
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2001/0010053 A1

Ben-Shachar et al.

US 20010010053A1

(43) Pub. Date: Jul. 26, 2001

(54)

(76)

(21)

(22)

(63)

SERVICE FRAMEWORK FOR A Publication Classification
DISTRIBUTED OBJECT NETWORKSYSTEM

Inventors: Ofer Ben-Shachar, Palo Alto, CA
(US); Vijay Anand, Mountain View,
CA (US); Ken Ebbs, Mountain View,
CA (US); Yarden Yaacov Malka,
Menlo Park, CA (US); David Latimer
Brewster, Santa Clara, CA (US)

Correspondence Address:
GUNNISON MCKAY & HODGSON, LLP
1900 GARDEN ROAD
SUTE 220
MONTEREY, CA 93940 (US)

Appl. No.: 09/816,282

Filed: Mar. 23, 2001

Related U.S. Application Data

(51) Int. CI.7 G06F 9/00; G06F 15/16
(52) U.S. Cl. ... 709/105; 709/201

(57) ABSTRACT

An improved method and apparatus for providing a Service
framework for a distributed object network system are
provided. In Some embodiments, an apparatus that includes
a Server, a Service for a limited resource residing on the
Server, and a pool of workers for the Service that execute
Service requests from a client in a distributed object network
System is provided. In Some embodiments, a method that
includes providing client-Side Service request encapsulation,
balancing workloads among clones of Service locators,
clones of Services, and workers in a worker pool of a Service,

Continuation of application No. 08/969,982, filed on and improving fault tolerance in a distributed object network
Nov. 13, 1997, now Pat. No. 6,209,018.

SERVICE

getService

84

SERVICE
LOCATOR

ADMN

registerService

ADMIN

SERVICE
MANAGER

System is provided.

SERVER

WORKER N SERVICE
OBJECT

ADMN

88

Patent Application Publication Jul. 26, 2001 Sheet 1 of 20 US 2001/0010053 A1

DATA SRact
CORBA

(PRIOR ART)
FIG. 1

-70
72 7 4

FIG 2

76

78

Patent Application Publication Jul. 26, 2001 Sheet 2 of 20 US 2001/0010053 A1

80

SERVICE

SERVER

getService

84

SERVICE
LOCATOR

ADMN

registerService
86

SERVICE
MANAGER

ADMIN

FIG. 3

Patent Application Publication Jul. 26, 2001

OBTAN HANDLE
TO SERVICE

100

LOCATOR

CALL findService ON
THE LOCATOR WITH THE
SERVICE NAME 'RDBMS

SERVICE"

SERVICE LOCATOR
RETURNS THE HANDLE
OF RDBMS SERVICE

CALL allocateWorker
WTH A SET OF ACCESS

REQUIREMENTS AND WORKER
HINTS

GlocoteWorker RETURNS
AN APPROPRIATE WORKER

AS DETERMINED BY
Load Bolancing Manager (LBM)

WORKER RETURNS OUTPUT
FROM EXECUTED REQUEST
TO SERVICE PROXY OF

CLENT

SERVICE PROXY CALLS 112
reledSeWorker ON THE SERVICE

END

Sheet 3 of 20 US 2001/0010053 A1

102

104

106

108

FIG. 4

110

Patent Application Publication Jul. 26, 2001 Sheet 4 of 20 US 2001/0010053 A1

-82
SERVICE PROXY

N executeRequest

I = new Service Locator
Proxy

S = getService

W = S.ollocateWorker

OUT W.executeRequest

FIG. 5

BEGIN

EXECUTE THE
EXECUTE SQL

REQUEST ON SERVICE
PROXY

SERVICE PROXY RETURNS
OUTPUT FROM EXECUTION
OF THE EXECUTE SQL

REQUEST

(LOCATOR

ALLOCATE APPROPRIATE
SERVICE PROXY

SERVICE

SERVICE
OBJECT

140

142

FIG. 6

144

Patent Application Publication Jul. 26, 2001 Sheet 5 of 20 US 2001/0010053 A1

REQUESTS FOR
WORKERS SERVICE

OBJECT (allocateWorker)

alloCoteWorker On
ServiceObject(service, service properties, reservation.context)

FIG. 8

RESERVATION PROPERTIES RESERVATION CONTEXT

166 168
CLIENT PRIORITY CLIENT KEY

ACCESS MODE
SERVICE KEY

WAIT MODE

RESERVATION TIME
(IN mSec)

WORKER KEY

FIG. 9 FIG 10

Patent Application Publication Jul. 26, 2001 Sheet 6 of 20 US 2001/0010053 A1

SERVICE PROPERTIES 18O

service. instanceName
Service. label
service, description
service. Serviced
Service, processlocation
service.type
service. numWorkers
Service. numHiPrworkers
service.maxWorkerRestarts
service, launchSequence FIG 11
service, inactiveManagerinterval

interface INdService : INdAdmin:
void setReservationProperties(

in TNdReservationProperties properties,
inout TNdReservation Context rcontext) raises (CNdInvalidStoteException, CNdSecurityException);

INdWorker ollocateWorker (in TNdReservationProperties properties,
in NdServiceProxyCollback collbock,
inout TNdReservationContext roontext) raises (CNdNoFreeWorkersException,
CNdInvalidStateException,
CNdSecurityException);

void releaseWorker(FIG. 12
inout TNdReservationContext roontext) raises (CNdUnknown WorkerException,
CNdInvalidStateException,
CNdSecurityException);

Patent Application Publication Jul. 26, 2001 Sheet 7 of 20 US 2001/0010053 A1

BEGIN

CLIENT'S
RESERVATION
ON WORKER
EXPRED?

2O2
CONTINUE
WORKING

ARE
ANY OTHER
WORKERS

AVAILABLE?

2O6 RESERVATION
MECHANISM REVOKES
CLENT RESERVATION
ON THE WORKER

FIG. 13

Patent Application Publication Jul. 26, 2001 Sheet 8 of 20 US 2001/0010053 A1

BEGIN

PASS PREVIOUS
WORKERS ID
AS A WORKER

HINT TO RESERVATION
MECHANISM OF
SERVICE OBJECT

220

226
PREVIOUS ASATE
WORKER AVAILABLE

AVAILABLE? WORKER

ALLOCATE
PREVIOUS
WORKER

SERVICE
OBJECT FILLS
IN CONTEXT
WITH CLIENT
NFORMATION

228

FIG. 14

WORKER PROPERTIES 230

worker.numProcesses
Worker, processlocation
Worker, type
Worker.java.VM
Worker.javadebugWM
Worker.exe FIG 16
Worker.portNumber
Worker.moxClients
Worker, inactiveServicelnterval

ServiceType. XXX

Patent Application Publication Jul. 26, 2001 Sheet 9 of 20 US 2001/0010053 A1

interface INdServiceProxyCallback :
oneway Void reservation TimedOut(
in TNdReservation Context roontext);

FIG. 15

SERVICE OBJECT
PERIODICALLY
PINGS WORKER

244 WORKER
ANSWERS
PING?

SERVICE OBJECT
REINSTATATES

WORKER

WORKER
PNCED

PERIODICALLY
BY SERVICE
OBJECT?

NO

WORKER TERMINATES
TSELF

248

FIG. 17

Patent Application Publication Jul. 26, 2001 Sheet 10 of 20 US 2001/0010053 A1

SERVER

280
284

G) 286 START/STOP

CONFIGURE

..configuration
S1
S2

ADMIN
INTERFACE

S1
S2

FIG. 18
SERVICE
LOCATOR

300 508 304
ADDRESS SPACE ADDRESS SPACE

CREATE

DESTROY

TERMINATE

OUT-OF-PROCESS FACTORY IN-PROCESS FACTORY

FIG. 19

Patent Application Publication Jul. 26, 2001 Sheet 11 of 20 US 2001/0010053 A1

321 322

OUT OF
PROCESS
FACTORY

FIG. 20

interface INdObject Factory :
Object create(

in string type,
in TNdAny seq args,
in string objectName,
in booleon make Tie,
in string tie Type,
in TNdProperty Seq propertyList,
inout TNdSecurityContext securityContext)
raises (CNdClassNotFoundException,
CNdInvalidProperty Exception,
CNdSecurityException);

void destroy(
in Object o,
inout TNdSecurityContext securityContext)
raises (CNdObjectNotFoundException, CNdSecurityException);

Void terminate(
in TNdSecurityContext securityContext)
raises (CNdSecurityException);

FIG 21

Patent Application Publication Jul. 26, 2001 Sheet 12 of 20 US 2001/0010053 A1

SERVICE LOCATOR PROPERTIES

sl.java.VM 550

sl.javaDebugWM

slinactiveManagerinterval
FIG. 22

sl.locatorld

sl.owningMonagerd

interface INdLocator : INdAdmin :
TNdServiceDato getService(

in string instanceName, inout TNdSecurityContext securityContext)
raises (CNdNoServiceException, CNdInvalidStateException,
CNdSecurityException);

TNdServiceData seq findService(
in TNdPropertyListKey serviceProperties,
inout TNdSecurityContext securityContext)
raises (CNdNoServiceException, CNdInvalidStateException,
CNdSecurityException);

void registerServices(
in TNdServiceManagerData serviceManager,
in TNdServiceData seq services, inout TNdSecurityContext securityContext)
raises (CNdInvalidStateException, CNdSecurityException);

void updateServicestood(
in TNdServiceManagerData serviceManager,
in TNdServiceLoad seq services, inout TNdSecurityContext securityContext)
raises (CNdServiceMismatchException,
CNdInvalidStateException,
CNdSecurityException);

TNdServiceManagerDoto-Seq getServiceManagers(
inout TNdSecurityContext securityContext)
raises (CNdInvalidStateException, CNdSecurityException);

string-seq getServiceLocatornames(
inout TNdSecurityContext securityContext)
raises (CNdInvalidStateException, CNdSecurityException);

FIG. 23

Patent Application Publication Jul. 26, 2001 Sheet 13 of 20 US 2001/0010053 A1

public interface ICNdLoadBalancing

: ///////// Worker registration/////////
public void registerWorker (INdWorker W,

CNdWorkerAttributes attributes);
public void unregisterWorker (INdWorker W, netdyn.coSistubs. TNdSecurityContextHolder securityContext)

throws CNdUnkown WorkerException;

///////Worker reservation I/
public INdWorker allocateWorker

INdServiceProxyCallback revocation Collback,
TNdReservationProperties properties,
TNdReservationContext rcontext)
throws CNdNoFreeWorkersException;

public void releaseWorker(
TNdReservationContext roontext)
throws CNdUnkown WorkerException;

public void setReservationProperties(
TNdReservationProperties properties,
TNdReservationContext rcontext);

//////////update worker statistics /////////
public void update Workerload(

INdWorker W,
TNdLoad load)
throws CNdUnkown WorkerException;

public INdWorker getWorkers();
//Load manager control //////
public Void stop(

netdyn. Cosi stubs. TNdSecurityContextholder securityContext)
throws CNdInvalidStateException,

CNdSecurityException;
public Void start(

netdyn. COsistubs. TNdSecurityContextHolder securityContext)
throws CNdInvalidStateException,

CNdSecurityException;

public void terminate(
netdyn. Cosiistubs. TNdSecurityContextHolder securityContext)
throws CNdSecurity Exception;

FIG. 24

Patent Application Publication Jul. 26, 2001 Sheet 14 of 20 US 2001/0010053 A1

360
(LBM) LOAD BALANCING MANAGER

364

ALLOCATION QUEUE
MANAGER MANAGER

CLENT USABLE
EU QUEUE

REVOCABLE UNUSABLE
QUEUE QUEUE

FIG. 25

Patent Application Publication Jul. 26, 2001 Sheet 15 of 20 US 2001/0010053 A1

BEGIN

SERVICE PROXY
OBTANS SERVICE

400

HANDLE FROM
SERVICE LOCATOR

SERVICE PROXY ISSUES 402
ALLOCATE WORKER CALL

WITH A SET OF
PROPERTIES AND AN

UNNITALIZED RESERVATION
CONTEXT

SERVICE OBJECT 404
FORWARDS THE
REQUEST TO THE

LBM

410
LBM ALLOCATES

NO FIRST WORKER
N DE QUEUE
OR F NONE

AVAILABLE THEN
IN USABLE QUEUE
OR REVOCABLE

QUEUE
LBM ENQUEUES
THE REQUEST IN
THE CLIENT WAT

QUEUE

408

RETURN RESERVATION “12
CONTEXT TO

SERVICE PROXY

TO FIGURE 26B

FIG. 26A

Patent Application Publication Jul. 26, 2001 Sheet 16 of 20 US 2001/0010053 A1

FROM FIGURE 26A

414

SERVICE PROXY
STORES RESERVATION

CONTEXT AND
ISSUES REQUEST

TO WORKER

416
WORKER CONFIRMS
REQUEST FROM

VALID CLENT BASED
ON RESERVATION
CONTEXT AND

EXECUTES REQUEST

WORKER RETURNS 418
RESULT TO CLIENTS

SERVICE PROXY

FIG. 26B

Patent Application Publication Jul. 26, 2001 Sheet 17 of 20 US 2001/0010053 A1

CLIENT WAIT QUEUE DLE QUEUUE
450 458

4.32 440
HCH PRIORITY HCH PRIORITY

454 442

MEDUM PRIORITY MEDUIM PRIORITY

436 444
LOW PRIORITY LOW PRIORITY

FIG 2

(LBM)
SERVICE OBJECT LOAD BALANCING MANAGER

REGISTRY

456

454

WORKER
STATISTICS

WORKER QUEUES
STATISTICS

452 458 460 462
FIG. 28

Patent Application Publication Jul. 26, 2001 Sheet 18 of 20 US 2001/0010053 A1

CLENT 470

SERVICE SERVER
PROXY

N

getService
480

getService

482

SERVICE
LOCATOR

486

488 SERVICE
LOCATOR
CLONE

FIG. 29

Patent Application Publication Jul. 26, 2001

BEGIN

500

EXCEPTION
RAISED BY
SERVICE
OBJECT?

