(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(43) International Publication Date
6 November 2014 (06.11.2014)

(10) International Publication Number

WO 2014/178829 A1l

WIPOIPCT

(51) International Patent Classification:
GO6F 9/06 (2006.01) GO6F 11/36 (2006.01)

(21) International Application Number:

PCT/US2013/038738

(22) International Filing Date:

30 April 2013 (30.04.2013)
English
Publication Language: English

Applicant: HEWLETT-PACKARD DEVELOPMENT
COMPANY, L.P. [US/US]; Hewlett-Packard Develop-
ment Company, L.P., 11445 Compaq Center Drive West,
Houston, Texas 77070 (US).

Inventors: SHANI, Inbar; Altalef Street No. 5, 56100 Ye-
hud (IL). LIN, Sharon; Shabazi 19, 56100 Yehud (IL).
OSHRI, Yael; Shabazi 19, 56100 Yehud (IL).

Agents: MCKINNEY, Jack H. et al.; Hewlett-Packard
Company, Intellectual Property Administration, 3404 East
Harmony Road, Mail Stop 35, Fort Collins, Colorado
80528 (US).

(25)
(26)
1

Filing Language:

(72

74

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
T™M, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Published:

with international search report (Art. 21(3))

(54) Title: DEPENDENCIES BETWEEN FEATURE FLAGS

340\

342~/~[CODE SCANNERS
344 CONFIGURATION
SCANNERS

346v-[FEATURE MANAGEMENT
CONNECTOR

352

FLAG
DEFINITIONS
READER

350

348

FLAG
DEPENDENCIES
STORAGE

QUERY ENGINE

CL

} [FEATURE MANAGEMENT] [IDE PLUG-IN]

CONNEGTOR

Fig. 3

5
358

20147178829 A1 I 0100 1 100 OO O 00

5
357 358

(57) Abstract: An example method for handling dependencies between feature flags can include defining, by a processing resource
executing instructions, dependencies between a plurality of feature flags in a process executable by the processing resource. The
method can include enforcing, by the processing resource executing instructions, the dependencies during activation of a first feature

O by a determination of validity of utilization of a feature flag as a switch for a second feature.

WO 2014/178829 PCT/US2013/038738

Dependencies Between Feature Flags

Background
[0001] Continuous Delivery (CD) is a growing practice of a lifecycle of

software development. CD may contribute to automating a code delivery
pipeline, for instance, from a build and unit test stage (e.g., Continuous
Integration {Cl)) to deploying a number of software implementations into an
environment and executing an application programming interface (APl), to
functional and performance testing. In some instances, CD can deploy the
software implementations into a production environment when the testing has

been successfully completed.

Brief Description of the Drawings

[0002] Figure 1 depicts a block diagram of an example method for
handling dependencies between feature flags according to the present
disclosure.

[0003] Figure 2 illustrates a block diagram of an example feature flag
graph according to the present disclosure.

[0004] Figure 3 illustrates a block diagram of an example systemn for
handling dependencies between feature flags according to the present
disclosure.

[0005] Figure 4 illustrates a block diagram of an example computing
system for handling dependencies between feature flags according to the

present disclosure.

WO 2014/178829 PCT/US2013/038738

Detailed Description

{0006] Practitioners of CD and/or Cl may develop large portions of the
instruction code on a main trunk without branching of a code repository (e.9., a
source configuration management (SCM) repository). This practice may reduce
code mergers and may result in code being “in production” throughout
development and/or implementation, considerations that developers can take
into account. '

[0007] Utilization of feature flags (e.g., feature flips, feature switches,
among other terms) is increasing in CD and/or Cl. Practitioners of CD and/or Ci
can utilize feature flags as switches to specifically and dynamically activate and
deactivate (e.g., turn on and off) associated.features of a process executable by
a processing resource, thereby, for instance, reducing risk of possibly causing
malfunction of the process by allowing delivery and/or integration of feature
code continuously.

[0008] For example, a feature (e.g., an intentionally distinguishing
characteristic of a software item and/or code, especially in functionality, with
respect to other software items and/or code) may not be an atomic and/or
independent software item and/or code. That is, in many instances,
functionality of one or more features can be dependent on activation or
inactivation of one or more other features. For example, a second feature may
deliver a “search term completion” function inside a “search” function and a first
feature may deliver the “search” function on a graphic user interface (GUI). In
such a scenario, if a devéloper, for example, activates the second feature
without turning on the first feature as well, the process (e.g., software
application) may be placed in a state where the “search term completion”
function is active but the actual “search” function is inactive, possibly causing
malfunction of the process (e.g., resulting in errors and/or performance
degradation in runtime).

