GRADE-MATCHING UTILITY COVER SYSTEMS

Applicant: Christopher Allen Lane, Medford, OR (US)

Inventor: Christopher Allen Lane, Medford, OR (US)

Appl. No.: 14/721,849

Filed: May 26, 2015

Related U.S. Application Data

Provisional application No. 62/004,336, filed on May 29, 2014.

Publication Classification

Int. Cl.
E02D 29/14 (2006.01)
E02D 29/12 (2006.01)

U.S. Cl.
E02D 29/1409 (2013.01); E02D 29/12 (2013.01); E02D 29/1472 (2013.01)

ABSTRACT

Grade-matching cover systems for use with a utility cover installed to cover a utility access hole formed in a ground surface having a ground surface grade proximate the utility access hole. The cover systems include a grade-matching member, a surface member, and, optionally, a base member. The grade-matching member defines a cover grade selected to substantially match the ground surface grade. The surface member adopts the cover grade defined by the grade-matching member and has a top surface opposite the grade-matching member that is substantially coplanar with the ground surface proximate the utility access hole.
GRADE-MATCHING UTILITY COVER SYSTEMS

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority to pending U.S. Application Ser. No. 62/004,336, filed on May 29, 2014, which is hereby incorporated by reference for all purposes.

BACKGROUND

The present disclosure relates generally to systems for covering utility access holes. In particular, systems for matching the grade of the surface surrounding the utility access hole to be covered are described.

Public and private utility systems, such as sewer, gas, water, phone, and electrical systems, are often disposed underground. Access to the utility systems is typically provided through manholes or other access openings formed in the surface above the utility systems. Manholes may be formed in paved roadway or parking lot surfaces or in unpaved surfaces. Manholes are typically covered by a manhole cover.

Known systems for covering manholes and other utility access openings are not entirely satisfactory for a number of reasons. For example, existing cover systems fail to adequately accommodate grades in the surface surrounding the manhole. As a result, existing cover systems often jut above the ground surface or are sunk beneath the ground surface when there is a grade in the ground surface. Cover systems jutting above or sunk below the surrounding ground surface create significant trip and impact hazards to pedestrians and cars.

There exists a pressing need for a cover system that better conforms to the grade of the ground surface surrounding the manhole to avoid trip and impact hazards caused by conventional manhole cover systems, which do not adequately conform to the surrounding grade.

Another limitation of conventional systems for covering manholes is that they do not facilitate labeling or otherwise marking the cover system with useful information about the manhole in which they are installed. Instead, conventional manhole covers often lack information specific to the particular manhole in which they are installed altogether or have limited information permanently stamped into the manhole cover. The information incorporated into conventional manhole covers must be known when the manhole cover is formed, and it may not be possible to incorporate different information on different manhole covers given cost or other manufacturing limitations. In any respect, close coordination between the party making the manhole covers and the party installing the manhole covers is required with conventional manhole covers.

Manhole cover systems would be greatly improved if they enabled information to be easily and inexpensively displayed on the cover system.

The information limitations of existing manhole cover systems further limit or prevent updating the information initially provided. When displaying additional or alternative information is desired, conventional manhole covers generally must either be refabricated or replaced with new covers incorporating new information.

It would be desirable to have a cover system that readily facilitated changing the information displayed by the cover system.

Thus, there exists a need for utility cover systems that improve upon and advance the design of known utility access hole cover systems. Examples of new and useful utility cover systems relevant to the needs existing in the field are discussed below.

SUMMARY

The present disclosure is directed to grade-matching cover systems for use with a utility cover installed to cover a utility access hole formed in a ground surface having a ground surface grade proximate the utility access hole. The cover systems include a grade-matching member, a surface member, and, optionally, a base member. The grade-matching member defines a cover grade selected to substantially match the ground surface grade. The surface member adopts the cover grade defined by the grade-matching member and has a top surface opposite the grade-matching member that is substantially coplanar with the ground surface proximate the utility access hole.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a first example of a grade-matching cover system, the grade-matching cover system being shown installed in a utility access hole formed in a sloped ground surface with a cover grade that substantially matches the slope of the surrounding ground slope.

FIG. 2 is an elevation view of the grade-matching cover system shown in FIG. 1 with a portion of the ground removed to show the cover system more clearly.

FIG. 3 is an exploded perspective view of the grade-matching cover system shown in FIG. 1 depicting radially offset projections and recesses on a grade-matching member and on base members.

