

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2014/068311 A1

(43) International Publication Date

8 May 2014 (08.05.2014)

(51) International Patent Classification:

A63H 27/10 (2006.01)

(21) International Application Number:

PCT/GB2013/052833

(22) International Filing Date:

30 October 2013 (30.10.2013)

(25) Filing Language:

English

(26) Publication Language:

English

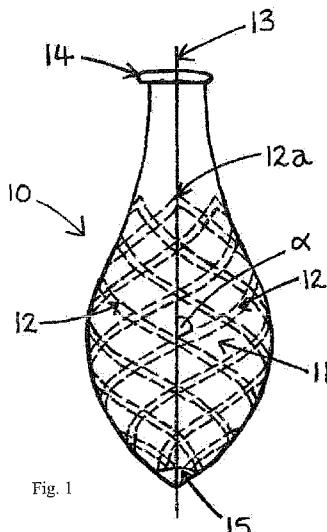
(30) Priority Data:

1219558.2 30 October 2012 (30.10.2012) GB

(71) Applicant: SEATRIEVER INTERNATIONAL HOLDINGS LIMITED [GB/GB]; Mallory House, Unit 9, Goostrey Way, Mobberley Cheshire WA16 7GY (GB).

(72) Inventors: BISHOP, James; c/o Seatriever International Holdings Limited, Mallory House, Unit 9, Goostrey Way, Mobberley Cheshire WA16 7GY (GB). RHOADES, Tony; c/o Seatriever International Holdings Limited, Mallory House, Unit 9, Goostrey Way, Mobberley Cheshire WA16 7GY (GB).

(74) Agent: SLATTERY, David; Blackfriars House, 5th Floor, The Parsonage, Manchester M3 2JA (GB).


(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: TEAR RESISTANT BALLOONS

(57) Abstract: A balloon (10) extending generally axially from an opening (14) at a first end. The balloon comprises an elastomeric film (11) having a first thickness and a plurality of intersecting ribs (12) of a second, greater thickness formed on the film. The ribs are adapted so as to be angled with respect to the axis (13) of the balloon and any axis perpendicular thereto. Such a balloon has increased tear resistance, and can be manufactured with conventional dipping techniques without compromising the integrity of the film. The ribs may comprise a plurality of helices. There is also a former for making such a balloon and a method of using such a former to make such a balloon.

WO 2014/068311 A1

Tear Resistant Balloons

The present invention relates to balloons. In particular, the present invention relates to tear resistant elastomeric formed balloons.

Background to the invention

5 Many balloons are manufactured from elastomeric material. They are typically formed by dipping a generally axial former into a liquid compound. The liquid compound clings to the former and can then be cured and subsequently peeled away from the former. This thereby provides a balloon having a desired shape. As the balloon is formed from elastomeric material it is capable of stretching in use to 10 enable inflation.

As an artefact of the dipping process, the balloon extends generally axially from an opening at a first end. The dipping process also limits the complexity of shapes that can be formed. In particular, formations perpendicular to the axis of the former tool can provide places where air bubbles form or contaminants gather 15 affecting the integrity of the film formed on the mould. Such bubbles or contaminants can weaken the film or reduce its elastic properties.

A problem common to such balloons is the fact that if an elastomeric film is stretched beyond a particular limit, for instance by becoming caught by a sharp edge, a tear can form which will propagate rapidly across the parts of the film under tension. 20 On many occasions the tear will propagate sufficiently far and fast to substantially destroy the balloon. This effect occurs in an inflated balloon when the tear typically propagates at a rate of the order of the speed of sound, resulting in the familiar 'bang' sound when a balloon is burst. This 'bang' can be loud enough to frighten nearby persons. Also, as a result of the speed of propagation of the tear and subsequent recoil

of the opposing edges the balloon can be propelled some distance upon bursting. The propelled balloon fragments following bursting could cause minor injuries if they were to hit the eye or facial area of a nearby person. Additionally, in recent years balloons have been developed incorporating internal illumination means such as those 5 described in WO2008/110832. If such balloons should burst, the illumination means can be propelled at a significant velocity and thus may pose an injury risk to nearby persons. Another problem associated with such balloons is that when a balloon bursts, it can burst into several fragments of varying sizes and these can pose a suffocation risk to children if they attempt to eat them.

10 It is therefore an object of the present invention to provide a balloon which at least partially overcomes or alleviates the above problems.

