, such as, for example, the affinity for dyestuffs.

[0023] The invention is now explained by reference to the following examples and comparative examples.

10 Materials

[0024] Akulon VMT 1203® supplied by DSM, The Netherlands, nylon-6 with benzoic acid as chain stopper, $\eta_{\text{rel}} = 2.81$, for carpet fibre. End group content $-\text{NH}_2 = 47$ meq/kg, $\text{COOH} = 49$ meq/kg. Stabilized with Mn-acetate (15 ppm). A second charge of VMT 1203 used for the high speed spinning experiments had an end group content of $-\text{NH}_2 = 45$ and $-\text{COOH} = 50$ meq/kg.

[0025] Polyamide (1): A polyamide-6 was prepared by polymerizing ϵ -caprolactam in the presence of 2,4,6-trisaminocaproic acid-1,3,5-triazine under the standard conditions for the hydrolytic preparation of aliphatic polyamide-6. For this purpose, 3.50 kg of ϵ -caprolactam, 35.0 g of ϵ -aminocaproic acid, 70.0 g of water and 58.7 g of trisaminocaproic acid triazine were added together to a 5 l reactor. The temperature was then brought to 275°C in approximately 2 hours and kept there for 8 hours. The temperature was then brought back to 245°C in 1 hour and kept there for 2 hours. During the heating up and the first two hours at 275°C, the system was closed, then the pressure was let down to atmospheric and water was distilled off while a nitrogen blanket was applied. After that, the reactor contents were drained off under nitrogen by applying an overpressure. The polymer strand flowing out of the reactor was cooled in ice-water and chopped up into granules which were washed with water at 100°C and then dried. The yield of a number of batches was combined and postcondensed for 10 hours at 190°C under a vacuum with a nitrogen leak.

[0026] No NH_2 end groups were found by the usual potentiometric titration in the polyamide-6 obtained. The relative viscosity, η_{rel} , was 2.69.

[0027] Polyamide (2): A subsequent polyamide-6 was synthesized in the same way as polyamide 1, with the exception of the postcondensation. However 0.27% by weight of adipic acid was added instead of 2,4,6-triaminocaproic acid 1,3,5-triazine. The polyamide-6 obtained, which had a relative viscosity of $\eta_{\text{rel}} = 2.78$, contained 27 meq of NH_2 end groups per kg (in conformity with Example 5b in WO 93/25736).

[0028] Spinning tests: From the respective polyamides, fibres were spun with a Fourné spinning test apparatus at 240°C and a winding speed of 550 m/min. The yarn titre was 70/10 dtex. The said yarn was stretched with a total stretch ratio of about 3.75. After stretching, the relative viscosity, and also the amino end group content of the polyamide-6 was determined in the fibres.

[0029] Affinity for dyestuffs: The affinity for acidic dyestuffs of the various fibres was determined using Tectilon® G-01 Blue 200% supplied by Ciba-Geigy according to the advice by the manufacturer in his brochure entitled "Acid dyes, product information of Tectilon". The dyeing conditions are reported briefly in the table below.

40 Table I

Temperature profile	- 12 min 20°C - 70 min linear temperature increase to 100°C - 35 min 100°C
Additives	- 0.5 g/l Albegal® - 0.5% Univadine PA® - 1.5% ammonium acetate/acetic acid to pH = 5 to 5.5 - 85 mg/l dyestuff
Liquid ratio	600

[0030] After dyeing, the yarns were carefully cleaned with cold water. The dyestuff content of the fibres was determined by dissolving the fibres in concentrated formic acid and determining the light absorption of this solution using a spectrophotometer. In this determination, the absorption value was kept between 0.2 and 1.2 by adequate dilution. Any titanium oxide present was filtered off.

Melt viscosity

[0031] The melt viscosity was determined using DMA (dynamic mechanical analysis) going from high to low frequency using a Rheometrics 800 apparatus at 240°C. η_0 was determined by extrapolation to the frequency zero.

