S 20020002625A
a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2002/0002625 A1l
Vange et al. (43) Pub. Date: Jan. 3, 2002

(54) SYSTEM AND METHOD FOR Related U.S. Application Data
REFORMATTING DATA TRAFFIC
(63) Non-provisional of provisional application No.
(76) Inventors: Mark Vange, Toronto (CA); Marc 60/197,490, filed on Apr. 17, 2000.
Plumb, Toronto (CA)
Publication Classification
Correspondence Address:

Stuart T. Langley, Esq. (51) Int. CL7 oo GO6F 15/16
Hogan & Hartson, LLP (52) US.ClL .. 709/246, 709/203; 709/227
Suite 1500
1200 17th Street ©7) ABSTRACT
Denver, CO 80202 (US) A method for delivering network resources involving estab-
lishing data traffic between a two or more network-con-
(21) Appl. No.: 09/835,872 nected computers. Data contained within the traffic is refor-
matted at least once in an intermediary computer between
(22) Filed: Apr. 16, 2001 the first and second computers.
407 406 201
/ < ’/ 402
205 .) — /]
RESPONSE |
g REFORMAT [REASSEMBLE |« PARSER
E—
— \I Y V l/‘ ;
= = -
== _ TCP -« CACHE T™MP - _
] y Y
A
PARSER ™
REQUEST || BLENDER
> REFORMAT [™] -\
~404
402 f
408

FRONTEND | /" 207
MGR

Patent Application Publication Jan. 3,2002 Sheet 1 of 7 US 2002/0002625 A1

o
o
~—

FIG. 1

102—¢
I —
I —

Jan. 3,2002 Sheet 2 of 7 US 2002/0002625 A1

Patent Application Publication

cle

\

/

d3IAYES

HIANHES

d3INASS
AdVIAINHILNI

ve "Old

Y

HIAY3S

)
hl@ON

SE(le]

L/ soz

Jan. 3,2002 Sheet 3 of 7 US 2002/0002625 A1

Patent Application Publication

602

¢

7

HIOVNVIN HAOVNYN
aN3I MOvE QN3 LNO¥4

HIAY3S

g¢ 'old

IN3ITD

aN3 X0vd

HIANIS

Vi

Lie

aN3 MOve

ANIND

)

HINGES

0o¢

AN3AINO

./ G0¢

AN3IO

Jan. 3,2002 Sheet 4 of 7 US 2002/0002625 A1

Patent Application Publication

60¢€

S

J010341a3y

O SNd

L0¢

d3INA3S
g39M

¢
D
012

LLE

L1

£ 'Ol4
10€
vV SNA
50¢
N
N IN3MD
~
dINATOSIY LOS
di/doL yISMoud
S
{
coe” D
50z

Jan. 3,2002 Sheet 5 of 7 US 2002/0002625 A1

Patent Application Publication

80¥

_‘_nvk

c0r —

vy "Old

i HON
20Z. /| aN3 INO¥
)4
K LYWHO43y |)
1sano | L SEIS
-
. doL IHOVD [doL
J ,
607 — % coy —~ +|, 4[9‘
5| lvwyo43d
HIASHVd 3SNOJSTY — JFT19NISSVYEY
/= (
_ v

90¢ \

90V

\
Y

L0V

'|[]

o
o
(o]

Jan. 3,2002 Sheet 6 of 7 US 2002/0002625 A1

Patent Application Publication

1404

|

c0¢ &

c0v .\\

gy "Old

R
202 /| aNa3 INO¥A
807
) 2ov
ﬁ <] LYNNO43Y e
¥3aN3g 1S3N03Y
< ¥asuvd
<
. dNL IHOVO | dol
) \
g0y —~ H eoy — J a[ov
| LYWHO4TY
¥3SHVd Tanassvay [SAIEOTS

rom\

90v

\
y

p
Y

L0¥

"I[]

D
o
N

Jan. 3,2002 Sheet 7 of 7 US 2002/0002625 A1

Patent Application Publication

L |

106G
\
/ o0¢
N
.Ww\wﬂwu_m_wm «— T1gNISSYIY
LOG
0000000
(I C v : i
- -
= . doL IHOVD - dNL -
= D L\
\
W y €0g| S0S
ole
asuvd wmnwmmw_m »| YIANTTE VLVa
i
]
MON\

60¢ HOW
\/\ aN3 Movs

Y

c0¢ \

US 2002/0002625 Al

SYSTEM AND METHOD FOR REFORMATTING
DATA TRAFFIC

RELATED APPLICATIONS

[0001] The present invention claims priority from U.S.
Provisional Patent Application No. 60/197,490 entitled
CONDUCTOR GATEWAY filed on Apr. 17, 2000.

BACKGROUND OF THE INVENTION
[0002] 1. Field of the Invention

[0003] The present invention relates, in general, to net-
work information access and, more particularly, to software,
systems and methods for reformatting request and response
traffic in a data communication system.

[0004] 2. Relevant Background

[0005] Increasingly, business data processing systems,
entertainment systems, and personal communications sys-
tems are implemented by computers across networks that are
interconnected by internetworks (e.g., the Internet). The
Internet is rapidly emerging as the preferred system for
distributing and exchanging data. Data exchanges support
applications including electronic commerce, broadcast and
multicast messaging, videoconferencing, gaming, and the
like.

[0006] Currently, many Internet services are implemented
as client-server systems. The client is typically implemented
as a web browser application executing on a network-
connected workstation or personal computer, although mail,
news, file transfer and other Internet services are relatively
common. The server is typically implemented as a web
server at a fixed network address. A client enters a uniform
resource locator (URL) or selects a link pointing to a URL
where the URL identifies the server and particular content
from the server that is desired. The client request traverses
the network to be received by the server.

