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(57) Abstract: An apparatus for controlling a system includes a memory to store a model of the system including a motion model of the
system subject to process noise and a measurement model of the system subject to measurement noise, such that one or combination of
the process noise and the measurement noise forms an uncertainty of the model of the system with unknown probabilistic parameters,
wherein the uncertainty of the model of the system causes a state uncertainty of the system with unknown probabilistic parameters.
The apparatus also includes a sensor to measure a signal to produce a sequence of measurements indicative of a state of the system,
a processor to estimate a Gaussian distribution representing the state uncertainty, and a controller to determine a control input to the
system using the model of the system with state uncertainty represented by the Gaussian distribution and control the system according
to the control input. The processor is configured to estimate, using at least one or combination of the motion model, the measurement
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model, and the measurements of the state of the system, a first Student-t distribution representing the uncertainties of the model and a
second Student-t distribution representing the state uncertainty of the system, the estimation is performed iteratively until a termination
condition is met, and fit a Gaussian distribution representing the state uncertainty into the second Student-t distribution.
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[DESCRIPTION]
[Title of Invention]

APPARATUS AND METHOD FOR CONTROLLING SYSTEM
[Technical Field]

[0001]

This invention relates to control of a system, and more specifically to
controlling a system using a model of system dynamics having uncertainty.
[Background Art] '

[0002]

Many advanced control techniques are formulated as optimization problems,
which can be solved by a control system in real time. Based on a type of a model
describing dynamics of the system, some systems are commonly referred as linear
or nonlinear systems. For example, a linear system is a model of a system based on
the use of a linear operator. Linear systems typically exhibit features and properties
that are much simpler than the nonlinear case and find important applications in
automatic control theory, signal proéessing, and telecommunications. For example,
the propagation medium for wireless communication systems can often be
modeled by linear systems, and the motion of a road yehicle can be described by a
linear system under certain conditions on the driver and/or control system.

{0003]

The performance of a model-based control inevitably depends on the quality
of the prediction model used in the optimal control computation. However, in
many applications the model of the controlled system is partial unknown or
uncertain. In such cases the application of the control on the uncertain model can
lead to suboptimal performances or even to instability of the controlled system.
[0004]

The Kalman filter (KF) is the standard tool for state estimation in linear

state-space models. The states can relate to the physical variables of a dynamical
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system, such as position, velocity, orientation, a corhbination of them, or flow, but
can also be nonphysical if the model has been obtained using black-box estimation
models. It is the best linear unbiased filter in the minimum-variance sense, and for
Gaussian noise it is the optimal Bayesian filter. The KF is a real-time recursive
method that propagates the mean and variance of the state estimate, which for
known Gaussian noise is the amount of information, the sufficient statistics,
needed to estimate the full probability distribution of fhe system. The classical
formulation of the KF assumes that the noise processes are Gaussian and have
known mean and covariance, which can be severely limiting.

 [0005]

Model uncertainties and possible data outliers affect the performance of the
KF, and in many practical cases, the model parameters are unknown, or at least
~ uncertain. For instance, in navigation systems where inertial sensing and/or GPS is
- used, the noise statistics often have temporal-dependence-that cannot-be S
determined a priori. Other examples are changing noise statistics due to
linearization errors in approximated nonlinear models, environment dependent
sensor statistics, and outliers in unreliable sensors that the Gaussian distribution
handles poorly because of its low probability mass in the tails. The noise
parameters determine the reliability of the different parts of the model and are
therefore of particular importance for the filter performance. However, manual
tuning of the noise parameters, as is often done in practice, can be a challenging,
time consuming, and‘tedious task.

[0006]

Due to the infeasibility of exact approaches to noise parameter estimation,
approximate methods are devised. For example, a method described in
US7209938B2 discloses a KF in combination with a variance estimator to estimate
the state of a dynamical system and associated variance of the measurement noise.

However, this method is sensitive to outliers, which is a common case in, but not
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restricted to, GPS/inertial sensing based estimation systems.
[0007]

Other approaches are based on augmenting the state vector to include the
parameters of uncertainty of the model, such as mean and variance of the noise.
However, such an approach leads to an estimation problem that is unnecessarily
complex, since the state vector is larger than it needs to be. Furthermore, such an
approach is dependent on introducing a model of the dynamical evolution of the
paraméters, which in reality is unknown.

[0008]

Accordingly, there is a need for a model-based control of a system using a
model of dynamics of the system that includes uncertainty.
[Summary of Invention]

[0009] |

Typically, a model of the system includes two models (equations). The first
model is a motion model of the system relating a state of the system to a previous
state of the system and an input to the system. The motion model typically includes
noise or disturbance representing uncertainty of the motion model. This
uncertainty is referred herein as process noise. The second model is a measuremenf
model relating available measurements of the system to the state of the system.
The measurement model also includes measurement noise and/or other
uncertainties referred herein as measurement noise.

[0010]

Example of the motion model is x+1=Axy +wy, wherein wy is the process
noise. Also, example of the measurement model is y,=Cxy +ey, wherein e is the
measurement noise.

[0011]
In addition,. the state of the system is also subject to uncertainty, referred

herein as a state uncertainty. Notably, the process noise and the measurement noise
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cause the state uncertainty, however, the state uncertainty is differént from the
“process and measurement noises. Specifically, the state uncertainty is internal to
the‘ values of the state while the process and measurement noises are external
disturbance on the state.

[0012]

When the process noise and the measurement noise are known, i.e., the
shape and parameters of the distribution of the process noise and the measurement
noise are known, various techniques allow to estimate both the state of the system
and the state uncertainty. Both the state of the system and the state uncertainty is
important for a number of control applications. For example, the state of the
system can be used to determine a control input to the system to accomplish a
control objective, while the state uncertainty can be used to adjust the control input
to ensure the feasibility of the control. |
[0013]

- For example, when the distributions of the process noise and the
measurement noise are Gaussian, and the mean and the variance of the Gaussian
distribution for the process and measurement noise are known, the Kalman filter
can be used to estimate both the state of the system and the state uncertainty. |
However, when the variance of the Gaussian distribution for at least one of the
process and measurement noise is unknown, the Kalman filter is not applicable. To
that end, it is beneficial for a number of control applications to know probabilistic
parameters of the distributions of the process noise and the measurement noise.
[0014]

Some embodiments are based on the understanding that it is possible to
represent an unknown probabilistic parameter with an average expected value.
However, in many situations, the probabilistic parameters are changing over time,
and using the average expected value would result in having constant value of the

probabilistic parameter, which can be suboptimal.
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[0015]

To that end, there is a need to estimate for a system and method for
estimating probabilistic parameters of distribution of at least one or combination of
process noise and the measurement noise as a function of time.

[0016]

Some embodiments are based on recognition that when the probabilistic
parameters of a distribution are unknown, it is reasonable to assume that the
distribution is a Gaussian distribution. This assumption is, for example, justified by
the law of large numbers. For instance, an accelerometer has high-frequency noise
components that when measured at a fixed sampling-rate resembles a Gaussian
probability distribution.

[0017]

Some embodiments are based on another recognition that it is possible to
-estimate- unknown probabilistic parameters of the Gaussian-distribution, such as
mean and Varia_ncé. For example, due to symmetry of the Gaussian distribution, the
variance of the Gaussian distribution can be estimated using an average of
variations of the data samples. |
[0018]

However, some embodiments are based on realization that when the
variance of the Gaussian distribution of the process noise and/or the measurement
noise is unknown, the distribution of the process noise and/or the measurement
noise should be Student-t distribution, even when the actual distribution of the
process noise and/or the measurement noise is Gaussian. This is because, the
Student-t distribution can better capture the uncertainty of the unknown variance of
the Gaussian distribution. Unfortunately, however, the Student-t distribution is ill-
suited for a number of control methods. That is, if the state of the system is
represented with the Student-t distribution, a number of the assumptions when

devising the control methods would be violated. For instance, many control
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systems, such as Linear Quadratic Gaussian controllers (LQG), rely on a Gaussian
-assumption of the process and measurement noise to provide stability guarantees.
[0019]

To that end, some embodiments perform several transformations between |
the Gaussian and Student-t distributions to capture both the Gaussian nature of the
process and the uncertainty of the Gaussian nature. Such a transformation allows to
consider the uncertainty of Gaussian distribution in various control methods that
are not designed to consider Student-t distributions. For example, one embodiment
determines initial estimates of the mean and the variance of the Gaussian noise,
and thereby fits the parameters of a Student-t distribution to the Gaussian
distribution. Another embodiment iteratively estimates the parameters of a
Student-t distribution, namely the mean, the scale, and the degree of freedom, and
fits a Gaussian distribution to the Student-t distribution. Doing in such a manner
results-in consistency with the Gaussian noise assumption but still accounts for the
uncertainties in the mean and the variance of the Gaussian distribution.