FIG. 4 is an exploded elevation view of the grade-matching cover system shown in FIG. 1 depicting the height of the grade-matching member being tapered.

FIG. 5 is a top plan view of the grade-matching member.

FIG. 6 is a bottom plan view of the grade-matching member.

FIG. 7 is a top plan view of a base member.

FIG. 8 is a bottom plan view of the base member.

FIG. 9 is an elevation view of a second example of a grade-matching cover system where the grade-matching cover system includes a single base member disposed between a grade-matching member and a utility cover.

FIG. 10 is an elevation view of a third example of a grade-matching cover system where the grade-matching cover system includes two grade-matching members and a single base member disposed between the grade-matching members and a utility cover, the grade matching members being radially offset from each other to position their thickest portions at radially offset, adjacent positions.

DETAILED DESCRIPTION

The disclosed cover systems will become better understood through review of the following detailed description in conjunction with the figures. The detailed description and figures provide merely examples of the various inventions described herein. Those skilled in the art will understand
that the disclosed examples may be varied, modified, and altered without departing from the scope of the inventions described herein. Many variations are contemplated for different applications and design considerations; however, for the sake of brevity, each and every contemplated variation is not individually described in the following detailed description.

Throughout the following detailed description, examples of various cover systems are provided. Related features in the examples may be identical, similar, or dissimilar in different examples. For the sake of brevity, related features will not be redundantly explained in each example. Instead, the use of related feature names will cue the reader that the feature with a related feature name may be similar to the related feature in an example explained previously. Features specific to a given example will be described in that particular example. The reader should understand that a given feature need not be the same or similar to the specific portrayal of a related feature in any given figure or example.

With reference to FIGS. 1-8, a first example of a grade-matching cover system, cover system 100, will now be described. Cover system 100 functions to cover a manhole 104 or other utility access opening in conjunction with a utility (manhole) cover 102 in a manner that substantially conforms to the grade of ground surface 106 proximate to manhole 104. By substantially matching the grade of ground surface 106, cover system 100 limits or avoids portions of cover system 100 projecting above ground surface 106 or being sunk below ground surface 106. Cover system 100, thus, avoids the trip and impact hazards present in conventional cover systems that are not configured to match the grade of the surrounding ground surface.

As can be seen in FIG. 1, cover system 100 displays information of relevance to the user. As will be explained in more detail below, cover system 100 enables a user to conveniently and inexpensively display information on cover system 100. The information displayed by cover system 100 can be selected at any time and does not require close coordination with the party manufacturing cover system 100. Further, the information can be readily updated or changed without wholly replacing cover system 100.

As shown in FIGS. 1-4, cover system 100 includes a grade-matching member 110, a surface member 120, a fastener 130, a base member 140, and a second base member 141. Cover system 100 is secured to and disposed above utility cover 102 in utility access hole 104. With reference to FIG. 2, the reader can see that cover system 100 is substantially coplanar or flush with ground surface 106 by substantially matching or conforming to the sloped grade 01, of ground surface 106 at the level of ground surface 106.

In the example shown in FIGS. 1-8, ground surface 106 is paved with asphalt and utility access hole 104 is a manhole. In other examples, the ground surface is unpaved or paved with other materials, such as concrete, brick, or cobblestones.

Ground surface 106 has a sloped grade 02. In other examples, the ground surface may be sloped to a different degree, irregularly sloped, or flat. The grade of the ground surface may change over time, and cover system 100 can be readily reconfigured to maintain a cover grade that substantially matches the grade of the surrounding ground surface.

The utility access hole may be any opening in the ground that is covered to limit access to the underlying utility system. Those skilled in the art will recognize that utility access holes may be referred to as manholes, utility holes, cable chambers, maintenance holes, inspection chambers, access chambers, sewer holes or confined spaces. The opening defined by utility access hole 104 is circular, but could be almost any other shape in other examples, including square, rectangular, triangular, oval, a regular polygon, or an irregular shape.

Grade-Matching Member.

Grade-matching member 110 in FIGS. 1-8 serves to set cover system 100 at a cover grade 01 selected to substantially match ground surface grade 01. Cover system 100 is configured such that grade-matching member 110 is interchangeable with other grade-matching members to allow a user to easily select a grade-matching member that defines a cover grade appropriate to a given ground surface grade.