[0009] Feature flags can work by encompas'sing code in a logical “if then”
clause, where the “if” statement can che.ék a variable to see if the feature sHouId
be active or not. The code within the clause can be a primary (and possibly the

only) code path to activate the feature (e.g., a GUI that users can utilize to

WO 2014/178829 PCT/US2013/038738

access the feature, among many other possibilities). For instance, when a
variable is set to “false”, the code may be inaccessible such that the feature is
not rendered fo the users through the GUI, the feature therefore being “hidden”.
Another example is when the clause is surrounding an AP definition, thereby
“hiding” it from being called by other applications (e.g., in the case of
Representational State Transfer (REST) services, among other possibilities).
[0010] Another option is to activate or inactivate the feature flag (e.g.,
turn the feature flag on or off) based on whether a condition is satisfied. As one
example, such a condition can be whether a property of a user is satisfied, such
as turning the feature on via the feature flag for users with administrative rights
but not for read-only users. Another example is to turn the feature on via the
feature flag for a portion of the users (e.g., 10%}) in a given time span (e.g., 2
days), which may, for instance, be done to prevent overuse of certain portions
of the process, computing resources, etc. Another example is with A/B testing
(e.g., split testing) using a sample size of real users.

[0011] Handling dependencies between feature flags, as described in the
present disclosure, can include defining, by a processing resource executing
instructions (e.g., the instructions stored on a non-transitory medium), the
dependencies between a plurality of feature flags in a process executable by
the processing resource. The method can include enforcing, by the processing
resource executing instructions, the dependencies during activation of a first
feature by a determination of validity of utilization of a feature flag as a switch
for a second feature, as described herein. As used herein, “a”, “at least one”, or
“a number of’ an element (e.g., feature flag and/or feature, among other
elements herein) can refer to one or more of such elements. Further, where
appropriate, as used herein, “for example” and “by way of example” should be
understood as abbreviations for “by way of example and not by way of
limitation”.

[0012] Figure 1 depicts a block diagram of an example method for
handling dependencies between feature flags according to the present
disclosure. Unless explicitly stated, the method examples described herein are

not constrained to a particular order or sequence. Additionally, some of the

WO 2014/178829 PCT/US2013/038738

described method examples, or elements thereof, can be performed at the
same, or substantially the same, point in time. As described herein, the actions,
functions, calculations, data manipulations and/or storage, etc., can be
performed by execution of non-transitory machine readable instructions stored
in a number of memories (e.g., software, firmware, and/or hardware, etc.) of a
number of applications. As such, a number of computing resources with a
number of interfaces (e.g., GUIs) can be utilized for handling dependencies
between feature flags (e.g., via accessing a number of computing resources via
the GUIs). _

[0013] The present disclosure describes a method 100 for handling
dependencies between feature flags that utilizes a processing resource to
execute instructions stored on a non-transitory medium. The method can
include, as shown in block 102 of Figure 1, defining, by a processing resource
executing instructions, dependencies between a plurality of feature flags in a
process executable by the processing resource. The process can be, for
example, a software application encoded with program instructions (e.g., code) |
to be executable by a processor to perform the process. The encoded program
instructions can, in various examples, be stored on a portable medium (e.g., a
compact disk, a digital versatile disk, a flash drive, among others) and/or on a
server (e.g., in memory) from which the encoded program instructions can be
downloaded and installed. In some examples, the encoded program
instructions can be included in an application or applications installed on the
server. In some examples, the application or applications can be stored on
integrated memory (e.g., a hard drive) of the server.

[0014] In various examples, such encoded program instructions can be
downloaded (e.g., via CD, as described herein) and/or integrated (e.g., via Cl,
as described herein) during creation and/or development of the process prior to
release to consumers. Alternatively or in addition, such encoded program
instructions can be downloaded and/or provided to consumers for update of
processes executable on personal computing devices (e.g., a personal
computer, a portable telephone, such as a cell phone, a smartphone, etc., a

personal digital assistant, etc).

WO 2014/178829 PCT/US2013/038738

[0015] In some examples of the present disclosure, the method 100 can
include, as shown in block 104 of Figure 1, enforcing, by the processing
resource executing instructions, the dependencies during activation of a first
feature by a determination of validity of utilization of a feature flag as a switch
for a second feature, as described herein. Developers, for example, may
reduce a possibility of causing malfunction of the process by defining
dependencies between feature flags so that when a particular feature is to be
activated or inactivated, the dependencies from that particular feature flag and
other feature flags that that particular feature flag is dependent-on will be
considered. Accordingly, such actlvatlons and/or inactivations via the feature
flags can be made allowable or not allowable dependent on a determination of
the validity (e.g., logicality) in terms of the process flow.

[0016] Defining the dependencies between the feature flags automatically
(e.g., by a programmed flag definitions functionality, as described herein) can
improve the performance (e.g., speed, accuracy, etc.) because, for instance,
developers of a particular feature may not have easy access to the defined
feature flags and/or their respective dependencies of a process, thereby making
it difficult to decide the dependencies that should be defined for the feature flag
of the particular feature. As such, the present disclosure includes, for example,
defining and enforcing the dependencies in association with either of continuous
delivery and/or continuous integration of code for the process.

[0017] Accordingly, the present disclosure describes determining
dependencies between the first feature flag ‘and the second feature flag to
reduce a probability that the activation of the first feature results in a reduction
of process functionality. The reduction in process functionality (€.g., an error
and/or degradation in runtime performance) can, for example, be due to the
second feature flag being either of dependent from the first feature flag (e.g., a
second feature flag not being activated despite the activation of the first feature
flag). The probability can also be reduced that the activation of the first feature
results in a reduction of process functionality due to the first feature flag being
dependent-on the second feature flag (e.g., an activated first feature flag

depending from a second feature flag that is not activated).

