PCT
ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

<table>
<thead>
<tr>
<th>(51) Classification internationale des brevets</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C12N 15/86, C07K 16/28, C12N 7/01, 5/10, 15/13</td>
<td></td>
</tr>
</tbody>
</table>

(21) Numéro de la demande internationale:	PCT/FR95/00110
(22) Date de dépôt international:	31 janvier 1995 (31.01.95)
(30) Données relatives à la priorité:	94/01015 31 janvier 1994 (31.01.94) FR

(72) Inventeurs; et

(74) Mandataires: ORES, IÈne etc.; Cabinet Orès, 6, avenue de Messine, F-75008 Paris (FR).

Publiée
Avec rapport de recherche internationale.

(54) Title: RECOMBINANT BACULOVIRUS AND USE THEREOF IN THE PRODUCTION OF MONOCLONAL ANTIBODIES

(54) Titre: BACULOVIRUS RECOMBINANT ET SON UTILISATION POUR LA PRODUCTION D’ANTICORPS MONOCLONAUX

(57) Abstract

Recombinant baculovirus used as an expression vector in the production of immunoglobulins within an insect cell. The invention is characterized by an expression cassette comprising a sequence coding for at least one portion of an immunoglobulin H chain, said sequence being transcriptionally controlled by a first baculovirus promoter, and an expression cassette comprising a sequence coding for at least one portion of an immunoglobulin L chain, said sequence being transcriptionally controlled by a second baculovirus promoter. The first and second promoters are two different promoters or derivatives of different promoters, the first and second promoters residing in different loci.

(57) Abrégé

L’invention est relative à un baculovirus recombinant, constituant un vecteur d’expression utilisable pour la production d’immunoglobulines dans une cellule d’insecte, et caractérisé en ce qu’il comprend: une cassette d’expression comprenant une séquence codant pour au moins une partie d’une chaîne H d’une immunoglobuline, laquelle séquence est placée sous contrôle transcriptionnel d’un premier promoteur de baculovirus; et une cassette d’expression comprenant une séquence codant pour au moins une partie d’une chaîne L d’une immunoglobuline, laquelle séquence est placée sous contrôle transcriptionnel d’un second promoteur de baculovirus, le premier et le second promoteurs étant deux promoteurs différents ou des dérivés de promoteurs différents et le premier et le second promoteurs étant situés dans des locus différents.
UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Nom</th>
<th>Code</th>
<th>Nom</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Autriche</td>
<td>GB</td>
<td>Royaume-Uni</td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
<td>GE</td>
<td>Géorgie</td>
</tr>
<tr>
<td>BB</td>
<td>Barbade</td>
<td>GN</td>
<td>Guinée</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>GR</td>
<td>Grèce</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>HU</td>
<td>Hongrie</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>IE</td>
<td>Irlande</td>
</tr>
<tr>
<td>BJ</td>
<td>Bénin</td>
<td>IT</td>
<td>Italie</td>
</tr>
<tr>
<td>BR</td>
<td>Brésil</td>
<td>JP</td>
<td>Japon</td>
</tr>
<tr>
<td>BY</td>
<td>Biélarus</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KG</td>
<td>Kirghizistan</td>
</tr>
<tr>
<td>CF</td>
<td>République centrafricaine</td>
<td>KP</td>
<td>République populaire démocratique</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KR</td>
<td>République de Corée</td>
</tr>
<tr>
<td>CH</td>
<td>Suisse</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>CN</td>
<td>Chine</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>CS</td>
<td>Tchécoslovaquie</td>
<td>LV</td>
<td>Lettonie</td>
</tr>
<tr>
<td>CZ</td>
<td>République tchèque</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>DE</td>
<td>Allemagne</td>
<td>MD</td>
<td>République de Moldova</td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
<td>MG</td>
<td>Mozambique</td>
</tr>
<tr>
<td>ES</td>
<td>Espagne</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>FI</td>
<td>Finlande</td>
<td>MN</td>
<td>Mongolie</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritanie</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Pays-Bas</td>
</tr>
<tr>
<td>NO</td>
<td>Norvège</td>
<td>NZ</td>
<td>Nouvelle-Zélande</td>
</tr>
<tr>
<td>PL</td>
<td>Pologne</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Roumanie</td>
<td>RU</td>
<td>Fédération de Russie</td>
</tr>
<tr>
<td>SD</td>
<td>Soudan</td>
<td>SE</td>
<td>Suède</td>
</tr>
<tr>
<td>SI</td>
<td>Slovénie</td>
<td>SK</td>
<td>Slovaquie</td>
</tr>
<tr>
<td>SN</td>
<td>Sénégal</td>
<td>TD</td>
<td>Tchad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tadjikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad-et-Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>États-Unis d'Amérique</td>
<td>UZ</td>
<td>Ouzbékistan</td>
</tr>
<tr>
<td>VN</td>
<td>Viêt Nam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BACULOVIRUS RECOMBINANT ET SON UTILISATION POUR LA PRODUCTION D'ANTICORPS MONOCLONAUX.