As shown in FIG. 10 with reference to a cover system 300, multiple grade-matching members, such as a first grade-matching member 310 and a second grade-matching member 350, may be included in the cover system. The multiple grade-matching members serve to define a compound or composite cover grade 02. Composite cover grade 02 corresponds to the ground surface grade of the ground surface surrounding cover system 300. Composite cover grade 02 also represents the composite sum of the cover grades 01 and 02 defined by first grade-matching member 310 and second grade-matching member 350, respectively.

In the example shown in FIGS. 1-8, grade-matching member 110 is supported by utility cover 102. In other examples, however, such as shown in FIG. 9 with reference to grade-matching member 210, the grade-matching member may be operatively supported by utility cover 102 with other components of the cover system disposed between the grade-matching member and the utility cover. With brief reference to FIG. 9, the reader can see that cover system 200 is configured with a base member 240 disposed on a utility cover 202, grade-matching member 210 disposed on base member 240, and surface member 220 disposed on grade-matching member 210.

Turning attention back to grade-matching member 110 and to FIGS. 1-6 in particular, the reader can see that grade-matching member 110 includes a top surface 112 opposite utility cover 102 and a bottom surface 111 opposite top surface 112. Top surface 112 and bottom surface 111 define a first major face 115 and a second major face 116, respectively, of grade-matching member 110. Top surface 112 of grade-matching member 110 defines cover grade 01 selected to substantially match ground surface grade 02.

Cover grade 01 of top surface 112 of grade-matching member 110 is defined by the height of grade-matching member 110. As can be seen in FIGS. 2 and 4, the height of grade-matching member 110 tapers from a first position 190 on grade-matching member 110 to a second position 192 on grade-matching member 110. The reader should appreciate that stacking two grade-matching members configured like grade-matching member 110 in radially offset positions would yield a compound or composite cover grade resulting from the radially offset tapers of each respective grade-matching member. This composite grade configuration is depicted in FIG. 10 with reference to cover system 300 and composite grade 02.

As shown in FIGS. 3, 5 and 6, first major face 115 of grade-matching member 110 defines a grade-member recess 117 and second major face 116 includes a grade-member projection 118. Grade-member recess 117 is complimentarily
configured with grade-member projection 118 to facilitate stacking grade-matching members together. To facilitate stacking grade-matching members together in radially offset positions to define a composite cover grade, such as composite cover grade θ, shown in FIG. 10, the grade-matching members may include multiple projections and recesses in radially offset positions.

For example, as can be seen in FIGS. 3, 5, and 6, grade-matching member 110 includes a second grade-member projection 119 radially offset from first grade-member projection 118. Grade-matching member 110 further includes a second grade-member recess 113 radially offset from first grade-member recess 117.

With reference to FIGS. 1-4, 7, and 8, base members 140 and 145 will now be described in more detail. Base member 140 serves to set the overall height of cover system 100. In the present example shown in FIGS. 1-8, first base member 140 and second base member 145 cooperate to define a collective height that contributes to the overall height of cover system 100.

In other cover system examples, the cover system includes a single base member or more than two base members. In some examples, the cover system does not include a base member, but instead the surface member is supported directly on the grade-matching member. Thus, the base member is an optional component of the cover systems described herein.

In the example shown in FIGS. 1-4, base members 140 and 145 are disposed between utility cover 102 and surface member 120 in a position that is between grade-matching member 110 and utility cover 102. The base members may be positioned either between grade-matching member 110 and utility cover 102 or between grade-matching member 110 and surface member 120. Base members 140 and 145 have a height selected to position surface member 120 at the level of ground surface 106 proximate utility access hole 104. In examples, the single base member is included, the height of the single base member is selected to position the surface member at the level of ground surface proximate the utility access hole.

With reference to FIGS. 3, 7, and 8, base member 140 includes a first major face 141 and a second major face 142. First major face 141 of base member 140 defines a base recess 143 and second major face 142 of base member 140 includes a base projection 144 complimentarily configured with base recess 143. The base member projections and recesses are complimentarily configured such that a second base member configured the same as base member 140 can matingly engage via their complimentary projections and recesses.

To facilitate stacking grade-matching member together with base member 140, grade-member recess 117 is complimentarily configured with a base projection 144 of base member 140 and grade-member projection 118 is complimentarily configured with a base recess 143 of base member 141. Being complimentarily configured, base member 140 and grade-matching member 110 may couple with one another through either base projection 144 matingly engaging with the grade-member recess 117 or grade-member projection 118 matingly engaging with base member recess 143.