[0007] The server then obtains data necessary to compose
a response to the client request. For example, the response
may comprise a hypertext markup language (HTML) docu-
ment in a web-based application. HIML and other markup
language documents comprise text, graphics, active compo-
nents, as well as references to files and resources at other
servers. In the case of static web pages, the web server may
simply retrieve the page from a file system, and send it in an
HTTP response packet using conventional TCP/IP protocols
and interfaces. In the case of dynamically generated pages,
the web server obtains data necessary to generate a respon-
sive page, typically through one or more database accesses.
The web server then generates a page, typically a markup
language document, that incorporates the retrieved data.
Once generated, the web server sends the dynamic page in
a manner similar to a static page.

[0008] Characteristically, web documents include hyper-
links which comprise pointers that, when selected, cause the
user’s browser to access additional Internet resources iden-
tified by the hyperlink. The references contained within
hyperlinks may be absolute (e.g., contain a fully qualified
URL to the specified resource) or relative (e.g., contain
information that is relative to the current page being
viewed). Relative and absolute addressing are, in theory,
functionally equivalent to the client, but, in practice, may

Jan. 3, 2002

cause the systems involved in accessing Internet resources to
behave differently. Hence, it is desirable to be able to rewrite
links within hypertext documents.

[0009] HTML documents, as well as other Internet
resources, include a variety of formatting options that affect
the manner in which client machines behave. For example,
a document may include directly or by reference an image
file stored on the server as a bitmap, compressed bitmap,
JPEG, or other available image format. However, a client
can only display images for which it has installed comple-
mentary viewing software. Moreover, there may be physical
limitations in the display size, color density, or other feature
that prohibit accurate or useful rendering of a particular
resource on a particular client.

[0010] For many client devices, it is desirable to minimize
the code size and, therefore, provide a minimal set of image
viewing applications. Client devices may have limited pro-
cessing power in which case it is undesirable to execute
complex image processing and rendering processes on the
client device to reformat the network resources into a
useable format. These difficulties create significant barriers
to deployment of new client device types as the device
architecture is constrained to a degree by the format of the
data that it is intended to be displayed.

[0011] Hence, there is a continuing difficulty in matching
the format in which Internet resources exist to the format
preferred by the clients that desire access to the Internet
resource. While the problem is described in terms of graph-
ics files, it is in fact more pervasive. A particular client may
be unable to execute Java, for example, where the Internet
resource includes Java resources. In such cases, it would be
desirable to reformat the resource so that it was executable
on the client. A need exists for systems and methods for
systematically reformatting network resources with little or
no effort on the part of site owners in a manner that frees
client devices from constraints imposed by the network
resource format.

[0012] One problem with existing systems is that the web
server activities required to generate a page consume sig-
nificant computing resources within the server. Web servers
have limited resources (e.g., buffers, ports, etc.) that must be
shared amongst the tasks of maintaining connections, pro-
cessing requests, accessing data, and rendering pages. Web
servers can become overburdened and fail when their lim-
ited connection and processing resources are exceeded. The
server interface often becomes a critical bottleneck in web
site performance. To the extent reformatting resources by a
server is even possible, the additional burden placed on the
server is undesirable.

SUMMARY OF THE INVENTION

[0013] Briefly stated, the present invention involves a
system for delivering network resources involving establish-
ing communication between two computers connected via a
network such as request-response traffic between a client
and a server. Data contained within the request/response
traffic is reformatted at least once in a first intermediary
computer between the client and server.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 illustrates a general distributed computing
environment in which the present invention is implemented;

US 2002/0002625 Al

[0015] FIG. 2A shows in block-diagram form significant
components of a system in accordance with the present
invention;

[0016] FIG. 2B shows in block-diagram form significant
components of an alternative system in accordance with the
present invention;

[0017] FIG. 3 shows a domain name system used in an
implementation of the present invention;

[0018] FIG. 4A shows components of FIG. 2A in greater
detail;

[0019] FIG. 4B illustrates components of FIG. 2B in
greater detail; and

[0020] FIG. 5 shows back-end components of FIG. 2B in
greater detail.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0021] The present invention is illustrated and described in
terms of a distributed computing environment such as an
enterprise computing system using public communication
channels such as the Internet. However, an important feature
of the present invention is that it is readily scaled upwardly
and downwardly to meet the needs of a particular applica-
tion. Accordingly, unless specified to the contrary, the
present invention is applicable to significantly larger, more
complex network environments, including wireless network
environments, as well as small network environments such
as conventional LAN systems.

[0022] In general, the present invention provides a set of
systems and methods that effect reformatting of data as it is
exchanged between two or more network-connected com-
puters such as a client computer and a server. While a
client-server connection is a common example, the present
invention is applicable to data exchange between peers as
well. Moreover, the present invention is described in terms
of request-response data exchanges typical in the Internet,
but is readily applied to other types of data exchanges such
as streaming, broadcast, multicast, and other synchronous
and asynchronous message exchange methodologies. In this
manner, the server need not be aware of any peculiarities of
the client device that may be required to present its resources
in a useable fashion on the client. Likewise, the client device
need not be aware of or constrained by the limitations of the
server or the format of the resources provided by the server.

[0023] Essentially, an intermediary server is placed in
communication with the client and server to participate in
the request/response traffic between the client and server. In
this position, the intermediary can be given specific knowl-
edge of the configuration, capabilities and preferred formats
of both the clients and servers. In a particular implementa-
tion, the intermediary server is implemented by a front-end
computer and a back-end computer that are coupled over a
network. This enables either or both of the front-end and
back-end computers to perform the reformatting functions as
needed.

[0024] The reformatting functions involve a range of
reformatting applied to response messages from a server to
a client, including, but not limited to:

[0025]
[0026]

modifying links;
converting graphics formats;

Jan. 3, 2002

[0027]

[0028] modifying image color depth, brightness, con-
trast or the colors themselves

changing display size;

[0029] compressing data;

[0030] translating text;

[0031] removing rich content such as images and
audio file;

[0032] performing optical character or speech recog-

nition;
[0033] encrypting data;
[0034] compiling/converting active content; and
[0035] converting from HTML to XML.
[0036] converting between a first script format and a

second script format (e.g., Java script to ActiveX and
vice versa).