WO 2014/178829 PCT/US2013/038738

[0018] Defining the dependencies between feature flags can result in
defining a cyclic dependency between the plurality of feature flags. Defining
such a cyclic dependency can prompt activating a notification that results in
either of removing at least one dependency (e.g., changing a structure of a
process flow) that causes the cyclic dependency and/for applying a consolidated
feature flag to the plurality of feature flags of the cyclic dependency (e.g., to
enable consolidated switching of the plurality of feature flags). In various
examples, the notification can be to a user, a developer, and/or a client and/or a
dedicated programmed functionality, as described herein, and instructions for
removing the cyclic dependency and/or applying the consolidated flag feature
can be initiated by and/or executed by one or more of the user, the developer,
and/or the client and/or the dedicated programmed functionality (e.g., via
execution of instructions by the processing resource). If the cyclic dependency
is subsequently resolved (e.g., by removing at least one dependency), the
feature flags can be switched (e.g., activated and inactivated) individually
instead of as a consolidated feature flag.

[0019] In some examples, the dependencies can be presented on a GUI
(e.g., in a feature management console). In various examples, the
dependencies can be enforced through the GUI (e.g., as initiated by user,
developer, and/or client input and/or automatically through execution of
programmed instructions by the processing resource). For example, a flag
definition functionality, as described herein, can be used to define the
dependencies‘ between the feature flags, enabling the dependencies to be
enforced when activating or inactivating features {e.g., in the feature
management console and/or in runtime).

[0020] Figure 2 illustrates a block diagram of an example feature flag
graph according to the present disclosure. The feature flag graph 210 shown in
Figure 2 illustrates, by way of example and not by way of limitation, a number of
feature flags that can be included among those for features of a home page of a
browser (e.g., visualizable on a GUI). Each of the individual feature flags can
be termed a “vertex” in the flag graph 210 and each of the individual

dependencies can be termed an “edge”. The edges, as illustrated, are code

WO 2014/178829 PCT/US2013/038738

paths each represented as a line with an arrowhead pointing toward a vertex
that the other vertex is dependent-on, each of which can be termed a “directed
edge”.

[0021] The feature flag graph 210 can, for example, have a top bar 212
vertex representing a top bar of the home page. In some examples, the top bar
212 vertex can have no dependencies, indicated by no edges pointing toward or
away from the top bar 212 vertex. The feature flag graph 210 also can, for
example, have a sign-in 214 vertex representing a sign-in functionality of the
home page. A notifications vertex 216 can be shown by an edge 215 to be
dependent from the sign-in 214 vertex such that functionality of the notifications
vertex 216 is dependent on activation of the feature flag of the sign-in 214
vertex. In addition, in some examples, a text/html sidebar widget 218 vertex
can be shown by an edge 217 to be dependent from the sign-in 214 vertex such
that functionality of the text/html sidebar widget 218 vertex is also dependent on
activation of the feature flag of the sign-in 214 vertex. In some examples, an
avatar 220 vertex can be shown by an edge 219 to be dependent from the
text/html sidebar widget 218 vertex such that functionality of the avatar 220
vertex is dependent on activation of both the feature flag of the sign-in 214
vertex and the feature flag of the text/html sidebar widget 218 vertex.

[0022] The feature flag graph 210 can, in some examples, have a search
222 vertex representing a search function of the home page. In some
examples, the search 222 vertex can have a number of dependencies, indicated
by edges pointing toward or away from the search 222 vertex. For example, the
search 222 vertex can have a search history 224 vertex that is shown by an
edge 226 to be dependent from the search 222 vertex and that is also shown by
an edge 225 to be dependent from the sign-in 214 vertex. The search 222
vertex also can, for example, have a dependent auto-complete 228 vertex (e.g.,
for auto-completion of search terms, etc.) with edge 229 and a dependent "I'm
feeling lucky” 230 vertex {e.g., to introduce randomness into searches) with
edge 231. Moreover, the feature flag graph 210 can, in some examples, include
a personal auto-complete 232 vertex (e.é., for completion of search terms that

are personalized to a user) and also can include a targeted advertising 235

WO 2014/178829 PCT/US2013/038738

vertex (e.g., implemented by the home page as being personalized to the user)
that are shown to be dependent from the auto-complete 228 vertex by edges
234 and 236, respectively. |

[0023] In some examples, each of the personal auto-complete 232 vertex
and the targeted advertising 235 vertex can be shown by edges 234 and 236,
respectively, to be dependent from the auto-complete 228 vertex such that
functionality of each of the personal auto-complete 232 and the targeted
advertising 235 vertices is dependent on activation of both the feature flag of the
search 222 vertex and the feature flag of the auto-complete 228 vertex.