Summary of the invention

According to a first aspect of the present invention there is provided a balloon extending generally axially from an opening at a first end, the balloon comprising: an 15 elastomeric film having a first thickness; and a plurality of intersecting ribs of a second, greater thickness formed on the film, wherein the ribs are adapted so as to be angled with respect to the axis of the balloon and any axis perpendicular thereto.

This thereby provides an elastomeric balloon with improved strength and tear resistance. In testing, when compared with an equivalent non-ribbed balloon inflated 20 to the same size, a balloon according to the present invention inflated to 9 inches and then burst, takes on average 2.3 times longer to experience a tear the full length of the balloon, i.e. the tear propagation speed is reduced meaning the likelihood of it causing minor injuries is reduced. It also results in a lower noise level on bursting than that of equivalent non-ribbed balloons, reducing the likelihood of scaring nearby persons as

well as a reduction on fragmentation meaning the risk of suffocation for children is similarly reduced.

This thereby further provides that such a balloon can be manufactured with conventional dipping techniques without compromising the integrity of the film.

5 When ribs are formed on the film at an angle to the axis of the balloon and any axis perpendicular to it, as opposed to parallel and perpendicular to the axis, this reduces the likelihood of trapping air bubbles or other contaminants in the ribs of the balloon during the dipping process. As such, balloons are formed without voids or discontinuities.

10 The intersecting ribs may be elongate. Preferably, the ribs have a substantially constant profile along their length. Preferably each rib has substantially the same profile. Most preferably, the profile is curved. In such instances, the curved profile may comprise an arc of a circle or ellipse.

In some embodiments different ribs may be adapted to have different thicknesses. Preferably in such embodiments, ribs have two different thicknesses. 15 Preferably, in such embodiments alternate ribs are of each different thickness.

At intersection points, the profile of each rib may remain substantially identical. Alternatively, at intersection points, the profile of each rib may vary. This variation may include smoothing of edges or vertices between ribs.

20 The ribs may be aligned at and/or intersect at any desired angle. Preferably, the ribs are aligned at angles to the balloon axis of, say, between 5° and 85°.

The ribs may comprise any particular pattern. Preferably, the ribs comprise a plurality of helices. Having a plurality of helical shaped ribs further reduces the tear propagation time and further reduces the likelihood of trapping air bubbles or other

contaminants in the ribs during the dipping process. Most preferably, the ribs comprise equal numbers of oppositely pitched helices.

In a preferred embodiment, the helices each originate at a cap. The cap may be provided at the distal end of the balloon. The cap may comprise an area of 5 thickness substantially equal to the rib thickness. In the event that the balloon has multiple distal ends, a cap may be provided at each distal end.

Preferably, the ribs are adapted such that each rib ends at an intersection with another rib. In the above embodiments, this may be achieved by having oppositely directed helices meet at their ends.

10 Preferably, the ribs are formed on the internal surface of the balloon such that it would not necessarily be discernible to consumers that the balloon had ribs on the internal surface. The ribs would thereby not spoil the aesthetic appeal of the balloon.

The balloon may be provided with an illumination device mounted inside. In such a balloon, the illumination device may comprise a light emitting diode (LED) 15 and may be powered by at least one battery. The illumination device may have a projection whereby it is attached to the elastomeric film, inside the balloon, by a clip, band or O-ring fitted onto the projection from outside the balloon. A strip of insulating material may be initially located between the battery or batteries and the LED, the strip being capable of being withdrawn, prior to or upon inflation of the 20 balloon, to light up the LED and the balloon.

According to a second aspect of the present invention there is provided a former for making a balloon from elastomeric material comprising: a body portion extending generally axially from a base and conforming to the shape of the balloon to be formed; and a plurality of intersecting grooves provided on said body portion

wherein the grooves are adapted so as to be angled with respect to the axis of the body and any axis perpendicular thereto.

This thereby provides a former for making an elastomeric balloon with improved strength and tear resistance. It further enables such a balloon to be 5 manufactured with conventional dipping techniques without compromising the integrity of the film.

The intersecting grooves may be elongate. Preferably, the grooves have a substantially constant profile along their length. Preferably each groove has substantially the same profile. Most preferably, the profile is curved. In such 10 instances, the curved profile may comprise an arc of a circle or ellipse.