[0037] Although less frequently needed, reformatting can
also be applied to request messages. For example, an HTTP
request can be reformatted into a structured query language
(SQL) request that can be applied to a database. Further,
client requests may include large data sets or parameters that
benefit from compression, encryption, and/or reformatting
of some type. The present invention is contemplated to
encompass all types of reformatting performed in an inter-
mediary server.

[0038] FIG. 1 shows an exemplary computing environ-
ment 100 in which the present invention may be imple-
mented. Environment 100 includes a plurality of local
networks such as Ethernet network 102, FDDI network 103
and Token Ring network 104. Essentially, a number of
computing devices and groups of devices are interconnected
through a network 101. For example, local networks 102,
103 and 104 are each coupled to network 101 through
routers 109. LANs 102, 103 and 104 may be implemented
using any available topology and may implement one or
more server technologies including, for example UNIX,
Novell, or Windows NT networks, or peer-to-peer type
network. Each network will include distributed storage
implemented in each device and typically includes some
mass storage device coupled to or managed by a server
computer. Network 101 comprises, for example, a public
network such as the Internet or another network mechanism
such as a fibre channel fabric or conventional WAN tech-
nologies.

[0039] Tocal networks 102, 103 and 104 include one or
more network appliances 107. One or more network appli-
ances 107 may be configured as an application and/or file
server. Each local network 102, 103 and 104 may include a
number of shared devices (not shown) such as printers, file
servers, mass storage and the like. Similarly, devices 111
may be shared through network 101 to provide application
and file services, directory services, printing, storage, and
the like. Routers 109 provide a physical connection between
the various devices through network 101. Routers 109 may
implement desired access and security protocols to manage
access through network 101.

US 2002/0002625 Al

[0040] Network appliances 107 may also couple to net-
work 101 through public switched telephone network 108
using copper or wireless connection technology. In a typical
environment, an Internet service provider 106 supports a
connection to network 101 as well as PSTN 108 connections
to network appliances 107.

[0041] Network appliances 107 may be implemented as
any kind of network appliance having sufficient computa-
tional function to execute software needed to establish and
use a connection to network 101. Network appliances 107
may comprise workstation and personal computer hardware
executing commercial operating systems such as Unix vari-
ants, Micrsosoft Windows, Maclntosh OS, and the like. At
the same time, some appliances 107 comprise portable or
handheld devices using wireless connections through a
wireless access provider such as personal digital assistants
and cell phones executing operating system software such as
PalmOS, WindowsCE, EPOC and the like. Moreover, the
present invention is readily extended to network devices
such as office equipment, vehicles, and personal communi-
cators that make occasional connection through network
101.

[0042] Each of the devices shown in FIG. 1 may include
memory, mass storage, and a degree of data processing
capability sufficient to manage their connection to network
101. The computer program devices in accordance with the
present invention are implemented in the memory of the
various devices shown in FIG. 1 and enabled by the data
processing capability of the devices shown in FIG. 1. In
addition to local memory and storage associated with each
device, it is often desirable to provide one or more locations
of shared storage such as disk farm (not shown) that pro-
vides mass storage capacity beyond what an individual
device can efficiently use and manage. Selected components
of the present invention may be stored in or implemented in
shared mass storage.

[0043] One feature of the present invention is that front-
end servers 201 (shown in FIG. 2B) and/or intermediate
servers 206 (shown in FIG. 2A) are implemented as an
interchangeable pool of servers, any one of which may be
dynamically configured to provide the application services.
The embodiments of FIG. 2A and FIG. 2B are not strictly
alternative as they may coexist in a network environment. A
redirection mechanism, shown in FIG. 3, is enabled to select
from an available pool of front-end servers 201 and inter-
mediate servers 206 and direct client request packets from
the originating web server to a selected front-end server 201
or intermediary server 206.

[0044] In the case of web-based environments, front-end
201, intermediary server 206, and back-end server 203 can
be implemented using custom or off-the-shelf web server
software. For purposes of this document, a web server is a
computer running server software coupled to the World
Wide Web (i.e., “the web”) that delivers or serves web
pages. The web server has a unique IP address and accepts
connections in order to service requests by sending back
responses. A web server differs from a proxy server or a
gateway server in that a web server has resident a set of
resources (i.e., software programs, data storage capacity,
and/or hardware) that enable it to execute programs to
provide an extensible range of functionality such as gener-
ating web pages, accessing remote network resources, ana-

Jan. 3, 2002

lyzing contents of packets, reformatting request/response
traffic and the like using the resident resources. In contrast,
a proxy simply forwards request/response traffic on behalf of
a client to resources that reside elsewhere, or obtains
resources from a local cache if implemented. A web server
in accordance with the present invention may reference
external resources of the same or different type as the
services requested by a user, and reformat and augment what
is provided by the external resources in its response to the
user. Commercially available web server software includes
Microsoft Internet Information Server (IIS), Netscape
Netsite, Apache, among others.

[0045] In the embodiment of FIG. 2A, intermediary serv-
ers 206 interact directly with server(s) 210-212. In the
embodiment of FIG. 2B, intermediary server 206 is imple-
mented as front-end computer 201 and a back-end computer
203. Front-end server 201 establishes and maintains an
enhanced communication channel with a backend server
203. In either embodiment, intermediary server 206, front-
end 201 and/or back-end 203 operate to reformat request
and/or response traffic flowing between a client 205 and a
server 210-212. The reformatted request (response) is sent
on to either server 210-212 or client 205. Preferably, a cache
structure such as cache 204 shown in FIG. 2A is used to
store reformatted response content so that it can be delivered
directly from cache 204 without reference to a server 210-
212 to offer improved performance. Alternatively, cache 204
may hold response content before it is reformatted, in which
case content used from cache 204 is reformatted after
retrieval from cache but before transmission to a requesting
client 205.