502 WAD
CACHED
SERVICE
LOCATOR
HANDLE?

506 SERVICE PROXY
OBANS NEW

SERVICE HANDLE
(LE, FOR A

DFFERENT SERVICE
OBJECT)

Sheet 19 of 20 US 2001/0010053 A1

504

SERVICE PROXY
BNDS TO
A NEW

SERVICE LOCATOR

SERVER

ADMIN
STRATIVE
INTERFACE

524

Patent Application Publication Jul. 26, 2001 Sheet 20 of 20 US 2001/0010053 A1

interface INdAdmin :
readonly attribute string INSTANCENAME;
void getLood

Out TNdLOdd odd, inout TNdSecurityContext securityContext)
raises (CNdInvalidStateException, CNdSecurityException):

void getStatistics(
in string seq whichStatistics,
Out TNdStatistic seq statistics, inout TNdSecurityContext securityContext)
raises (CNdInvalidStateException, CNdSecurityException);

void dumpState(
in long stateMask, inout TNdSecurityContext securityContext)
raises (CNdSecurityException);

void terminate(in TNdSecurityContext securityContext)
raises (CNdInvalidStateException, CNdSecurityException);

void stop(
inout TNdSecurityContext securityContext)
raises (CNdInvolidStateException, CNdSecurityException);

Void start(inout TNdSecurityContext SecurityContext)
raises (CNdlnvalidStateException, CNdSecurityException);

void restort(inout TNdSecurityContext securityContext)
raises (CNdlnvalidStateException, CNdSecurityException);

readonly attribute TNdObjectState CURRENT STATE;
TNdSetPropertyResult set Properties(

in TNdProperty Seq propertylist,
inout TNdSecurityContext securityContext)
raises (CNdInvalidProperty Exception,

CNdInvalidStateException, CNdSecurityException);
void message(

in string messageName,
in string Seq meSSdgeParameters,
inout TNdSecurityContext securityContext)
raises (CNdInvalidStateException, CNdSecurityException);

//attributes of any COSI or derived interface
reddonly attribute TNdVersion VERSION;
readonly attribute TNdVersion COST VERSION:

FIG. 32

US 2001/0010053 A1

SERVICE FRAMEWORK FOR A DISTRIBUTED
OBJECT NETWORKSYSTEM

FIELD OF THE INVENTION

0001. This invention relates to programmed computers
and, more particularly, to an improved method and apparatus
for providing a service framework for a distributed object
network System.

BACKGROUND

0002 Computer systems that provide users access to
limited resources are well known. For example, a client
Server System represents a common paradigm for providing
shared access to a limited resource Such as a computer
database on a Server. The typical client-Server System
includes a computer (the “server”) in which one or more
limited resources reside (e.g., are stored) and one or more
satellite computers (the “clients”) which access the limited
resources. The access is generally performed over an elec
tronic communication System. The clients access the limited
resources on an as needed basis.

0003) A server typically includes a computer or multiple
computers connected via an electronic communication SyS
tem, Services (e.g., a data Service that provides access to a
database residing in a computer or a distributed Service
residing in multiple computers connected via an electronic
communication system), and a storage for storing the Ser
vices. The Storage typically includes Some combination of
random access memory ("RAM") and magnetic media, Such
as tapes and disks or optical media, and other Storage
devices. Depending on the requirements of the System, the
Server may be a personal desktop computer that includes a
hard-disk, a large mainframe computer that includes mul
tiple tape drives, or Some other kind of computer.
0004. A client may be a personal computer, a worksta
tion, or Some other kind of computer. A client may be either
remote from the server (i.e., the client accesses the server via
an electronic communication System) or local to the server
(e.g., the client accesses the server via a local bus). A client
may include one or more “applications' Such as a word
processor, a web browser, or database interface Software to
access information from a database on a Server. Some of the
applications may be under the control of a human operator
and otherS may run automatically or under the control of
another application.
0005 An electronic communication system (“network”)
may include commercial telephone lines as well as dedicated
communication lines to carry data Signals between the Server
and the client.

0006 Prior client-server approaches allow a limited num
ber of clients to access limited resources residing in a Server.
In particular, in the typical client-Server environment, the
Workload characteristics are predictable and well known
because of the predetermined limit on the number of clients
and the well known nature of the clients.

0007. However, increasing Internet usage presents a
unique problem for providing a dramatically increasing and
unpredictable number of clients efficient and fair allocation
of access to limited resources residing in a Server. Accord
ingly, prior client-Server approaches are inadequate for the
Internet environment, because the number of concurrent

Jul. 26, 2001

users in the Internet environment generally exceeds the
number of concurrent users in a typical client-Server envi
ronment and is generally more unpredictable.
0008 A Common Object Request Broker Architecture
(CORBA) represents a partial attempt to address the prob
lem of providing an increasing and unpredictable number of
users access to limited resources residing in a Server.
CORBA provides a client/server middleware defined by an
industry consortium called the Object Management Group
(OMG), which includes over 700 companies representing
the entire Spectrum of the computer industry.
0009. In particular, CORBA defines an implementation
independent component-based middleware. CORBA allows
intelligent components to discover each other and interop
erate on an object bus called an Object Request Bus (ORB).
CORBA objects can reside anywhere on a network. Remote
clients can access a CORBA object via method invocations.
Clients do not need to know where a CORBA object resides
or on which operating system the CORBA object is
executed. Thus, a client can access a CORBA object that
resides in the same process or on a machine in another
country connected via the Internet.
0010 Further, both the language and compiler used to
create CORBA objects are transparent to clients. For
example, a CORBA object may be implemented as a set of
C++ classes, in JAVA bytecode, or in COBOL code. Thus,
the implementation of the CORBA object is irrelevant to the
client. The client only needs to know the interface of the
CORBA object. CORBA uses an Interface Definition Lan
guage (IDL) to define a CORBA object's interface, and the
IDL also allows for Specifying a component's attributes Such
as the parent classes it inherits from and the methods its
interface supports. For example, a CORBA object provides
an implementation for the CORBA object's IDL interface
using a language for which an IDL mapping exists. In
particular, CORBA defines a standard mapping from the IDL
to other implementation languages Such as C++, JAVA,
ADA, etc. A CORBA IDL compiler generates client-side
stubs and server-side skeletons for the CORBA object's IDL
interface.

0011 CORBA also specifies bus-related services for cre
ating and deleting objects, accessing them by name, Storing
them in persistent Stores, externalizing their States, and
defining ad hoc relationships between them. Accordingly,
CORBA provides a flexible distributed-object middleware
that provides client-server interoperability. CORBA and
JAVA are both further described in “Client/Server Program
ming with JAVATM and CORBA” by Robert Orfali and Dan
Harkey (John Wiley & Sons: New York, N.Y., 1997).
0012 FIG. 1 shows a typical CORBA environment 38. A
client 40 connects to a server 54 via a network 44 (e.g., via
the Internet). A client 42 connects to the server 54 via a
network 46 (e.g., via the Internet). A client 50 connects to the
server 54 via a network 48 (e.g., via the Internet). CORBA
provides local/remote transparency in a distributed object
network as shown in FIG. 1 by providing Internet Inter
ORB Protocol (IOP) services 52. An ORB service repre
sents a standard CORBA service that can broker inter-object
calls within a single process, multiple processes running
within the same machine, or multiple processes running
within different machines that may be acroSS multiple net
WorkS and operating Systems. For example, the client 42

US 2001/0010053 A1

includes an application that uses client-side Stubs to obtain
an object reference (e.g., a handle) to a remote CORBA
object and to dispatch method invocations to the remote
CORBA object. The communication between the client and
the server-side object uses the IIOP.
0013 Referring to FIG. 1, the server 54 includes a
relational database management systems (RDBMS) 60 (e.g.,
residing in a storage of the server 54). The server 54 also
includes a data Service 56, which can be implemented as a
collection of CORBA objects, that encapsulates the limited
resource, the RDBMS 60. For example, the data service 56
may provide a set of operations that can execute SQL
queries, Stored procedures, and perform connection man
agement.

0014) Referring to FIG. 1, the data service 56 can be used
by Standard applications (e.g., a database interface) that
reside in the clients 40, 42, and 50. The clients 40, 42, and
50 obtain a handle (e.g., an object reference) to bind to the
data service 56. In particular, CORBA's object location
mechanism includes the CORBA client stubs which offer a
bind mechanism to locate a remote object and obtain an
object reference for the remote object. Accordingly, the
Server 54 provides various Services Such as the data Service
56. The server 54 also includes standard CORBA Support
services in a CORBA layer 58 for activating the data service
56 and administering the data service 56.
0.015 However, the standard CORBA Support services do
not provide Significant client-side encapsulation for request
ing a service, efficient workload balancing, a Substantial
variety of acceSS modes, or robust fault tolerance. Accord
ingly, an improved method and apparatus for providing a
service framework for a distributed object network system is
needed.

BRIEF DESCRIPTION

0016. The present invention provides an improved
method and apparatus for providing a Service framework for
a distributed object network System. Accordingly, in Some
embodiments, the Service framework includes a Service
proxy that encapsulates the operation of requesting a Service
from a Server.

0.017. In some embodiments, the service framework also
includes a load balancing manager for balancing workloads
among workers in a worker pool of a Service. Also, the
Service framework may include a Service locator for bal
ancing workloads among clones of a Service. Further, the
Service framework may include a Service locator proxy for
balancing workloads among clones of Service locators that
provide handles (e.g., object references) to a Service.
0.018. In some embodiments, the present invention is
used to deploy Scalable applications (e.g., enterprise appli
cations) over the World Wide Web (WWW).
0019. In some embodiments, a method is disclosed for
providing client-Side Service request encapsulation. The
method may also include balancing workloads among clones
of Service locators, clones of Services, and workers in a
worker pool. The method may also include improving fault
tolerance in a distributed object network System.
0020. Other aspects and advantages of the present inven
tion will become apparent from the following detailed
description and accompanying drawings.

Jul. 26, 2001

BRIEF DESCRIPTION OF THE DRAWINGS

0021)
0022 FIG. 2 shows a framework model that includes a
Service framework in accordance with Some embodiments of
the present invention.
0023 FIG.3 shows a service framework for a distributed
object network System in accordance with Some embodi
ments of the present invention.
0024 FIG. 4 is a flow diagram illustrating the operation
of a Service proxy in accordance with Some embodiments of
the present invention.

FIG. 1 shows a typical CORBA environment.

0025 FIG. 5 shows the service proxy of the client of
FIG. 3 in greater detail in accordance with some embodi
ments of the present invention.
0026 FIG. 6 is a flow diagram illustrating the operation
of the client of FIG.3 during a service request in accordance
with Some embodiments of the present invention.
0027 FIG. 7 shows a service object of the server of FIG.
3 in accordance with another embodiment of the present
invention.

0028 FIG. 8 provides a call to allocateWorker on a
Service object in accordance with Some embodiments of the
present invention.
0029 FIG. 9 provides reservation properties in accor
dance with Some embodiments of the present invention.
0030 FIG. 10 provides a reservation context in accor
dance with Some embodiments of the present invention.
0031 FIG. 11 provides service properties in accordance
with Some embodiments of the present invention.
0032 FIG. 12 provides a reservation interface of the
service object of FIG. 3 in accordance with some embodi
ments of the present invention.
0033 FIG. 13 is a flow diagram illustrating the reserva
tion revocation operation in accordance with Some embodi
ments of the present invention.
0034 FIG. 14 is a flow diagram illustrating the operation
of reserving a previously reserved worker in accordance
with Some embodiments of the present invention.
0035 FIG. 15 provides a reservation revocation call back
interface in accordance with Some embodiments of the
present invention.
0036 FIG. 16 provides worker properties in accordance
with Some embodiments of the present invention.
0037 FIG. 17 is a flow diagram illustrating the operation
of pinging workers in accordance with Some embodiments
of the present invention.

0038 FIG. 18 shows a server in accordance with another
embodiment of the present invention.
0039 FIG. 19 shows an out-of-process worker factory
and an in-process worker factory in accordance with Some
embodiments of the present invention.
0040 FIG. 20 shows clone factories in accordance with
Some embodiments of the present invention.

US 2001/0010053 A1

0041 FIG. 21 provides an object factory interface in
accordance with Some embodiments of the present inven
tion.

0.042 FIG. 22 provides service locator properties in
accordance with Some embodiments of the present inven
tion.

0.043 FIG. 23 provides a service locator interface in
accordance with Some embodiments of the present inven
tion.

0044 FIG.24 provides a load balancing manager (LBM)
interface in accordance with Some embodiments of the
present invention.
004.5 FIG.25 shows a fully capable LBM in accordance
with Some embodiments of the present invention.
0.046 FIGS. 26A-26B are a flow diagram illustrating the
call Sequence operation in accordance with Some embodi
ments of the present invention.
0047 FIG. 27 shows a client wait queue and an idle
queue of the LBM of FIG. 25 in accordance with another
embodiment of the present invention.
0048 FIG. 28 shows a service object and an LBM in
accordance with another embodiment of the present inven
tion.

0049 FIG. 29 shows the scalability of the service frame
work in accordance with Some embodiments of the present
invention.

0050 FIG. 30 is a flow diagram illustrating the fault
tolerance operation for when a Service object becomes
unavailable in accordance with Some embodiments of the
present invention.
0051 FIG. 31 shows an administrative interface in a
Server in accordance with Some embodiments of the present
invention.

0.052 FIG.32 provides an interface of the administrative
interface in accordance with Some embodiments of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0053. The present invention provides an improved
method and apparatus for providing a Service framework for
a distributed object network System. In particular, a client
Server System in which a Significant number of clients acceSS
distributed objects on a server (e.g., a distributed enterprise
application deployed over the global Internet) would sig
nificantly benefit from this improved method and apparatus.
0054 For example, an application (e.g., a web browser)
that runs on a client may allow the client to access a data
service (e.g., a service for a database such as an RDBMS)
that runs on a Server. The data Service often must be made
accessible to a significant and unpredictable number of
clients. Moreover, a Significant number of clients may
attempt to Simultaneously access the data Service, but Some
users may have higher priority than other users. Accord
ingly, a Service framework should provide Significant client
Side encapsulation for requesting a Service, ensure efficient
Workload balancing, offer a variety of access modes, provide
Significant Scalability, and maintain robust fault tolerance.