[0020]

As time progresses, the Student-t distribution approaches the Gaussian. One -
embodiment is based on the understanding that it can be beneficial to avoid this
merging. Consequently, the embodiment restricts the parameters of the Student-t
distribution such that the Student-t and Gaussian are sufficiently close to each
other, but not exactly the same.

[0021]

Some embodiments are based on the understanding that the state of the
dynamical system in each time step can be updated by analytical expressions,
similar to a KF.

[0022]
Other embodiments realize that the parameters can be updated by a

difference of the measurement to the state estimate of the measurement. One
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embodiment weights the difference of the'measurement to the state estimate of the
measurement with the uncertainty of the state estimate, to further account for that
the knowledge of the state estimate is uncertain.

[0023] |

Yet other embodiments realize that in cases where the measurement contains
information about the disturbance of the dynamical system, a system with noise
dependence, the predicting the state of the dynamical model can be done using the
measurement from the previous time step. It is also realized that pfedicting the
state using the previoﬁs measurement leads to the update of the parameters can be
retained, but still incorporates information about the noise dependence. For
example, such a method is beneficial for automotive applications, where the
steering input from the driver is the input to a model of the motion of the vehicle,
affecting the velocity of the vehicle. The steering input is not exactly known, but is
-measured by a noisy sensor attached to the steering wheel of the vehicle. If inertial
measurements are used, such as acceleration measurements, also the model of the
measurement of the vehicle includes the steering input from the driver. Hence,
information about the steering input is contained in the measurement model of the
vehicle. |
[0024]

Consequently, one embodiment is based on the understanding that the
sensors affecting the motion model of the system and the sensors affecting the
measurement model of the system, often are affected by a time varying offset and
uncertainty of the knowledge of the variation of the sensor measurements. Another
embodiment is based on that the sensor can be modeled by a combination of a
deterministic part and a stochastic part, where the stochastic part is modeled by a
Gaussian distribution with unknown mean and variance. Various embodiments
realize that the mean and the variance of the Gaussian distribution can be used to

model the offset and the variation of the sensor measurements. Consequently, in
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one embodiment the sensor is calibrated by the determining the mean and the
variance of the Gaussian disturbance.
[0025]

Accordingly, one embodiment discloses an apparatus for controlling a
system, including a memory to store a model of the system including a motion
model of the system subject to process noise and a measurement model of the
system subject to measurement noise, such that one or combination of the process
noise and the measurement noise forms an uncertainty of the model of the system
with unknown probabilistic parameters, wherein the uncertainty of the model of
the system causes a state uncertainty of the system with unknown probabilistic
parameters; a sensor to measure a signal to produce a sequence of measurements
indicative of a state of the system; a processor to estimate, using at least one or
combination of the motion model, the measurement model, and the measurements
of the state of the system, a first-Student-t distribution representing the
uncertainties of the model and a second Student-t distribution representing the state
uncertainty of the system, the estimation is performed iteratively until a
termination condition is met; and fit a Gaussian distribution representing the state
uncertainty into the second Student-t distribution; and a controller to determine a
control input to the system using the model of the system with state uncertainty
represented by the Gaussian distribution; and control the system according to the
control input.

[0026]

Another embodiment discloses a method for controlling a system, wherein
the method uses a processor coupled with stored instructions implementing the
method, wherein the instructions, when executed by the processor carry steps of
the method, including retrieving a model of the system including a motion model
of the system subject to process noise and a measurement model of the system

subject to measurement noise, such that one or combination of the process noise
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and the measurement noise forms an uncertainty of the model of the system with
unknown probabilistic parameters, wherein the uncertainty of the model of the
system causes a state uncertainty of the system with unknown probabilistic
parameters; receiving a sequence of measurements indicative of a state of the
system; estimating, using at least one or combination of the motion model, the
measurement model, and the measurements of the state of the system, a first
Student-t distribution representing the uncertainties of the model and a second
Student-t distribution representing the state uncertainty of the system, wherein the
estimating is performed iteratively until a termination condition is met; fitting a
Gaussian distribution represénting the state uncertainty into the second Student-t
distribution; determining a control input to the system using the model of the
system with state uncertainty represented by the Gaussian distribution; and
controlling the system according to the control input.

[0027]

Yet another embodiment discloses a non-transitory computer readable
storage medium embodied thereon a program executable by a processor for
performing a method, the method includes retrieving a model of the system
including a motion model of the system subject to process noise and a
measurement model of the system subject to measurement noise, such that one or
combination of the process noise and the measurement noise forms an uncertainty
of the model of the system with unknown probabilistic parameters, wherein the
uncertainty of the model of the system causes a state uncertainty of the system with
unknown probabilistic parameters; receiving a sequence of measurements
indicative of a state of the system; estimating, using at least one or combination of
the motion model, the méasurement model, and the measurements of the state of
the system, a first Student-t distribution representing the uncertainties of the model
and a second Student-t distribution representing the state uncertainty of the system,

wherein the estimating is performed'iteratively until a termination condition is met; -
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fitting a Gaussian distribution representing the state uncertainty into the second
Student-t distribution; determining a control input to the system using the model of
the system with state uncertainty represented by the Gaussian distribution; and
controlling the system according to the control input.

[Brief Description of Drawings]

[0028]

[Fig. 1A]

Figure 1A is an illustration showing principles according to some
embodiments.

[Fig. 1B]

Figure 1B is an illustration of a Gaussian distribution.
[Fig. 1C]

Figure 1C is an illustration of how the Student-t distribution varies for
different degrees of freedom.
[Fig. 1D]

Figure 1D is an illustration of how the Gaussian distribution is not well
suited to handle uncertainties in probabilistic parameters according to some
embodiments.

[Fig. 1E]

Figure 1E is an illustration of how the Student-t distribution is suited to
handle uncertainties in probabilistic parameters according to some embodiments.
[Fig. 2A]

Figure 2A is a flowchart of a method for jointly estimating a state of a
system and probabilistic parameters of the system according to one embodiment of
the invention, and to control the system.

[Fig. 2B]
Figure 2B is a flowchart of an exemplar implementation of determining

initial estimates according to one embodiment.
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[Fig. 2C]

Figure 2C is a block diagram of an apparatus for controlling a system
according to some embodiments.
[Fig. 3A]

Figure 3A shows a flowchart of one iteration of a method for updating the
state of the system.
[Fig. 4A]

Figure 4A is an illustration of detérmining probabilistic parameters and state
of the system according to some embodiments of the invention. |
[Fig. 4B] |

Figure 4B is an illustration of determining probabilistic parameters and state
of the system according to some embodiments of the invention.

[Fig. 4C]

—Figure 4C-is a schematic of different motions determined according to-some-
principles employed by some embodiments of the invention.
[Fig. 4D]

Figure 4D is a schematic of different motions and associated probability
distributions determined according to some principles employed by some
embodiments of the invention.

[Fig. SA] |

Figure 5A is an illustration of how the sensor measurements of a sensor
typically varies with time. -
[Fig. 5B]

Figure 5B is an illustration of how the sensor offset of a sensor varies with
placement of sensor.

[Fig. 5C]
Figure 5C is an illustration of how the sensor variance of a sensor varies

with placement of sensor.

11
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[Fig. 6A]

Figure 6A shows a flowchart of a method for controlling a system by jointly
estimating a state of a system and state of senor of the system according to one
embodiment of the invention. |
[Fig. 6B]

Figure 6B shows a graph illustrating probability distribution function
defining the feasible space of the state of sensor. |
- [Fig. 6C]

Figure 6C shows a block diagram of one iteration of a method for updating
the particle according to one embodiment that updates thé particle iteratively.
[Fig. 7A]

Figure 7A illustrates a general block diagram of a control system according
to one embodiment.

[Fig. 7B]

Figure 7B shows a general structure of the state-of-sensor estimator
according to one embodiment.
[Description of Embodiments]
[0029]

Typically, a model of a system includes two models (equations). The first
model is a motion model of the system relating a state of the system to a previous
state of the system and an input to the system. The model can, for example, be a:
motion model traveling on a road where the state of the system includes a velocity
and a heading rate, and where the input to the system is the steering angle of the
driver. The motion model typically includes noise or disturbance representing
uncertainty of the motion model. For instance, the disturbance can represent an
uncertainty in how a driver of the vehicle behaves. This uncertainty is referred
herein as process noise. The second model is a measurement model relating

" available measurements of the system to the state of the sy‘stem. For example, a

12
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measurement can be a accelerometer relating the acceleration measurement to the
velocity of the vehicle. The measurement model also includes measurement noise
and/or other uncertainties referred herein as measurement noise. For instance, an
accelerometer has noise in the measurements due to various sources, for example,
mechanical vibrations in the components of the accelerometer.