5

Examples and comparative examples

[0032] Fibres were spun from the various polyamides under the conditions specified above and cold-stretched or hot-stretched, respectively. The relative viscosity and the amino end groups content of the polyamide were determined before and after spinning. The affinity for acidic dyestuffs of the fibres was determined as specified above. The results are shown in Table II.

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

150

155

160

165

170

175

180

185

190

195

200

205

210

215

220

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330

335

340

345

350

355

360

365

370

375

380

385

390

395

400

405

410

415

420

425

430

435

440

445

450

455

460

465

470

475

480

485

490

495

500

505

510

515

520

525

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

615

620

625

630

635

640

645

650

655

660

665

670

675

680

685

690

695

700

705

710

715

720

725

730

735

740

745

750

755

760

765

770

775

780

785

790

795

800

805

810

815

820

825

830

835

840

845

850

855

860

865

870

875

880

885

890

895

900

905

910

915

920

925

930

935

940

945

950

955

960

965

970

975

980

985

990

995

1000

1005

1010

1015

1020

1025

1030

1035

1040

1045

1050

1055

1060

1065

1070

1075

1080

1085

1090

1095

1100

1105

1110

1115

1120

1125

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

1190

1195

1200

1205

1210

1215

1220

1225

1230

1235

1240

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

1295

1300

1305

1310

1315

1320

1325

1330

1335

1340

1345

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

1400

1405

1410

1415

1420

1425

1430

1435

1440

1445

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

1505

1510

1515

1520

1525

1530

1535

1540

1545

1550

1555

1560

1565

1570

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

1630

1635

1640

1645

1650

1655

1660

1665

1670

1675

1680

1685

1690

1695

1700

1705

1710

1715

1720

1725

1730

1735

1740

1745

1750

1755

1760

1765

1770

1775

1780

1785

1790

1795

1800

1805

1810

1815

1820

1825

1830

1835

1840

1845

1850

1855

1860

1865

1870

1875

1880

1885

1890

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

1945

1950

1955

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

2015

2020

2025

2030

2035

2040

2045

2050

2055

2060

2065

2070

2075

2080

2085

2090

2095

2100

2105

2110

2115

2120

2125

2130

2135

2140

2145

2150

2155

2160

2165

2170

2175

2180

2185

2190

2195

2200

2205

2210

2215

2220

2225

2230

2235

2240

2245

2250

2255

2260

2265

2270

2275

2280

2285

2290

2295

2300

2305

2310

2315

2320

2325

2330

2335

2340

2345

2350

2355

2360

2365

2370

2375

2380

2385

2390

2395

2400

2405

2410

2415

2420

2425

2430

2435

2440

2445

2450

2455

2460

2465

2470

2475

2480

2485

2490

2495

2500

2505

2510

2515

2520

2525

2530

2535

2540

2545

2550

2555

2560

2565

2570

2575

2580

2585

2590

2595

2600

2605

2610

2615

2620

2625

2630

2635

2640

2645

2650

2655

2660

2665

2670

2675

2680

2685

2690

2695

2700

2705

2710

2715

2720

2725

2730

2735

2740

2745

2750

2755

2760

2765

2770

2775

2780

2785

2790

2795

2800

2805

2810

2815

2820

2825

2830

2835

2840

2845

2850

2855

2860

2865

2870

2875

2880

2885

2890

2895

2900

2905

2910

2915

2920

2925

2930

2935

2940

2945

2950

2955

2960

2965

2970

2975

2980

2985

2990

2995

3000

3005

3010

3015

3020

3025

3030

3035

3040