Jul. 26, 2001

0055 FIG. 2 shows a framework model 70 that includes
a service framework 76 in accordance with some embodi
ments of the present invention. In particular, the Service
framework 76 is implemented on top of a Common Object
Request Broker Architecture (CORBA) bus 78. The service
framework 76 provides a platform of services which extend
the CORBA support services in the CORBAbus 78. In some
embodiments, the service framework 76 includes Services
that Support and encapsulate enterprise resources (i.e., a
Service represents an encapsulation of a resource) Such as a
data Service 72 or other Services 74 (e.g., an Email Service,
a document management Service, etc.). For example, the
data service 72 includes a service CORBA object and a pool
of worker CORBA objects. In some embodiments, an object
represents a Set of computer instructions that can be
executed by a computer.
0056. In some embodiments, the service framework 76
provides improved access to Services, manages the life cycle
of Services, and provides administrative capabilities to man
age a group of Services. In Some embodiments, the Service
framework 76 is implemented as a collection of objects
written in JAVA and C++, and the architecture of the service
framework 76 is the definition of the collection of objects
and the interaction among objects in the collection. In Some
embodiments, the service framework 76 Supports services
implemented using C++, JAVA, etc. Accordingly, the Service
framework 76 provides a variety of methods to access
Services, and the Service framework 76 also provides an
architecture that is Scalable, modular, fault tolerant, and
easily extendible (i.e., new services are easy to plug in).
0057 Generally, in order to access a service, a client must
obtain a handle (e.g., an object reference) to a particular
service object for the service on which the client intends to
execute an operation (a Service request). In Some embodi
ments, the Service framework includes an object (e.g., a
CORBA object) called a service locator that maintains the
name Space of Service instances. For example, the Service
locator repository may contain an entry for an RDBMS
Service instance with the name “RDBMS service', a handle
to the RDBMS service's service object, and a set of prop
erties for the Service (e.g., database types Supported). The
Service locator exports a Service lookup interface that pro
vides a findService operation. The findService operation
takes a Service name and, or a set of properties for a Service,
and the findService operation returns a set of Service object
handles that match the name and, or the Set of properties.
0.058 FIG.3 shows a service framework for a distributed
object network System in accordance with Some embodi
ments of the present invention. A client 80 includes a service
proxy 82 residing in client Storage. A Service locator 84
includes a registry of Services. Thus, the Service locator 84
provides the location (e.g., an object reference) of a particu
lar service in the distributed object network system in which
there may be a large number of Services at any one time.
Each Service residing in a Server 88 is managed by a Service
manager (SM) 86. The SM 86 performs several tasks. For
example, the SM 86 starts a service and starts a service
locator. The SM 86 then registers the services under its
control with all known service locators in the distributed
object network System. In another embodiment, there may
be more than one Service locator as discussed further below
with respect to FIG. 20, but each service locator contains the
Same Set of Services accessible over the entire distributed

US 2001/0010053 A1

object network System. Also, Services can be grouped logi
cally, as discussed further below with respect to FIG. 18.
0059 Referring to FIG. 3, the service locator 84 exports
a registerService method that is used by the SM 86 to
register its services with the service locator 84. The regis
terService call Simply registers a collection of Services
managed by a SM Such as the SM 86 and the properties of
each Service. However, not all properties of a Service may be
registered by the SM 86. In some embodiments, only those
properties that would have an impact on the clients are
registered by the SM 86. The SM 86 also periodically
updates the repository of all the Services registered with the
Service locator 84 along with any changes in the Set of
Services that it manages.
0060. In some embodiments, if the SM 86 does not ping
the service locator 84 in a predetermined period of time, the
Service locator 84 assumes that the SM 86 and all its
contained Services have died and quietly removes the Set of
Services from its repository. Also, if the parent of the Service
locator 84 (the Service manager that launched the Service
locator, for example, the SM 86) does not ping in time, the
Service locator 84 assumes that the parent exited due to an
error and terminates itself. These operations are part of the
fault tolerance capabilities of the service framework of the
present invention.
0061. In some embodiments, the SM 86 essentially rep
resents an administrative object and does not perform a
direct role in executing requests for Services. For example,
the SM 86 manages the life cycle and other administrative
issues of the services. The SM 86 may also collect the
Statistics of the Services and pass the Statistics to the Service
locator 84 for workload balancing purposes. These opera
tions may be performed automatically by the SM 86. Fur
ther, the SM 86 may be responsible for instantiating the
service locator 84 and all of the services residing in the
server 88. The SM 86 exports an administrative interface (as
discussed further below with respect to FIG.32) that allows
the definition of new Services, bringing Services up and
down, and modifying the properties of the Services (e.g., the
number of workers in the worker pool of a service). In
addition for each service, the SM 86 may instantiate a
service object such as the service object 90.
0.062. In some embodiments, the service object 90 is
responsible for instantiating a worker pool which may
include workers 92,94, and 96 (e.g., the workers 92,94, and
96 may include different worker properties as discussed
further below with respect to FIG.16). The service object 90
may also be responsible for reserving a worker as discussed
further below. The workers 92, 94, and 96 support the
operations of the Service (e.g., a DataService includes opera
tions that provide access to a database). The workers 92,94,
and 96 may be distributed among different address Spaces,
which provides fault tolerance in the event of an abnormal
failure of a particular address space. As shown in FIG. 3, the
service object 90 manages the workers 92, 94, and 96 and,
in Some embodiments, provides a reservation mechanism for
clients. The reservation mechanism is discussed in further
detail below.

0.063. In some embodiments, the service proxy 82 Sup
ports the methods exported by the IDL interfaces of the
workers 92, 94, and 96. For example, a worker method that
is encapsulated in the Service proxy 82 uses an object

Jul. 26, 2001

reference to the worker 92 to dispatch the worker method to
the remote worker 92 and obtain results from the worker
method. The communication between the service proxy 82
and the worker 92 is performed using the IIOP.

0064. The service framework as shown in FIG.3 repre
Sents a collection of objects (e.g., the Service proxy 82, the
service locator 84, the SM 86, the service object 90, the
workers 92,94, and 96, etc.) The architecture of the service
framework is the definition of the objects and the interaction
mechanism between the objects.

0065. In some embodiments, the service locator 84, the
SM86, the service object 90, and the workers 92,94, and 96,
all represent CORBA objects. Each of these objects exports
a CORBA interface in the form of an IDL (Interface Defi
nition Language) interface. The client 80 includes the Ser
vice proxy 82 that can bind to the service locator 84 by name
(e.g., using CORBA's object location mechanism). Other
objects such as the service object 90 and the workers 92,94,
and 96 represent transient objects. The service proxy 82 can
get a handle (e.g., an object reference) to transient objects
such as the service object 90 through the getService opera
tion of the service locator 84. The communication between
the service proxy 82 and the service object 90 may be a
direct CORBA invocation over IIOP.

0066. In some embodiments, most of the service frame
work is implemented in JAVA. In particular, the SM 86, the
service object 90, and the service locator 84 are all imple
mented in JAVA, but the service proxy 82 and the workers
92, 94, and 96 are implemented in both JAVA and C++. For
example, C++ clients can use a C++ Service proxy to bind to
the service locator 84, obtain a CORBA object reference to
a Service object, and reserve a worker by obtaining an object
reference to a worker. Also, Services can be built using C++.
For example, an RDBMS service can be implemented in
C++ and use native client libraries to access the database.
The service proxy 82 as shown in FIG. 3 encapsulates
various operations Such as executeRequest, allocateWorker,
and getService, and these operations are further discussed
below with respect to FIG. 4.

0067. In some embodiments, the server 88 may include,
for example, a SolarisTM operating system, an HP-UXTM
operating system, or a Windows NTTM operating system. In
Some embodiments, the server 88 includes a data service
which provides a relational database System, a Standard type
of commercial data management technology.

0068. In some embodiments, the service object 90 is a
Service object for a data Service. A Service is a logical term
that represents an encapsulation of a resource. For example,
if the resource is a relational database management System
(RDBMS), then an RDBMS service encapsulates the
RDBMS by providing, for example, a set of operations that
can execute SQL queries, Stored procedures, and perform
connection management. Client applications that require
access to the RDBMS can use the RDBMS service. In some
embodiments, the RDBMS service is implemented as a
collection of objects that collectively perform the functions
of the RDBMS service.

0069. In particular, the service object 90 provides the
workers 92, 94, and 96 that encapsulate a resource on the
server 88. Using an RDBMS service as an example, the
workers 92,94, and 96 each export an interface of operations

US 2001/0010053 A1

that includes executing an SQL Statement or a Stored pro
cedure. The workers 92, 94, and 96 also manage the con
nections to the RDBMS resource. In some embodiments, the
workers 92, 94, and 96 encapsulate any connection state,
cache execution results, and perform cursor-based lookups
(e.g., maintain state on behalf of the connection). Further, in
Some embodiments, the workers 92, 94, and 96 are imple
mented as a class in C++ or JAVA that derives directly from
a class of the Service framework that provides all the
capabilities of the Service framework (e.g., workload bal
ancing, fault tolerance, etc.). Thus, the workers 92, 94, and
96 may use the object-oriented inheritance mechanism to
inherit all the capabilities of the service framework, and the
workers 92,94, and 96 may provide an interface (e.g., an
IDL interface) for export. Each worker is independent of the
other workers (i.e., each worker is unaware of the other
workers). Hence, the implementation of the worker needs to
consider the resource logic only, not the Service framework
itself.

0070 The service object 90 (in some embodiments, there
is only one Service object per Service) is responsible for
handing out a handle of a worker in a worker pool (i.e., a
worker handle) to clients that are, using the RDBMS
example, interested in executing an SQL Statement or Stored
procedure (i.e., interested in performing an RDBMS trans
action). In some embodiments, the service object 90, in
deciding which worker from the pool to allocate, performs
Workload balancing among the workers and may also offer
a variety of access modes from clients (e.g., transactional
access, exclusive access, shared access, priority based
access, etc.) as discussed further below. The Service object
90 exports a worker reservation interface that includes
allocateWorker and releaseWorker operations (e.g., meth
ods) to allocate a worker and release a previously allocated
worker, respectively, as discussed further below with respect
to FIG. 12.

0071. In the RDBMS example, the service locator 84,
which maintains the name space of Service instances (i.e.,
the Set of Services registered in the Service locator of the cell,
and in Some embodiments, every Service in the cell is
registered with the Service locator, and Services in a different
cell are not registered with the Service locator), a repository
of Service objects, Service names, and a set of properties
associated with each Service (Service properties are dis
cussed further below with respect to FIG. 11), has a local
repository that contains an entry for the RDBMS service
with the name “RDBMS service', a handle to the service
object 90 for the RDBMS service, and a set of properties for
the RDBMS service. The service locator 84 exports a service
lookup interface that contains a findService operation. The
findService operation takes a Service name and, or a set of
properties for a Service and returns a Set of Service object
handles that match the name and, or properties. Thus, the
client 80, if it is interested in obtaining a handle to a
particular Service in which it intends to execute an operation,
executes a findService operation on the service locator 84
with the name of the service it is interested in (in this
example, “RDBMS service”). In some embodiments, the
service locator 84 also provides a level of workload balanc
ing in the Service framework, which is discussed further
below. In addition, the service locator 84 periodically
updates and loads existing Services.

Jul. 26, 2001

0072 Accordingly, FIG. 3 illustrates the service frame
work that provides significant extensions to CORBA-based
distributed object network System in accordance with Some
embodiments of the present invention. Those skilled in the
art will recognize that the Service framework can also be
provided in a system with multiple servers with multiple
(distributed) services and (distributed) clones of services.
0073. In some embodiments, a WWW (worldwide web)
or web application is provided using the Service framework
of the present invention. In particular, the client 80 includes
a client application Such as a web browser (e.g., Netscape
Navigator) that is capable of rendering HTML (hyper-text
markup language) or hosting JAVA applets or ActiveX
controls. A web server (not shown) that supports HTTP
requests from the web browser and launches a thin CGI/
ISAPI/NSAPI to deliver HTTP requests to the application
server (e.g., the server 88) is provided.
0074 For example, a web browser in the client 80
dispatches an HTTP request to the web server which
launches a CGI, NSAPI, or ISAPI plug-in that is a client to
the application server (e.g., the server 88). In particular, the
plug-in represents a CORBA client that issues a call to the
Service locator 84 to locate an appropriate Service (e.g., a
web service). Thus, the application server may be com
pletely isolated from the web server. The plug-in then
dispatches the web event to the web service. The application
server may provide a service implemented using CORBA
objects that are activated (i.e., instantiated) prior to the
incoming call for the Service provided by the application
Server. The Web Service executes the application logic,
interacts with one or more data Services in the application
Server, and Stores Session and State information. The web
Service returns the result of the web event which is an HTML
page back to the web browser in the client 80. Alternatively,
the web browser can host a JAVA applet or an ActiveX
control that connects directly to the application Server using
the IOP. Thus, the JAVA applet bypasses the web server and
interacts directly with the application server using the IIOP,
which may provide improved performance.

0075 Accordingly, the service framework of the present
invention provides a distributed, fault tolerant, Scalable, and
object-oriented architecture that Supports a variety of Ser
vices that can be accessed over the web (e.g., enterprise web
applications). Further, the Service framework of the present
invention provides a reservation mechanism (as discussed
below) that Supports web applications that can efficiently
and fairly manage a collection of resources that are accessed
by clients acroSS the Internet. Also, the dynamic Scalability
and fault tolerance of the present invention is particularly
advantageous for enterprise applications that can afford little
or no downtime.

0076 FIG. 4 is a flow diagram illustrating the operation
of a Service proxy in accordance with Some embodiments of
the present invention. In particular, FIG. 4 shows the Stages
of operation that must be performed by a client that wishes
to execute, in the RDBMS example, an SQL request. In such
an embodiment, rather than having the client perform each
of the Steps necessary to get a worker object, a Service proxy
object is provided, and the Service proxy object performs the
necessary Steps to encapsulate the process of obtaining a
worker for a particular Service. Thus, from the client's
perspective, the client simply requests execution of an

US 2001/0010053 A1

operation on a Service, and the process of obtaining a worker
is transparent to the client, because the Service proxy per
forms the necessary Steps to obtain the worker. This
approach is advantageous, because this approach encapsu
lates the framework internals So that clients are not required
to know anything about the framework internals, and clients
do not have to perform the task of handling any errors
encountered when executing the Steps for obtaining a
worker. Moreover, this approach advantageously allows the
framework to Support fault tolerant features Such as auto
matically retrying the request if the original request fails
(e.g., error handling).
0077. In some embodiments, the service proxy is an
object that resides in the client and encapsulates a particular
Service in its entirety. In Some embodiments, the Service
proxy intercepts every call from the client to the worker, and
the Service proxy includes the same Set of methods as the
worker. For example, a client applet (e.g., a JAVA applet
such as CNdDataServiceProxy disproxy=new netdyn.ser
vices.ds.client.CNdDataServiceProxy()) invokes an opera
tion on the worker by executing the equivalent method on
the Service proxy (e.g., an execute SQL call). The Service
proxy then reserves a worker (e.g., if a worker is not already
reserved, then allocateWorker is called on the service to
obtain a worker object reference) and dispatches the method
(e.g., the execute SQL call) to the worker using a CORBA/
IIOP call. The service proxy obtains the result of the method
from the worker and then passes the result back to the client.
Thus, the Service proxy is aware of every method invocation
on a worker.