[0030]

Example of the motion model is Tk+1 = ArTp + Wi wherein Wk is the
process noise and Tk is the state. An example of the measurement model is
Vi =C kXK + €y, wherein €k is the measurement noise.

[0031]

The uncertainties in the motion model and the measurements cause the
knowledge of the state to have uncertainty as well, which in general is not the same
noise as the process and/or the measurement noise.

[0032]

Figure 1A shows a schematic of the Kalman filter (KF) used by some
embodiments. The KF is a tool for state estimation in linear state-space models,
and it is the optimal estimator when the noise sources are known and Gaussian, in
which case also the state estimate is Gaussian distributed. The KF estimates the
mean and variance of the Gaussian distribution, because the mean and the variance
are the two required quantities, sufficient statistics, to describe the Gaussian
distribution.

[0033]

| Figure 1B shows a sketch of the Gaussian distribution 110b used by some
embodiments in using the KF of Figure 1A. The Gaussian distribution 110b is
centered at the mean 120b of the distribution, and the variance 130b measures the |
spread, width, of the distribution. Referring back to Figure 1A, the KF starts with

an initial knowledge 110a of the state, to determine a mean of the state and its

13
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variance 111a. The KF then predicts 120a the state and the variance to the next
time step, using a model of the system, to obtain an updated mean and variance
121a of the state. The KF then uses a measurement 130a in an update step 140a
using the measurement model of the sysfem, to determine an updated mean and
variance 141a of the state. An output 150a is then obtained, and the procedure is
repeated for the net time step 160a.

[0034] |

Figure 1C shows a graph illustrating the difference between the Gaussian
distribution and the Student-t distribution for varying degrees of freedom in the
Student-t distribution. The mean 120b and variance 130b of the Gaussian
distribution is enough to describe the shape. The Student-t distribution needs three
parameters, the mean, the scale, and the degree of freedom. The scale is the
variance scaled with a function that is dependent on the degree of freedom. For

‘instance, Figure 1C shows three-Student-t shapes, with three different degrees of
freedom. For small number of the degree of freedom, the Student-t distribution
130c is a smoothed out version of the Gaussian. However, as the number of the
degree of freedom increases, the Student-t becomes more similar, 120c and 110c, -
to the Gaussian distribution.

[0035]

Both the state of the system and the state uncertainties are useful for a
number of control applications. For example, fhe state of the system can be used to
determine a control input to the system to accomplish a control objective, while the
state uncertainty can be used to adjust the control input to ensure the feasibility of
the control.

[0036]

When the distributions of the process noise and the measurement noise are

Gaussian, and the mean and the variance of the Gaussian distribution for the

process and measurement noise are known, the KF can be used to estimate both the

14
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state of the system and the state uncertainty. However, when the Vafiance of the
Gaussian distribution for at least one of the process and measurement noise is
unknown, the KF is not applicable. To that end, it is beneficial for a number of
control applications to know probabilistic parameters of the distributions of the
process noise and the measurement noise. For example, for Gaussian noise the
probabilistic parameters include the mean and the variance of the Gaussian
distribution that the noise arises from.
[0037]

Some embodiments are based on recognition that when the probabilistic
parameters of a distribution are unknown, it is reasonable to assume that the
distribution is a Gaussian distribution. For example, this assumption is justified by
the law of large numbers. For instance, an accelerometer has high-frequency noise
components that when measured at a fixed sampling-rate resembles a Gaussian
probability: distribution. - |
[0038]

Some embodiments are based on another recognition that it is possible to
estimate unknown probabilistic parameters of the Gaussian distribution, such as
mean and variance. For example, due to symmetry of the Gaussian distribution, the
variance of the Gaussian distribution can be estimated using an average of
variations of the data samples. However, some embodiments are based on
realization that when the variance of the Gaussian distribution of the process noise
and/or the measurement noise is unknown, the distribution of the process noise
and/or the measurement noise should be Student-t distribution, even when the
actual distribution of the process noise and/or the measurement noise is Gaussian.
This is because, the Student-t distribution can better capture the uncertainty of the
unknown variance of the Gaussian distribution.

[0039]

Figure 1D shows a Gaussian distribution 110d and a measurement 120d,

15
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where the probabilistic parameters of the Gaussian distribution 110d are unknown,
and where the measurement 120d originates from 110d. The measurement 120d is
not close to the center of 110d, but has a nonnegligible probability of occurring.
However, the measurement 120d is modeled to have originated from the Gaussian
distribution 130d, for which the measurement has a close to zero probability with
the current estimates of probabilistic parameters of 130d, and the result will be that
the state estimator will move the state estimate and the distribution 140d associated
with 120d in the wrong way.

[0040]

Figure 1E shows a Gaussian distribution 110d and a measurement 120d,
where the probabilistic parameters of the Gaussian distribution 110d are unknown,
and where the measurement 120d originates from 110d. The measurement 120d is
not close to the center of 110d, but has a nonnegligible probability of occurring.
‘However; the measurement-120d is-in the estimator modeled to have originated™
. from the Student-t distribution 130e, for which the measurement has a nonzero
probability since the tails of the Student-t 130e covers the measurement 120d, and
the result is that the state estimator moves the state estimate and the distribution
140e in a better way.

[0041] |

Unfortunately, however, the Student-t distribution is ill-suited for a number
of control methods. That is, if the state of the system is represented with the
Student-t distribution, a number of the assumptions when devising the control
methods would be violated. For instance, many control systems, such as Linear
Quadratic Gaussian controllers (LQG), rely on a Gaussian assumption of the
process and measurement noise to provide stability guarantees.

[0042]
To that end, some embodiments perform several transformations between

the Gaussian and Student-t distributions to capture both the Gaussian nature of the
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process and the uncertainty of the Gaussian nature. Such a transformation allows to
consider the uncertainty of Gaussian distribution in various control methods that
are not designed to consider Student-t distributions.

[0043] |

For example, one embodiment determines initial estimates of the mean and
the variance of the Gaussian noise, and thereby fits the parameters of a Student-t
distribution to the Gaussian distribution. Another embodiment iteratively estimates
the parameters of a Student-t distribution, namely the mean, the scale, and the
degree of freedom, and fits a Gaussian distribution to the Student-t distribution.
Doing in such a manner results in consistency with the Gaussian noise assumption
but still accounts for the uncertainties in the mean and the variance of the Gaussian
distribution. | |
[0044]

Figure 2A shows a flowchart of a method for controlling a system according
to a model of the system including a motion model of the system subject to process
noise and a measurement model of the system subject to measurement noise, such
that one or combination of the process noise and the measurement noise forms an
uncertainty of the model of the system with unknown probabilistic parameters,
wherein the uncertainty of the model of the system causes a state uncertainty of the
system with unknown probabilistic parameters. For instance, the unknown
probabilistic parameters can be the mean and the variance of the Gaussian |
distribution. For instance, a parameter, such as a mass, of the system can be
modeled as a Gaussian disturbance with a statistical mean and variance.

[0045]

To that end, the method determines initial estimates 210a of the mean and
the variance of a first Gaussian distribution representing the uncertainty of the
model, to produce a mean and a variance 215a of a first Gaussian distribution.

Then, the method uses the mean and variance 215a to fit a first Student-t
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distribution to the Gaussian distribution having the initial values of the mean and
the variance to determine initial values of the mean, the scale, and the degree of
freedom of the first Student-t distribution representing the uncertainties of the
model. In one embodiment, the mean of the Student-t is the same as the mean of
the Gaussian. In another embodiment, the scale is obtained by matching the
moments of the Gaussian to the Student-t. In another embodiment, the fitting is
done by moment matching and/or optimizing a cost function measuring the
differences between the distributions. |

[0046]

Then, the method uses the initial estimates 225a of the first Student-t
distribution, to determine 230a initial values of the mean, the scale, and the degree
of freedom 235a of a second Student-t distribution representing the state
uncertainty. In one embodiment, the determining is made by propagating the
parameter of the first Student-t through the motion model of the system.