La présente Invention est relative à un baculovirus modifié et à son utilisation pour la production d'immunoglobulines.

Les anticorps ou immunoglobulines sont produits par les lymphocytes B. Chaque lymphocyte B sécrète un seul type d'anticorps. Chaque molécule d'immunoglobuline est constituée de l'association de deux chaînes lourdes (H) et deux chaînes légères (L) reliées par des ponts disulfures. Chaque chaîne est constituée d'une partie variable (VH et VL) qui possède le site de fixation à l'antigène et d'une partie constante (CH et CL). Il existe plusieurs types de chaînes lourdes (γ1, γ2, γ3, γ4, α, ε, μ) qui définissent les différentes classes d'immunoglobulines (IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM...) et deux types de chaînes légères : (chaîne kappa (κ) et chaîne lambda (λ). Par exemple les anticorps de classe IgG1 sont constitués de deux chaînes lourdes de type γ1 et de deux chaînes légères κ ou lambda λ. Les parties variables sont le support de la spécificité de l'anticorps pour son antigène.

Pour chaque chaîne d'un anticorps donné, la région variable est constituée de plusieurs domaines dont certains sont plus ou moins conservés. Le réarrangement de ces régions variables est le fruit d'une recombinaison au niveau de l'ADN génomique des lymphocytes B.

Les anticorps monoclonaux sont classiquement produits à partir de cultures de lignées d'hybridomes, chaque lignée, dérivée d'un seul lymphocyte B, sécrétant un seul type d'immunoglobuline.

Les anticorps monoclonaux (MAbs) sont utilisés couramment aujourd'hui pour le diagnostic in vitro, et leur utilisation en thérapie et pour le diagnostic in vivo connaît un développement prometteur. Ce développement est toutefois freiné par le fait que les
seuls anticorps monoclonaux dont on puisse disposer relativement facilement et en quantité suffisante à partir des cultures d'hybridomes sont des anticorps monoclonaux de rongeurs. Or, les immunoglobulines de rongeurs (et de manière générale les immunoglobulines non-humaines) induisent chez l'homme une réponse immune indésirable, ce qui limite considérablement leur intérêt thérapeutique.

De nombreuses recherches ont été effectuées dans le but d'obtenir des immunoglobulines ne possédant pas cet inconvénient ; il a en particulier été proposé de fabriquer par génie génétique des anticorps recombinants, dans lesquelles la plus grande partie possible de la molécule est dérivée d'un gène d'origine humaine.

Les anticorps obtenus, dans lesquels seuls les domaines variables sont d'origine non-humaine, sont dénommés anticorps chimériques. Il existe également des anticorps dits humanisés, dont les séquences des régions variables non directement impliquées dans la reconnaissance de l'antigène ont été remplacées par des séquences d'origine humaine. Dans les deux cas, la majeure partie de la molécule d'immunoglobuline est dérivée d'un gène d'origine humaine.

L'obtention d'anticorps par génie génétique nécessite toutefois le choix d'un hôte d'expression approprié, assurant les modifications post-traductionnelles nécessaires pour reproduire les propriétés de l'anticorps natif. Dans ce but il a été proposé, entre autres, d'utiliser le système baculovirus/cellules d'insectes.

Les baculovirus sont utilisés couramment comme vecteurs pour l'expression de gènes hétérologues, placés sous contrôle des promoteurs viraux, dans des cellules d'insectes infectées. Le promoteur de la polyédrine ou bien celui de la p10 (protéines produites en grande quantité pendant la phase très tardive du cycle
de réplication viral) sont ainsi fréquemment utilisés dans ce but.