3045

3050

3055

3060

3065

3070

3075

3080

3085

3090

3095

3100

3105

3110

3115

3120

3125

3130

3135

3140

3145

3150

3155

3160

3165

3170

3175

3180

3185

3190

3195

3200

3205

3210

3215

3220

3225

3230

3235

3240

3245

3250

3255

3260

3265

3270

3275

3280

3285

3290

3295

3300

3305

3310

3315

3320

3325

3330

3335

3340

3345

3350

3355

3360

3365

3370

3375

3380

3385

3390

3395

3400

3405

3410

3415

3420

3425

3430

3435

3440

3445

3450

3455

3460

3465

3470

3475

3480

3485

3490

3495

3500

3505

3510

3515

3520

3525

3530

3535

3540

3545

3550

3555

3560

3565

3570

3575

3580

3585

3590

3595

3600

3605

3610

3615

3620

3625

3630

3635

3640

3645

3650

3655

3660

3665

3670

3675

3680

3685

3690

3695

3700

3705

3710

3715

3720

3725

3730

3735

3740

3745

3750

3755

3760

3765

3770

3775

3780

3785

3790

3795

3800

3805

3810

3815

3820

3825

3830

3835

3840

3845

3850

3855

3860

3865

3870

3875

3880

3885

3890

3895

3900

3905

3910

3915

3920

3925

3930

3935

3940

3945

3950

3955

3960

3965

3970

3975

3980

3985

3990

3995

4000

4005

4010

4015

4020

4025

4030

4035

4040

4045

4050

4055

4060

4065

4070

4075

4080

4085

4090

4095

4100

4105

4110

4115

4120

4125

4130

4135

4140

4145

4150

4155

4160

4165

4170

4175

4180

4185

4190

4195

4200

4205

4210

4215

4220

4225

4230

4235

4240

4245

4250

4255

4260

4265

4270

4275

4280

4285

4290

4295

4300

4305

4310

4315

4320

4325

4330

4335

4340

4345

4350

4355

4360

4365

4370

4375

4380

4385

4390

4395

4400

4405

4410

4415

4420

4425

4430

4435

4440

4445

4450

4455

4460

4465

4470

4475

4480

4485

4490

4495

4500

4505

4510

4515

4520

4525

4530

4535

4540

4545

4550

4555

4560

4565

4570

4575

4580

4585

4590

4595

4600

4605

4610

4615

4620

4625

4630

4635

4640

4645

4650

4655

4660

4665

4670

4675

4680

4685

4690

4695

4700

4705

4710

4715

4720

4725

4730

4735

4740

4745

4750

4755

4760

4765

4770

4775

4780

4785

4790

4795

4800

4805

4810

4815

4820

4825

4830

4835

4840

4845

4850

4855

4860

4865

4870

4875

4880

4885

4890

4895

4900

4905

4910

4915

4920

4925

4930

4935

4940

4945

4950

4955

4960

4965

4970

4975

4980

4985

4990

4995

5000

5005

5010

5015

5020

5025

5030

5035

5040

5045

5050

5055

5060

5065

5070

5075

5080

5085

5090

5095

5100

5105

5110

5115

5120

5125

5130

5135

5140

5145

5150

5155

5160

5165

5170

5175

5180

5185

5190

5195

5200

5205

5210

5215

5220

5225

5230

5235

5240

5245

5250

5255

5260

5265

5270

5275

5280

5285

5290

5295

5300

5305

5310

5315

5320

5325

5330

5335

5340

5345

5350

5355

5360

5365

5370

5375

5380

5385

5390

5395

5400

5405

5410

5415

5420

5425

5430

5435

5440

5445

5450

5455

5460

5465

5470

5475

5480

5485

5490

5495

5500

5505

5510

5515

5520

5525

5530

5535

5540

5545

5550

5555

5560

5565

5570

5575

5580

5585

5590

5595

5600

5605

5610

5615

5620

5625

5630

5635

5640

5645

5650

5655

5660

5665

5670

5675

5680

5685

5690

5695

5700

5705

5710

5715

5720

5725

5730

5735

5740

5745

5750

5755

5760

5765

5770

5775

5780

5785

5790

5795

5800

5805

5810

5815

5820

5825

5830

5835

5840

5845

5850

5855

5860

5865

5870

5875

5880

5885

5890

5895

5900

5905

5910

5915

5920

5925

5930

5935

5940

5945

5950

5955

5960

5965

5970

5975

5980

5985

5990

5995

6000

6005

6010

6015

6020

6025

6030

6035

6040

604

ning conditions.