[0047] |

Using a measurement 236a the method then performs an iterative update
240a until a termination condition is met, a state of the system, the parameters of
the first Student-t distribution, and the parameters of the second Student-t
distribution 245a, wherein the updated parameters 245a yield also updated first and
second Student-t distributions. |
[0048]

When the termination condition is met, the method fits 250a a Gaussian
distribution representing the state uncertainty into the second Student-t distribution
to produce the mean and the variance 255a of the second Gaussian distribution.
Then, the method determines 260a, using the mean and the variance 255a of the
second Gaussian distribution, a control input 265a and controls 270a the system
according to the control input 265a.

[0049]
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In some embodiments, the initial values of the second Student-t distribution
equal the initial values of the first Student-t distribution. Choosing such initial
values can be advantageous when there is no or little reason to believe that the
initial uncertainty of the state will change from the initial uncertainty of the model
itself. However, in one embodiment the initial values differ. For instance, one
embodiment determines the initial values of the second Student-t distribution to be
a function of the model of the system and the initial values of the first Student-t
distribution. This can be valuable, for example, when the initial values of the first
Student-t distribution have been determined in advance, and there is reason to
believe that the state of the system has changed since the initial values of the first
Student distribution were determined. In another embodiment, the initial values of
the second Student-t distribution equal the initial values of the first Student-t
distribution, but the final values of the second Student-t distribution differ from the
final values of the first-Student-t distribution. This is in general the case unless the -
motion model of the system and the measurement model of the system are
modeled in such a way that the respective changed introduced by the two models
cancel out. |
[0050]

Figure 2B shows a flowchart of an exemplar implementation of 210a
according to various embodiments. First, the method 210a obtains 210b, either
through collecting data or by receiving data from a memory, historical
measurements of the system. Then, using a model 219b of the system, the method
determines 220b an average value of historical measurements to produce an initial
estimate of the mean according to the model of the system relating the state to the
historical measurements. The method then determines 230b the initial estimate of
the variance using an average variation of historical measurements and the model
relating the state to the measurements.

[0051]
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Figure 2C shows a block diagram of an apparatus 210c for controlling a
system according to some embodiments. The apparatus includes a memory 220c to
store a model of the system including a motion model 221c of the system subject
to process noise and a measurement model 222¢ of the system subject to
measurement noise, such that one or combination of the process noise and the
measurement noise forms an uncertainty of the model of the system with unknown
probabilistic parameters. The uncertainty of the model of the system causes a state
uncertainty 223c¢ of the system with unknown probabilistic parameters.

[0052]

The apparatus 210c also includes a sensor 250c to measure a signal to
produce a sequence of measurements indicative of a state of the system, a
processor 230c to estimate a Gaussian distribution235c¢ representing the state
uncertainty, and a controller 240c to determine a control input to the system using
the model of the system with state uncertainty represented by the Gaussian -
distribution 235¢ and control the system according to the control input. The
controller 240c controls the system using various control methods, such as model
predictive control, which uses a model of the system, often using an underlying
Gaussian noise assumption, to make predictions of the system due to different
control commands. Another possible control method is LQG control, which also
relies on an underlying Gaussian assumption. It is to be understood that
embodiments are not limited to these methods.

[0053]

The processor 230c determines the Gaussian distribution 235¢ based on a
first Student-t distribution representing the uncertainties of the model and a second
Student-t distribution representing the state uncertainty of the system. For example,
the processor estimates the first and/or the second Student-t distributions using at
least one or Combination of the motion model, the measurement model, and the

measurements of the state of the system. In some embodiments, the estimation is
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performed iteratively until a termination condition is met. Examples of termination
conditions include the that available computation time limit has been met, that a
predefined number of iterations have been reached, and that the difference between
two consecutive updates are below a predefined threshold. Upon meeting the
termination condition, the processor fits a Gaussian distribution representing the
state uncertainty into the second Student-t distribution.

[0054]

In such a manner, some embodiments perform several transformations
between the Gaussian and Student-t distributions to capture both the Gaussian
nature of the process and the uncertainty of the Gaussian nature. Such a '
transformation allows to consider the uncertainty of Gaussian distribution in -
various control methods that are not designed to consider Student-t distributions.
[0055]

In some embodiments, the initial value of the degree of freedom is selected
as a positive finite integer value greater than the dimension of the state dimension.
In other embodiments, the degree of freedom is greater than the sum of the state
dimension and the measurement dimension. In another embodiment, the
determined initial value of the degree of freedom is used to determine the mean
and scale of the first Student-t distribution. For instance, the embodiment
determines the initial scale as the initial variance of the first Gaussian distribution
divided by an affine function of the initial degree of freedom.

[0056] |

Referring back to Figure 1C, the value of the degree of freedom
characterizes the tails of the Student-t distribution, and therefore the sensitivity to
uncertainties in the parameters of the Gaussian disturbance. Some embodiments
are based on the understanding that the disturbance acting on the model of the
system are due to several factors. For instance, both parameters of the model itself

and inputs to the system can be uncertain. In such a setting, the disturbance model
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lumps together several disturbanceé.
[0057]

Consequently, one embodiment estimates the level of uncertainties of the
model and selects an initial value of the degree of freedom as a function of the
level of uncertainties in the model.

[0058]

As the degrees of freedom incfease, the Student-t distribution approaches the
Gaussian. One embodiment is based on the understanding that it can be beneficial
to avoid this merging. Consequently, the embodiment restricts the parameters of
the Student-t distribution such that the Student-t and Gaussian are sufficiently
close to each other, but not exactly the same. For instance, one embodiment
determines a finite degree of freedom after the termination threshold in the
iterative update 240a is met.

[0059]

The fitting of a Gaussian distribution to a Student-t distribution, and vice
versa, can be done in several ways. One embodiment determines the fitting 250a of
the second Gaussian distribution into the second Student-t distribution as one or a
combination of a moment matching and a similarity optimization. For instance,
one embodiment determines the fitting by matching the variance of the Gaussian to
the scale of the Student-t, by dividing the scale with an affine function of the
degree of freedom. In another embodiment, the fitting is done by optimizing a cost
function measuring the differences between the distributions. The cost function can
be chosen in several ways, including as the difference between the estimated
Student-t distribution and the Gaussian distribution.

[0060] |

Figure 3A shows a flowchart of one iteration of a method 240a for updating

the state of the system, the parameters of the first Student-t distribution, and the

parameters of the second Student-t distribution, according to embodiments of the
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invention. The method estimates 350a, using the motion model, the state of the
system, current values of the first Student-t distribution, and current values of the
second Student-t distribution based on a previous estimation of the state of the
system, previous values of the first Student-t distribution, and previous values of
the second Student-t distribution. Then, the method receives 360a a measurement
of the system. Using the measurement 365a and the measurement model 345a, the
method updates 370a the current estimation of the state of the system, the current
values of the first Student-t distribution, and the current values of the second
Student-t distribution, based on the estimated values 355a.

[0061]

Sometimes the probabilistic parameters are time varying. For instance, in
navigation systems where inertial sensing and/or GPS is used, the noise statistics
often have temporal dependence that cannot be determined a priori. Other
examples are changing noise statistics due to linearization errors in approximated
nonlinear models, and another example is environment-dependent sensor statistics
[0062]

Accordingly, some embodiments are based on the understanding that the
updating 240a, the fitting the second Gaussian distribution 250a, the determining
the control input 260a, and the contrblling 270a may be needed to be performed at
different time steps. To this end, one embodiment iterates the updating 240a, the
fitting the second Gaussian distribution 250a, the determining the control input
260a, and the controlling 270a for different control steps. Doing in such a manner
allows for determining time varying probabilistic parameters.

[0063] |

In some embodiments, the state of the system evolves dynamically.in time
according to a model of the motion of the state of the system. If choosing the
model of the motion of the system and the model of the inputs to the system

carefully, the motion of the state of the system can be described as one part that is
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independent on the probabilistic parameters, which is entirely determined by the
state of the vehicle, and one uncertain part, where the uncertain part is dependent
on the noise to the system. In some embodiments, the system relating the state at a
future time step with a state of the current time step is written as |
Tppy = ApTr + Wi wherein Wi is the process noise and Tk is the state. An
example of the measurement model is Y, = CjXj + €}, wherein €k is the
measurement noise. In one embodiment, the model] is instead written as
Tk4+1 = Axp + U + Wi, where Uk is the deterministic input to the system, and/or
similar for the measurement model. The state can describe physical states such as
position or velocity, or nonphysical state. The model can be obtained from physical
modeling, such as force and mass balances, or can be obtained from system
identification and black box models. In another embodiment, the original system
model is Tk+1 = f(Tk, uk) + g(zx, Uk)'wk, which is nonlinear, and similar for the
measurements. However, the nonlinear model can be transformed to a linear
system, either through a mathematical linearization of the dynamics, or by other
techniques, such as statistical linearization techniques.
[0064] '

In some embodiments, the state and probabilistic parameters are obtained by

probabilistic methods. In terms of a probability density function (PDF), with the

definition %k = {tk, Zr} where thé parameters are the mean and the variance of
the first Gaussian distribution, the dynamical system can be described as

P(Tk+1 |k, vk, O, Some embodiments rely on the realization that determining the
state of the system and the probabilistic parameters can be done by determining the
PDF of the total system, given measurements and model of the motion and model
of the measurements. For instance, in case of known mean and unknown variance,
to determine the PDF, some embodiments determine the PDF as the product of a

PDF of the state and the PDF of the parameters as
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P, Ok|yo:r) =~ Stk [Exjses Prjes Vi)
- iW (0| Ak, i) ,

where St is the Student-t distribution and iW is the inverse-Wishart distribution.
[0065] |

Some embodiments are based on the understanding that the state of the
dynamical system in each time step can be updated by analytical expressions,
similar to a KF.