[0046] In the specific examples herein client 205 com-
prises a network-enabled graphical user interface such as a
World Wide Web browser. However, the present invention is
readily extended to client software other than conventional
World Wide Web browser software. Any client application
that can access a standard or proprietary user level protocol
for network access is a suitable equivalent. Examples
include client applications that act as front ends for file
transfer protocol (FTP) services, voice over Internet proto-
col (VOIP) services, network news protocol (NNTP) ser-
vices, multi-purpose internet mail extensions (MIME) ser-
vices, post office protocol (POP) services, simple mail
transfer protocol (SMTP) services, as well as Telnet ser-
vices. In addition to network protocols, the client application
may serve as a front-end for a network application such as
a database management system (DBMS) in which case the
client application generates query language (e.g., structured
query language or “SQLI”) messages. In wireless appli-
ances, a client application functions as a front-end to a
wireless application protocol (WAP) service or the like.

[0047] FIG. 2B illustrates an embodiment in which inter-
mediary server 206 is implemented by cooperative action of
a front-end computer 201 and a back-end computer 203.
Reformatting processes are performed by front-end 201,
back-end 203, or both. As in the embodiment of FIG. 2A,
reformatting includes rewriting links, converting graphics
formats, altering fonts, font sizes, image sizes, color density,
compiling/converting program constructs and the like.

[0048] Front-end mechanism 201 serves as an access point
for client-side communications. In one example, front-end
201 comprises a computer that sits “close” to clients 205. By

US 2002/0002625 Al

“close”, “topologically close” and “logically close™ it is
meant that the average latency associated with a connection
between a client 205 and a front-end 201 is less than the
average latency associated with a connection between a
client 205 and servers 210-212. Desirably, front-end com-
puters have as fast a connection as possible to the clients
205. For example, the fastest available connection may be
implemented in point of presence (POP) of an Internet
service provider (ISP) 106 used by a particular client 205.
However, the placement of the front-ends 201 can limit the
number of browsers that can use them. Because of this, in
some applications it is more practical to place one front-end
computer in such a way that several POPs can connect to it.
Greater distance between front-end 201 and clients 205 may
be desirable in some applications as this distance will allow
for selection amongst a greater number front-ends 201 and
thereby provide significantly different routes to a particular
back-end 203. This may offer benefits when particular routes
and/or front-ends become congested or otherwise unavail-
able.

[0049] Transport mechanism 202 is implemented by coop-
erative actions of the front-end 201 and back-end 203.
Back-end 203 processes and directs data communication to
and from server(s) 210-212. Transport mechanism 202 com-
municates data packets using a proprietary protocol over the
public Internet infrastructure in the particular example.
Hence, the present invention does not require heavy infra-
structure investments and automatically benefits from
improvements implemented in the general-purpose network
101. Unlike the general-purpose Internet, front-end 201 and
back-end 203 are programmably assigned to serve accesses
to a particular server 210-212 at any given time.

[0050] It is contemplated that any number of front-end and
back-end mechanisms may be implemented cooperatively to
support the desired level of service required by the server
owner. The present invention implements a many-to-many
mapping of front-ends to back-ends. Because the front-end
to back-end mappings can by dynamically changed, a fixed
hardware infrastructure can be logically reconfigured to map
more or fewer front-ends to more or fewer back-ends and
web sites or servers as needed.

[0051] A particular advantage of the architectures shown
in FIG. 2A and FIG. 2B is that they are readily scaled. In
accordance with the present invention, not only can the data
itself be distributed, but the functionality and behavior
required to reformat content and resources is readily and
dynamically ported to any of a number of intermediary
computers 206 and/or front-ends 201 and/or back-ends 203.
In contrast, conventional web server systems require addi-
tional hardware and/or software resources scale. In this
manner, any number of client machines 205 may be sup-
ported. In a similar manner, a web site owner may choose
use multiple servers 210-212 that are co-located or distrib-
uted throughout network 101. To avoid congestion, addi-
tional front-ends 201 and/or intermediary servers 206 may
be implemented or assigned to particular web sites. Each
front-end 201 and/or intermediary server 206 is dynamically
re-configurable by updating address parameters to serve
particular web sites. Client traffic is dynamically directed to
available front-ends 201 to provide load balancing.

[0052] In the examples, dynamic configuration is imple-
mented by a front-end manager component 207 (shown only

Jan. 3, 2002

in FIG. 2B) that communicates with multiple front-ends 201
and/or intermediary servers 206 to provide administrative
and configuration information to front-ends 201. Each front-
end 201 includes data structures for storing the configuration
information, including information identifying the IP
addresses of servers 210-212 to which they are currently
assigned. Other administrative and configuration informa-
tion stored in front-end 201 and/or intermediary servers 206
may include information for prioritizing particular data,
quality of service information and the like.

[0053] Similarly, additional back-ends 203 can be
assigned to a web site to handle increased traffic. Back-end
manager component 209 couples to one or more back-ends
203 to provide centralized administration and configuration
service. Back-ends 203 include data structures to hold
current configuration state, quality of service information
and the like. In the particular examples, front-end manager
207 and back-end manager 209 serve multiple servers
210-212 and so are able to manipulate the number of
front-ends and back-ends assigned to each server 210 by
updating this configuration information. When the conges-
tion for the server 210 subsides, the front-end 201, back-end
203, and/or intermediary server 206 can be reassigned to
other, busier servers. These and similar modifications are
equivalent to the specific examples illustrated herein.