La présente Invention a pour but de produire à la fois la chaîne lourde (H) et la chaîne légère (L) d'un anticorps donné dans une cellule d'insecte, en utilisant un vecteur d'expression dérivé d'un baculovirus, ne présentant pas les inconvénients des vecteurs d'expression du même type utilisés dans l'art antérieur pour la production d'immunoglobulines.

Dans ce but les Inventeurs ont construit des baculovirus double-recombinant dans lesquels les séquences codantes des deux chaînes H et L sont situées à des locus différents du génome dudit baculovirus, et chacune est placée sous le contrôle d'un promoteur fort différent, (contrairement aux baculovirus de l'art antérieur cité ci-dessus, où les deux chaînes sont placées dans un même locus du génome d'un baculovirus, et sous contrôle de deux copies du même promoteur).
La présente Invention a pour objet un baculovirus recombinant, caractérisé en ce qu'il comprend :

- une cassette d'expression comprenant une séquence codant pour au moins une partie d'une chaîne H d'une immunoglobuline, laquelle séquence est placée sous contrôle transcriptionnel d'un premier promoteur de baculovirus, et ;

- une cassette d'expression comprenant une séquence codant pour au moins une partie d'une chaîne L d'une immunoglobuline, laquelle séquence est placée sous contrôle transcriptionnel d'un second promoteur de baculovirus ;

le premier et le second promoteur étant deux promoteurs différents, et étant situés dans deux locus différents.

Selon un mode de réalisation préféré de la présente Invention, le premier et le second promoteur sont des promoteurs forts.

Selon un autre mode de réalisation préféré de la présente Invention, l'un des promoteurs est situé à l'emplacement occupé chez le baculovirus sauvage, par le promoteur de la polyédrine et l'autre est situé à l'emplacement occupé chez le baculovirus sauvage, par le promoteur de la P10.

On entend par : "promoteur de baculovirus" tout promoteur qui peut être intégré dans le génome d'un baculovirus, et fonctionner en cellules d'insectes ; un tel promoteur est dit "fort" lorsqu'il permet d'obtenir un niveau de transcription élevé (par exemple, de l'ordre de celui obtenu avec les promoteurs de la polyédrine ou de P10) d'un gène placé sous son contrôle.

Cette définition englobe non seulement les promoteurs de type "sauvage" tels que les promoteurs de la polyédrine et de P10 des baculovirus AcMNPV ou S1MNPV, mais également les dérivés de promoteurs, résultant de modifications plus ou moins importantes de la séquence
d'un promoteur "sauvage" de baculovirus, et en particulier les promoteurs synthétiques ou recombinants, tels que par exemple le promoteur synthétique décrit par WANG et al, [Gene, 100, 131-137, (1991)].

Selon un mode de réalisation préféré d'un baculovirus recombinant conforme à la présente Invention, au moins l'un des promoteurs mis en œuvre est choisi dans le groupe constitué par :
- le promoteur de la polyédrine ;
- le promoteur de la p10 ;
- un nouveau promoteur synthétique, dénommé ci-après promoteur Syn, et constitué par un fragment d'ADN double brin dont la séquence est la suivante :

\[
\text{ATCAAATAATAAGTATTCTTT} \text{GTAAGTTTAGTATTTGTAATATAATTAAATACATACGT} \text{TAAATAGATG}
\]

La séquence du brin (+) de ce fragment est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 1

La séquence du brin (-) de ce fragment est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 2

L'utilisation du promoteur Syn permet d'augmenter de manière très significative la production d'anticorps recombinants.

Le promoteur Syn, en tant que tel, fait également partie de l'objet de la présente invention.

Les promoteurs P10, polyédrine, et Syn peuvent être associés 2 à 2 selon n'importe quelle combinaison ; en particulier, le promoteur Syn peut être associé avec le promoteur de la polyédrine, ou bien, avantageusement, avec celui de la protéine P10.

Selon un autre mode de réalisation préféré de la présente Invention, chaque cassette d'expression comprend : (i) un promoteur fort de baculovirus, tel que défini ci-dessus ; (ii) une séquence codant pour un
peptide-signal ; (iii) une séquence codant pour un domaine variable d’une chaîne \(H \) ou \(L \) d’immunoglobuline ;
(iv) une séquence codant pour au moins une partie d’un domaine constant d’une chaîne \(H \) ou \(L \) d’immunoglobuline.

Un tel baculovirus recombinant constitue un vecteur d’expression directement utilisable pour la production d’immunoglobulines dans une cellule d’insecte.