[0066]

Other embodiments realize that the parameters can be updated by a
difference of the measurement to the state estimate of the measurement. One
embodiment weights the difference of the measurement to the state estimate of the
measurement with the uncertainty of the state estimate, to further account for that |
the knowledge of the state estimate is uncertain.

[0067] |
For instance, one embodiment determines the estimating using the motion
Thprjh = ATk

P = AP A" + 2y, )

model as , where “~“ws.k is the estimated scale

Pk

of the process noise of the first Student-t distribution and is the estimated
scale of the second Student-t distribution. When there is a dependency between the
unknown process and measurement noise, one embodiment instead performs the
estimating the motion model by accounting for the current measurement when
estimating the next state. | |
[0068]

In one embodiment, the updating the second student-t distribution using the

measurement is done by a combination of a weighted difference of the estimated

state and the difference between the measurement and the measurement model,
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where the weighting is determined by a combination of the scale of the second
Student-t distribution and the estimated scale of the first Student-t distribution.
[0069]

In another embodiment, the updating the first Student-t distribution is done
by updating the mean as a combination of the estimated mean and a weighted
difference of the estimated mean and the updated mean of the state. Alternatively,
or additionally, the updating is done as the difference between the measurement
and the estimated measurement based on the measuremént model. Some
embodiments update the scale by combination of a difference of the measurement
to the state estimate of the measurement with the current estimated scale.

[0070]

Other embodiments realize that the parameters can be updated by a
difference of the measurement to the state estimate of the measurement. One
embodiment weights the difference of the measurement to the state estimate of the
measurement with the uncertainty of the state estimate, to further account for that
the knowledge of the state estimate is uncertain.

[0071]

In the updating the degree of freedom related to the second Student-t
distribution, one embodiment updates the degree of freedom as the combination of
the previous degree of freedom and a positive value, to increase the degree of
freedom. In another embodiment, in the estimation of the degree of freedom, the
degree of freedom is scaled with a value smaller than one, to ensure that the degree
of freedom does not grow too fast. Doing in such a manner ensures that the
Student-t does not converge to the Gaussian too fast.

[0072] »

In another embodiment, the updating the degree of freedom related to the

first Student-t distribution, one embodiment updates the degree of freedom as the

combination of the previous degree of freedom and a positive value, to increase the
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degree Of freedom. In another embodiment, in the estimation of the degree of
freedom, the degree of freedom is scaled with a value smaller than one, to ensure
that the degree of freedom does not grow too fast. Doing in such a manner ensures
that the Student-t does not converge to the Gaussian too fast.

[0073] |

In one embodiment, in the iterative updating the Student-t distributions, and
in the updating the Student-t distributions for different control steps, the degrees of
freedom are in each iteration or each control step chosen as the smallest of the
degrees of freedom of the first and second Student-t distribution. Doing in such a
manner ensures that the degree of freedom stays finite, which ensures that the
method accounts for the uncertainty in the probabilistic parameters.

[0074]

One embodiment is based on the understanding that the sensors affecting the
motion model of the system-and the sensors affecting the measurement model of
the system, often are affected by a time varying offset and uncertainty of the
knowledge of the variation of the sensor measurements. Another embodiment is
based on that the sensor can be modeled by a combination of a deterministic part
‘and a stochastic part, where the stochastic part is modeled by a Gaussian
distribution with unknown mean and variance. Various embodiments realize that
the mean and the variance of the Gaussian distribution can be used to model the
offset and the variation of the sensor measurements. Consequently, in one
embodiment the sensor is calibrated by the determining the mean and the variance
of the Gaussian disturbance.

[0075]

Some embodiments acknowledge that the probabilistic parameters can be
accurately estimated, by considering the probabilistic parameters of the first
Student-t distribution and the and state of the vehicle jointly, that is, the second

Student-t distribution jointly. In one embodiment, the quantities are estimated by
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assigning probabilities to how likely the combination of the quantities is to explain
the measurement vector.
[0076]

For instance, Figure 4A illustrates a scenario where a vehicle has an initial
state 410. For one set of probab‘ilistic parameters and an input to the system, the
vehicle obeys the motion 411a and ends up in 430a, with resulting uncertaihty
431a due to the uncertainty in the probabilistic parameters of the first Student-t
affecting the vehicle motion. The variance of the uncertainties of the model leads
to that the state of the vehicle can only be known up to a certain area 420.
However, the end state of the vehicle 430a well resides within the area 420, so this
particular combination of probabilistic parameters and initial state of the vehicle, is
given a high probability of being a good combination.

[0077]

Figure 4B shows a vehicle with the same initial state 410 with another set of
probabilistic parameters of the first Student-t distribution affecting the motion
model. For the same inputs to the system, the vehicle 410 now obeys the motion
411Db, leading to that the vehicle ends up in state 430b, with resulting uncertainty
431b of the second Student-t of the state. However, this end state 430b of the
vehicle does not reside within the certainty area of the measurement noise affecting
the measurement model. Thus, this particular combination of initial state and
probabilistic parameters is assigned a low probability of being a good combination.
[0078]

Figure 4C shows a schematic of different motions determined according to
some principles employed by various embodiments of the invention. The vehicle is
estimated to be at the current state 410 on a road with road boundaries 440c, where
the estimates of the current state 410 has been determined during previous
iterations according to other embodiments of the invention. The lines 419¢ and

429c¢ are two different motions determined using two different set of probabilistic

28



WO 2019/123682 PCT/JP2018/020626

parameters affecting the motion model, leading to two possible states 420c and
430c of the vehicle. The gray area 411c¢ indicates the estimate of the uncertainty of
the measurement noise affecting the measurement model, that is, the possible area
where the motion is likely to occur, determined from the estimated measurement
noise affecting the measurement model determined during previous iterations.
Only the motion 419c¢ is inside the uncertainty region. Hence, the state 420c
resulting from the motion 429c, and the probabilisﬁc parameters associated with
the motion 429c, are given a low probability of being a good combination.
[0079] |

As shown in Figure 4D, the motion of the vehicle can be modeled in the
form of a PDF 412d over the state of the vehicle, wherein the initial condition 409d
of the PDF 412d has been determined during previous iterations by other
embodiments of the invention. In some of the embodiments of the invention, the
motion is computed by; first determining a distribution of motions from initial
states to end states, where the different motions are initiated according to the
probabilistic parameters of the first Student-t distribution affecting the motion
model belonging to that particular motion; second, determining how the different
motions according to the distribution of the first Student-t agree with the motion as
measured by a sensor modeled in the measurement model; third, determining
parameters that are consistent with the determining how the different motions
agree with the true motion sensed by the sensing system. To illustrate, Figure 4D
shows a situation where two different parameters of the process noise lead up to
states 420c¢ and 430c, respectively, and the PDF 412d of the motion of the vehicle
both agree with the respective motions. However, after determining how the
different motions agree with the PDF 411c of the measurements, where the PDF
411c is dependent on the measurement noise affecting the measurement model, the
PDF 431d is achieved, which does not agree with the state 420c. In some

embodiments, the PDF 431d is determined by a combination of the estimates at a
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previous iteration and the measurement from the sensor. In certain embodiments of
the invention, the resulting PDF 431d forms the basis for another iteration of the
method. | |

[0080]

Some embodiments are based on the understanding that measurements using
sensors not always affect the measurement model of a system, but additionally or
alternatively the sensor measurements also affect the motion model of a system.
For ex'ample, such an understanding can be important in automotive applications,
where the steering input from the driver or a controller of the vehicle is the input to
a model of the motion of the vehicle, affecting the velocity of the vehicle. The
steering input is not exactly known, but is measured by a noisy sensor attached to
the steering wheel of the vehicle. If inertial measurements are used, such as
acceleration measurements, also the model of the measurement of the vehicle
includes the steering input from the driver. Hence, information about the steering —
input is contained in the measurement model of the vehicle. Furthermore, due to
the construction of the sensor or misalignment in the sensor, sensors are often
prone to time varying offsets and measurement variations. In addition, while some
sensor calibration can be performed beforehand, for example when mounted in a
vehicle, some sensors, such as ah accelerometer, can have an effective noise level
that differs from the a priori determined. The reason is that the sensor noise is
dependent on a number of factors such as temperature, age, and where in the
vehicle the sensor is placed. For instance, the higher the sensor is placed, the more
of the disturbances from the suspension system affect the apparent noise in the
Sensor.