[0024] Accordingly, a non-transitory machine readable medium (MRM)
storing a set of instructions can, when executed, cause a processing resource
to define, in a feature flags graph (e.g., 210), dependencies between a plurality
of feature flags in a process executable by the processing resource, determine
operability (functionality) of the process via the feature flags graph when the
process utilizes a first feature flag as a switch, and determine, based upon the
dependencies in the feature flags graph, whether the first feature flag is
utilizable as the switch. That is, in various examples, the feature flags graph
can include the plurality of feature flags as vertices and the dependencies
between the plurality of feature flags as a number of edges (e.g., directed edges
connecting the first feature flag with a number of other feature flags dependent
from the first feature flag and/or that the first feature flag is dependent-on).
[0025] The instructions, when executed, can cause the processing
resource to determine, when the first feature flag is to be activated, validity of a
change in feature flag status based upon a determination of dependent and
dependent-on vertices by traverse from a vertex corresponding to the first
feature flag. The validity of the change (e.g., activation) can be determined by
whether the dependent and dependent-on vertices (e.g., some or each of the
vertices) have feature flags that are activated. In some examples, the
instructions can, when executed, cause a processing resource (e.g., through the
feature management console by user, developer, and/or client input and/or

automatically through execution of instructions by the processing resource) to

WO 2014/178829 PCT/US2013/038738

enable at least one of the feature flags to be activated when it is previously
inactivated (e.g., switched off}, or vice versa.

[0026] By comparison, the instructions, when executed, can cause the
processing resource to determine, when the first feature flag is to be inactivated,
validity of a change in feature flag status based upon a determination of
dependent and dependent-on vertices by traverse from a vertex carresponding
to the first feature flag. The validity of the change (e.g., inactivation) can be
determined by whether the dependent and dependent-on vertices (e.g., some or
each of the vertices) have feature flags that are inactivated. In some examples,
the instructions can, when executed, cause a processing resource (e.g., through
the feature management consolé by user, developer, and/or client input and/or
autdmatica!ly through execution of instructions by the processing resource) to
enable at least one of the feature flags to be inactivated when it is previously
activated.

[0027] In various examples, the instructions, when executed, can cause a
processing resource to determine whether an edge is traversable based upon
satisfaction of at least one input condition, where the at least one input condition
can be selected from a set that includes, for example, environment conditions
and user conditions. Among various examples, the input conditions for
traversability can include a condition (e.g., rule) that the traversability is active
conditioned upon a given locale (e.g., a set of one or more conditions that
define a language, region, country, date-time format setting, number format
setting, etc.) being identified, being in a specified deployment environment (e.g.,
a hardware and/or software infrastructure in which an application code is
deployed for execution), among other such conditions. For example, when
traversing a feature flags graph, the set of input conditions can be used as
conditions to evaluate whether edges can be traversed. When the conditions
are satisfied (e.g., at least one of the conditions, all of the conditions, etc., being
satisfied), the edge will be considered as active and will be traversed. in
contrast, when the conditions are not satisfied, the edge will be considered as

inactive and will not be traversed. This mechanism enables different flag

WO 2014/178829 PCT/US2013/038738
10

dependency results premised upon environment and/or user conditions (e.g.,
locale, deployment environment, user input, among other conditions).

[0028] Figure 3 illustrates a block diagram of an example system for
handling dependencies between feature flags according to the present
disclosure. A feature flags dependency functionality, as described herein, can
be implemented as a standatone tool or within preinstalled feature flags
management systems or as an add-on (e.g., a plug-in) to a developer’'s
integrated development environment (IDE). The feature flags dependency
functionality also can vary implementation of dependencies definitions to
accommodate many different technologies (e.g., based upon deployment
environments, etc.). " | |
[0029] The example of the system 340 for handling dependencies
between feature flags illustrated in Figure 3 can integrate with encoded program
instructions (e.g., feature flag code, etc.) by, for example, a number of code
scanners 342, configurations code scanners 344, and/or a feature management
connector 346 (e.g., integrated with a feature management console, as
described herein). In various examples, the code scanners 342, configurations
code scanners 344, and/or a feature management connector 346 can be
operatively coupled to provide input to a flag definitions reader 348 (e.g.,
processor) that automatically defines (e.g., is programmed to define, as
described herein) dependencies between the feature flags. In some examples,
the flag definitions reader 348 can structure the flag definitions as one or more
feature flag graphs, as described herein. The flag definitions reader 348 can
input the feature flag dependencies to flag definitions storage 350 (e.g.,
memory, as described herein).

[0030] In various examples, the flag definitions storage 350 can be
accessed through a query engine 352 and/or a GUI 354 to operatively enable
dependencies between the feature flags (e.g., based upon the feature flag
graphs, as described herein). The query engine 352 and/or the GUI 354 can, in
various exampies, be acéessed by and/or provide feature flag dependency
information to a command-line interface 356 (CLI) as a means of interaction

with the flag definitions storage 350 and/or coded instructions. For example, a

WO 2014/178829 PCT/US2013/038738
11

user, developer, and/or client can issue commands as successive lines of text
(e.g., command lines). Similarly, the query engine 352 and/or the GUI 354 can,
in various examples, be accessed by and/or provide feature flag dependency
information to a feature management connector 357 {e.g., which can be the
same as or different from feature management connector 346). Moreover, as
described herein, the GUI 354 can, in various examples, be accessed by and/or
provide feature flag dependency information to an IDE plug-in 358.