Surface Member.

Surface member 120 serves as the topmost component of cover system 100 and provides a surface substantially at the level of ground surface 106 and substantially matching ground surface grade θ of ground surface 106. Surface member 120 has a top surface 122 extending in a plane following cover grade θ, that is substantially coplanar with a plane defined by the surrounding ground surface 106.

As can be seen in FIGS. 1-4, surface member 120 is operatively supported by grade-matching member 110 and adopts cover grade θ, defined by top surface 112 of grade-matching member 110. In the present example shown in FIGS. 1-4, surface member 120 is supported by base member 145, which is supported by base member 140 and grade-matching member 110. In some examples, the surface member is supported directly on the grade-matching member.

Figs. 1 and 3 show that surface member 120 includes a display region 180. In some other examples, the surface member does not include a display region. As can be seen in FIG. 1, display region 180 is removable and can be interchanged with a second display region 181 configured to mount to surface member 120.

Display region 180 includes indicia 182 providing information relevant to utilities accessible through utility access hole 104. Indicia 182 communicates that the Seattle Power Dept. is associated with the underlying utilities wherein the indicia provided on second display region identifies the Seattle Sewer Dept. as the relevant party.

The indicia may provide any information relevant to the user, such as the nature of the underlying utilities, the owner or party responsible for the underlying utilities, contact information, and the like. The information provided by the display region need not relate to the utility hole or the underlying utility; instead, the information could represent an advertisement, directions, artwork, humorous or inspirational message, or an icon or mascot for a city or local sports team. In some examples, the indicia takes the form of a bar code or a QR code.

Display region 180 is configured to be marked with indicia by a user when surface member 120 is supported in utility access hole 104. For example, display region 180 can be marked with a pen or pencil to indicate when the utility access hole was last accessed or inspected. Additionally or alternatively, the display region can receive and support a faceplate with indicia provided thereon.

In the present example, surface member 120, base members 140 and 145, grade-matching member 110, and utility cover 102 have circular major faces with substantially the same dimensions. In other examples, the major faces of the components are not circular, but are other shapes, such as square, rectangular, triangular, a regular polygon, or irregular. In some examples, the dimensions of the major faces are not the same.

In the present example, surface member 120, base members 140 and 145, and grade-matching member 110 are each composed of a copolymer. However, in other examples, the different components of composed of materials not necessarily the same as the other components. Copolymers are not the only material suitable for the components of the cover systems described herein. Other suitable materials include metals, monomomers, natural or synthetic rubber, wood, and earthen materials, such as bricks and tiles, and the like. The components of the cover systems described herein may be formed from any currently known or later developed materials suitable to cover utility access holes.
Fastener.

As shown in FIGS. 1-4, fastener 130 is configured to secure surface member 120, grade-matching member 110, and base members 140 and 145 to utility cover 102. In some examples, the fastener secures only a subset of the components together or does not secure the cover system components to the utility cover. For example, the surface member may rest unsecured on the grade-matching member, which is secured via a fastener to the utility cover. In a related example, the surface member is secured to the grade-matching member via a friction or interference fit and the grade-matching member is secured to the utility cover via a fastener.

A fastener is not required for the cover system to function properly and is omitted in some examples. In the present example, cover system 100 includes two identical fasteners 130. However, in some examples the cover system includes a single fastener, no fastener, two different fasteners, or more than two fasteners.

In the example shown in FIGS. 1-4, fastener 130 includes a bolt 132 and a nut 134 complimentary configured with each other for threading engagement. To receive fastener 130, grade-matching member 110, surface member 120, base members 140 and 145, and utility cover 102 collectively define an aligned bore 136. Bolt 132 extends through aligned bore 136.

Bolt 132 includes a head 138 that abuts top surface 122 of surface member 120 when bolt 132 extends through aligned bore 136. In the example shown in FIGS. 1-4, nut 134 threadingly engages bolt 132 in a position abutting utility cover 102 opposite surface member 120. In this manner, fastener 130 is configured to compress surface member 120, grade-matching member 110, base members 140 and 145, and utility cover 102 together by adjusting the position of nut 134 closer to head 138 of bolt 132 to secure the components together.