[0081] |

Figure SA shows an illustration of how the measurements 510 of a sensor of

a system typically varies with time depending on the state of sensor. As used

herein, the state of sensor includes at least one parameter indicative of the sensor
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readings of the motion of the system. Examples of the parameter of state of sensor
includes one or a combination of a calibration error, an offset, a temperature
dependence, a white noise intensity, a random walk bias, a scale error, a gain error,
and a variance. The model of the time variation of the state of sensor is generally
unknown and depends on both intrinsic and extrinsic factors, and the various
parameters defining the state of sensors can depend on each other.

[0082]

For instance, the state of sensor of a gyroscope sensor measuring the rotation

‘rate of a vehicle depends on a number of factors, such as the temperature of the
environment, the temperature 6f the sensor components itself, the alignment of the
sensor with the vehicle, scale errors, or periodic behavior in the circuits of the
sensor. As used herein, a vehicle can be any type of wheeled vehicle, such as a
passenger car, bus, or rover. As used herein, a sensor can be any type of sensing
device measuring an-entity related to the motion of the vehicle: For instance, a
sensor can be an accelerometer, a gyroscope, a global positioning system receiver,
a sensor measuring the wheel angle, or a wheel encoder. Often, the sensor readings
510 consist of a constant part 520, a slowly time varying part 540, and a part 530
that varies in. relation to the motion of the vehicle.

[0083]

Figure 5B shows an illustration of how the sensor offset of a senéor of
vehicle typically varies with placement of the sensor. Figure 5B shows a schematic
of a construction of interaction between steering wheel 510b and the vehicle wheel
530b. The steering column is equipped with an electric power steering system
520D to help the driver steer the steering wheel. Also on the steering column is a
sensor measuring the angle of the wheel. Depending on if the sensor is placed
close 511b to the steering wheel or close 521b to the wheel, thereby directly
measuring the wheel angle, different offsets will be obtained, as the mechanical

construction between steering wheel 510b and vehicle wheel 530b are dynamically
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dependent and involves gear boxes and other mechanical parts.
[0084]

The variance of sensor measurements is also time varying, and to high
- extent also depends on where the sensor is located in the system. Figure 5C shows
an illustration of how the sensor variance of a sensor of a vehicle typically varies
with placement of the sensor. For instance, placing an accelerometer 510c¢ higher
up relative to the center of mass 520c of the vehicle causes the accelerometer to
also sense variations due to external factors, such as unevenness of the road surface
530c¢ or the suspension system 540c in the vehicle. This causes the sensor to have
an effective variance that differs from the intrinsic sensor variations, which yields
estimation errors when not accounted for.

[0085]

Consequently, one embodiment is based on the understanding that the
sensors-affecting the motion model of the system and the sensors affecting the
measurement model of the system, often are affected by a time varying offset and
uncertainty of the knowledge of the variation of the sensor measurements. Another
embodiment is based on that the sensor can be modeled by a combination of a
deterministic part and a stochastic part, where the stochastic part is modeled by a
Gaussian distribution with unknown mean and variance. Various embodiments
realize that the mean and the variance of the Gaussian distribution can be used to
model the offset and the variation of the sensor measurements. Consequently, in
one embodiment the sensor is calibrated by the determining the mean and the
variance of the Gaussian disturbance.

[0086]

The time evolution of the state of sensors is unknown, and any model of the
motion of the state of sensors is therefore unknown and cannot be verified.
[0087]

To that end, one embodiment recognizes that since the time evolution of the
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motion of the state of sensors is unknown, but that the unknown part is typically
slowly time varying, the state of sensors should instead be treated as stochastic
disturbances acting on the motion model and additionally or alternatively the
measurement model. That is, instead of determining the state of the sensors
explicitly, the distribution of the state of sensors is instead determined, thereby
circumventing the need of a motion model of the state of sensors.
[0088]

~ One embodiment of the invention realizes that the although the determining
the state of sensor is complex and depend on effects that are intractable to model,
the behavior of the sensor can be summarized in parameters representing an offset
of the sensor and a variance of the sensor. For instance, returning to Figure 5A, the
constant part 510 and slowly time varying part 540 can be regarded as the offset of
the sensor, whereas the part 530 depends on the motion of the system, with
- additional disturbance coming from the sensor noise of the sensor.
[0089]

Knowledge of sensor offsets is useful in control, for example, electronic
stability control of vehicles, where the lateral acceleration, heading rate, and
steering angle of the vehicle wheel are used to control the vehicle. Without
knowledge of the offsets, the controller of the vehicle will determine control inputs
to the vehicle based on an erroneous vehicle model.

[0090]

Knowledge of the variance of the sensor measurements is also useful in
control. For instance, the variance can be used to determine how much to trust the
sensor readings and adjust the control input in relation to the magnitude of the
variation of the sensor measurements. |
[0091]

To this end, some embodiments are based on the realization that the offsets

in the sensors can be included as the statistical mean value of a stochastic
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distribution, wherein the stochastic distribution defines the stochastic disturbance
with which the state of sensor is described, and that the sensor noise can be
included as the variation of the sensor measurements around the mean value of the
stochastic distribution. Yet other embodiments are based on the realization that the
modeling of the sensors as stochastic distributions can be used in a motion model
of the system and a measurement model of the state of the system. In other
embodiments, the mean and variance of the state of sensor is transformed to a
Student-t distribution, to account for the uncertainty of the probabilistic
parameters.

[0092]

Figure 6a shows a flowchart of a method for controlling a system by jointly
estimating a state of a System, e.g., a velocity and a heading rate of the system, and
state of senor of the system according to.one embodiment of the invention. One
-embodiment is based on recognition that the unknown state of sensor of at least
one sensor, can be regérded as stochastic disturbances acting on a, otherwise
deterministic, model of a motion of the vehicle. In accordance with Figure 4D, the
nature of the stochastic disturbance causes the system to have different possible
motions, and therefore different possible states. For instance, an input to a motion
model is measured by a noisy sensor of the vehicle.

[0093]

To that end, the embodiment represents 610a the state of sensor and the state
of the system with a particle 611a. The particle includes a state of the system,
which can be a measured state or the state determined during a previous iteration
of the joint estimation. Additionally, or alternatively, the particle includes a mean,
degree of freedom, and scale of the state of the system, and a mean, the offset, and
scale, the noise of the sensor, of the stochastic disturbance defining a feasible
space of the state of sensors. Representing the étate of sensors probabilistically,

i.e., using the mean, degree of freedom, and the scale allows considering the
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stochastic disturbance as a Student-t on the motion of the vehicle. To that end, the
embodiment uses the mean of the feasible space of the state of sensors as input to
the motion model 609a defined by the parameters, the mean, degree of freedom,
and the scale, of the sensor characteristics and use the mean of the state of sensors
in the joint estimation. In other embodiments, when the state of sensor of the
measurements affect the motion model, one embodiment uses the mean of the
feasible space of the state of sensor in combination with a weighted difference of
the estimated state and the measured state.

[0094]

-Figure 6B shows a graph illustrating probability distribution function 640b
defining the feasible space 600b of the state of sensor. The shape of the function
640b can bé determined in advance. For example, if the distribution of the state of
sensor is Gaussian, the shape of the distribution 640b is the “Gaussian hat” shape.
-If the shape is fixed, the mean-610b and the variance 630b define the distribution
640b and the feasible space 600b from which the the state of sensor can be - -
contained. In some embodiments, the feasible space 600b is defined by a mean,
degree of freedom, and scale. |
[0095]

According to the distribution 640b, the probability of a value 620b to be the
correct state of sensor is higher than the probability of 650b. Such a representation
allows updating 660b the mean and the variance of the state of sensor to produce
an updated distribution 645b defining updated feasible space for the state of
sensor. This embodiment is based on observation that the update of the mean and
the variance of the state of sensor influence the value of the parameter of the state
of sensor used in the subsequent iteration, because such a parameter forms the
basis of the updated distribution.