Claims

5 1. Acid-dyeable polyamide fibre obtainable by spinning a polyamide having an amino end group content of less than 10 meq/kg in which the polyamide having an amino end group content of less than 10 meq/kg is built up of repeating units produced by reaction between at least one diamine and at least one dicarboxylic acid (AABB) or by ring-opening polymerization of a lactam (AB) or by condensation of an amino acid (AB), characterized in that, in each 10 polyamide chain in the case of AABB units, at least one unit derived from a dibasic acid having the formula

-Z-X-Z-

15 is present in the polyamide chain, or the polyamide chain is terminated by at least one unit having the formula


-Z-X-Y

20 and, in each polyamide chain in the case of AB units, at least one unit

Y-X(-Z-)_n

25 is present, where X = an organic radical having a basic nature, Y = H or ZH and n = 1 - 20 and Z = an acid radical.

2. Polyamide fibre according to Claim 1, characterized in that Z is

35 3. Polyamide fibre according to Claim 1, characterized in that X is a radical of a nitrogen-containing and/or oxygen-containing organic compound.

40 4. Polyamide fibre according to Claim 3, characterized in that X is a radical of a nitrogen-containing and/or oxygen-containing heterocyclic compound.

45 5. Polyamide fibre according to Claim 4, characterized in that X is a radical of a nitrogen-containing heterocyclic compound.

50 6. Polyamide fibre according to Claim 5, characterized in that the nitrogen-containing heterocyclic compound is chosen from the group comprising pyridine, piperidine, quinoline, quinoxaline, acridine, indole, phenanthridine, 1,4-diazines, 1,3,5-triazines, furan and proline, which have been substituted, if required.

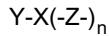
55 7. Polyamide fibre according to Claim 6, characterized in that the nitrogen-containing heterocyclic compound is melamine.

8. Polyamide fibre according to Claim 6, characterized in that at least one unit per polyamide chain is chosen from the group derived from picolinic acid, pyridine dicarboxylic acids, 2- or 4-piperidine carboxylic acid, acridine carboxylic acids, 2-, 4- or 8-quinoline carboxylic acid and quinoxaline carboxylic acids.

Patentansprüche

1. Säure-färbbare Polyamidfaser, erhältlich durch Spinnen eines Polyamids mit einem Amino-Endgruppengehalt von weniger als 10 meq/kg, in welchem das Polyamid mit einem Amino-Endgruppengehalt von weniger als 10 meq/kg aus sich wiederholenden Einheiten aufgebaut ist, hergestellt durch die Reaktion zwischen mindestens einem Diamin und mindestens einer Dicarbonsäure (AABB) oder durch Ringöffnungspolymerisation von einem Lactam (AB) oder durch Kondensation einer Aminosäure (AB), dadurch gekennzeichnet, dass in jeder Polyamidkette im Fall von AABB-Einheiten, zumindest eine Einheit, abgeleitet von einer zweibasischen Säure, mit der Formel

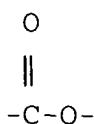
10


in der Polyamidkette vorhanden ist, oder die Polyamidkette durch mindestens einen Einheit mit der Formel

15

beendet wird und in jeder Polyamidkette im Fall von AB-Einheiten, zumindest eine Einheit

20



vorhanden ist, worin X = ein organischer Rest mit einer basischen Beschaffenheit, Y = H oder ZH und n = 1-20 und Z = ein Säurerest ist.

25

2. Polyamidfaser gemäss Anspruch 1, dadurch gekennzeichnet, dass Z

30

35

darstellt.

3. Polyamidfaser gemäss Anspruch 1, dadurch gekennzeichnet, dass X einen Rest einer Stickstoff enthaltenden und/oder Sauerstoff enthaltenden organischen Verbindung darstellt.