0078. In some embodiments, each service in the service
framework has a corresponding Service proxy. Thus, a
Service proxy encapsulates a Service, because from the
client's perspective the Service proxy implements all the
operations of the Service itself. For example, the Service
proxy is responsible for insuring that a worker handle has
been obtained before invoking the operation on the worker.
AS a result, the task of locating the appropriate Service and
obtaining a worker is encapsulated within the Service proxy.
For example, there may be a Single instance of the data
service for an RDBMS, but there may be many clients
requesting access to the data Service. Each client instantiates
a Service proxy and invokes the “execute SQL operation on
the Service proxy. All the instantiated Service proxies (in
each client) simply invoke the corresponding “execute SQL
operation on the Service itself. Hence, from the client's
perspective, the client can instantiate a Service and execute
an operation on the Service. However, the Service proxy
actually obtains a handle to a worker and forwards all
requests to the allocated worker.
0079. In particular, FIG. 4 illustrates the stages of opera
tion performed by the Service proxy in accordance with
Some embodiments of the present invention. Reference
numeral 100 refers to a first stage in this embodiment. In
stage 100, the service proxy obtains a handle to the service
locator. For example, the Service locator object is registered
with the ORB by providing a unique object name (e.g., using
the obj is ready call). After the Service locator object has
been registered with the ORB, the client can use the ORB
provided bind call and Supply the name of the Service locator
object to obtain an object reference to the Service locator.
0080. In some embodiments, the service framework pro
vides a first level of workload balancing. In the first level of

Jul. 26, 2001

Workload balancing, as discussed further below, the find
Service operation returns the handle of a particular Service
locator instance Selected among multiple instances of the
Service locator (e.g., Service locator clones). In stage 102,
the Service proxy calls findService on the Service locator
with a service name “RDBMS service', in the RDBMS
example.

0081 Referring to FIG. 4, in stage 104, the service
locator returns the handle of an available RDBMS service
(e.g., an RDBMS Service that is currently up and running).
In Some embodiments, the Service framework provides a
second level of workload balancing. In the second level of
Workload balancing, as discussed further below, the Service
locator periodically requests and loads Statistics from all the
Services (e.g., across machines in a distributed configura
tion) and then can provide the handle of the least busy
instance of the requested Service based on the Statistics.
Also, at this point, Security checks may be performed to
insure that the client ID, as discussed further below, is valid
for the requested Service access (e.g., license restrictions).
0082 In stage 106, the service proxy calls allocateWorker
on the Service object with a set of acceSS requirements and
worker hints, as discussed further below with respect to
FIG. 9. In Some embodiments, a third level of workload
balancing is provided. In particular, as discussed further
below, when a call to allocateWorker on the service object
is presented, reservations are requested based on Some level
of access or Some class of access Specified by the Service
proxy. The requested worker access must be valid relative to
the client ID of the client of the requesting service proxy. For
example, a Specific duration of reservation may be
requested, exclusive access may be requested, or access that
chooses to wait or not to wait may be requested as discussed
further below with respect to FIG. 9. Thus, in the third level
of workload balancing, a client that is itself a high priority
client that is permitted access for high priority work and thus
can request a high priority worker. The reservation mecha
nism is implemented in the Service object and is discussed
further below.

0083. In stage 108, the allocateWorker operation returns
an appropriate worker as determined by the Service object's
load balancing manager (LBM) based on runtime workload
statistics of each worker as discussed further below with
respect to FIG. 25. In stage 110, the service proxy uses the
worker handle to execute the SQL request on the worker, and
the worker returns the output from the execution to the
Service proxy of the client. In Stage 112, the Service proxy
calls releaseWorker on the service object to release the
reservation on the worker.

0084. Accordingly, FIG. 4 illustrates the advantages of
providing a Service proxy that encapsulates the process of
requesting a Service. For example, the Service proxy imple
ments fault tolerance. In particular, if a client requests a
Service (e.g., in a wait mode as described further below with
respect to FIG. 9) and there are no available workers for the
Service, the Service proxy can request access to a worker for
the Service and the request is queued (e.g., in a first in, first
out (FIFO) queue). Further, the service proxy can implement
a fairly Sophisticated System of retrying. For example, if the
Service proxy requested a worker for a Service and the
worker was not available, the Service proxy can retry by
re-requesting the Service from the Service locator. Moreover,

US 2001/0010053 A1

the fault tolerance mechanisms performed by the Service
proxy are completely transparent to the client.
0085 FIG. 5 shows the service proxy 82 of the client 80
of FIG. 3 in greater detail in accordance with some embodi
ments of the present invention. The Service proxy 82 encap
Sulates the complex logic involved in requesting a Service.
0.086. In some embodiments, each service has a service
proxy that has the same Set of operations as the Service itself
(i.e., the Service proxy interface is identical to the interface
of the service's workers). The client uses the service proxy
by Simply instantiating the Service proxy and executing an
operation on the Service proxy. Thus, from the client's
perspective, the Service proxy is simply the Service (i.e., the
back-end resource).
0087 As shown in FIG. 5, the service proxy 82 has the
following responsibilities: bind to the Service locator, find an
appropriate Service using the Service locator, obtain a worker
using the Service object, and execute the Service request
using the allocated worker. In particular, the Service proxy
82 can bind to the service locator by using the service
locator's instance name. After binding to the Service locator,
the service proxy 82 caches the reference of the service
locator for Subsequent lookup. Each Service has a property
called the instance name, which represents the name of the
Service which does not change for a particular Service.
Because the Service proxy 82 has a one-to-one correspon
dence with a particular Service, the Service proxy 82 knows
the instance name of the Service it represents. The Service
locator includes a repository of handles to Services that have
been instantiated by the SM. The service proxy 82 uses the
getService operation, passing the name of the Service
instance, to obtain a Service handle. These operations will
return the handle to a Suitable service if available. Once it
obtains a handle to a Service, the Service proxy 82 caches the
reference for Subsequent lookup.

0088. In some embodiments, the service proxy 82 uses a
default Set of reservation properties when reserving a
worker. A client is allowed to change the reservation prop
erties before issuing any operations on the Service proxy 82
and at any Subsequent time. The worker ID (e.g., handle to
the worker) of the reserved worker is cached along with the
reservation context that contains the client ID, the Service,
and the reserved worker, as discussed further below with
respect to FIG. 10. The reservation context is passed auto
matically by the Service proxy 82 on each outgoing call.
Thus, the service proxy 82 also hides the internal details
Such as reservation properties, reservation context, etc. The
Service proxy 82 may perform invalidation of cached refer
ences periodically in order to detect any changes in the
configuration (e.g., new service locators, new Service clones,
new workers). Invalidating the cache periodically also
forces the service proxy 82 to talk to the service locator
periodically and therefore improves the effectiveness of the
Service locator and the Service object in performing dynamic
Workload balancing. The client may also be allowed to, at
any time, invalidate the cached worker Service and the
cached Service locator handles.

0089 FIG. 6 is a flow diagram illustrating the operation
of the client 80 of FIG. 3 during a service request in
accordance with Some embodiments of the present inven
tion. In particular, FIG. 6 illustrates the operation of per
forming a Service request from the perspective of the client

Jul. 26, 2001

80 of FIG. 3. Reference numeral 140 refers to a first stage
in this embodiment. In stage 140, the client 80 requests a
Service, and the appropriate Service proxy intercepts the
Service request (as discussed above). In stage 142, the client
executes the execute SQL request on the instantiated Service
proxy (e.g., the Service proxy includes the same methods
included in the workers of the requested Service, and the
Service proxy executes the request on the allocated worker).
Finally, in stage 144 (the worker returns the output from the
execution of the execute SQL request to the Service proxy of
the client, and) the Service proxy forwards the output to the
client. Accordingly, the Service proxy 82 encapsulates the
requested Service operation, which Significantly simplifies
the operation from the perspective of the client.
0090 FIG. 7 shows a service object 160 of the server 88
of FIG. 3 in accordance with another embodiment of the
present invention. In particular, in response to an allocate
Worker call by the service proxy on the service object 160,
the service object 160 allocates a worker from its worker
pool, workers 162 and 164, to the service proxy so that the
Service proxy can issue work requests. The Service object
160 may use an LBM (load balancing manager), as dis
cussed further below with respect to FIG. 25, to select a
worker for the service proxy, then the service object 160
calls new Client on the selected worker 162 to notify the
worker of the reservation. Also, if the Service proxy wants to
release the reserved worker 162, then the Service proxy calls
releaseWorker on the service object 160, and the service
object 160 calls clientReleased to notify the worker 162.
Each service object (in Some embodiments, there is only one
Service object per Service) controls its own pool of workers.
Thus, the service object 160 controls the pool of workers
including workers 162 and 164. In some embodiments,
worker allocation is implemented to Support a variety of
modes of access to workers, provide fast response time, and
balance the workload from client requests acroSS all workers
in the worker pool.
0091. In particular, the workers 162 and 164 encapsulate
a limited resource such as an RDBMS. The service object
160 provides access to the limited resource and ensures that
all clients get their fair share of access to the limited
resource. For example, worker should be relatively equally
loaded at all times to ensure reasonably predictable through
put and linear Scalability. Ignoring hardware and operating
System Scalability limitations, adding more workers may
increase throughput. Accordingly, to handle these require
ments, the service object 160 may include a worker reser
Vation mechanism as discussed further below.

0092 FIG. 8 provides a call to allocateWorker on a
Service object in accordance with Some embodiments of the
present invention. The call to allocateWorker on a service
object includes parameters for Specifying the Service, the
Service properties, and the reservation context. In particular,
the reservation context provides Some history of the client.
For example, any particular workers that have performed
work for the client may be provided in the reservation
context. Thus, the Service can allocate the same worker to a
client that had previously done work for the client. In some
embodiments, a worker may cache work results and worker
hints respecting a particular client ID So that if the same
worker is reallocated to the client, then the worker has this
information already cached with respect to the client.
Accordingly, caching work results and worker hints would

US 2001/0010053 A1

be particularly advantageous for a data Service or any other
service in which the client would benefit by returning to the
Same worker that cached previous work results. Also, the
reservation context may include a client ID and Security
credentials for clients. Thus, for Security reasons, the Service
can actually recognize a client using the client ID. The client
ID is discussed further below with respect to FIG. 10.
0093 FIG. 9 provides reservation properties 166 in
accordance with Some embodiments of the present inven
tion. In particular, a client can reserve a worker in the mode
that is most suitable to the task to be performed by the client.
Thus, some or all of the reservation properties 166 provided
in FIG. 9 may be implemented. In particular, the service
object 160 of FIG. 7 implements a reservation interface, as
discussed further below with respect to FIG. 12. During the
period that the worker is reserved for a particular client the
client is allowed access to the worker. Once the reservation
expires the client is no longer allowed access to the worker.
Accordingly, to reserve a worker, the client issues a request
Specifying the reservation properties that apply to the res
ervation and any worker hints that the client would like to
pass on to the Service object.

0094. As shown in FIG. 9, the reservation properties 166
include a client priority, an access mode, a wait mode, and
a reservation time. The reservation properties 166 control
the type of reservation that the client would like to obtain
before the worker attempts to perform the desired action.
Reserving the worker in the appropriate mode is critical. For
example, if the worker allows multiple clients for read
access, but a Single client for write access, the client per
forming a write operation must reserve the worker in exclu
Sive mode. The reservation duration can be passed as a hint
(e.g., a parameter provided in a call or method invocation)
by the client for worker Scheduling purposes. For example,
the Service object may prefer a short duration client over a
long duration client. In Some embodiments, there is no fixed
time duration that classifies a request as short or long, and
thus, this is simply up to the client's discretion.

0.095 Referring to FIG. 9, the client priority determines
how quickly the client can obtain a worker. In Some embodi
ments, the worker pool that is instantiated by the Service
object contains workers of high, medium, and low priority as
discussed further below with respect to FIG. 27. The prop
erties of the worker pool determine how many workers are
instantiated and how many of each priority. In Some embodi
ments, a high priority worker can only be used by a high
priority client, a medium priority worker can be used by high
and medium priority clients, and a low priority worker can
be used by clients of any priority. Thus, a high priority client
waits only for any existing high priority clients. Hence, it is
up to the client to decide its priority level before issuing the
request.

0096 Referring to FIG. 9, the access mode determines
how many concurrent reservations can be given out on a
particular worker. The maxClients property is a property of
the workers that determines the number of concurrent res
ervations in Shared mode that may be allocated to the worker
(i.e., workers with maxClients greater than one represent
multi-threaded workers). In exclusive mode, only one res
ervation is permitted. Accordingly, the acceSS mode facili
tates the maximum number of concurrent accesses to a
limited resource.

Jul. 26, 2001

0097. Referring to FIG. 9, the wait mode specifies the
appropriate action if a Suitable worker is not available. For
example, the client can elect to wait in a queue indefinitely
until a Suitable worker is available (e.g., indefinite wait), the
client can elect to wait for a limited time period before
re-obtaining control (e.g., timed wait), or the client may
Simply choose not to wait at all (e.g., no wait).
0.098 Referring to FIG. 9, the reservation time specifies
the duration of the reservation (in msec). The client obtains
a reservation for a worker. The reservation is guaranteed for
the reservation time (i.e., the reservation cannot be revoked
during this time period). However, choosing a long time
period has its consequences. For example, if the client were
to disappear or exit due to an error, the worker is locked for
this time period. This is undesirable in situations in which
the worker is transient (e.g., JAVA applets). A more stable
client (e.g., a transaction manager) may choose to use a
longer reservation time. On the other hand, choosing too
Short of a reservation time may cause frequent revocations
and interruptions in the work being performed.