[0096] |
To that end, the method updates 620a the particle, including the mean, scale,
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and degree of freedom of the state of sensor to produce the updated particle 621a.
For example, the embodiment updates iteratively the mean and the scale of the
particle using a difference between a state estimated using probabilistic parameters
of the feasible space of the particle and a mean and a scale of a measured state
619a of sensor determined from measurements of the state of the vehicle according
to a measurement model 608a that can include the state of sensor.

[0097]

Next, the method fits 630a a Gaussian distribution representing the feasible
space of the state of sensor into the Student-t distribution of the feasible space of
the state of sensor to produce the mean and the variance 631a of the state of sensor.
[0098] |

In one implementation, the method determines a probability distribution of
the state of the vehicle and the state of the sensor using a probability distribution of
the measurement model centered-on the measured state: The probability
distribution of the measurement ‘model can be determined in advance, for example,
using the values of state of sensor determined during previous time instants. Next,
the method determines the probability of the particle to represent the true state of
the sensor according to a placement of the mean in the particle on the probability
distribution of the state of the vehicle and the state of the sensor, and adjusts the
particle to better represent the true state of sensor. Such a probability and adjusting
is used by the function 629a in determining the output 631a.

[0099]

Figure 6C shows a block diagram of one iteration of a method for updating
the particle 620a according to one embodiment that updates the particle iteratively.
The method can be implemented using a processor of the vehicle. The method
determines 610c a feasible space of possible parameters to be used in a model of
the motion of the vehicle to produce a Student-t distribution including the

probabilistic parameters 615c, that is, the mean, scale, and degree of freedom. The
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model 605¢c of the motion of the vehicle includes an uncertainty on the motion of
the vehicle due to the uncertainty in the state of sensor affecting the motion model.
The method estimates 620c, using the model 605¢ of the motion of the vehicle and
inputs 617c¢ to the system, a possible state 625c¢ arising due to the Studént-t
distribution that affects the motion of the vehicle.

[0100]

Next, the method measures the state 630c. For example, the method
measures such a state of the vehicle that depends on the state of the sensor. The
method maps the measurements to a model of the measurement relating the state of
the vehicle and the state of sensor of at least one sensor, to produce a relation 635c
between the measurement, the state of the vehicle, and the state of sénsor. The
method determines 640c the offset of the sensor as the statistical mean of the state
of sensor for the particle that results in the measured state of the vehicle according
to the measurement model 635¢: The method also-determines 640‘0‘ the scale of the "~
measured state of sensor resulting from the state of sensor as a difference between
the estimated state and the measurement, additionally or alternatively as a
difference between the estimated state and the deterministic part of the motion
model that would lead to the state were no unknown state of sensor present. The
determined 645¢ mean and scale of the state of sensor are used 650c to updating
the offset as a combination of the statistical mean of the sfate of sensor in the
particle using the mean of the measured state of sensor resulting in the measured
state of the vehicle and the mean determined during previous iterations. Similarly,
the method updates 650c the scale of the state of sensor in the particle using a
combination of the scale of the measured state of sensor and the scale determined
during previous iterations
[0101]

In one embodiment, a subset of the measurements has known variance and

offset, that is, known parameters, which have been determined a priori or by some
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other method. In that case, the measurement with known variance and offset can be
used to improve the estimation of the mean and scale of the sensor characteristics
of the sensors with unknown parameters, by using the sensor with known
parameters to estimate parts of the state of the vehicle. In one embodiment, the
mean and variance of the sensor with known parameters are transformed to a
mean, degree of freedom, and scale according to other embodiments before used in
the determining the state of sensor.

[0102]

Figure 7A illustrates a general block diagram of a control system 699.
Different component of the control system 699 can be implemented using one or
several processors operatively connected to a memory and/or various types of
sensors of the system. The control system 699 can be internal to the system 700
and the implementation of the different components of the control system 699 in
general depends on the type of the .system.

[0103]

The control system 699 can include a sensing system 730 that measures
information about the motion of at least some parts of the system. The sensing
system 730 can also receive sensing information 729 from external sources.

[0104]

The control system 199 also includes a state-of-sensor estimator 740 for
determining parameters of the state of sensors, for example, the sensors in 730. In
some embodiments of the invention, the state-of-sensor estimator iteratively
determines the state of the system and the probabilistic paranieters representing the
state of sensor, from a state of the system and probabilistic parameters of state of
sensors determined during previous iterations.

[0105]
The state-of-sensor estimator 740 uses information 731 from the sensing

system. The state-of-sensor estimator 740 can also receive information 761 about
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the system motion from the system-control units 760. The information can include
a state of the system, and is received either from hardware or software, connected
directly or remotély to the machine.

[0106]

For example, the state-of-sensor estimator can output the state of sensor 741
including offset values, certainty levels of the offsets, and variances of the noise of
the measurements, or combinations thereof. The control system 699 also includes
system controllers 760 that use the state of sensor information 741. For example, if
the system is a road vehicle, in one embodiment, the offset is used in an advanced
driver-assistance system (ADAS) that utilizes a model of the dynamics of the
vehicle, which depends on the state of offsets of the sensors. In such a case, the
Vehiclé controllers 760 can include stand-alone componenfs, or a combination of
vehicle controllers that enable autonomous driving features. The offsets and
variances, which describe the state of sensor; can beused asinput to estimators
790 of the vehicle, for example, a state estimator.

[0107] | |

Figure 7B shows a general structure of the state-of-sensor estimator 740
according to one embodiment of the invention. The state-of-sensor estimator 740
includes at least one processor 770 for executing modules of the state-of-sensor
estimator 740. The processor 770 is connected 771 to a memory 780 that storeé the
statistics 781 of the states and parameters and the system information 782, such as
the motion model and a measurement mode, wherein the motion model includes a
combination of a deterministic component of the motion and a probabilistic
component of the motion, wherein the deterministic component of the motion is
independent from the state of sensor and defines the motion of the system as a
function of time, wherein the probabilistic component of the motion includes the
state of sensor and defines disturbance on the motion of the system, wherein the

measurement model of the vehicle includes a combination of a deterministic
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component of the measurement model independent from the state of sensor and a
probabilistic component of the measurement model that includes the state of

- sensor. The memory 780 also stores 783 the internal information of the estimator,
including, but not limited to, values of the state of sensdr, values of each computed
state of the system, and the motion leading up to each state of the system. In some
embodiments, the information on the system is updated 771 based on information
received from the system 761 and the sensing 731.

[0108]

The above-described embodiments of the present invention can be
implemented in any of numerous ways. For example, the embodiments may be
implemented using hardware, software or a combination thereof. When
implemented in software, the software code can be executed on any suitable
processor or collection of processors, whether provided in a single computer or
distributed among multiple computers. Such processors may be implemented as
integrated circuits, with one or more processors in an integrated circuit component.
Though, a processor may be implemented using circuitry in any suitable format.
[0109] |

Also, the various methods or processes outlined herein may be coded as
software that is executable on one or more processors that employ any one of a
variety of operating systems or platforms. Additionally, such software may be
written using any of a number of suitable programming languages and/or
programming or scripting tools, and also may be compiled as executable machine:
language code or intermediate code that is executed on a framework or virtual
machine. Typically, the functionality of the prograin modules may be combined or
distributed as desired in various embodiments. |
[0110] |

Also, the embodiments of the invention may be embodied as a method, of

which an example has been provided. The acts performed as part of the method

40



WO 2019/123682 PCT/JP2018/020626

may be ordered in any suitable way. Accordingly, embodiments may be
constructed in which acts are performed in an order different than illustrated,
which may include performing some acts concurrently, even though shown as

sequential acts in illustrative embodiments.

41



WO 2019/123682 PCT/JP2018/020626

[CLAIMS]
[Claim 1]

An apparatus for controlling a system, comprising:

a memory to store a model of the system including a motion model of the
system subject to process noise and a measurement model of the system subject to
measurement noise, such that one or combination of the process noise and the
measurement noise forms an uncertainty of the model of the system with unknown
pr'obabilistic parameters, wherein the uncertainty of the model of the system causes
a state uncertainty of the system with unknown pfobabilistic parameters;

a sensor to measure a signal to produce a sequence of measurements
indicative of a state of the system,; ‘

a processor to

estimate, using at least one or combination of the motion model, the
: measurenient model, and the measurements of the state of the system, a first
Student-t distribution representing the uncertainties of the model and a
second Student-t distribution representing the state uncertainty of the system,
the estimation is performed iteratively until a termination condition is met;
and
fit a Gaussian distribution representing the state uncertainty into the
- second Student-t distribution; and |
a controller to
determine a control input to the system using the model of the system
with state uncertainty represented by the Gaussian distribution; and
control the system according to the control input.
[Claim 2]

The apparatus of cllaim 1, wherein the processor, to determine initial values

of the first and the second Student-t distributions, is configured to by

determine initial estimates of the mean and the variance of a Gaussian
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distribution representing the uncertainty of the model;

fit the first Student-t distribution to the Gaussian distribution representing
the uncertainty of the model to produce initial values of the mean, the scale, and
the degree of freedom of the first Student-t distribution; and

estimate initial values of the mean, the scale, and the degree of freedom of
the second Student-t distribution based on the initial values of the mean, the scale,
and the degree of freedom of the first Student-t distribution.