[0031] Accordingly, the system 340 may include a processing resource
(e.g., a number of processors) in communication with a memory resource (a
number of memories). The memory resource can include a set of machine
readable instructions (MRI) and the processing resource can be designed to
carry out the set of instructions. The processing resource can carry out the set
of instructions to define by at least one of a code scanner functionality (e.g.,
code scanners 342) and/or a configuration scanner functionality (e.g.,
configurations code scanners 344) dependencies between a plurality of feature
flags in a process executable by the processing resource. The dependencies
can be structured by a flag definition functionality (e.g., flag definitions reader
348) such that the plurality of feature flags are vertices and the dependencies
between the plurality of feature flags are a number of edges (e.g., directed
edges connecting a first feature flag with a number of other feature flags
dependent from the first feature flag and/or that the first feature flag is
dependent-on). In some examples, the dependencies can be structured as a
directed acyclic graph (DAG). That is, the feature flag graph can be structured
to prevent directed cycles that start at a particular vertex and follow a number of
directed edges to loop back to the same vertex.

[0032] The structured dependencies can be stored (e.g., in the flag
definitions storage 350) as accessible by either of a query functionality (e.g.,
query engine 352) and/or a GUI 354 (e.g., by the processing resource executing
a set of instructions). In some examples, the feature management connector
357 can be used to access the structured dependencies (e.g., through either of
the query engine 352 and/or the GUI 354) to perform a number of functions.
Functions executable through the query functionality and/or the GUI| 354 can

WO 2014/178829 PCT/US2013/038738
12

(e.g., by the processing resource executing a set of instructions), for example,
include to execute at least one of: mark a first feature flag as either of
dependent from and/or dependent-on a number of other feature flags;
determine either of existence of and/or activation status of the dependent from
and the dependent-on feature flags; determine whether cyclic dependencies
exist: and/or remove at least one of the dependencies (e.g., to resolve a number
of cyclic dependencies, among other reasons); among other functions.

[0033] For example, a user, developer, client, etc., can mark a feature
flag as having a number of feature flags depending therefrom and/or as being
dependent-on one or more other feature flags. The system 340 can store these
definitions and verify correctness of these definitions (e.g., verify lack of cyclic
dependencies, verify that a dependent from and/or a dependent-on feature
exists, etc). In a similar manner, the user can remove a dependency.

[0034] The feature flags graph (e.g., as shown at 210) can be made
visible to the user, developer, client, etc., via, for example, the GUI 354 or its
integration with the [DE plug-in 358 or via other accessibility to the feature flags
system 340. This visibility can enable the user, developer, client, etc., to be
presented with the consequences of defining, adding, and/or removing a feature
flag dependency. A recorded feature flag graph can be queried for statuses of
dependent from and/or dependent-on vertices and/or edges to verify that a
feature flag status can be changed, under a given set of conditions. For
example, when a first feature flag is activated (e.g., turned on) either manually
or by some functionality of the feature flag system, a query can be made (e.g.,
through the query engine 352 and/or the GUI 354) to verify the feature flag state
change is valid.

[0035] The feature flags graph can be traversed from a first flag vertex to
vertices reachable via edges, a record of the reachable vertices can be
returned, and the user, developer, client, etc., and/or a feature management
system can verify that each of the corresponding feature flags and/or edges are
activated or inactivated to enable feature operability and/or otherwise take
corrective action (e.g., activate and/or inactivate a number of feature flags

and/or edges or initiate notification that a number of feature fiags are not

WO 2014/178829 PCT/US2013/038738
13

switchable from one activation state to another activation state). When the first
feature flag is inactivated, a query can be made to determine dependent-on
feature flags and a determination can be made of the vertices that have a path
to the first feature flag’s corresponding vertex. This determination can be
returned and can be used by the user, developer, client, etc. or the feature
management system to verify that the corresponding flags are inactivated to
appropriately disable feature operability and/or otherwise take corrective action
(e.g., inactivate a number of feature flags and/or edges or initiate notification
that a number of feature flags are not switchable from one activation state to
another activation state)..

[0036] Figure 4 illustrates a block diagram of an example computing
system for handling dependencies between feature flags according to the
present disclosure. The computing system 460 can utilize software, hardware,
firmware, and/or logic for handling the dependencies between the feature flags,
as described herein. The computing system 460 can be any combination of
hardware and program instructions. The hardwaré, for example, can include a |
number of processing resources (e.g., processing resource 464), memory
resources (e.g., MRM 468), and/or databases (e.g., flag dependencies storage
350, etc.), among other components. Program instructions (e.g., MRI stored in
modules 470 on MRM 468) are executable by the processing resource 464 to
perform the actions, functions, calculations, data manipulations and/or storage,
etc., as described herein. The processing resource 464 can be in
communication with the MRM 468 via a communication path 466.