[0054] In order for a client 205 to obtain service from a
front-end 201 or intermediate server 206, it must first be
directed to a front-end 201 or intermediate server 206 that
can provide the desired service. Preferably, client 205 ini-
tiates all transactions as if it were contacting the originating
server 210. FIG. 3 illustrates a domain name server (DNS)
redirection mechanism that illustrates how a client 205 is
connected to a front-end 201. The DNS systems is defined
in a variety of Internet Engineering Task Force (IETF)
documents such as RFC0883, RFC 1034 and RFC 1035
which are incorporated by reference herein. In a typical
environment, a client 205 executes a browser 301, TCp/IP
stack 303, and a resolver 305. For reasons of performance
and packaging, browser 301, TCP/IP stack 303 and resolver
305 are often grouped together as routines within a single
software product.

[0055] Browser 301 functions as a graphical user interface
to implement user input/output (I/O) through monitor 311
and associated keyboard, mouse, or other user input device
(not shown). Browser 301 is usually used as an interface for
web-based applications, but may also be used as an interface
for other applications such as email and network news, as
well as special-purpose applications such as database access,
telephony, and the like. Alternatively, a special-purpose user
interface may be substituted for the more general-purpose
browser 301 to handle a particular application.

[0056] TCP/P stack 303 communicates with browser 301
to convert data between formats suitable for browser 301
and IP format suitable for Internet traffic. TCP/IP stack also
implements a TCP protocol that manages transmission of
packets between client 205 and an Internet service provider
(ISP) or equivalent access point. IP protocol requires that
each data packet include, among other things, an IP address
identifying a destination node. In current implementations
the IP address comprise a 32-bit value that identifies a
particular Internet node. Non-IP networks have similar node
addressing mechanisms. To provide a more user-friendly

US 2002/0002625 Al

addressing system, the Internet implements a system of
domain name servers that map alpha-numeric domain names
to specific IP addresses. This system enables a name space
that is more consistent reference between nodes on the
Internet and avoids the need for users to know network
identifiers, addresses, routes and similar information in order
to make a connection.

[0057] The domain name service is implemented as a
distributed database managed by domain name servers
(DNSs) 307 such as DNS_A, DNS_B and DNS_C shown in
FIG. 3. Each DNS relies on <domain name:IP>address
mapping data stored in master files scattered through the
hosts that use the domain system. These master files are
updated by local system administrators. Master files typi-
cally comprise text files that are read by a local name server,
and hence become available through the name servers 307 to
users of the domain system.

[0058] The user programs (e.g., clients 205) access name
servers through standard programs such as resolver 305.
Resolver 305 includes an address of a DNS 307 that serves
as a primary name server. When presented with a reference
to a domain name for a server 210-212, resolver 305 sends
a request to the primary DNS (e.g., DNS_A in FIG. 3). The
primary DNS 307 returns either the IP address mapped to
that domain name, a reference to another DNS 307 which
has the mapping information (e.g., DNS,; B in FIG. 3), or
a partial IP address together with a reference to another DNS
that has more IP address information. Any number of
DNS-to-DNS references may be required to completely
determine the IP address mapping.

[0059] In this manner, the resolver 305 becomes aware of
the IP address mapping which is supplied to TCP/IP com-
ponent 303. Client 205 may cache the IP address mapping
for future use. TCP/IP component 303 uses the mapping to
supply the correct IP address in packets directed to a
particular domain name so that reference to the DNS system
need only occur once.

[0060] In accordance with the present invention, at least
one DNS server 307 is owned and controlled by system
components of the present invention. When a user accesses
a network resource (e.g., a database), browser 301 contacts
the public DNS system to resolve the requested domain
name into its related IP address in a conventional manner. In
a first embodiment, the public DNS performs a conventional
DNS resolution directing the browser to an originating
server 210-212 and server 210-212 performs a redirection of
the browser to the system owned DNS server (i.e., DNC_C
in FIG. 3). In a second embodiment, domain:address map-
pings within the DNS system are modified such that reso-
lution of the of the originating server’s domain automati-
cally return the address of the systemowned DNS server
(DNS_C). Once a browser is redirected to the system-owned
DNS server, it begins a process of further redirecting the
browser 301 to the best available front-end 201.

[0061] Unlike a conventional DNS server, however, the
system-owned DNS C in FIG. 3 receives domain:address
mapping information from a redirector component 309.

[0062] Redirector 309 is in communication with front-end
manager 207 and back-end manager 209 to obtain informa-
tion on current front-end and back-end assignments to a
particular server 210-212. A conventional DNS is intended

Jan. 3, 2002

to be updated infrequently by reference to its associated
master file. In contrast, the master file associated with
DNS_C is dynamically updated by redirector 309 to reflect
current assignment of front-end 201 and back-end 203. In
operation, a reference to servers 210-212 may result in an IP
address returned from DNS_C that points to any selected
front-end 201 that is currently assigned to servers 210-212.
Likewise, servers 210-212 can identify a currently assigned
back-end 203 by direct or indirect reference to DNS_C.

[0063] Despite the efficiency of the mechanisms shown in
FIG. 3, redirection does take some time and it may be
preferable to send subsequent requests for a particular server
210-212 directly to an assigned front-end 201 or interme-
diary server 206 without redirection. When a web page
includes links with absolute references the browser 301 may
attempt DNS resolution each time a link is followed. To
prevent this, one embodiment of the present invention
rewrites these links as a part of its reformatting process. In
this manner, even though the server contains only a page
with absolute references, the page delivered to a client
contains relative references.

[0064] FIG. 4A illustrates a first embodiment in which a
single intermediary computer 206 is used, whereas FIG. 4B
and FIG. 5 illustrate a second embodiment where both
front-end 201 and back-end 203 are used to implement the
intermediary server 206. In the embodiment of FIG. 4A the
intermediary server 206 may be located topologically near
the client 205 or servers 210-212—-either alternative pro-
vides some advantage and the choice of location is made to
meet the needs of a particular application. Like identified
components are substantially equivalent in FIG. 4A, FIG.
4B and FIG. 5 and for ease of understanding are not
duplicatively described herein. Also, the components shown
in FIG. 4A and FIG. 4B are optimized for web-based
applications. Appropriate changes to the components and
protocols are made to adapt the specific examples to other
protocols and data types.