0099 FIG. 10 provides a reservation context 168 in
accordance with Some embodiments of the present inven
tion. In some embodiments, the client 80 of FIG. 3 passes
a reservation context 168 on each call to the service object
90 of FIG. 3. The reservation context 168 contains infor
mation about the client, the Service, and the last worker that
was reserved. The service object 90 of FIG. 3 uses the
reservation context as a hint when allocating a worker. Once
a worker is allocated, the service object 90 of FIG. 3
modifies the worker key with the reserved worker ID. The
worker checks the reservation context 168 to make Sure that
the client key is present and keeps track of clients that have
reserved the worker. The worker also verifies if the client has
a valid reservation (e.g., the reservation has not been
revoked).
0100. In particular, the reservation context 168 as shown
in FIG. 10 includes a client key, a service key, and a worker
key. The client key identifies the client, the Service key
identifies the Service object that returned the previous res
ervation, and the worker key identifies the previously
reserved worker.

0101 For example, if the client had previously reserved
a worker, but the reservation has expired and the client
would like to, if possible, return to the Same worker, then the
client simply passes the worker key as a hint to the Service
objects reservation mechanism. The service object will try
to allocate the hinted worker if it is available. If not, the
Service object may allocate the next available worker in the
worker pool.
0102) The client can modify the reservation properties
168 using the setReservationProperties operation of the
Service object's reservation interface. For example, the
SetReservationProperties operation can be used to extend an
existing reservation before the reservation expires or to
change the mode of reservation from exclusive to shared
once the critical updates in a database have been completed.
0103 FIG. 11 provides service properties 180 in accor
dance with Some embodiments of the present invention. In
particular, Service.instanceName provides the instance name
of the service. Service...label provides the user visible name
of the Service. Service.description provides a description of

US 2001/0010053 A1

the service. Service.ServiceID uniquely identifies the ser
Vice. Thus, multiple Services with the same instance name
and properties will have a different value for Service.Servi
ceID. Service proceSSLocation provides whether the Service
is in process or out of process (e.g., indicating whether or not
the service will be launched in its own virtual machine
(VM)). For example, a C++ object is preferably launched
outside a JAVAVM. Service.type provides the JAVA class
name of the Service. Thus, Service.type indicates the class to
instantiate to bring up the Service. Service.numWorkers
provides the number of workers maintained by the service.
Service. numHigh Priworkers provides the number of high
priority workers maintained by the Service. Service.max
WorkerRestarts provides the maximum number of times a
service will attempt to restart a failed worker. Service
..launch.Sequence provides that the lower the number the
earlier the SM will launch the service (e.g., the results may
be ambiguous if there are two Services with the same launch
Sequence). Service.inactiveManagerinterval provides the
minimum number of milliseconds before a Service considers
its parent SM dead and terminates itself.

0104 FIG. 12 provides a reservation interface of the
service object 90 of FIG. 3 in accordance with some
embodiments of the present invention. The reservation inter
face shown in FIG. 12 is written in standard Interface
Definition Language (IDL).
0105 FIG. 13 is a flow diagram illustrating a reservation
revocation operation in accordance with Some embodiments
of the present invention. For example, the service object 90
of FIG. 3 may include a reservation mechanism that per
forms the reservation revocation operation (i.e., asynchro
nous reservation revocation). In particular, if a worker
reservation has expired, the client whose reservation expired
is not immediately denied access to the worker. Reference
numeral 200 refers to a first stage in this embodiment. In
stage 200, the reservation mechanism determines whether or
not a client's reservation on a worker has expired. If the
client's reservation on the worker has not expired, then as
shown in Stage 202 the client may continue to use the
worker. However, if the client's reservation on the worker
has expired, then as shown in Stage 204 the reservation
mechanism determines whether or not other workers are
available. In particular, this allows the client to continue to
use the worker until no workers are available for a new
client. In Stage 206, the reservation mechanism revokes the
client's reservation on the worker assuming that, at this time,
there are no workers available for new clients, and a new
client is requesting a worker (i.e., all the workers in the pool
have been reserved by maxClients clients or clients in
exclusive mode). Thus, in stage 206, the reservation mecha
nism revokes a reservation of a client whose reservation
period has expired.

0106. In some embodiments, a reservation is revoked
only if there are no available workers (i.e., every worker has
the maximum number of clients reserved), and there is at
least one expired reservation. If there are no available
workers, then the reservation mechanism will revoke the
oldest-expired reservation on the least-loaded worker.

0107. In particular, reservations can be revoked only if
the period Specified in the reservation properties has expired.
Reservations cannot be revoked if the reservation time of
FIG. 9 has not expired. Thus, the client can continue to use

Jul. 26, 2001

the worker until the worker is revoked. Once a reservation
has been revoked, the worker now has room for at least one
more client. This available Slot is given to a new client that
requested a worker. Such a revocation causes a call back
notification to be sent to the client's Service proxy. AS
discussed above, the client's Service proxy for the Service
encapsulates the entire worker reservation logic. The Service
proxy uses the notification to invalidate any cached worker
handles. Accordingly, any further request on the Service
proxy from the client will cause the Service proxy to obtain
a new reservation for a worker before proceeding with the
request.

0.108 FIG. 14 is a flow diagram illustrating the operation
of reserving a previously reserved worker in accordance
with some embodiments of the present invention. Reference
numeral 220 refers to a first stage in this embodiment. In
stage 220, the client passes the worker ID of the previously
reserved worker (e.g., in the worker key of the reservation
context 168 of FIG. 10) as a worker hint to the reservation
mechanism (e.g., of the service object 90 of FIG.3). In stage
222, the Service object will attempt to allocate the previously
reserved worker if it is available. In stage 224, if the
previously reserved worker is available, then the Service
object allocates the previously reserved worker as provided
in the hint. However, if not, then the service object simply
allocates the next available worker, in Stage 226.

0109) As discussed above with respect to FIG. 10, the
reservation context 168 of FIG. 10 contains information
about the client, the Service, and the previously reserved
worker. The Service object uses the reservation context as a
hint when allocating a worker. Thus, in Some embodiments,
once a worker is allocated, the Service object fills in the
reservation context with the reserved worker ID, as shown
in stage 228 of FIG. 14. The worker also may check the
reservation context to make Sure that the client ID is present
and to keep track of clients that have reserved the worker.
The worker may also verify if the client has a valid reser
Vation (e.g., that the reservation has not been revoked).
0110 FIG. 15 provides a reservation revocation call back
interface in accordance with Some embodiments of the
present invention. The reservation revocation call back
interface as shown in FIG. 15 is written in IDL.

0111. In some embodiments, a call back notification
mechanism increases Scalability. For example, a client can
continue to use an expired reservation until the concurrent
load on the System increases to a level at which reservation
revocations begin to occur. Thus, a client may not release a
worker even after obtaining a new reservation, and still not
cause new clients problems when trying to access a limited
resource. Even if the call back notification fails to reach the
client, the worker will still be notified of the revocation. If
the Service proxy issues a request to the worker using an
expired reservation, the worker raises an exception indicat
ing this problem. In particular, as discussed above with
respect to FIG. 14, the worker checks the reservation
context of each client that attempts to use the worker. Thus,
the Service proxy, upon receipt of the exception raised by the
worker will obtain a new reservation and retry the request.
Of course, once the reservation of the client expires, the
Service object is free to revoke the client's reservation and
offer the reservation to Some other client. When Such an
event occurs, a notification is Sent to the client's Service

US 2001/0010053 A1

proxy that holds the reservation. The client's Service proxy
can then invalidate the worker reference immediately. Any
new operations performed on the Service proxy will force it
to allocate a new worker before dispatching the operation.

0112 Accordingly, a Service proxy obtains a reservation
on a worker object and may not release the worker until
there is a lack of free workers and there are competing
clients for the workers. In other words, if a Service proxy has
reserved a worker and there is no contention for the worker,
the Service proxy may never release the worker. In Such a
case, the Service proxy does not issue releaseWorker and
allocateWorker requests to the Service object, and the Service
proxy simply continues to use the worker object until no
longer needed. If there is a worker contention and a reser
Vation has to be revoked, then the reservation revocation
callback interface is used and a callback is issued to the
Service proxy that is holding the worker (e.g., the reservation
time of FIG. 9 has expired).
0113 FIG. 16 provides worker properties 230 in accor
dance with Some embodiments of the present invention. AS
discussed above, the workers provide an encapsulation of a
limited resource. Like the Service object, the worker inter
face derives from the administrative (admin) layer. For
example, the service object 90 of FIG. 3 uses the worker's
admin layer to activate and deactivate the workers 92, 94,
and 96. The worker interface implements operations that
allow the service to notify the worker about its reservations.
The worker uses the reservation information (e.g., reserva
tion properties 166 of FIG. 9 and reservation context 168 of
FIG. 10) to disallow unexpected or expired clients from
accessing the worker. The worker also keeps track of clients
that have reserved the worker and ensures that the number
of clients does not exceed maxClients. The Service instan
tiates the worker either in process or Out of proceSS as
discussed further below with respect to FIG. 19. Once the
Service object instantiates the workers into the worker
registry, the Service object calls SetProperties to pass on the
worker properties. Once the worker receives the properties
and initializes the internal data Structures Such as the work
er's client list, the worker is ready to receive client requests.
0114. In particular, the worker properties 230 are pro
vided in FIG. 16. For example, worker.numProcesses pro
vides the number of processes to Start up to Support the
number of workerS Supported when the workers are out of
process. In some embodiments, the numWorkers divided by
the numProcesses equals the numWorkersPerProcess. Work
er-processLocation is either in proceSS or out of proceSS
indicating whether the workers will run in the same VM as
the service. Worker, type indicates, for example, the JAVA
class that will be instantiated for JAVA workers (either in
process or out of process). Worker.javaVM specifies the
JAVA VM used to launch worker, type for out of process
JAVA workers. Worker.javaDebug VM is the default com
mand to run the JAVAVM in debug mode (e.g., JAVA g
debug). Worker.exe indicates the command line to launch
(C++) out-of-process workers.
0115 Worker portNumber is the port number on which
out of process workers receive requests. A port number
represents a numbered network connection. For example, a
telephone number is a port number in the telecommunication
network. The Internet is based on the TCP/IP network
protocol. Thus, in the Internet context, the port number is

Jul. 26, 2001

local to a server (i.e., unique within the server), and the port
number is a unique integer that represents the IP address of
the network connection to the Server. For example, an
allocated worker listens for an incoming request on the IP
address of the network connection, and the incoming request
may be an operation that is exported by the worker in the
IDL interface of the worker.

0116 Worker.maxClients is the maximum number of
Simultaneous clients that are allowed access to a single
worker. If the maxClients value is greater than 1, then the
worker is thread Safe (i.e., multi-threaded).
0117 WorkerinactiveServiceInterval is the number of
milliseconds before the worker considers its Service dead
and exits. In particular, each worker is periodically pinged
by the Service object, and the pinging interval depends on
the Service's pinginterval property (i.e., the Service.ping
Interval period is less than the WorkerinactiveServiceInter
Val period). The pinging of workers may be used to obtain
runtime workload statistics from the workers for workload
balancing purposes and also to obtain the current State of the
workers. For example, if a worker has failed for Some
reason, the State indication will help the Service object restart
the worker and bring the worker back online, which repre
Sents part of the fault tolerance aspects of the Service
framework of the present invention. Thus, if the worker is
not pinged by the service object within the Workerinac
tiveServiceInterval property, then the worker assumes that
the Service object is no longer online, and the worker
terminates itself. The worker terminates itself, because the
Service object may have failed without terminating its work
ers. If the service object failed, then the SM that monitors the
failed service will restart the failed service, and the restart of
the failed Service will cause the original worker pool to be
Stranded, and thus, the worker terminates itself to avoid
being Stranded.
0118 ServiceType.XXX for each service is expected to
have its own properties (prefixed by the Service type), and
there can be an arbitrary number of these properties. In
particular, the ServiceType.XXX property is a property of a
service identified by ServiceType. For example, the
“RDBMS Data Service' has a service type DataService and
has a property pingInterval that defines how frequently the
DataService will ping its workers. Thus, this property has a
name (e.g., DataService.pingInterval), and the property has
a value (e.g., 200 seconds). In Some embodiments, the
properties are implemented in JAVA and Stored in a prop
erties file, and the Service manager is responsible for reading
and writing the Stored properties.

0119 FIG. 17 is a flow diagram illustrating the operation
of pinging workers in accordance with Some embodiments
of the present invention. Reference numeral 240 refers to a
first Stage in this embodiment. In Stage 240, each worker of
a Service is pinged by the Service periodically. In Stage 242,
it is determined whether or not the worker answers the ping
within a predetermined time period. If the worker does not
answer the ping within the predetermined time period, the
Service object considers the worker to be dead and re
instantiates the worker, as shown in Stage 244. Each worker
also includes a Service object ping interval timer. In Stage
246, a worker determines whether the service object has
pinged the worker within a particular time interval. If not,
then the worker considers the Service object to be dead and

US 2001/0010053 A1

the worker terminates itself as shown in stage 248. Other
wise, the pinging operation repeats as shown in FIG. 17.
Accordingly, the pinging operation provides fault tolerance
in the Service framework of the present invention.
0120 FIG. 18 shows a server 280 in accordance with
another embodiment of the present invention. In particular,
a server 280 includes an admin interface 282, a SM 284, a
start/stop functionality 286, and a configuration 288.
Because the service framework is based on a distributed
object model, and there can be many objects in the Service
framework that interact with each other, it is preferred to
group objects together into a higher level entity So that the
distributed objects can be more effectively managed.
Accordingly, the configuration 288 includes a collection of
Services and Service locators along with their properties. The
configuration 288 is maintained by the SM 284. In particu
lar, when the SM 284 comes up, it comes up with a specified
configuration of Services and Service locators, Such as a
Service locator 290.