[0037] The processing resource 464 can be in communication with a
tangible non-transitory MRM 468 storing a set of MRI 470 executable by the
processing resource 464, as described herein. The MRI 470 can also be stored
in remote memory resources managed by a server (e.g., in a cloud) and/or can
represent an installation package that can be downloaded, installed, and
executed. .

[0038] The processing resource 464 can execute MRI 470 that can be
stored on an internal and/or external non-transitory MRM 468 (e.g., in a

distributed computing environment, such as, in the cloud). The processing

WO 2014/178829 PCT/US2013/038738
14

resource 464 can execute the MRI 470 to perform the various actions,
functions, calculations, data manipulations and/or storage, etc., as described
herein. The MRI 470 can include a number of modules (e.g., 470-1, 470-2, . . .,
470-6, among others) in the MRM 468. Any number and/or combination of
modules can be stored in the MRM 468. The number of modules can inciude
MRI that when executed by the processing resource 464 can instruct execution
of the various actions, functions, calculations, data manipulations and/or
storage, etc., as described herein. In some examples, the number of modules
can include logic. As used herein, “logic” is an alternative and/or additional
processing resource to execute the actions and/or functions, etc., described
herein, which includes hardware (e.g., various forms of transistor logic,
application specific integrated circuits (ASICs), etc.), as opposed to MRlIs (e.g.,
software, firmware, etc.) stored in memory and executable by a processing
resource.

[0039] A number of modules can be sub-modules of other modules. For
example, a code scanner module 470-1 and configuration scanner module 470-
2 can be sub-modules and/or can be contained within the same computing
device. In another example, the number of modules can include individual
modules on separate and distinct computing devices.

[0040] The code scanner module 470-1 can include MRI that when
executed by the processing resource 464 can perform a number of functions.
The code scanner module 470-1 can inciude instructions that when executed
enable scanning, for example by the number of number of code scanners 342,
of programming code (e.g., in a number of memory resources) for determination
of feature flag dependency instructions. The configuration scanner module 470-
2 can include MRI that when executed by the processing rescurce 464 can
perform a number of functions, including'detérmination of feature flag
dependency instructions in saved configurations {(e.g., of applications, features,
etc.) by scanning with the number of configuration code scanners 344.

[0041] A flag definitions module 470-3 can include MRI that when
executed by the processing resource 464 can perform a number of functions.

The flag definitions module 470-3 can include instructions that when executed

WO 2014/178829 PCT/US2013/038738
15

enable, for example by the flag definitions reader 348, overall determination of
feature flag dependencies based upon input from at least one of the code
scanner module 470-1 and/or the configuration scanner module 470-2. In some
examples, such input also can be provided by the feature management
connector 346.

[0042] A flag dependencies storage module 470-4 can include MRI that
when executed by the processing resource 464 can perform a number of
functions. The flag dependencies storage module 470-4 can include
instructions that when executed enable, for example by the flag definitions
storage 350 (e.g., memory, as described herein), feature flag dependencies to
be accessibly stored, as described herein. '

[0043] A query module 470-5 can include MRI that when executed by the
processing resource 464 can perform a number of functions. The query module
470-5 can include instructions that when executed enable, for example through
the query engine 352, input of instructioné, queries, etc.,'(e.g., by the user,
developer, client, feature flag management system, efc.) regarding handling of
the dependencies between the feature flags, as described herein. A GUI
module 470-6 can include MRI that wheh executed by the processing resource
464 can perform a number of functions. Thé GUI module 470-6 can include
instructions that when executed enable, for example through the GUI 354, input
of instructions, queries, efc., (€.g., by the user, developer, client, feature flag
management system, etc.) regarding handling of the dependencies between the
feature flags, as described herein.

[0044] In various examples, the MRM 468 can include a number of other
modules that include MRI that, when executed by the processing resource 464,
can perform a number of functions. For example, a CLI module can include
MRI that when executed by the processing resource 464 can enable, for
example, direct user interaction via the CLI 356 in order to perform a number of
functions via the instructions stored in the query module 470-5 and/or the GUI
470-6. Similarly, a feature management connector module can include MRI that
when executed by the prbcessing resource 464 can enable, for example via the

feature management connector 357, management of a number of functions via

WO 2014/178829 PCT/US2013/038738
16

the instructions stored in the query module 470-5 and/or the GU! module 470-6.
An IDE plug-in module can include MRI that when executed by the processing
resource 464 can enable, for example, functionality of an IDE plug-in 358.
[0045] In various examples, any of the MRI 470 included in the number of
modules (e.g., 470-1, 470-2, . . . , 470-6, among others) can be stored (e.g., in
software, firmware, and/or hardware) individually and/or redundantly in the
same and/or separate locations.” Separately stored MRI 470 can be functionally
interfaced with the processing resource 464 (e.g., via communication path 466).
For example, the flag dependencies storage module 470-4 may be stored
and/or executed in one computing system and the GUI module 470-6 may be
stored and/or executed in another computing system, among many other
examples.