[0065] Requests from client 205 are received by a TCP
unit 401. TCP component 401 includes devices for imple-
menting physical connection layer and Internet protocol (IP)
layer functionality. Current IP standards are described in
IETF documents RFC0791, RFC0950, REC0919, RFC0922,
RFC792, RFC1112 that are incorporated by reference
herein. For ease of description and understanding, these
mechanisms are not described in great detail herein. Where
protocols other than TCP/IP are used to couple to a client
205, TCP component 401 is replaced or augmented with an
appropriate network protocol process.

[0066] TCP component 401 communicates TCP packets
with one or more clients 205. Preferably, TCP component
401 creates a socket for each request, and returns a received
response through the same socket. Received packets are
coupled to parser 402 where the Internet protocol (or equiva-
lent) information is extracted. TCP is described in IETF
RFC0793 which is incorporated herein by reference. Each
TCP packet includes header information that indicates
addressing and control variables, and a payload portion that
holds the user-level data being transported by the TCP
packet. The user-level data in the payload portion typically
comprises a user-level network protocol datagram.

[0067] Parser 402 analyzes the payload portion of the TCP
packet. In the examples herein, HT'TP is employed as the

US 2002/0002625 Al

user-level protocol because of its widespread use and the
advantage that currently available browser software is able
to readily use the HTTP protocol. In this case, parser 402
comprises an HTTP parser. More generally, parser 402 can
be implemented as any parser-type logic implemented in
hardware or software for interpreting the contents of the
payload portion. Parser 402 may implement file transfer
protocol (FTP), mail protocols such as simple mail transport
protocol (SMTP) and the like. Any user-level protocol,
including proprietary protocols, may be implemented within
the present invention using appropriate modification of
parser 402.

[0068] Where the request data information is amenable to
reformatting, it is sent to request reformat unit 408. It is
contemplated that client requests in many environments are
small, carry little data. In such cases it may be desirable to
omit HTTP parser 402 and request reformat unit 408 as the
requests may rarely need reformatting. However, other
applications may require an HTTP request, for example, to
be reformatted to a query language request such as SQL.
Also, parser 402 may be useful where intermediary server
206 performs other functions, such as prioritization, encryp-
tion, compression, and the like that require request analysis
even where request reformatting is not performed.

[0069] To improve performance, front-end 201 optionally
includes a caching mechanism 403. Cache 403 may be
implemented as a passive cache that stores frequently and/or
recently accessed web site content or as an active cache that
stores web site content that is anticipated to be accessed.
Upon receipt of a TCP packet, HTTP parser 402 determines
if the packet is making a request for data within cache 403.
If the request can be satisfied from cache 403 the data is
supplied directly without reference to servers 210-212 (i.e.,
a cache hit). Cache 403 implements any of a range of
management functions for maintaining fresh content. For
example, cache 403 may invalidate portions of the cached
content after an expiration period specified with the cached
data or by data sever 210-212. Also, cache 403 may proac-
tively update the cache contents even before a request is
received for particularly important or frequently used data
from servers 210-212. Cache 403 evicts information using
any desired algorithm such as least recently used, least
frequently used, first in/first out, or random eviction. When
the requested data is not within cache 403, a request is
processed to servers 210-212, and the returned data may be
stored in cache 403.

[0070] A request for data that is not within cache 403 (or
if optional cache 403 is not implemented) will require a
reference to server 210-212. Some packets will comprise
data that may need to be supplied to server 210-212 (e.g.,
customer credit information, form data and the like). In these
instances, HTTP parser 402 couples to transport component
409 The request or reformatted request is passed to transport
component 409 for communication to server 210-212 over
channel 411. In a particular embodiment, transport compo-
nent 409 is implements a TCP/IP layer suitable for transport
over the Internet or other IP network. Transport component
409 creates a socket connection for each request that cor-
responds to the socket created in transport component 401.
This arrangement enables responses to be matched to
requests that generated the responses. Channel 411 is com-
patible with an interface to servers 210-212 which may

Jan. 3, 2002

include Ethernet, Fibre channel, or other available physical
and transport layer interfaces.

[0071] Server 210-212 returns responses to transport com-
ponent 409 and supplies responses to parser 402. Parser 402
implements similar processes with the HTTP response pack-
ets as described hereinbefore with respect to request packets.
Significantly, parser 402 identifies the data portion of
response packets to allow the data portion to be manipulated
by reformat component 406.

[0072] Response reformat component 406 examines the
data portion of response packets to determine when refor-
matting is appropriate. Reformatting is appropriate when,
for example, the response comprises an HTML document
having absolute references in contained links. In this case,
reformat component 406 rewrites the links with relative
references. Reformatting may also be appropriate when the
response includes a graphic format that cannot be interpreted
by the client 205 or may not be appropriate to forward to
client 205 due to constrained bandwidth. In such a case, a
bitmap file might be converted to a JPEG or GIF file. It is
contemplated that reformatting will take place at a wide
variety of manners and granularity ranging from reformat-
ting of contained links to substantively reformatting an
entire document by changing sizes and layout so that it
performs its desired function when presented to a requesting
client 205. Component 406 is optionally used to implement
data decompression where appropriate, decryption, and
handle caching when the returning data is of a cacheable

type.