0121 For example, a configuration may contain the fol
lowing services: an RDBMS service with two clones, a
Session/state management Service with one worker, and a
Service locator with three clones. The configuration is then
given a name, and the property files for each Service instance
in the configuration are Stored within the configuration.
0122) Referring to FIG. 18, the configuration 288
includes a cell. A cell represents a distributed configuration.
Two hosts with the same configuration name but different
contents can link up together to form a Single cell. The cell
is designated by a list of hosts that the configuration spans.
Once the configurations are linked into a cell, the Set of
Service locators and Services is common to the entire cell
(i.e., each Service locator contains a list of all Services in all
hosts in the cell). Thus, clients accessing any Service locator
in the cell can access any Service in the cell. The cell is
maintained in a consistent manner by the SM managing the
individual configurations. SM operations may include many
different functions Such as managing the Service and Service
locator instances, providing fault tolerance by pinging as
discussed above with respect to FIG. 17, and exporting a
management interface to administer the Services.
0123 Referring to FIG. 18, the management interface
can be used by administrative tools to change the SM's
configuration (e.g., add a new Service, change Service loca
tor clones, etc.). Thus, the management interface can be used
to modify the operations of any of the entities in the
configuration (e.g., change numWorkers for an RDBMS
Service). Finally, the management interface offers mecha
nisms 286 to Start/stop each instance of a Service or Service
locator and obtain the current State of each of the instances
in the configuration.
0.124. Further, the service locators are linked to the con
figurations. Thus, a Service locator in a configuration on a
particular Server actually knows about Services on another
System, the distributed configuration or the cell. Thus, if a
request for a service is made to the service locator 290, then
a client can actually get access to a Service provided by the
server 280, but may also be provided access to a service
instance in the cell which is residing on a Server that may be
anywhere on the network (e.g., the global Internet). More
over, this entire process is transparent to the client, because
the client's Service proxy is simply returned a Service
handle.

Jul. 26, 2001

0125 However, the SM 284 is only responsible for
services in its own configuration 288. Thus, the SM 284 is
responsible to Supply the information regarding its configu
ration 288 to all service locators in the cell. The service
locators in the cell are well known (i.e., they are actually
embedded in the cell's description itself). Thus, given a cell,
a connection can be made to Service locators in the cell.
Thus, the SM 284 knows the list of Services, loads this
information and the properties of the Service, and Simply
forwards Such information periodically to the Service locator
290. Thus, the service locator 290 can assume that the
information provided from the SM 284 represents currently
available Services.

0126 FIG. 19 shows an out-of-process factory 300 and
an in-process factory 308 in accordance with some embodi
ments of the present invention. The number of workers
instantiated by the Service is limited by the Service property
service.numWorkers. All the workers may be of the same
type or of different types (e.g., high priority and low priority
workers). The workers are instantiated when the Service is
initialized by the SM (i.e., the properties of the service and
the workers are passed to the service object). Workers can be
instantiated in a separate process or within the same process
as the service object as shown by out-of-process factory 300
and in-process factory 308, respectively. Workers are instan
tiated by using worker object factories, as shown by an
object factory 302 and an object factory 312.

0127. The object factory is an object that can instantiate
or fabricate any number of objects of a given type. For
example, in an object-oriented language like JAVA or C++,
to instantiate an object is to create a new object using the
“new” syntax operator, and in CORBA, a CORBA object is
instantiated using the “obj is ready' operation defined in
CORBA. A worker object factory such as the object factory
302 and the object factory 312 can instantiate any number of
worker objects. In particular, the object factory 312 is a
CORBA object that can be in the same process (in process).
Thus, the service object (e.g., the service object 90 of FIG.
3) can then use the object factory 312 to create type 1
workers 318 (e.g., low priority workers) and type 2 workers
320 (e.g., high priority workers). In Some embodiments, the
object factory 312 is a CORBA object implemented in
JAVA.

0128 Referring to FIG. 19, the object factory can also be
in a separate process (out of process), in which case, the
Service object spawns (forks) a separate process, and the
process then instantiates an object factory and passes a
handle to the object factory back to the creator. In particular,
the Spawned process creates the object factory, registers the
object 302 (i.e., the object factory) with the ORB, and passes
a reference to the object back to the parent proceSS using the
Standard I/O String. The object and the parent process (e.g.,
the service object 90 of FIG. 3) that spawned the object
factory process use the object reference of the object factory
to instantiate the necessary objects in that process (e.g., the
worker pool). Thus, the Service object can then use the
object factory 302 to create type 1 workers 314 and type 2
workers 316. In some embodiments, the object factory 302
is a CORBA object implemented in JAVA.

0129. Thus, the object factory is a flexible mechanism to
create and manage pools of similar objects (i.e., objects that
have the same type and the same set of properties) Such as

US 2001/0010053 A1

worker pools. In Some embodiments, object factories are
used to create the service objects (in the SM), the worker
pools (in the Service), and other objects Such as the Service
locator.

0130. In some embodiments, the object factory is a
remote CORBA object that is implemented in JAVA and
C++. Thus, a JAVA-based factory can instantiate any
CORBA object that is implemented in JAVA and instantiates
the object in the same address Space as the factory. Accord
ingly, if the factory object is in a separate address Space, any
objects created in the factory are in the Separate address
Space of the factory object (i.e., in the Separate process).
Because the JAVA-based factory object can instantiate any
JAVA-based CORBA object, the same JAVA-based factory
may be used to instantiate a Service locator (e.g., a JAVA
implemented CORBA object) or a Service object (e.g., a
JAVA-implemented CORBA object) and, thus, reside in the
Same address Space.
0131. In contrast, in some embodiments, an object fac
tory implemented in C++ is more limited in function than a
JAVA-based object factory, because the object factory
implemented in C++ can only instantiate Similar objects
(e.g., due to limitations of the C++ language). For example,
the DataService workers are implemented in C++, and the
DataService worker objects are instantiated in a Separate
proceSS using the object factory implemented in C++. Thus,
the object factory implemented in C++ can only instantiate
DataService worker objects.
0132) In another embodiment, the number-of workers can
fluctuate dynamically using an object factory. Thus, new
workers can be added or the number of workers can be
reduced, based on parameterS Such as the workload on the
existing number of workers. In particular, the configuration
(e.g., the configuration 288 of FIG. 18) may provide a
minimum or maximum range of the number of workers for
a Service, and the number of workers can be implemented to
fluctuate dynamically within the configured range depend
ing on various parameterS Such as the workload on the
present number of workers.
0.133 FIG. 20 shows clone factories in accordance with
Some embodiments of the present invention. An object
factory can instantiate basically any CORBA object. The
object factory instantiates a CORBA object using CORBA
(and JAVA) introspection to determine the type of object to
be created and its parameters (e.g., object name). The SM
uses this functionality to create clone factories. In particular,
a clone is another instance of an entity that behaves exactly
like the original entity (i.e., the clone has the same properties
or attributes as the original entity) but resides in a different
address Space. For example, a Service locator clone is
another instance of the Service locator object in the same
machine, and the Service manager may instantiate a Service
locator clone in the same machine for fault tolerance pur
poses (e.g., if one service locator instance fails, the other
Service locator instance is still available).
0134) Referring to FIG. 20, a SM 320 has created clone
factories 322 and 324. The SM320 creates factories for each
Service and Service locator. Each clone of a Service (or
Service locator) is located in a different clone factory. For
example, if there are multiple clones for a Service, the first
may be located in the clone factory 322, the Second in the
clone factory 324, etc.

Jul. 26, 2001

0.135 For example, two service locator clones and two
Service clones (e.g., of the DataService) may be provided.
Each clone has a clone ID. Thus, one Service locator clone
instance may have a clone ID 0, and the other Service locator
clone instance may have a clone ID 1. Similarly, one
DataService instance may have a clone ID 0, and the other
DataService instance may have a clone ID 1. The SM 320
instantiates these clones. In particular, the SM 320 instan
tiates two object factories, one for clone 0 instances and the
other for clone 1 instances. The two clone factories may be
in different address spaces (processes), which provides fault
tolerance in the Service framework of the present invention
(e.g., insuring that no two clones are in the same address
Space provides fault tolerance). The clone factory 0 instan
tiates the service locator clone 0 and the DataService clone
0. The clone factory 1 instantiates the service locator clone
1 and the DataService clone 1. In some embodiments, a
service can have any number of clones, and the SM320 will
instantiate the appropriate number of clone factories.
0.136 Generally, a process represents an operating System
term that may also be used to refer to an address Space. In
particular, operating systems such as HP-UXTM or Windows
NTTM use the term process to refer to a region of computer
memory that is Separated from the rest of the computer's
memory (e.g., allocated memory). Thus, a region of memory
is allocated to a program that is being executed. The program
is launched by executing an executable file (e.g., .exe in
Windows NT). Once the program terminates, the region of
memory is deallocated and returned to the computer's
memory pool. A program needs a region of memory to
maintain data that it has read from the terminal, file System,
or from the network. The program manipulates the data and
performs its work all within the allocated region of memory.
Accordingly, a proceSS is a program that is executing within
a region of memory allocated by the operating System. Thus,
an out-of-process worker represents a worker object that is
instantiated in a process that is separate from the process
where the Service object resides. An out-of-process Service
object represents a Service object that resides in a process
that is separate from the process where the SM object
resides. Clone factories represent a set of factory objects
with each factory residing in a separate process.
0.137 Accordingly, clone factories such as the clone
factories 322 and 324 of FIG. 20 provide additional fault
tolerance for the Service framework of the present invention.
In particular, clone factories are located in different pro
ceSSes So that each clone provides additional fault tolerance
and high availability. Once the Service object (e.g., the
service object 90 of FIG. 3) instantiates a worker pool, the
Service object pings the workers to make Sure that the
worker pool is alive and well, as discussed above with
respect to FIG. 17. If a worker in the pool does not respond
to the pings, the Service object re-instantiates the failed
worker using the appropriate factory. Also, it should be
apparent that two clones may be implemented on the same
machine. Such an implementation would be useful for
providing fault tolerance. In particular, a clone provides
basically an identical worker pool, thus, providing the same
or nearly identical work as the original worker pool. AS a
result, if a process or VM is lost, the state that the clients
have set up is not completely lost. In particular, in Such an
event, because the clients are distributed among the clones
on the same machine a loSS of a process or VM on a
particular server will affect some of the clients but not all of

US 2001/0010053 A1

the clients attached to the Server. Hence, if a particular
address Space fails abnormally, then clones may advanta
geously provide for fault tolerance and high availability,
because clones in different address Spaces may not have
been affected. Accordingly, the Service framework of the
present invention provides a fault tolerance architecture.
0138 FIG. 21 provides an object factory interface in
accordance with Some embodiments of the present inven
tion. The object factory interface of FIG. 21 is written in
IDL.

0139 FIG. 22 provides service locator properties 330 in
accordance with Some embodiments of the present inven
tion. As discussed above with respect to FIG. 20, service
locators may be cloned, but the Service locator clones may
not communicate with each other. A Service locator proxy
keeps track of the various Service locators in the network and
can Select the Service locator with a minimum workload on
which to perform its Service lookups. In Some embodiments,
the Service locator proxy is used by almost all the modules
in the framework including the Service proxy to encapsulate
access to the Service locator. Thus, the Service locator proxy
provides another level of workload balancing management
in the Service framework of the present invention.
0140. The service locator properties 330 are shown in
FIG. 22. In particular, Sl.javaVM is the VM command line
used to launch the out-of-process Service locators, Sl.jav
aDebugWM is the default command to run the JAVAVM in
debug mode, Sl. inactiveManagerinterval is the minimum
number of milliseconds that can elapse before the service
locator considers the VM out of Service and unregisters its
Services, Sl.locatorld is the unique identifier of the Service
locator (e.g., the Service locator instance's object name), and
sl.owningManagerd is the identifier of the owning manager
(e.g., the SM.86 of FIG.3 assuming that the SM.86 launched
the Service locator).
0141 FIG. 23 provides a service locator interface in
accordance with Some embodiments of the present inven
tion. In particular, FIG. 23 provides a service locator inter
face written in IDL.

0142 FIG.24 provides a load balancing manager (LBM)
interface in accordance with Some embodiments of the
present invention. The LBM interface may be written in IDL
as provided in FIG. 24. The LBM is an entity of the service
object. In particular, the Service object instantiates an LBM
to manage the pool of workers. The LBM may be a plug-in
object that can be customized or entirely replaced.

0143. The LBM provides a level of workload balancing
in the Service framework of the present invention. In par
ticular, the service object may use the LBM to perform
Workload balancing among its workers in the worker pool.
In Some embodiments, the Service framework provides two
managers, a fully capable LBM and a null LBM. The fully
capable LBM Supports access modes (e.g., exclusive mode)
and also provides a Sophisticated Scheduling Scheme based
on worker statistics. In contrast, the null LBM does not
Support access modes (i.e., the null LBM treats them all as
the Same and randomly Selects a worker from the pool of
workers). If a Service encapsulates a limited resource, the
fully capable LBM would be preferred. However, if the
Service encapsulates an abundant resource (e.g., provides
more than one worker 92 per service), or if there is the

Jul. 26, 2001

constraint that there may be only one worker per Service,
then the null LBM would be sufficient and would improve
performance.

0144. In addition, the LBM acts as a repository of worker
objects. The Service object creates the workers in the worker
pool and registers each worker with the LBM. In particular,
each worker in the worker pool, as Soon as it is launched, is
registered with the LBM using the registerWorker method.
Even though the LBM is an entity of the service object, the
worker is registered with the LBM, because the LBM may
be a plug-in object, So it may be independent of the Service
object (i.e., does not share internal data with the Service
object). Once the worker is terminated, the Service object
unregisters the worker from the LBM's registry using the
unregisterWorker method, and the Service object may ter
minate the worker pool.

0145 FIG. 25 shows a fully capable LBM 360 in accor
dance with some embodiments of the present invention. The
fully capable LBM uses a Sophisticated scheme of priority
queues and a Scheduler, an allocation manager 362, to
implement the allocateWorker and releaseWorker methods.
The service object (e.g., the service object 90 of FIG. 3)
simply forwards these requests to the registered LBM. The
fully capable LBM 360 includes five priority queues. In
particular, an idle queue 368 contains workers that have no
client reservations. In the idle queue 368, workers may be
Sorted in increasing order of workload.

0146 In some embodiments, the workload value of a
worker is a floating point number computed by the worker
that represents the load on the worker. In particular, the
Workload value may be determined by a calculation based
upon Such factors as the ratio of time spent in executing a
worker method to the elapsed time and the CPU load. The
elapsed time represents the time between pings from the
Service object to the worker (e.g., the value provided by the
property Service.pingInterval). The time spent in executing
a method is calculated by Summing the time spent in any
operation in the worker. Thus, the ratio of the elapsed time
to the time spent in executing a worker method provides an
indication of the ratio of time that was spent by the worker
actually performing a worker method. The CPU (central
processing unit or processor) load is the time spent by the
computer in performing work. Accordingly, the combination
of these two factors provides a measure of the workload on
the worker and the workload on the CPU.