In some embodiments different grooves may be adapted to have different depths. Preferably in such embodiments, grooves have two different depths. Preferably, in such embodiments alternate grooves are of each different depth.

At intersection points, the profile of each groove may remain substantially 15 identical. Alternatively, at intersection points, the profile of each groove may vary. This variation may include smoothing of edges or vertices between grooves.

The grooves may be aligned at and/or intersect at any desired angle. Preferably, the grooves are aligned at angles to the article axis of, say, between 5° and 85°.

20 The grooves may comprise any particular pattern. Preferably, the grooves comprise a plurality of helices. Most preferably, the grooves comprise equal numbers of oppositely pitched helices.

In a preferred embodiment, the helices each originate at a cap. The cap may be provided at the distal end of the former. The cap may comprise an area of depth

substantially equal to the groove depth. In the event that the former has multiple distal ends, a cap may be provided at each distal end.

Preferably, the grooves are adapted such that each groove ends at an intersection with another groove. In the above embodiments, this may be achieved by 5 having oppositely directed helices meet at their ends.

The former may be formed from any suitable substance. In particular, the former may be formed from metal, plastic or ceramic material as desired or required.

According to a third aspect of the present invention there is provided a method of making a balloon according to the first aspect of the present invention using a 10 former according to the second aspect of the present invention, the method comprising the steps of: providing a former according to the second aspect of the second invention; introducing said former into a suitable container of liquid elastomeric material in a direction substantially parallel to the axis of the body; removing the former from the container of liquid elastomeric material in a direction 15 substantially parallel to the axis of the body; curing the elastomeric material; and removing the cured elastomeric material from the former.

The method of the third aspect of the present invention may incorporate any or all of the features of the first and second aspects of the present invention as desired or as appropriate.

20 Curing may be achieved by exposure to radiation, heat or the atmosphere. The elastomeric material may comprise latex.

Detailed Description of the Invention

In order that the present invention may be more clearly understood, a specific embodiment will now be described, with reference to the accompanying drawings, in which:

- 5 Fig 1 is a schematic illustration of a balloon according to the present invention;
- Fig 1a is an expanded cross section of a rib of the balloon of figure 1, showing the profile of a rib;
- Fig 2 is a schematic illustration of a former for making a balloon according to the present invention;
- 10 Fig 3 is a schematic illustration of another embodiment of a former for making a balloon according to the present invention;
- Fig 3a is an end view of the embodiment of figure 3;
- Fig 4 is a schematic illustration of another embodiment of a former for making a balloon according to the present invention;
- 15 Fig 4a is an end view of the embodiment of figure 4;
- Fig 5 is a schematic illustration of another embodiment of a former for making a balloon according to the present invention;
- Fig 5a is an end view of the embodiment of figure 5.

Turning now to figure 1, a tear resistant balloon 10 is shown. The balloon 10 is formed from an elastomeric film of a first thickness and a plurality of intersecting ribs 12 of a second, greater thickness formed on the film 11 and formed of the same material. Typically, the balloon is formed from a suitable elastomeric material such as latex.

The balloon 10 extends generally axially about axis 13 from an opening 14 to an end cap or root 15 which is also of the greater thickness. The ribs 12 are angled with respect to the axis 13 and any axis perpendicular thereto. Angling the ribs 12 in such a manner allows the balloon 10 to be manufactured with conventional dip forming techniques without compromising the integrity of the balloon 10 generally or the ribs 12 particularly. Typically, the angle between the ribs 12 and the axis 13, α , falls in the range 5°-85°.

The ribs 12 are elongate with a substantially constant profile along their length. As is shown in the expanded cross-section of figure 1a, the profile has a curved form. In the example shown, the ribs 12 comprise equal numbers of oppositely pitched helices originating at cap 15. Each rib 12 ends at the meeting point 12a with another rib 12 adjacent to the opening 14.

In use, air can be introduced to the balloon 10 through the opening 14 to inflate the balloon. As a result of the introduced air, the air pressure inside the balloon 10 increases and the elastomeric film 11 expands in response to the increased pressure. When sufficient air has been introduced, the opening 14 can be sealed, typically by tying a knot.

If the balloon does tear, the tear will be limited to one single rhomboid shaped tear, a rhomboid shape as defined by adjacent ribs, leaving the remaining structure of the balloon intact rather than potentially having two or more fragments. Since the likelihood of fragments forming on bursting is significantly reduced, the likelihood of projectile hazards is significantly reduced and consequently the risk of damage. Additionally, fewer fragments forming on bursting significantly reduces the risk of suffocation on broken balloons.