[0046] As described herein, plurality of storage volumes can include
volatile and/or non-volatile storage (e.g., memory). Volatile storage can include
storage that depends upon power to store information, such as various types of
dynamic random access memory {(DRAM), among others. Non-volatile storage
can include storage that does not depend upon power to store information.
Examples of non-volatile storage can include solid state media such as flash
memory, electrically erasable programmable read-only memory (EEPROM),
phase change random access memory (PCRAM), magnetic storage such as a
hard disk, tape drives, floppy disk, and/or tape storage, optical discs, digital
versatile discs (DVD), Biu-ray discs (BD), compact discs (CD), and/or a solid
state drive (SSD), etc., as well as other types of machine readable media.
[06047] The figures herein follow a numbering convention in which the first
digit or digits in the drawing correspond to. the figure number and the remaining
digits identify an element or component in the drawing. Elements shown in the
various figures herein may be added, exchanged, and/or eliminated so as to
provide a number of additional examples of the present disclosure. In addition,
the proportion and the relative scale of the elements provided in the figures are
intended to illustrate the examples of the present disclosure and should not be

taken in a limiting sense.

WO 2014/178829 PCT/US2013/038738
17

[0048] It is to be understood that the descriptions presented herein have
been made in an illustrative manner and not a restrictive manner. Although
specific examples systems, machine readable media, methods and instructions,
for example, for dynamically handling dependencies between feature flags have
been illustrated and described herein, other equivalent component
arrangements, instructions, and/or device logic can be substituted for the
specific examples presented herein without departing from the spirit and scope
of the present disclosure.

[0049] The specification examples provide a description of the application
and use of the systems, machine readable media, methods, and instructions of
the present disclosure. Since many examples can be formulated without
departing from the spirit and scope of the systems, machine readable media,
methods, and instructions described in the present disclosure, this specification
sets forth some of the many possible example configurations and

implementations.

WO 2014/178829 PCT/US2013/038738
18

What is claimed:

1. A method of handling dependencies between feature flags, comprising:
defining, by a processing resource executing instructions, dependencies
between a plurality of feature flags in a process executable by the processing
resource; and
enforcing, by the processing resource executing instructions, the
dependencies during activation of a first feature by a determination of validity of

utilization of a feature flag as a switch for a second feature.

2. The method of claim 1, wherein enforcing comprises determining
dependencies between the first feature flag and second feature fiag to reduce a
probability that the activation of the first feature results in a reduction of process

functionality.

3. The method of claim 1, comprising defining and enforcing the
dependencies in association with either of continuous delivery and continuous

integration of code for the process.

4, The method of claim 1, wherein defining comprises defining a cyclic
dependency between the plurality of feature flags and activating a notification
that results in either of removing at least one dependency that causes the cyclic
dependency and applying a consolidated feature flag to the plurality of feature

flags of the cyclic dependency.

5. The method of claim 1, comprising presenting the dependencies on a
graphic user interface and enforcing the dependencies through the graphic user

interface.

6. A non-transitory machine readable medium storing a set of instructions

that, when executed, cause a processing resource to:

WO 2014/178829 PCT/US2013/038738
19

define, in a feature flags graph, dependencies between a plurality of
feature flags in a process executable by the processing resource;

determine operability of the process via the feature flags graph when the
process utilizes a first feature flag as a switch; and

determine, based upon the dependencies in the feature flags graph,

whether the first feature flag is utilizable as the switch.

7. The medium of claim 8, wherein the feature flags graph comprises the
plurality of feature flags as vertices and the dependencies between the plurality

of feature flags as a number of edges.

8. The medium of claim 7, wherein the instructions, when executed, cause
the processing resource fo determine, when the first feature flag is to be
activated, validity of a change in feature flag status based upon a determination
of dependent and dependent-on vertices by.traverse from a vertex

corresponding to the first feature flag.

g, The medium of claim 8, wherein the instructions, when executed, cause
the processing resource to determine whether the dependent and dependent-on

vertices have feature flags that are activated.

10. The médium of claim 7, wherein the instructions, when executed, cause
the processing resource to determine, when the first feature flag is to be
inactivated, validity of a change in feature flag status based upon a
determination of dependent and dependent-on vertices by traverse from a

vertex corresponding to the first feature flag.

11. The medium of claim 10, wherein the instructions, when executed, cause
the processing resource to determine whether the dependent and dependent-on

vertices have feature flags that are inactivated.

WO 2014/178829 PCT/US2013/038738
20

12. The medium of claim 7, wherein the instructions, when executed, cause
the processing resource to determine whether an edge is traversable based
upon satisfaction of at least one input condition, wherein the input condition is

selected from a set that includes environment conditions and user conditions.

13. A system to handle dependencies between feature flags, the system
comprising a processing resource in communication with a memory resource,
wherein the memory resource includes a set of instructions and wherein the
processing resource is designed to carry out the set of instructions to:

define by at least one of a code scanner functionality and a configuration
scanner functionality dependencies between a plurality of feature flags in a
process executable by the processing resource;

structure the dependencies by a flag definition functionality such that the
plurality of feature flags are vertices and the dependencies between the plurality
of feature flags are a number of edges; and

store the structured dependencies as accessible by either of a query

functionality and a graphic user interface.