De préférence, la séquence codant pour le peptide-signal qui est placée sous contrôle du premier promoteur et la séquence codant pour le peptide-signal qui est placée sous contrôle du second promoteur sont deux séquences différentes.

Des séquences connues en elles-mêmes, codant pour des peptides signal fonctionnels en cellules d’insecte sont utilisables pour la mise en oeuvre de la présente Invention. A titre d’ exemples non limitatifs, on citera des séquences codant pour les peptides signal de l’acétylcholinestérase de Drosophile, de la trophoblastine ovine, de la lactotransferrine bovine, des chaînes \(H \) et \(L \) d’immuno-globulines, etc…

Les Inventeurs ont toutefois constaté qu’il était préférable, pour obtenir la meilleure sécrétion de la molécule d’immunoglobuline, que la séquence His-Val-Ser soit présente immédiatement en amont du site de coupure utilisé par la signal-peptidase.

Les séquences codant pour les domaines constants et variables peuvent être de même origine, ou d’origine différente ; il peut s’agir également de séquences synthétiques ou recombinantes. Avantageusement, la séquence codant pour le domaine constant est d’origine humaine ; la séquence codant pour le domaine variable peut être d’origine totalement humaine ou au moins partiellement non-humaine, par exemple d’origine murine, etc ….
La présente Invention englobe les cellules d'insecte infectées avec un baculovirus recombinant conforme à l'invention.

L'infection des cellules par un baculovirus double-recombinant conforme à l'Invention résulte dans la production des chaînes H et L. Ces chaînes s'assemblent pour reconstituer l'anticorps monoclonal désiré qui est par la suite sécrété dans le milieu de culture.

La présente Invention a également pour objet un procédé de préparation d'une immunoglobuline, caractérisé en ce que l'on met en culture des cellules d'insecte infectées avec un baculovirus recombinant conforme à l'invention, et en ce que l'on extrait ladite immunoglobuline du milieu de culture.

La présente Invention englobe également les immunoglobulines susceptibles d'être obtenues par le procédé ci-dessus.

La présente Invention a en outre pour objet un procédé de préparation d'un baculovirus recombinant, lequel procédé est caractérisé en ce que :
- l'on prépare un premier plasmide de transfert comprenant une séquence codant pour au moins une partie de chaîne H d'immunoglobuline, sous contrôle transcriptionnel d'un premier promoteur fort d'un baculovirus ;
- l'on prépare un second plasmide de transfert comprenant une séquence codant pour au moins une partie de chaîne L d'immunoglobuline, sous contrôle transcriptionnel d'un second promoteur fort de baculovirus ;
le premier et le second promoteur étant deux promoteurs différents ; et l'on procède à la recombinaison homologue de l'un et de l'autre desdits plasmides avec l'ADN d'un baculovirus.
La construction d'un baculovirus recombinant conforme à l'Invention se fait en utilisant les techniques classiques de clonage de gènes hétérologues chez les baculovirus.

Schématiquement, la construction des plasmides de transfert se fait en insérant dans un plasmide capable de se répliquer chez un hôte bactérien (en général E. coli), la région du gène de baculovirus (par exemple p10 ou polyédrine) à la place duquel on souhaite insérer les gènes codant pour les chaînes H ou L d'immunoglobuline. Dans cette région, la séquence codante du gène de baculovirus (et éventuellement la séquence promoteur dudit gène) est remplacée par la séquence codant pour la chaîne d'immunoglobuline à exprimer (et éventuellement par la séquence du promoteur sous contrôle duquel on souhaite exprimer cette chaîne d'immunoglobuline, s'il s'agit par exemple d'un promoteur "dérivé"). Le plasmide de transfert ainsi obtenu contient donc un insert comprenant une séquence hétérologue flanquée de séquences de baculovirus. On cotransfecte ensuite les cellules d'insecte avec l'ADN du vecteur de transfert ainsi réalisé et l'ADN du baculovirus, ce qui par recombinaison homologue entre l'ADN viral et les séquences de baculovirus flanquant la séquence hétérologue dans le plasmide, permet le transfert de la séquence étrangère du plasmide vers le génome viral.

Selon un mode de mise en œuvre préféré du procédé conforme à la présente Invention, les plasmides de transfert utilisés portent un insert comprenant une cassette d'expression telle que définie ci-dessus, et de part et d'autre de cette cassette, des séquences de baculovirus homologues de celles des régions flanquant la portion du génome viral en remplacement de laquelle on souhaite insérer ladite cassette.