Turning attention to FIG. 9, a second example of a cover system, cover system 200 will now be described. Cover system 200 includes many similar or identical features to cover system 100. Thus, for the sake of brevity, each feature of cover system 200 will not be redundantly explained. Rather, key distinctions between cover system 200 and cover system 100 will be described in detail and the reader should reference the discussion above for features substantially similar between the two cover systems.

As can be seen in FIG. 9, cover system 200 includes a grade-matching member 210, a surface member 220, fasteners 230, and a base member 240. Cover system 200 is secured to and disposed above utility cover 202.

Cover system 200 differs from cover system 100 in that it includes a single base member 240 as opposed to two base members. Another unique aspect of cover system 200 is that base member 240 is disposed between utility cover 202 and grade-matching member 210 as opposed to between surface member 220 and grade-matching member 210.

Turning attention now to FIG. 10, a third example of a cover system, cover system 300 will now be described. Cover system 300 includes many similar or identical features to cover systems 100 and 200. Thus, for the sake of brevity, each feature of cover system 300 will not be redundantly explained. Rather, key distinctions between cover system 300 and cover systems 100 and 200 will be described in detail and the reader should reference the discussion above for features substantially similar between the cover systems.

As can be seen in FIG. 10, cover system 300 includes a first grade-matching member 310, a second grade-matching member 350, a surface member 320, fasteners 330, and a base member 340. Cover system 300 is secured to and disposed above utility cover 302.

Cover system 300 differs from the other cover system embodiments in that it includes two grade-matching members as opposed to a single grade matching member. First grade-matching member 310 and second grade-matching member 350 serve to define a compound or composite cover grade formed by the sum of their respective cover grades θ_1 and θ_2. The compound grade formed by the grade-matching members corresponds to ground surface grade θ_2.

In the example shown in FIG. 10, first grade-matching member 310 and second grade-matching member 350 are substantially identical and radially offset to create a composite cover grade defined by the offset of their equivalent tapered profiles. In other examples, grade members with different tapers may be combined to define a composite or compound grade not based on a radially offset arrangement between the grade matching members.

The disclosure above encompasses multiple distinct inventions with independent utility. While each of these inventions has been disclosed in a particular form, the specific embodiments disclosed and illustrated above are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and subcombinations of the various elements, features, functions and/or properties disclosed above and inherent to those skilled in the art pertaining to such inventions. Where the disclosure or subsequently filed claims recite "a" element, "a first" element, or any such equivalent term, the disclosure or claims should be understood to incorporate one or more such elements, neither requiring nor excluding two or more such elements.

Applicant(s) reserves the right to submit claims directed to combinations and subcombinations of the disclosed inventions that are believed to be novel and non-obvious. Inventions embodied in other combinations and subcombinations of features, functions, elements and/or properties may be claimed through amendment of those claims or presentation of new claims in the present application or in a related application. Such amended or new claims, whether they are directed to the same invention or a different invention and whether they are different, broader, narrower or equal in scope to the original claims, are to be considered within the subject matter of the inventions described herein.

1. A grade-matching cover system for use with a utility cover installed to cover a utility access hole formed in a ground surface having a ground surface grade proximate the utility access hole, the grade-matching cover system comprising:

 a grade-matching member operatively supported by the utility cover, the grade-matching member having a top surface opposite the utility cover, the top surface of the grade-matching member defining a cover grade selected to substantially match the ground surface grade;

 a surface member operatively supported by the grade-matching member and adopting the cover grade defined by the top surface of the grade-matching member, the surface member having a top surface opposite the grade-matching member that is substantially coplanar with the ground surface proximate the utility access hole;
2. The grade-matching cover system of claim 1, further comprising a fastener configured to secure the surface member and the grade-matching member to the utility cover.

3. The grade-matching cover system of claim 2, wherein: the fastener includes a bolt and a nut complementsarily configured for threading engagement; and the grade-matching member, the surface member, and the utility cover collectively define an aligned bore and the bolt extends through the aligned bore.

4. The grade-matching cover system of claim 3, wherein: the bolt includes a head abutting the top surface of the surface member; the nut threadingly engages the bolt in a position abutting the utility cover opposite the surface member; and the fastener is configured to compress the surface member, the grade-matching member, and the utility cover together by adjusting the position of the nut closer to the head of the bolt.

5. The grade-matching cover system of claim 1, further comprising a base member disposed between the utility cover and the surface member in a position that is either between the utility cover and the grade-matching member or between the grade-matching member and the surface member, the base member having a height selected to position the surface member operatively supported by the grade-matching member at the level of the ground surface proximate the utility access hole.