40 4. Polyamidfaser gemäss Anspruch 3, dadurch gekennzeichnet, dass X einen Rest einer Stickstoff enthaltenden und/oder Sauerstoff enthaltenden heterocyclischen Verbindung darstellt.

5. Polyamidfaser gemäss Anspruch 4, dadurch gekennzeichnet, dass X einen Rest einer Stickstoff enthaltenden heterocyclischen Verbindung darstellt.

45 6. Polyamidfaser gemäss Anspruch 5, dadurch gekennzeichnet, dass die Stickstoff enthaltende heterocyclische Verbindung ausgewählt wird aus der Gruppe umfassend Pyridin, Piperidin, Chinolin, Chinoxalin, Acridin, Indol, Phenathridin, 1,4-Diazinen, 1,3,5-Triazinen, Furan und Prolin, welche falls erforderlich substituiert worden sind.

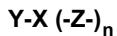
50 7. Polyamidfaser gemäss Anspruch 6, dadurch gekennzeichnet, dass die Stickstoff enthaltende heterocyclische Verbindung Melamin ist.

8. Polyamidfaser gemäss Anspruch 6, dadurch gekennzeichnet, dass zumindest eine Einheit pro Polyamidkette ausgewählt wird aus der Gruppe abgeleitet von Picolinsäure, Pyridindicarbonsäuren, 2- oder 4-Piperidincarbonsäure, Acridincarbonsäure, 2-, 4- oder 8-Chinolincarbonsäure und Chinoxalincarbonsäuren.

Revendications

1. Fibre polyamide qu'on peut obtenir en filant un polyamide ayant un taux de groupes amino terminaux de moins de 10 mEq/kg dans laquelle le polyamide ayant un taux de groupes amino terminaux de moins de 10 mEq/kg est constitué de motifs de répétition produits par réaction entre au moins une diamine et au moins un acide dicarboxylique (AABB) ou par polymérisation par ouverture de cycle d'un lactame (AB) ou par condensation d'un aminoacide (AB), caractérisée en ce que, dans chaque chaîne polyamide dans le cas de motifs AABB, est présent dans la chaîne polyamide au moins un motif obtenu à partir d'un acide dibasique ayant la formule

10


ou en ce que la chaîne est terminée par au moins un motif ayant la formule

15

et, est présent dans chaque chaîne polyamide dans le cas de motifs AB, au moins un motif

20

dans lesquels X = un groupe organique ayant une nature basique, Y = H ou ZH et n = 1 à 20 et Z = un radical acide.

25 2. Fibre polyamide selon la revendication 1, caractérisée en ce que, Z est

30 3. Fibre polyamide selon la revendication 1, caractérisée en ce que, X est un radical d'un composé organique contenant de l'azote et/ou contenant de l'oxygène.

35 4. Fibre polyamide selon la revendication 3, caractérisée en ce que, X est un radical d'un composé hétérocyclique contenant de l'azote et/ou contenant de l'oxygène.

40 5. Fibre polyamide selon la revendication 4, caractérisée en ce que, X est un radical d'un composé hétérocyclique contenant de l'azote.

45 6. Fibre polyamide selon la revendication 5, caractérisée en ce que, le composé hétérocyclique contenant de l'azote est choisi parmi la pyridine, la pipéridine, la quinoléine, la quinoxaline, l'acridine, l'indole, la phénanthridine, les 1,4-diazines, les 1,3,5-triazines, le furane et la proline, qui ont été substitués, si nécessaire.

7. Fibre polyamide selon la revendication 6, caractérisée en ce que, le composé hétérocyclique contenant de l'azote est la mélamine.

50 8. Fibre polyamide selon la revendication 6, caractérisée en ce qu'au moins un motif par chaîne polyamide est choisi parmi l'acide picolinique, les acides piridine-dicarboxylique, l'acide 2- ou 4-pipéridinecarboxylique, les acides acridinecarboxyliques, l'acide 2-, 4- ou 8-quinoléinecarboxylique et les acides quinoxalinecarboxyliques.

55