0147 Referring to FIG. 25, the usable queue 370 con
tains workers that have Some client reservations, but the
number of clients for each worker is less than the maxCli
ents. In the usable queue 370, workers may be sorted in
increasing order of a combination of workload and available
client reservation slots. An unusable queue 374 contains
workers that have client reservations with the number of
clients equal to maxClients per worker (i.e., no more reser
Vations are possible against Such workers). In Some embodi
ments, the unusable queue 374, is not Sorted. A revocable
queue 372 contains workers that have one or more reserva
tions that have timed out and can be revoked if necessary. In
the revocable queue 372, workers may be sorted based on
the time of reservation expiration (i.e., workers containing
older revocations are higher in the queue). A client wait
queue 366 contains clients that are waiting for a worker to
be allocated. In Some embodiments, all workers are initially

US 2001/0010053 A1

in the idle queue 368, and as reservations are handed out, the
workers are moved into the usable queue 370, the unusable
queue 374, and the revocable queue 372 as appropriate.

0148 Referring to FIG. 25, in some embodiments, the
five queues are managed by two background threads, a
queue manager 364 and an allocation manager 362. The
queue manager 364 handles the tasks of maintaining a Sorted
order on each of the worker queues (except the unusable
queue 374 which is not sorted), as described above. The
queue manager 364 periodically browses the unusable queue
374 and looks for expired reservations. If a worker in the
unusable queue 374 has an expired reservation, the worker
is moved to the revocable queue 372, but the expired
reservation is not yet revoked.
0149 Referring to FIG.25, the allocation manager 362 is
the Scheduler that manages the client wait queue 366. In
Some embodiments, the allocation manager 362 maintains
the client wait queue 366 in first come first serve (FCFS)
order, but maintains the discretion to move clients forward
based on their declared duration (i.e., based on the reserva
tion properties Such as the acceSS mode, the reservation time,
etc., as discussed above with respect to FIG. 9). For
example, shorter duration requests are generally moved
ahead of longer duration requests. Also, the LBM may move
workers into the revocable queue if the workers have clients
holding reservations with them that have expired (e.g., based
on the reservation timeout). In Some embodiments, the
allocation manager 362 handles various client wait modes
Such as no wait, timed wait, and indefinite wait as dis
cussed above with respect to FIG. 9. The allocation manager
362 also Scans the worker queues waiting for an available
worker.

0150. In some embodiments, the allocation manager 362
checks for any worker hints Supplied in the waiting client's
reservation context and first attempts to reserve the hinted
worker. If the hinted worker is unusable, then the allocation
manager 362 attempts to reserve the next available worker.
If a worker is available in the idle queue 368 or the usable
queue 370, then the allocation manager 362 immediately
allocates the available worker to the waiting client. If no
workers are available in the idle queue 368 or the usable
queue 370, then the allocation manager 362 scans the
revocable queue 372 waiting for new workers to appear. If
the first available worker is a worker in the revocable queue
372, then the allocation manager 362 allocates the revocable
worker to the waiting client after revoking the expired
reservation (e.g., the first worker in the revocable queue 372
is Selected for a revocation and the oldest expired reserva
tion is revoked). The revocation involves a notification to the
affected worker using the clientRelease call and a callback
to the client that holds the expired reservation using the
reservationTimed Out call on the ServiceProxy callback
interface.

0151 FIGS. 26A-26B are a flow diagram illustrating the
call Sequence operation in accordance with Some embodi
ments of the present invention. In Stage 400, assuming a
client proxy does not already have a reserved worker for a
Service request, the Service proxy obtains a Service handle
from the Service locator. In Stage 402, the Service proxy
issues the allocateWorker call with a set of reservation
properties and an uninitialized reservation context. In Stage
404, the service object forwards the request to the LBM 360.

Jul. 26, 2001

In stage 406, the LBM determines if any clients are waiting.
If clients are waiting, then the LBM enqueues the request in
the client wait queue in stage 408. Otherwise, the LBM
proceeds to Stage 410.

0152 Referring to FIG. 26A, in stage 410, the LBM
attempts to-allocate a worker from the idle queue or the
usable queue, but if no workers are available, then the LBM
attempts to allocate a worker from the revocable queue. In
particular, the reservation context is uninitialized, So that
there are no worker hints available. Thus, the LBM takes the
first entry in the idle queue. If the idle queue is empty, then
the LBM checks the usable queue. If the usable queue is
empty, then the LBM checks the revocable queue. If no
workers are available in the revocable queue, then the LBM
checks the unusable queue to see if any workers have
expired reservations. If so, the LBM moves a worker with an
expired reservation to the revocable queue.

0153. Once a worker is available in the revocable queue,
the LBM selects the first worker in the revocable queue for
a revocation and revokes the oldest expired reservation. The
revocation involves a notification to the affected worker
using the clientRelease call and a callback to the client that
holds the expired reservation. Once a worker with a free
reservation is available (e.g., in the revocable queue, the
usable queue, or the idle queue), a new reservation is created
for the client with the appropriate reservation properties. The
worker is notified of the new client and its reservation
properties, and the reservation context is appropriately
modified (e.g., the reservation context may include current
information in the client key, the Service key, and the worker
key). The affected worker moves to the appropriate queues
(e.g., from the idle queue to the usable queue or the usable
queue to the unusable queue, etc.). Thus, in Stage 412, the
call to allocateWorker returns with a suitably filled reserva
tion context.

0154 Referring to FIG. 26B, in stage 414, the service
proxy Stores the reservation context and then issues the
request to the worker with the reservation context. In Stage
416, the worker receives the request, Verifies the request
using the reservation context (e.g., checks whether the client
has valid access to the worker, that is, the worker is notified
by the Service object of the reservation), and then executes
the request. Finally, in Stage 418, the worker returns the
result of the request to the client's Service proxy which
provides the result to the client.

0155 FIG. 27 shows a client wait queue 430 and an idle
queue 438 of the LBM 360 of FIG. 25 in accordance with
another embodiment of the present invention. In particular,
as shown in FIG. 27, the client wait queue 430 may include
three internal queues, one for each priority level, high
priority 432, medium priority 434, and low priority 436.
Similarly, the idle queue 438 may include three internal
queues, one for each priority level, high priority 440,
medium priority 442, and low priority 444. Further, each
queue of the LBM 360 of FIG. 25 may be similarly
implemented to include priority Sub-queues. Thus, if a client
comes with a high priority request, the client's request is
entered into the high priority client wait queue 432 of the
client wait queue 430. In some embodiments, the allocation
manager always Services the high priority requests ahead of
the lower priority requests. Also, in Some embodiments,
workers are assigned a priority. Thus, high priority workers

US 2001/0010053 A1

only work for high priority clients, and the high priority
workers are initially entered in the high priority idle queue
440 of the idle queue 438. When workers are moved from
one queue to another, they are moved into the appropriate
priority Sub-queue. Accordingly, this embodiment provides
yet another level of workload balancing in the Service
framework of the present invention.

0156. In some embodiments, each reservation session has
a specified durationTimeout attribute in the reservation
properties. The reservation Session represents a particular
reservation that a Service proxy of a client holds on a worker.
The Service object records the reservation Session and uses
the information in the Session to control the reservation (e.g.,
revoke the reservation once the timeout expires). In particu
lar, the reservation may include reservation properties pro
vided by the service proxy on the allocateWorker call, and
the reservation context, which is sent back and forth between
the proxy and the Service on all calls. The reservation
context includes the client key (identifies the Service proxy
uniquely), the Service key which identifies the Service object
itself, and the worker key which identifies the worker
uniquely within the Service. Once the Service object reserves
a worker for a client, the Service object marks the worker key
in the reservation context. Further, the LBM may store the
reservation Session as Soon as the reservation on a worker is
given to the client.

O157 Every service proxy has to supply a valid duration
Timeout value when calling allocateWorker. The duration
Timeout determines the length of time (in milliseconds) that
the Service object (e.g., the Service object 90) guarantees the
worker to stay reserved for this client from the moment the
worker has been allocated. If the client has a Set of opera
tions to be called that must be executed on the same worker
instance, then this Set of operations must be completed
within the duration Timeout interval for that work to be
guaranteed. Once this interval expires, the Service object
may revoke the reservation of this client and offer the worker
to another client that is waiting for a worker to become
available.

0158 Moreover, there are some optimizations in the
reservation mechanism to reduce the number of calls made
by the Service proxy to the Service. In Some embodiments,
once the duration Timeout expires, the client does not imme
diately lose the worker reservation (i.e., asynchronous res
ervation revocation). The client loses the reservation only if
there exists a contention. If there are other clients waiting for
the worker, the client that has an expired duration Timeout
may lose the worker. If there is no contention, the client's
reservation is usually still valid, and the client can keep
using the worker. If the Service object decides to revoke the
reservation, then the Service object issues the reservation
TimedOut call to notify the service proxy. The first Subse
quent operation on the Service proxy will try to reserve a
new worker before executing the requested operation.

0159. In addition to the durationTimeout, in some
embodiments, there is another time-out attribute in the
reservation properties, an inactiveTimeout. The inac
tiveTimeout detects idle clients and revokes their reserva
tion. If a Service proxy that has reserved a worker has not
used the worker within the inactiveTimeout interval, then
the worker notifies the Service object, and the Service object
may revoke the worker and assign it to another client that is

Jul. 26, 2001

waiting for the worker. If the worker is revoked, then the
Service proxy is notified of the revocation using the reser
vationTimed Out call. In Some embodiments, such a revo
cation occurs only if there is contention for workers. In Some
embodiments, the difference between the duration Timeout
and the inactiveTimeout is that the duration Timeout is
handled by the service object whereas the inactiveTimeout
is handled by the worker.
0160 FIG. 28 shows a service object 450 and an LBM
454 according to another embodiment of the present inven
tion. In particular, the Service object 450 periodically pings
each worker in the worker pool to obtain worker Statistics
452 Such as the workload of each of the workers. The service
object 450 supplies the worker statistics 452 to the LBM 454
which uses the worker statistics 452 for workload balancing.
For example, the LBM 454 may use the workload statistics
452 to sort the worker queues 458, 460, and 462 such as the
idle queue, the uSable queue, and the unusable queue. If the
Service object ping fails on a particular worker, then the
worker is unregistered from the LBM's worker registry 456
by the Service object, and all existing reservations on the
worker are revoked by the service object 450. The service
object 450 will then re-instantiate the worker and register the
re-instantiated worker in the LBM's registry 456.
0.161 The service object 450 maintains the runtime sta
tistics of each worker and constructs representative Service
statistics based on the worker statistics 452 Such as the
average of the worker numbers for certain Statistics (e.g.,
workload). The service object 450 periodically forwards this
information to the parent of the SM in response to the
periodic pings from the SM (i.e., the parent of the SM is the
SM that instantiated the service object). The SM periodically
passes the Service Statistics along with the Service informa
tion to the Service locators in the cell that are responsible for
distributing the object references of the registered Services.
These periodic updates are responsible for keeping the
Service locator's repository up to date.
0162 FIG. 29 shows the scalability of the service frame
work in accordance with Some embodiments of the present
invention. The service framework of the present invention is
based on a Scalable architecture. In Some embodiments, the
Service framework includes a variety of features that
enhance Scalability Such as clones (e.g., Service locator
clones, Service clones, etc.), multiple workers, multi
threaded workers (discussed above), asynchronous revoca
tion callbacks (discussed above), and distributed configura
tions or cells (e.g., Services that are part of the same
administrative framework may be distributed acroSS mul
tiple machines as described above with respect to FIG. 18).
0163 Scalability can improve throughput almost linearly,
ideally, with the addition of resources. For example, in a SM
that manages one instance of an RDBMS Service, adding
another instance of the Service should double throughput, in
the ideal case. Such an increase in throughput should be
linear as additional Service instances are added. However, in
practice, Scalability does not increase linearly because of
bottlenecks in the System that arise as the number of
resources increase Significantly. Also, the network band
width and the CPU power are limited and therefore inhibit
a linear increase in Scalability.
0164. As shown in FIG. 29, the service framework of the
present invention can increase Scalability by providing Ser

US 2001/0010053 A1

Vice locator clones and Service clones. A clone is another
instance of an object that is essentially identical to the
original instance. All clones use the same Set of properties.
For example, a clone of a Service represents another instance
of the service object with its own worker pool. The two
instances of the Service are quite independent and will
perform their own reservations and execution of requests.
Typically, clones live in different address Spaces in computer
Storage. Accordingly, if a clone goes down for Some reason,
it normally does not affect the other clones. Thus, clones also
introduce another level of fault tolerance in the service
framework of the present invention. In Some embodiments,
each Service has a property that determines the number of
clones for the service. The SM starts all clones of a service
when the service is started. Clones are applicable to any SM
managed instance (e.g., a service locator instance). ASM
managed instance represents an instance that the SM instan
tiated and which the SM periodically pings.
0.165. In particular, FIG. 29 provides a service locator
clone 474 and a service locator clone 476. If there are
multiple Service locator clones, the SM registers the Service
information with all available service locator clones. Thus,
each clone is capable of providing handles to any Service in
the network. Thus, a Service proxy 472, residing in a client
470, that needs to bind to, for example, an RDBMS service
can Send a getService request to any one of the Service
locators, the service locator 476 or the service locator clone
474, thereby balancing the workload among the multiple
Service locator instances. Of course, multiple Service locator
instances, possibly on different Servers, can also be pro
vided. This would further increase scalability if, for
example, a particular server becomes CPU-bound (i.e.,
processor bound).
0166 FIG. 29 also shows multiple service clones resid
ing in different servers. In particular, FIG. 29 shows a
service clone 482 for an RDBMS 480 residing in a server
478 and a service clone 488 for an RDBMS 486 residing in
a server 484. Each service can have a number of Service
clones (e.g., specified by the numClones property of the
Service). Each clone of the Service is a full instance of a
Service (e.g., contains a Service object and a pool of work
ers). Accordingly, additional Service clones improves
throughput by balancing the workload among the Service
clones.

0167. In some embodiments, the numWorkers property
of a service controls the number of workers that can be
instantiated for the Service. Each worker implements the
functionality of the Service and thus encapsulates the func
tionality of the service. For example, a worker for the
DataService implements the DataService interface (e.g.,
executeSQL or executeStored Procedure). Thus, the worker
for the DataService may differ from a worker for another
Service. Concurrent access to each worker is controlled by
the maxClients property of the worker. Multiple workers can
be instantiated in the same process which allows multiple
clients to work concurrently on multiple workers. In par
ticular, multiple workers in the same process means that
there are multiple workers (e.g., multiple worker CORBA
objects) instantiated in the same process by the Service
object. For example, if a worker can only Support one
reservation at a time (e.g., the worker.maxClients property is
Set to 1), and there is only one worker in the process, then
only one client can perform work in that process at a time.