If the inflated balloon 10 is subject to a piercing impact (or indeed, if the pressure within the inflated balloon 10 exceeds a particular level) a tear can form in the thinner film 11. In a conventional balloon, this tear would rapidly propagate across the film, with a maximum speed of a few hundred meters/second. In the 5 present balloon 10, any tear propagates freely only as far as the nearest rib 12. Having hit the rib 12, as the rib 12 is thicker (and hence stronger) than the film 11, the tear slows and then is diverted and propagates alongside the rib 12. When the tear reaches an intersection between two ribs 12, the stress is concentrated at the intersection. As such, the crack is able to propagate across the intersection. However, 10 since the intersection is much thicker than the bulk film 11, this propagation is much slower than the earlier propagation of the tear and absorbs a much larger proportion of the energy powering the propagation than would be the case for a tear travelling an equivalent distance across the film 11.

After propagating across an intersection, the tear will continue to propagate 15 across the film 11 until it reaches another intersection. As a result of the slowing by the first intersection, the tear will propagate across this film with a reduced speed. Upon reaching another intersection, the propagation speed of the tear will once again be reduced as the tear crosses the intersection.

As such, whilst a balloon 10 according to the present invention will still be 20 destroyed by a penetrating impact when inflated, the propagation speed of the tear is significantly reduced. This has the consequence of reducing the recoil speed of the balloon 10 (or balloon fragments) after propagation of the crack is completed. As such, the likelihood of injury or damage being caused by the balloon 10 (or balloon fragments) is reduced.

In view of the above, the balloon 10 of the present invention is particularly well suited to being provided with an illumination device mounted therein (not shown). The illumination device may comprise a light emitting diode (LED) powered by at least one battery. The illumination device typically has a projection whereby it

5 is attached to the elastomeric film 11 (or end cap 15), inside the balloon 10, by a clip or O-ring fitted onto the projection from outside the balloon 10. In a preferred version of such a balloon, a strip of insulating material is initially located between the battery or batteries and the LED, the strip being capable of being withdrawn, prior to or upon inflation of the balloon, to light up the LED and the balloon. Typically, the strip

10 extends through the opening 14 to an outer end region of enlarged width. The strip may also have a second region of enlarged width at a spacing from the enlarged outer end region, the width of said second region being chosen so that it tends to remain inside the opening 14 of the balloon 10, with the rim of the balloon membrane lodged between the respective enlarged width regions, unless a significant force is used to

15 pull the strip outwardly of the balloon 10.

If a balloon does tear as described above to form a rhomboid shaped tear and leaving the rest of the balloon intact, and the balloon contains an illumination device, the illumination device will remain within the balloon, reducing the risk of a projectile hazard.

20 Turning now to figure 2, a former 20 for making a balloon 10 is shown. The former comprises a bulb 21 with a substantially smooth curved bulk surface and a plurality of grooves 22. The bulb 21 extends axially about and axis 23 from a shaft 24 to an end 25.

The grooves 22 are angled with respect to the axis 23 and any axis perpendicular thereto. Typically, the angle between the grooves 22 and the axis 23, α , falls in the range 5°-85°.

5 The grooves 22 are elongate with a substantially constant profile along their length. As is shown in the expanded cross-section of figure 2a, the profile has a curved form. In particular, the grooves 12 may be defined by a depth d and radius r , as shown in figure 2a. In a typical example, the depth d may be in the range 0-3mm and the radius r may be in the range 0.1-2.5 mm.

In the example shown, the grooves 22 comprise equal numbers of oppositely 10 pitched helices originating at end 25. Each groove 22 ends at the meeting point 22a with another groove 22 adjacent to the shaft 24. For a typical balloon former of length in the range 50-100 mm and maximum diameter in the range 50-100 mm. There may be between 2 and 24 helical grooves 12. In a typical example the separation L of successive grooves 12 may be in the region of 5-20 mm.