[0073] Preferably, intermediary server 206 has some
knowledge of client 205°s capabilities, needs and prefer-
ences in order to make intelligent decisions as to when
reformatting is appropriate. This knowledge can be supplied
by client 205 as a cookie or parameter in the request itself.
Alternatively, this knowledge can be maintained in a user
database (not shown) within or accessible to intermediary
206 where the user database associates user identification or
network address with particular types of reformatting that
are to be performed. Intermediary 206 matches request/
response traffic between a particular client 205 and server
210-212 and so can apply the desired reformatting in an
intelligent manner based on a particular client’s needs.

[0074] HTTP component 407 reassembles the response,
including any reformatted data, into a format suitable for use
by client 205, which in the particular examples herein
comprises a web page transported as an HTTP packet. The
HTTP packet is sent to transport component 401 for com-
munication to client 205 on the socket opened when the
corresponding request was received. In this manner, from
the perspective of client 205, the request has been served by
originating server 210-212.

[0075] In the embodiment of FIG. 4A and FIG. 5, inter-
mediary server 206 shown in FIG. 2A is implemented by
front-end computer 201 and back-end computer 203. A
front-end computer 201 refers to a computer located at the
client side of network 101 whereas a back-end computer 203
refers to a computer located at the server side of network
101. This arrangement enables reformatting to be performed
at either or both computers. Hence, in addition to reformat-
ting data to serve needs of clients 205 and server 210-212,
data can be reformatted to improve transport across the
communication link 202 coupling front-end 201 and back-

US 2002/0002625 Al

end 203. For example, back-end 203 can compress graphics
and front-end can apply a corresponding decompression so
that client 205 receives the data in substantially the same
form as provided by server 210-212, but both client 205 and
server 210-212 benefit from improved transport character-
istics.

[0076] Optionally, front-end 201, back-end 203, and inter-
mediary computer 206 implement security processes, com-
pression processes, encryption processes and the like to
condition the received data for improved transport perfor-
mance and/or provide additional functionality. These pro-
cesses may be implemented within any of the functional
components (e.g., data blender 404) or implemented as
separate functional components within front-end 201, back-
end 203 or intermediary 206. Also, parser 402 may identify
priority information transmitted with a request. The priori-
tization information may be provided by the owners of
server 210-212, for example, and may be dynamically
altered, statically set, or updated from time to time to meet
the needs of a particular application.

[0077] In the embodiment of FIG. 4B and FIG. 5, blend-
ers 404 and 504 slice and/or coalesce the data portions of the
received packets into more desirable “TMP™ units” that are
sized for transport through the TMP mechanism 202. The
data portion of TCP packets may range in size depending on
client 205 and any intervening links coupling client 205 to
TCP component 401. Moreover, where compression or other
reformatting is applied, the data will vary in size depending
on the reformatting processes. Data blender 404 receives
information from front-end manager 207 that enables selec-
tion of a preferable TMP packet size. Alternatively, a fixed
TMP packet size can be set that yields desirable performance
across TMP mechanism 202. Data blenders 404 and 504 also
mark the TMP units so that they can be re-assembled at the
receiving end.

[0078] Data blender 404 may also serve as a buffer for
storing packets from all appliances 177 that are associated
with front-end 201. In accordance with the present inven-
tion, data blender 404 may associate a prioritization value
with each packet.

[0079] TMP™ mechanisms 405 and 505 implement the
transport morphing protocol™ (TMP™) packets used in the
system in accordance with the present invention. Transport
morphing protocol and TMP are trademarks or registered
trademarks of Circadence Corporation in the United States
and other countries. Front-end TMP mechanism 405 in
cooperation with a corresponding back-end TMP mecha-
nism 505 shown in FIG. 5 are computer processes that
implement the end points or sockets of TMP link 202. The
TMP mechanism in accordance with the present invention
creates and maintains a stable connection between two
processes for high-speed, reliable, adaptable communica-
tion.

[0080] Another feature of TMP is its ability to channel
numerous TCP connections through a single TMP pipe 202.
The environment in which TMP resides allows multiple TCP
connections to occur at one end of the system. These TCP
connections are then combined into a single TMP connec-
tion. The TMP connection is then broken down at the other
end of the TMP pipe 202 in order to traffic the TCP
connections to their appropriate destinations. TMP includes
mechanisms to ensure that each TMP connection gets

Jan. 3, 2002

enough of the available bandwidth to accommodate the
multiple TCP connections that it is carrying.

[0081] An advantage of TMP as compared to traditional
protocols is the amount of information about the quality of
the connection that a TMP connection conveys from one end
to the other of a TMP pipe 202. As often happens in a
network environment, each end has a great deal of infor-
mation about the characteristics of the connection in one
direction, but not the other. By knowing about the connec-
tion as a whole, TMP can better take advantage of the
available bandwidth.

[0082] In addition to the reformatting functions described
above, reformatting may comprise embedding information
within request/response traffic. As noted above, most web
pages make reference to one or more files that include text,
graphics, or program code such as applets or scripts. When
a web page is delivered to a web browser, the browser reads
these references, makes new requests to retrieve the refer-
enced information, then renders the page. This can result in
each web page requiring tens of server transactions.

[0083] In accordance with the present invention, these
references can be resolved by the front-end 201, back-end
203, or intermediary 206 and embedded or in-lined into the
response. After reformatting, the page can be delivered to
client 205 in a manner that is akin to a static web page in that
the rendering browser need not make further requests.
However, unlike a static page, the page has actually been
dynamically generated according to the requirements of
server 210-212. This operation can reduce the number of
request/response transactions required to generate a page,
especially when some of the referenced data is included in
cache 204, front-end cache 403 or back-end cache 503.

[0084] Another useful reformatting function involves lan-
guage translation. Companies that desire to do business
internationally often face significant challenges and expense
in internationalizing network resources such as web sites.
The most common solution is to maintain separate complete
copies of the web site in each of a limited number of
languages. In accordance with the present invention, refor-
matting may include automated translation services that
convert text files from a first language into a second lan-
guage. The automated translation can be implemented with
any desired degree of accuracy using general-purpose trans-
lation processes or special-purpose translation processes
specified by the owner of a web site.