Jul. 26, 2001

If there are two workers in the process, then two clients can
perform work in that process. If the two workers are in two
different processes, then two clients can perform work
concurrently, but in each process, there is only one client
active at a time.

0168 Generally, a thread-safe program (code) is a pro
gram that Supports any number of threads in the same
program (i.e., a thread is an operating System term that
indicates a thread of control in a process). Thus, if the code
of a worker for a Service is not thread-safe (i.e., the worker
only Supports one client at a time), only one client can
perform work on the worker at a time. The Service frame
work of the present invention allows multiple clients to
perform work on an instance of a Service even though the
workers for the Service are not thread-safe. For example,
multiple workers may be instantiated in different processes
So that multiple clients can perform work on the Service
using these workers. Moreover, multiple workers may be
instantiated in the Same process So that multiple clients may
perform work on the Service using these workers. Accord
ingly, the Service framework of the present invention allows
for multiple clients to perform work on the Service using
non-thread-safe workers without requiring the creation of
multiple processes.

0169. As the number of workers increases, the through
put generally increases, particularly for workers that are
heavily Serialized internally. Generally, Serialized internally
means that certain Sections of the code of the worker are
called critical Sections, which are Sections of code that are
not thread-safe. Each client accessing a worker represents a
thread. Thus, a critical Section only Supports one client at a
time. If a worker has a large number of critical Sections, or
if a significant Segment of the code of the worker is a critical
Section, then throughput may Suffer, because each client
must process the critical Section(s) of the worker one at a
time. Thus, if a worker is Serialized internally, then each
critical Section Serializes access to particular code of the
worker and thus bottleneckS may reduce throughput. Thus,
a worker with no critical Sections may have higher through
put, because multiple clients can access the worker concur
rently. Of course, additional workers may be instantiated to
Support concurrent access by additional clients. However,
the higher the number of workers, the greater the overhead
in the Service itself, because the Service object must collect
the workload from all the workers in order to perform
Workload balancing of the workers and worker reservation
management.

0170 Further, redundancy through the use of clones as
shown in FIG. 29 also provides increased fault tolerance in
the service framework of the present invention. For
example, the Service framework can isolate and withstand
faults generated by worker implementations, and the Service
framework has a high-availability feature to tolerate down
times. In particular, in Some embodiments, the Service
framework provides for fault isolation. For example, work
ers (e.g., workers implemented in C++ or JAVA) are prone
to fault generation, but the faults are isolated So that the
faults do not affect the running (current) configuration. The
worker fault isolation can be accomplished in various ways:
each worker can be located in a separate process using the
numProcesses property and the numWorkers property (i.e.,
an out-of-process worker), and thus a fault generated by the
worker would be isolated. Thus, because there can be

US 2001/0010053 A1

multiple instances of almost every entity (e.g., Service
locator, SM, Service, worker, etc.), faults within any par
ticular address Space can be tolerated. Hence, a death of a
Service instance can be tolerated without a complete outage
if clones of the Service are present and registered with the
Service locator. Any work performed on the Service instance
at the time of death may be lost and any dependent work may
be affected, but clients issuing requests to other clones of the
Service will not be Subject to any interruptions. Similarly,
Service and Service locator instances can be distributed
acroSS multiple machines thereby isolating machine or net
work area faults as well. Accordingly, Services as well as
workers can be launched out of process thereby providing
for fault isolation (e.g., distribution among different address
Spaces), or Services as well as workers can be launched in
process thereby providing for optimal memory usage.

0171 Further, in some embodiments, the service frame
work includes an automatic restart feature that enhances the
fault tolerance of the service framework of the present
invention. In particular, every object factory can instantly
restart a failed object in the event of a failure. For example,
if a worker fails in an abnormal manner, the object factory
restarts the worker immediately. Accordingly, the failure and
the Subsequent restart would be apparent only to the Service
proxy of the client that had been using the failed worker at
the time of the failure.

0172 In addition, the service framework of the present
invention also provides high availability. In particular, the
Service framework Supports redundancy at the worker and
Service object levels (e.g., worker clones and Service
clones). In Some embodiments, multiple workers can be
configured for a Service (e.g., multiple workers can be
instantiated based on the numWorkers property of the ser
vice), multiple Service clones can be configured (e.g.,
defined in a Service property Such as Service. numClones),
and multiple Service locators can be configured. The number
of service locator instances in an SM may be defined by a
Service locator property Such as ServiceLocator.numClones
(e.g., if the Service locator has numClones set to 2, then the
SM instantiates 2 service locator clones).
0173 Also, in some embodiments, the service framework
of the present invention also provides rebinding and fault
tolerance as illustrated by the flow diagram of FIG. 30. In
particular, in addition to encapsulating the complex logic for
reserving a worker, the Service proxy also encapsulates
rebinding to a new Service and worker upon failure thereby
providing the service framework with an additional level of
fault tolerance.

0.174. Accordingly, FIG. 30 is a flow diagram illustrating
the fault tolerance operation for when a Service object
becomes unavailable. In stage 500, the service proxy deter
mines whether an exception has been raised by the Service
object (e.g., whether or not the Service object has failed
during the reservation process). In stage 502, the Service
proxy also determines whether or not its currently cached
Service locator handle is valid. If not, the Service proxy
rebinds to another service locator, if available, in stage 504,
and then proceeds to stage 506. In stage 506, the service
proxy handles the exception raised by the Service object and
obtains a new service handle for a different service object
from the Service locator. Further, the Service proxy may
include Some transient properties that control the rebinding

Jul. 26, 2001

processes. In Some embodiments, the transient properties
include a value for maximum rebind attempts and a value for
delay in milliseconds before attempting to rebind to a
Service.

0175 FIG.31 shows an administrative interface 526 in a
server 524 in accordance with Some embodiments of the
present invention. A console 520 is linked by a network or
local connection 522 to the server 524 that includes the
administrative interface 526. The console 520 allows an
operator to configure the configuration. AS discussed above,
the configuration defines a collection of Services and Service
locators along with the properties of the Services and the
service locators. The configuration is maintained by the SM.
An operator defines the configuration from the console 520.
Thus, when the SM comes up, it comes up with a predeter
mined configuration of the Services, Service locators, and
their properties. Once configured, the configured distributed
object network System that includes the Service framework
of the present invention is fault tolerant. Thus, an operator
is not required to monitor the console once a configuration
has been configured and the System started. In Some embodi
ments, the console 520 provides a central management
console for remotely administering distributed applications
(e.g., a console that includes management Software written
in JAVA for performing remote management of clients on
the global Internet Such as a Standard browser client).
0176 FIG. 32 provides an interface of the administrative
interface in accordance with Some embodiments of the
present invention. In particular, the administrative interface
of FIG. 32 is written in IDL. The implementation of the
service framework derives from the administrative (admin)
layer. In Some embodiments, the admin layer can activate/
deactivate an object, and the admin layer can also customize
the objects behavior through the properties of the object.
Accordingly, the Service objects interface derives from the
admin interface, and the Service object's implementation
extends the admin layer. For example, the SM uses the
Service object's admin layer to start and Stop the Services and
Set the properties of the Services.
0177 Although particular embodiments of the present
invention have been shown and described, it will be obvious
to those skilled in the art that changes and modifications can
be made without departing from the present invention in its
broader aspects and, therefore, the appended claims are to
encompass within their Scope all Such changes and modifi
cations that fall within the true Spirit and Scope of this
invention.

What is claimed is:
1. A distributed object network System comprising:
a first computer;
a Service residing on the first computer, the Service

providing access to a limited resource that resides on
the first computer;

a Service framework;
wherein the Service framework further comprises:

a first Set of computer instructions executed by the first
computer, the first Set of computer instructions pro
Viding access to the requested Service by allocating
a worker in a worker pool for the Service in response
to a Service request, wherein the worker executes the

US 2001/0010053 A1

Service request, and the first Set of computer instruc
tions provides workload balancing among a plurality
of workers in the worker pool for the service.

2. The apparatus of claim 1 further comprising:
a Second computer;
a network connecting the Second computer to the first

computer,

wherein the Service framework further comprises:
a Second Set of computer instructions executed by the

Second computer, the Second Set of computer instruc
tions requesting a Service from the first computer.

3. The apparatus of claim 2 further comprising:
a third Set of computer instructions executed by a third

computer, the third set of computer instructions pro
Viding central management and configuration for
administering distributed applications.

4. The apparatus of claim 2 wherein the Service frame
work further comprises:

a Service locator executed by the first computer, the
Service locator providing an object reference to the first
Set of computer instructions in response to a get Service
operation from the Second Set of computer instructions,
wherein the Service locator provides workload balanc
ing among instances of the Service.

5. The apparatus of claim 4 wherein the service frame
work further comprises:

a third set of computer instructions executed by the
Second computer, the third Set of computer instructions
providing an object reference to the Service locator in
response to a find Service operation from the Second Set
of computer instructions, wherein the third Set of com
puter instructions provides workload balancing among
instances of the Service locator.

6. The apparatus of claim 2 wherein the Service frame
work further comprises:

a third set of computer instructions executed by the first
computer, the third set of computer instructions instan
tiating the Second Set of computer instructions and
registering the Service with a Service locator, wherein
the Service locator is executed by the first computer and
provides an object reference to the first Set of computer
instructions in response to a get Service operation from
the Second Set of computer instructions.

7. The apparatus of claim 2 wherein the second set of
computer instructions comprises methods exported by an
interface of the worker.

8. The apparatus of claim 2 wherein the second set of
computer instructions further comprises:

obtaining an object reference to the Service locator;
obtaining the object reference to the requested Service;
obtaining a reservation on the worker in the worker pool

for the requested Service; and
executing the Service request on the worker in the worker

pool for the requested Service.
9. The apparatus of claim 8 wherein the first set of

computer instructions further comprises:
allocating reservations among at least two workers in the
worker pool for the service.

Jul. 26, 2001

10. The apparatus of claim 9 wherein the first set of
computer instructions further comprises:

balancing the workload among the workers in the worker
pool by providing at least two queues that each com
prise workers that have various properties, wherein
each queue comprises a Sub-queue that comprises
workers that have various priorities.

11. The apparatus of claim 10 wherein the second set of
computer instructions further comprises:

providing a reservation context that comprises a client
key, a worker key, and a Service key.

12. The apparatus of claim 11 wherein the Service frame
work is implemented as CORBA extensions.

13. The apparatus of claim 12 wherein the Second com
puter further comprises:

a web browser.
14. The apparatus of claim 13 wherein the service frame

work provides Session management for a connection
between the first Set of computer instructions and the Second
Set of computer instructions during a worker reservation.

15. The apparatus of claim 14 wherein the second com
puter further comprises:

a JAVA applet eXecuted by the Second computer, wherein
the Second Set of computer instructions provides the
service request in Internet Inter-ORB Protocol (IOP)
to the first Set of computer instructions.

16. A computer implemented method for providing a
service framework in a distributed object network system,
the method comprising:

executing a first Set of computer instructions in a first
computer, the first Set of computer instructions provid
ing access to a Service by allocating a worker in the
worker pool for the service, wherein the first set of
computer instructions provides workload balancing
among a plurality of workers in the worker pool for the
Service, and the Service provides access to a limited
resource that resides on the first computer; and

executing a Second Set of computer instructions in a
Second computer, the Second Set of computer instruc
tions encapsulating the operation of performing a Ser
Vice request for the Second computer, wherein the
Second computer connects to the first computer over a
network.

17. The computer implemented method of claim 16
wherein the Step of executing the Second Set of computer
instructions further comprises:

finding the requested Service using a Service locator,
wherein the Service locator provides an object reference
to the first Set of computer instructions,

obtaining an allocated worker in the worker pool for the
requested Service, wherein the allocated worker is
Selected and reserved by the first Set of computer
instructions, and the allocated worker executes Service
requests,

receiving results of the Service request from the allocated
worker; and

passing the results of the Service request to the Second
computer.

US 2001/0010053 A1

18. The computer implemented method of claim 16
further comprising:

executing a third set of computer instructions in the
Second computer, the third Set of computer instructions
providing workload balancing among instances of the
Service locator, wherein the Service locator provides an
object reference to the first Set of computer instructions.

19. The computer implemented method of claim 16
wherein the Step of executing the first Set of computer
instructions further comprises:

allocating reservations among at least two workers in the
worker pool for the Service based on worker Statistics.

20. The computer implemented method of claim 19
wherein the Step of executing the first Set of computer
instructions further comprises:

providing a load balancing manager that comprises at
least two queues that each comprise workers that have
various properties, wherein each queue comprises a
Sub-queue that comprises workers that have various
priorities.

21. A computer-readable medium comprising Software for
a Service framework for a distributed object network System,
the Service framework Software comprising:

a set of objects, the Set of objects providing access to a
Service, the Service providing access to a limited
resource residing on a first computer,

wherein the Set of objects further comprises:
a plurality of workers in a worker pool for the Service;

and

a load balancing manager that balances workloads
among the plurality of workers in the worker pool for
the Service.

22. The computer-readable medium as in claim 21
wherein the service framework Software further comprises:

Jul. 26, 2001

a Service proxy object, the Service proxy object encapsu
lating, for a Second computer, the operation of a Service
request to the Set of objects, wherein the Second com
puter connects to the first computer over a network.

23. The computer-readable medium as in claim 21
wherein the service framework software further comprises:

a Service proxy locator object, the Service proxy locator
object providing workload balancing among instances
of a Service locator, wherein the Service locator pro
vides an object reference to the Set of objects and
balances workloads among instances of the requested
Service.

24. Computer data Signals embodied in a carrier wave
comprising:

an allocate worker interface in Internet Inter-ORB Proto
col (IIOP) from a service proxy object to a service
object, the Service object residing on a first computer
and providing access to a limited resource on the first
computer, and the Service proxy object residing on a
Second computer and encapsulating the operation of
requesting a Service, wherein the allocate worker inter
face comprises Service properties and a reservation
context, and

an execute request interface in IIOP from the service
proxy object to an allocated worker object that resides
on the first computer, wherein the allocated worker
object executes Service requests.

25. The computer data Signals as in claim 24 wherein the
allocate worker interface in IIOP further comprises:

a worker hint in the reservation context, wherein the
worker hint comprises an object reference of a worker
that was previously reserved by the Second computer.