15 In order to use the former 20 to manufacture a balloon 10, the former is introduced into a suitable container of liquid elastomeric material in a direction substantially parallel to the axis 23. Subsequently, the former 20 is removed from the container of liquid elastomeric material in a direction substantially parallel to the axis 23. This results in a film of liquid elastomeric material clinging to the surface of the 20 former 20 in particular the bulk surface of the bulb 21 and filling the grooves 22. The elastomeric material is subsequently cured and thereby forms a solid film 11 over the bulk surface of the bulb 21 with a plurality of ribs 12 corresponding to the grooves 22. The cured elastomeric material can then be removed from the former 20 to provide a balloon 10 according to the present invention. As a consequence of the angling of the

grooves 22, air bubbles or contaminants do not become trapped in the grooves 22 when the former is introduced to the liquid elastomeric material. As such, the ribs 12 of the balloon 10 can be formed without voids or discontinuities, improving their structural integrity.

5 It is of course to be understood that the invention is not to be restricted to the details of the above embodiment, which is described by way of example only.

CLAIMS

1. A balloon extending generally axially from an opening at a first end, the balloon comprising: an elastomeric film having a first thickness; and a plurality of intersecting ribs of a second, greater thickness formed on the film, wherein the ribs are adapted so as to be angled with respect to the axis of the balloon and any axis perpendicular thereto.
2. A balloon as claimed in claim 1 wherein the intersecting ribs are elongate.
3. A balloon as claimed in claim 1 or 2 wherein the ribs have a substantially constant profile along their length.
- 10 4. A balloon as claimed in claim 3 wherein each rib has substantially the same profile.
5. A balloon as claimed in claim 3 or 4 wherein the profile is curved.
6. A balloon as claimed in any preceding claim wherein different ribs are adapted to have different thicknesses.
- 15 7. A balloon as claimed in claim 6 wherein ribs have two different thicknesses and wherein alternate ribs are of each different thickness.
8. A balloon as claimed in any preceding claim wherein at intersection points, the profile of each rib remains substantially identical.
9. A tear resistant dipped article as claimed in any one of claims 1 to 7 wherein
- 20 10. the profile of each rib includes smoothing of edges or vertices between ribs.
11. A balloon as claimed in any preceding claim wherein the ribs are aligned at angles to the balloon axis of between 5° and 85°.
12. A balloon as claimed in any preceding claim wherein the ribs comprise a plurality of helices.

12. A balloon as claimed in claim 11 wherein the ribs comprise equal numbers of oppositely pitched helices.
13. A balloon as claimed in claim 11 or claim 12 wherein the helices each originate at a cap provided at the distal end of the balloon.
- 5 14. A balloon as claimed in claim 13 wherein in the event that the balloon has multiple distal ends, a cap is provided at each distal end.
15. A balloon as claimed in any one of claims 12 to 14 wherein the ribs are adapted such that each rib ends at an intersection with another rib.
16. A balloon as claimed in any preceding claim wherein the balloon is tear
10 resistant.
17. A balloon as claimed in any preceding claim wherein the balloon is dipped.
18. A balloon as claimed in any preceding claim wherein an illumination device is mounted inside the balloon.
19. A former for making a balloon from elastomeric material comprising: a body
15 portion extending generally axially from a base and conforming to the shape of the balloon to be formed; and a plurality of intersecting grooves provided on said body portion wherein the grooves are adapted so as to be angled with respect to the axis of the body and any axis perpendicular thereto.
20. A former as claimed in claim 19 wherein the intersecting grooves are elongate.
- 20 21. A former as claimed in claim 19 or 20 wherein the grooves have a substantially constant profile along their length.
22. A former as claimed in claim 21 wherein each groove has substantially the same profile.
23. A former as claimed in claim 21 or 22 wherein the profile is curved.

24. A former as claimed in any one of claims 19 to 23 wherein different grooves are adapted to have different depths.

25. A former as claimed in claim 24 wherein grooves have two different depths and alternate grooves are of each different depth.

5 26. A former as claimed in any one of claims 19 to 25 wherein at intersection points, the profile of each groove remains substantially identical.

27. A former as claimed in any one of claims 19 to 25 wherein at intersection points, the profile of each groove includes smoothing of edges or vertices between grooves.

10 28. A former as claimed in any one of claims 19 to 27 wherein the grooves are aligned at angles to the balloon axis of between 5° and 85°.

29. A former as claimed in any one of claims 19 to 28 wherein the grooves comprise a plurality of helices.

30. A former as claimed in claim 29 wherein the grooves comprise equal numbers
15 of oppositely pitched helices.

31. A former as claimed in claim 29 or claim 30 wherein the helices each originate at a cap provided at the distal end of the former.