14. The system of claim 13, wherein the processing resource is designed to
carry out the set of instructions to structure the dependencies as a directed

acyclic graph.

15. The system of claim 13, wherein the processing resource is designed to
carry out the set of instructions to execute at least one of:

mark a first feature flag as either of dependent from and dependent-on a
number of other feature flags;

determine either of existence and activation status of the dependent from
and the dependent-on feature flags;

determine whether cyclic dependencies exist; and

remove at least one of the dependencies.

WO 2014/178829 PCT/US2013/038738

1/4

100 -
y/

DEFINING, BY A PROCESSING RESOURCE EXECUTING INSTRUCTIONS,
DEPENDENCIES BETWEEN A PLURALITY OF FEATURE FLAGS IN A
PROCESS EXECUTABLE BY THE PROCESSING RESOURCE

~102

ENFORCING, BY THE PROCESSING RESOURCE EXECUTING
INSTRUCTIONS, THE DEPENDENCIES DURING ACTIVATION OF A FIRST
FEATURE BY A DETERMINATION OF VALIDITY OF UTILIZATION OF A
FEATURE FLAG AS A SWITCH FOR A SECOND FEATURE

~104

Fig. 1

WO 2014/178829

2/4

PCT/US2013/038738

235

210~
212
-~ 2 ~
TOP BAR
\) 216
214
0 ,A)/[NOTIFICATIONS]
SIGN N
- TEXTHTML
\\J\L%EDEBAR WIDGET AVATAR
sIESA%%
22 HISTORY
i :1224 PERSONAL |,
SEARCH AUTO- -lawto. COMPLETE
| COMPLETE |
, s TARGETED
IMFEELING | 22 236 ADVERTISING
| LUCKY

Fig. 2

’1230

WO 2014/178829 PCT/US2013/038738

3/4
340\
, , 348 350
342-| CODE SCANNERS
s CONFIGURATION | Moo o FLAG
1 SCANNERS DEPENDENCIES
. 1 READER STORAGE
FEATURE MANAGEMENT),

346"~ CONNECTOR |

359 QUERY ENGINE

5 c CONNECTOR :
356 397 ' 398

[U] [FEATURE MANAGEMENT] [IDEPLUG-IN]

Fig. 3

WO 2014/178829 PCT/US2013/038738

4/4
(460
464
0
PROCESSING
RESOURCE
466
VRM - 468
470-1—~ CODE SCANNER MODULE |
470-2—H CONFIGURATION SCANNER MODULE
470-3~4 FLAG DEFINITIONS MODULE -
| >
470-4—H FLAG DEPENDENCIES STORAGE MODULE
470-5— QUERY MODULE
470-6 - GUI MODULE]

Fig. 4

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2013/038738

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 9/06(2006.01)i, GO6F 11/36(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 9/06;, GO6F 9/44, GOGF 9/38;, GO6F 938; GO6F 11/36

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models

Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KTIPO internal) & Keywords: dependency, feature flags, switch

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 6829699 B2 (LEENSTRA JENS et al.) 07 December 2004 1-16
See column 7, line 21 - column 9, line 43; claims 1, 7, 9, and figures 1-11.
A US 2009-0049438 A1l (DRAPER PATRICK J. et al.) 19 February 2009 1-15
See paragraphs [0017]-[0030]; claims 1, 15, 18, and figures 1-6.
A US 8006229 B2 (SHINOMI HIDEAKI) 23 August 2011 1-15
See column 6, line 41 - column 8, line 58; claims 1, 2, and figures 1-24.
A US 7822948 B2 (LEWIS RUSSELL LEE) 26 October 2010 1-16
See column 4, line 55 — column 9, line 48; claims 1, 16, 18, 20, and figures
1-9.
|:| Further documents are listed in the continuation of Box C. See patent family annex.
* Special categories of cited documents: "T" later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priotity ¢claim(s) or which is step when the document is taken alone
cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be

special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
09 January 2014 (09.01.2014) 13 January 2014 (13.01.2014)
Name and mailing address of the [ISA/KR Authorized officer
Korean Intellectual Property Office
N 189 Cheongsa-to, Seo-gu, Daejeon Metropolitan City, BOK, Jin Yo
Y "~ 302-701, Republic of Korea
Facsimile No. +82-42-472-7140 Telephone No. +82-42-481-5113

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2013/038738
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6829699 B2 07/12/2004 US 2002-0083304 Al 27/06/2002
US 2009-0049438 Al 19/02/2009 US 8429645 B2 23/04/2013
US 8006229 B2 23/08/2011 JP 04-001286 B2 31/10/2007
JP 2005-018114 A 20/01/2005
US 2004-0261067 Al 23/12/2004
US 2008-0222605 Al 11/09/2008
US 2008-0295080 Al 27/11/2008
US 7363613 B2 22/04/2008
US 8185878 B2 22/05/2012
US 7822948 B2 26/10/2010 US 2009-0177868 Al 09/07/2009

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - wo-search-report
	Page 27 - wo-search-report