6. The grade-matching cover system of claim 5, wherein: the base member includes a first major face and a second major face opposite the first major face, the first major face of the base member defining a base recess and the second major face of the base member including a base projection complimentary configured with the base recess; the grade-matching member includes a first major face and a second major face opposite the first major face, the first major face of the grade-matching member defining a grade-member recess complimentary configured with the base projection and the second major face of the grade-matching member including a grade-member projection complimentary configured with the grade-member recess and with the base recess; the base member and the grade-matching member are configured to couple with one another through either the base projection matingly engaging with the grade-member recess or the grade-member projection matingly engaging with the base member recess.

7. The grade-matching cover system of claim 6, wherein the grade-member projection defines a first grade-member projection and the grade-member recess defines a first grade-member recess, the grade-matching member further comprising:
 - a second grade-member projection radially offset from the first grade-member projection; and
 - a second grade-member recess radially offset from the first grade-member recess.

8. The grade-matching cover system of claim 7, wherein: the grade-matching member defines a first grade-matching member and the cover grade defines a first cover grade, the grade-matching cover system further comprising a second grade-matching member defining a second grade-cover grade, the second grade matching member including:
 - a first major face; and
 - a second major face opposite the first major face, where: the first major face of the second grade-matching member defines a third grade-member recess complimentary configured with the first grade-member projection of the first grade matching member; and the second major face of the second grade-matching member includes a third grade-member projection complimentary configured with the first grade-member recess of the first grade-matching member, the first grade-matching member and the second grade-matching member are configured to couple with one another to form a composite cover grade defined by the combination of the first cover grade and the second cover grade through the third grade-member projection of the second grade matching member matingly engaging with either the first grade-member recess or the second grade-member recess of the first grade-matching member or the third grade-member recess of the second grade-matching member matingly engaging with either the first grade-member projection or the second grade-member projection of the first grade-matching member.

9. The grade-matching cover system of claim 5, wherein: the base member defines a first base member and the grade-matching cover system further comprises a second base member supported on the first base member, the first base member and the second base member defining a collective height selected to position the surface member operatively supported by the grade-matching member at the level of the ground surface proximate the utility access hole.

10. The grade-matching cover system of claim 5, further comprising a fastener configured to secure the surface member, the grade-matching member, and the base member to the utility cover.

11. The grade-matching cover system of claim 1, wherein: the surface member, the grade-matching member, and the utility cover have major faces with substantially the same dimensions.

12. The grade-matching cover system of claim 1, wherein: the surface member and the grade-matching member are composed of a copolymer.

13. The grade-matching cover system of claim 1, wherein: the surface member includes a display region.

14. The grade-matching cover system of claim 13, wherein: the display region includes indicia providing information relevant to utilities accessible through the utility access hole.

15. The grade-matching cover system of claim 13, wherein: the display region is configured to be marked with indicia by a user when the surface member supported in the utility access hole.

16. The grade-matching cover system of claim 13, wherein: the display region is removable and defines a first display region, the grade-matching cover system further comprising a second display region configured to mount to the surface member interchangeably with the first display region.

17. The grade-matching cover system of claim 1, wherein: the cover grade of the top surface of the grade-matching member is defined by the height of the grade-matching member and the height of the grade-matching member tapers from a first position on the grade-matching member to a second position on the grade-matching member.

18. A grade-matching cover system for use with a utility cover installed to cover a utility access hole formed in a
ground surface having a ground surface grade proximate the utility access hole, the grade-matching cover system comprising:

- a base member supported by the utility cover;
- a grade-matching member supported by the base member, the grade-matching member having a top surface opposite the utility cover, the top surface of the grade-matching member defining a cover grade selected to substantially match the ground surface grade.
- a surface member supported on the grade-matching member and adopting the cover grade defined by the top surface of the grade-matching member, the surface member having a top surface opposite the grade-matching member that is substantially coplanar with the ground surface proximate the utility access hole.

19. The grade-matching cover system of claim 18, wherein the height of the base member is selected to position the cover member supported on the grade-matching member in a position substantially coplanar with the ground surface proximate the utility access hole.

20. The grade-matching cover system of claim 18, further comprising a fastener configured to secure the surface member, the grade-matching member, and the base member to the utility cover.