32. A former as claimed in claim 31 wherein in the event that the former has multiple distal ends, a cap is provided at each distal end.

20 33. A former as claimed in any one of claims 29 to 32 wherein the grooves are adapted such that each groove ends at an intersection with another groove.

34. A method of making a balloon according to any one of claims 1 to 18 using a former according to any one of claims 19 to 33, the method comprising the steps of: providing a former according to any one of claims 19 to 33; introducing said former

into a suitable container of liquid elastomeric material in a direction substantially parallel to the axis of the body; removing the former from the container of liquid elastomeric material in a direction substantially parallel to the axis of the body; curing the elastomeric material; and removing the cured elastomeric material from the former.

35. A method as claimed in claim 34 wherein curing is achieved by exposure to radiation, heat or the atmosphere.

36. A method as claimed in claim 34 or 35 wherein the elastomeric material comprises latex.

10 37. A method as claimed in any one of claims 34 to 36 wherein the method further comprises the step of mounting an illumination device inside the balloon.

38. A method as claimed in claim 37 wherein the mounting step involves attaching a projection of the illumination device to the elastomeric film, inside the balloon, by a clip, band or O-ring fitted onto the projection from outside the balloon.

1 / 5

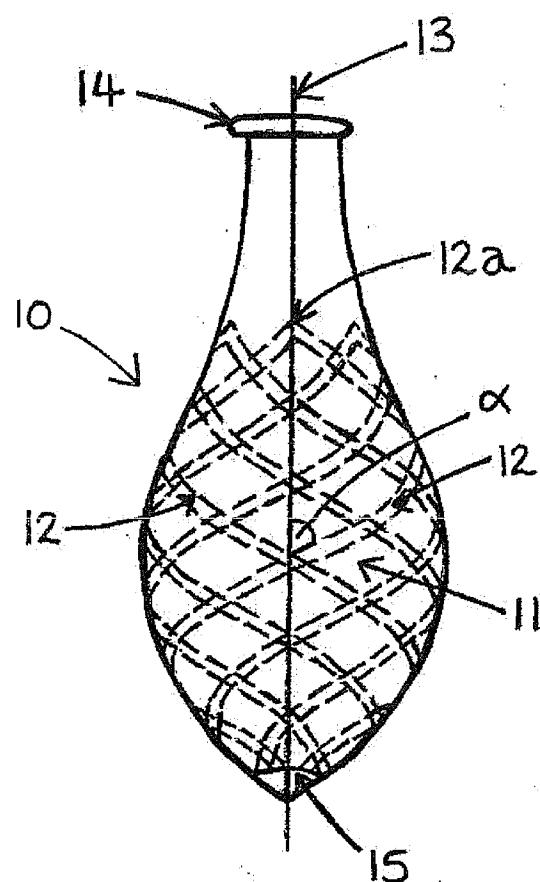


Fig. 1

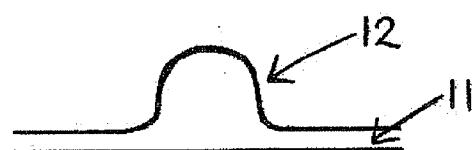


Fig. 1a

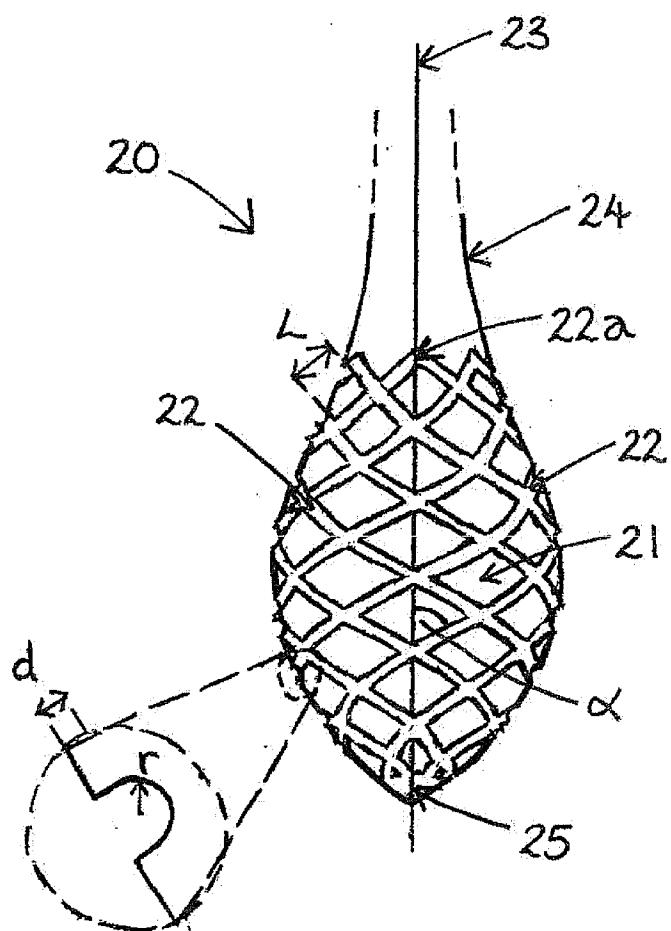


Fig. 2

3 / 5

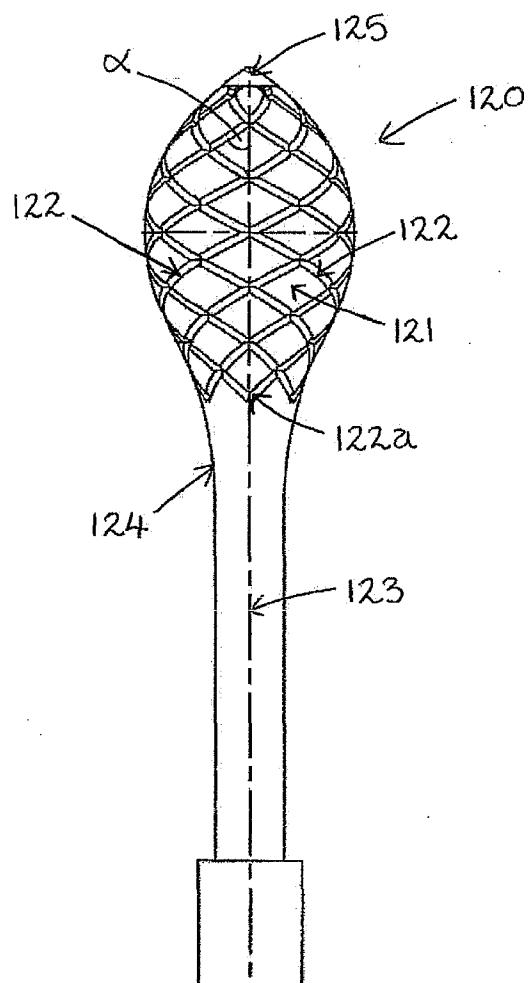


Fig. 3

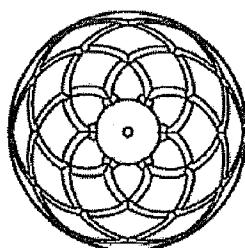


Fig. 3a

4 / 5

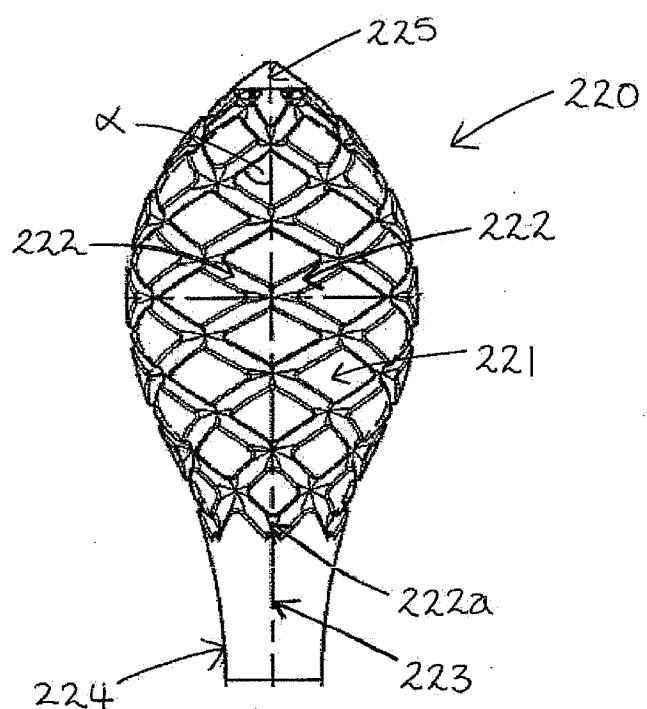


Fig. 4

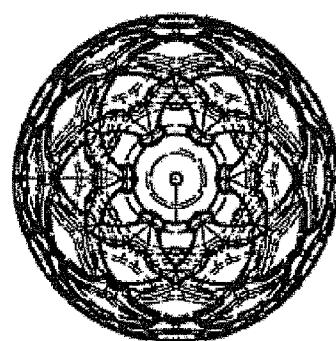


Fig. 4a

5 / 5

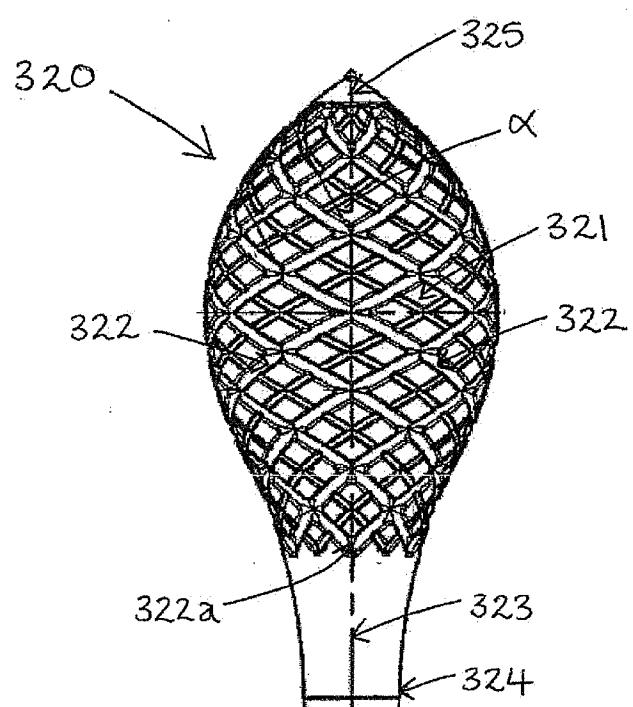


Fig. 5

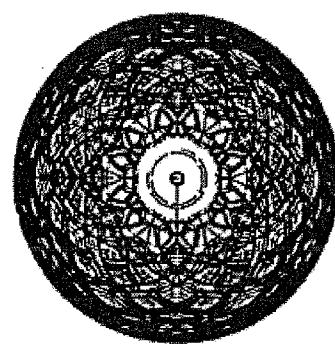


Fig. 5a

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2013/052833

A. CLASSIFICATION OF SUBJECT MATTER
 INV. A63H27/10
 ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 A63H

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EP0-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2 027 225 A (GILL HARRY R) 7 January 1936 (1936-01-07) column 2, line 19 - line 21; figure 9 -----	1-38