[Claim 3] | |

The apparatus of claim 2, wherein the initial values of the second Student-t
distribution equal the initial values of the first Student-t distribution, wherein, upon
nieeting the termination condition, the final values of the second Student-t
distribution differ from the final values of the first Student-t distribution.

[Claim 4]

The apparatus of claim 2, wherein the initial estimate of the mean of the
Gaussian distribution representing the uncertainty of the model is determined using
an average value of historical measurements, and wherein the initial estimate of the
variance of the Gaussian distribution representing the uncertainty of the model is
determined using an average variation of the measurements measured by the
sensor over a period of time. |
[Claim 5]

The épp’aratus of claim 2, wherein the processor is configured to:

determine the initial value of the degree of freedom of the first Student-t
distribution, wherein the initial value of the degree of freedom is a positive finite
value greater than the dimension of the state of the system; and

determine the initial values of the mean and the scale of the first Student-t
distribution for the determined initial value of the degree of freedom.

[Claim 6]

The apparatus of claim 5, wherein the processor is further configured to:
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estimate a level of uncertainties of the model; and

select the initial value of the degree of freedom as a function of the level of
uncertainties of the model.

[Claim 7]

The apparafus of claim 1, wherein a degree of freedom of the second .
Student-t distribution is finite after the termination condiﬁon is met, and wherein
the processor fits the second Gaussian distribution into the second Student-t

_distribution using one or combination of a moment matching and a similarity
. optimization.
[Claim 8]

The apparatus of claim7, wherein the finite degree of freedom is selected as

‘the smallest of the degrees of freedom of the first and second Student-t |
distributions.
[Claim 9]

The apparatus of claim 7, wherein the degree of freedom converges to a
finite number.
[Claim 10]

The apparatus of claim 1, wherein the processor for performing an iteration
of the joint estimate of the first and the second Student-t distributions, is

‘configured to:

estimate, using the motion model, the state of the system, current values of
the first Student-t distribution, and current values of the second Student-t
distribution based on a previous estimation of the state of the system, previous
values of the first Student-t distribution, and previous values of the second
Student-t distribution; and

updating, using the measurements and the measurement model in response
to receiving current values of the measurements, the current estimation of the state

of the system, the current values of the first Student-t distribution, and the current
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values of the second Student-t distribution.
[Claim 11]

The apparatus of claim 10, wherein the processor updates the first Student-t
distribution and the second Student-t distribution and the Gaussian distribution
representing the state uncertainty for each control step.-

[Claim 12]

The apparatus of claim 1, wherein the controlled system is a vehicle, such
that the apparatus controls the vehicle based on the state uncertainty of the vehicle
represented by the Gaussian distribution.

[Claim 13]

- The apparatus of claim 12, wherein the motion model of the system and the
measurement model of the system are subject to disturbance caused by an
uncertainty of a state of calibration of the sensor in the motion of the vehicle,
" wherein the processor is configured to -

sample a feasible space of the state of calibration of the sensor defined by a
probabilistic distribution to produce a set of sampled states of calibration of the
Sensor; |

estimate, for each sampled state of calibration using the motion model, an
estimation of the current state of the vehicle to produce a set of estimated states of
the vehicle;

estimate, for each estimated state of the vehicle, an estimated state of
calibration of the sensor by inserting the measurements and the estimated state of
the vehicle into the measurement model;

update the mean and the variance of the probabilistic distribution of the state
of calibration of the sensor stored in the memory based on a function of the
sampled states of calibration weighted with weights determined based on a
difference between the sampled state of calibration and the corresponding

estimated state of calibration; and
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determine the Gaussian distribution using the updated probabilistic
distribution of the state of calibration of the sensor.
[Claim 14]

The apparatus of claim 13, wherein the mean of the updated probabilistic
distribution of the state of calibration of the sensor is an offset of the sensor, and
wherein the variance of the updated probabilistic distribution of the state of
calibration of the sensor is a variance of the sensof.

[Claim 15]

A method for controlling a system, wherein the method uses a processor
coupled with stored instructions implementing the method, wherein the
instructions, when executed by the processor carry steps of the method,
comprising:

retrieving a model of the system including a motion model of the systerri
subj ect to process noise and a measurement model of the system subject to
measurement noise, such that one or combination of the process noise and the
measurement noise forms an uncertainty of the model of the system with unknown
probabilistic parameters, wherein the uncertainty of the model of the system causes
a state uncertainty of the system with unknown probabilistic parameters;

receiving a séquence of measurements indicative of a state of the system;

estimating, using at least one or combination of the motion model, the
measurement model, and the measurements of the state of the system, a first
Student-t distribution representing the uncertainties of the model and a second
Student-t distribution representing the state uncertainty of the system, wherein the
estimating is performed iteratively until a termination condition is met;

fitting a Gaussian distribution representing the state uncertainty into the
second Student-t distribution;

determining a control input to the system using the model of the system with

state uncertainty represented by the Gaussian distribution; and
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controlling the system according to the control input.
[Claim 16] |

The method of claim 15, further comﬁrising:

determine initial estimates of the mean and the variance of a Gaussian
distribution representing the uncertainty of the model;

fitting the first Student-t distribution to the Gaussian distribution
representing the uncertainty of the model to produce initial values of the mean, the
scale, and the degree of freedom of the first Student-t distribution; and

estirﬁati’ng initial values of the mean, the scale, and the degree of freedom of
the second Student-t distribution based on the initial values of the mean, the scale,
and the degree of freedom of the first Student-t distribution.

[Claim 17]

The method of claim 16, wherein the initial values of the second Student-t
distribution equal the initial values of the first Student-t distribution, wherein, upon
meeting the términati_on condition, the final values of the second Student-t
distribution differ from the final values of the first Student-t distribution.

[Claim 18] |

The method of claim 15, wherein the controlled system is a vehicle, such
that the apparatus controls the vehicle based on the state uncertainty of the vehicle
represented by the Gaussian distribution.

[Claim 19]

The method of claim 18, wherein the motion model of the system and the
measurement model of the system are subject to disturbance caused by an
uncertainty of a state of calibration of a sensor in the motion of the vehicle, further
comprising:

sampling a feasible space of the state of calibration of the sensor defined by
a probabilistic distribution to produce a set of sampled states of calibration of the

Sensor;
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estimating, for each sampled state of calibration using the motion model, an
estimation of the current state of the vehicle to produce a set of estimated states of
the vehicle;

estimating, for each estimated state of the vehicle, an estimated state of
calibration of the sensor by inserting the measurements and the estimated state of
the vehicle into the measurement model;

updating the mean and the variance of the probabilistic distribution of the
state of calibration of the sensor stored in the memory based on a function of the
sampled states of calibration weighted with weights determined based on a
~difference between the sampled state of calibration and the corresponding
estimated state of calibration; and

determining the Gaussian distribution using the updated probabilistic
distribution of the state of calibration of the sensor.

[Claim 20]

A non-transitory computer readable storage medium embodied thereon a
program executable by a processor for performing a method, the method
comprising:

retrieving a model of the system including a motion model of the system
subject to process noise and a measurementv model of the system subject to
measurement noise, such that one or combination of the process noise and the
measurement noise forms an uncertainty of the model of the system with unknown
probabilistic parameters, wherein the uncertainty of the model of the system causes
a state uncertainty of the system with unknown probabilistic parameters;

receiving a sequence of measurements indicative of a state of the system;

estimating, using at least one or combination of the motion model, the
measurement model, and the measurements of the state of the system, a first
Student-t distribution representing the uncertainties of the model and a second

Student-t distribution representing the state uncertainty of the system, wherein the

48



WO 2019/123682 PCT/JP2018/020626

estimating is performed iteratively until a termination condition is met;

fitting a Gaussian distribution representing the state uncertainty into the
second Student-t distribution;

determining a control input to the system using the model of the system with
state uncertainty represented by the Gaussian distribution; and |

controlling the system according to the control input.
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