[0085] In a similar manner, reformatting can change the
communication mode of the data from one type to another.
For example, a text file can be automatically translated to an
audio speech file for delivery to sight impaired users. This
augments reformatting to increase font sizes or change color
schemes to make them more readily viewable by sight
impaired users. In accordance with the present invention,
these services can be offered without any involvement or
extra work for the site owner. These services can be offered
by the owner of an intermediary computer 206 on a sub-
scription basis, for example, to subscribing users.

[0086] Another particular application of the present inven-
tion involves using the reformatting mechanisms to accom-
plish document conversion. There are a number of document
standards for various word processing programs including
Microsoft Word, Corel Wordperfect, postscript, portable

US 2002/0002625 Al

document format, rich text format and the like. Clients must
have installed a viewer and/or editor for the appropriate
document format. The present invention is readily employed
to convert from one document format to another so that the
requesting client can use the material as intended on avail-
able word processing software.

[0087] In a similar manner to document conversion, refor-
matting in accordance with the present invention may be
used to convert a file in a first user-level protocol or language
to an alternative user-level protocol or language. For
example, an HTML document may be reformatted to an
XML or other markup language format, or may be refor-
matted to wireless application protocol (WAP) for display on
WAP devices.

[0088] Reformatting may involve consideration of mul-
tiple data packets in the request/response stream. Transfer-
ring an entire multimedia file or document typically involves
multiple response packets. In such cases it is contemplated
that the intermediary server 206 may be configured to read
and parse all data packets associated with a particular
document, reassemble the document, reformat the docu-
ment, and then break the formatted document into multiple
data packets for transmission.

[0089] Although the invention has been described and
illustrated with a certain degree of particularity, it is under-
stood that the present disclosure has been made only by way
of example, and that numerous changes in the combination
and arrangement of parts can be resorted to by those skilled
in the art without departing from the spirit and scope of the
invention, as hereinafter claimed. For example, while
devices supporting HTTP data traffic are used in the
examples, the HTTP devices may be replaced or augmented
to support other public and proprietary protocols including
FTP, NNTP, SMTP, SQL and the like. In such implementa-
tions the front-end 201 and/or back end 203 are modified to
implement the desired protocol. Moreover, front-end 201
and back-end 203 may support different protocols such that
the front-end 201 supports, for example, HTTP traffic with
a client and the back-end supports a DBMS protocol such as
SQL. Such implementations not only provide the advantages
of the present invention, but also enable a client to access a
rich set of network resources with minimal client software.

We claim:
1. A method for delivering network resources comprising
the acts of:

establishing request-response traffic between a first and
second computer; and

reformatting the request/response traffic at least once in at
least one intermediary computer between the first and
second computer.

2. The method of claim 1 wherein the first computer
comprises a client and the second computer comprises a
server, and the act of establishing request-response traffic
comprises:

generating a client request specifying resources available
on the server;

retrieving the specified resources;

generating a response to the client request in the server
and at least one of the intermediary computers; and

Jan. 3, 2002

forwarding the server response after reformatting from the

at least one intermediary server to the client.

3. The method of claim 1 wherein the act of reformatting
comprises converting graphic data within the request/re-
sponse traffic from a first graphic format to a second graphic
format.

4. The method of claim 1 wherein the act of reformatting
comprises converting executable program constructs within
the request/response traffic from a first format to a second
format.

5. The method of claim 1 wherein the act of reformatting
comprises converting between a Java script component and
an ActiveX component.

6. The method of claim 1 wherein the act of reformatting
comprises converting formatted text within the request/
response traffic from a first format to a second format.

7. The method of claim 1 wherein the act of reformatting
comprises converting text within the request/response traffic
from a first language to a second language.

8. The method of claim 1 wherein the act of reformatting
comprises converting hypertext links within the request/
response traffic between an absolute form and a relative
form.

9. The method of claim 1 wherein the act of reformatting
comprises converting from a first markup language format to
a second markup language format.

10. The method of claim 1 wherein the act of reformatting
comprises converting a document from a first document
format to a second document format.

11. The method of claim 1 wherein the act of reformatting
comprises converting the data from a first compression level
to a second compression level.

12. The method of claim 1 wherein the act of reformatting
comprises considering special needs of the client during the
reformatting.

13. The method of claim 1 further comprising: reformat-
ting at least once in a second intermediary computer.

14. The method of claim 13 wherein the reformatting in
the second intermediary computer undoes at least some of
the reformatting performed in the first intermediary com-
puter.

15. The method of claim 1 wherein the reformatting
comprises reformatting data included in responses only.

16. The method of claim 1 wherein the reformatting
comprises the acts of:

resolving links within the request/response traffic to iden-
tify network resources pointed to by the links;

retrieving resources pointed to by the links;

embedding resources pointed to by the links in-line with
other data in the request/response traffic; and

forwarding the request/response traffic after embedding.
17. A system for communicating data between first and
second computers, the system comprising:

a intermediary computer coupled to a network;

first connection components within the intermediary com-
puter configured to communicate data traffic with the
first computer;

second connection components within the intermediary
computer configured to communicate data traffic with
the second computer; and

US 2002/0002625 Al

reformatting components within the intermediary com-
puter configured to reformat at least some of the data
traffic before the data traffic between the first and
second computers.
18. The system of claim 17 wherein the reformatting
components comprise a graphic conversion process.

19. The system of claim 17 wherein the reformatting
components comprise a compiler.

Jan. 3, 2002

20. The system of claim 17 wherein the reformatting
components comprise a media file conversion process.

21. The system of claim 17 wherein the reformatting
components comprise data compression processes.

22. The system of claim 17 wherein the reformatting
components comprise processes converting documents from
a first markup language to a second markup language.

#* #* #* #* #*