X	US 5 356 327 A (GILL III H ROSS [US]) 18 October 1994 (1994-10-18) column 11, line 60 - column 12, line 6; claim 1; figure 9 -----	1-38
A	US 2 193 069 A (KRUEGER ELMER E) 12 March 1940 (1940-03-12) claim 1; figures -----	1-38
A	US 2 635 358 A (CARL GEORGE) 21 April 1953 (1953-04-21) column 1, line 30 - line 42; figure 6 ----- -/-	1-38

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

29 January 2014

06/02/2014

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax: (+31-70) 340-3016

Authorized officer

Lucas, Peter

INTERNATIONAL SEARCH REPORT

International application No

PCT/GB2013/052833

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	GB 846 976 A (LONDON RUBBER COMPANY LTD) 7 September 1960 (1960-09-07) claims 1-7 ----- KR 2002 0071815 A (JANG SUNG HYUN [KR]; KIM CHUL HEE [KR]; MOON YOUNG IN [KR]) 13 September 2002 (2002-09-13) abstract; figures -----	1-38
A		1-38

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2013/052833

Patent document cited in search report		Publication date	Patent family member(s)	Publication date
US 2027225	A	07-01-1936	NONE	
US 5356327	A	18-10-1994	NONE	
US 2193069	A	12-03-1940	NONE	
US 2635358	A	21-04-1953	NONE	
GB 846976	A	07-09-1960	NONE	
KR 20020071815	A	13-09-2002	NONE	