Selon une disposition préférée de ce mode de mise en œuvre, lesdites séquences de baculovirus sont
homologues de celles des régions flanquant le gène de la p10, ou homologues de celles des régions flanquant le gène de la polyédrine.

Après réplication de l'ADN viral dans les cellules transfectées, l'on procède à la sélection des baculovirus recombinants ayant intégré les séquences hétérologues.

Selon un mode de réalisation particulièrement avantageux du procédé conforme à l'invention, l'ADN de baculovirus avec lequel est effectuée la recombinaison homologue des plasmides de transfert est constitué par l'ADN d'un baculovirus préalablement modifié par insertion de deux sites Bsu36I de part et d'autre de la séquence codant pour la protéine P10 (ces deux sites étant les seuls pour l'enzyme concernée dans le génome dudit baculovirus modifié), et digéré par l'enzyme Bsu36I.

Le baculovirus dans lequel sont insérés les sites Bsu36I peut être un baculovirus sauvage, ou un baculovirus déjà modifié, par exemple le virus dénommé AcD3, modifié par délétion du gène et du promoteur polyédrine, à condition toutefois que ce baculovirus conserve les régions flanquantes de la polyédrine et de la P10.

Lors de la mise en présence des fragments d'ADN résultant de la digestion Bsu36I avec les deux vecteurs de transfert (par co-transfection), seuls parmi ces fragments d'ADN, ceux qui recombinent avec le vecteur portant les régions flanquantes de la P10 reconstituent un génome viral circulaire, et permettent d'obtenir des virus viables.

Parmi les virus obtenus, seuls ceux qui ont également recombiné avec le vecteur portant les régions flanquantes de la polyédrine permettent l'expression des deux chaînes d'immunoglobuline, ils peuvent donc être sélectionnés en détectant l'immunoglobuline produite (par
exemple par ELISA). En outre, dans le cas où le virus de départ comprend le gène de la polyédrine, seuls les virus qui ont recombiné avec le vecteur portant les régions flanquantes de la polyédrine sont dépourvus de ce gène et peuvent être sélectionnés sur la base de leur phénotype ob- (absence de polyédres).

Ce procédé permet donc d'obtenir, en une seule étape, en procédant à une triple transfection, les vecteurs ayant intégré les chaînes lourdes et les chaînes légères.

La présente Invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples de préparation de baculovirus recombinants conformes à l'invention, et à leur utilisation pour la production d'immunoglobulines dans des cellules d'insectes.

Il doit être bien entendu toutefois que ces exemples sont donnés uniquement à titre d'illustration de l'objet de l'Invention dont ils ne constituent en aucune manière une limitation.

Exemple 1. : Construction d'une cassette chaîne légère Kappa, (pBCX) (Figure 1) :

a- Plasmide pGmAcl116T :

Ce vecteur de transfert est dérivé du plasmide pGmAcl115T [ROYER et al., J. Virol., 66, 3230-3235, (1992)], lui-même dérivé du plasmide pAcl [CHAABHIHI et al., J. Virol., 67, 2664-2671 (1993)] contenant le fragment EcoRI-I du baculovirus de la polyédrose nucléaire d'Autographa californica (AcMNPV), et donc le gène polyédrine, et les séquences flanquant ledit gène. Pour obtenir pGmAcl116T, le plasmide pGmAcl115T a été déleté d'un fragment de 1900pb allant d'un site EcoRI situé en amont du gène polyédrine à un site XhoI situé 1900pb en aval de ce site EcoRI. La déletion a été effectuée par coupure exhaustive XhoI, suivie d'une coupure partielle par EcoRI. 5 µg du plasmide pGmAcl115T ont
été digérés pendant 2 heures à 37°C par 15 unités d'enzyme XhoI (Boehringer), dans un volume réactionnel de 50 µl et dans les conditions préconisées par le fournisseur. L'enzyme a été éliminée par une extraction au phénol/chloroforme et l'ADN plasmidique a été précipité à l'alcool. Cet ADN a été ensuite partiellement coupé par EcoRI (Boehringer) dans un volume réactionnel de 50 µl en présence de 0,5 unité d'enzyme. L'incubation a été faite à 37°C pendant 20 minutes. Après une nouvelle extraction au phénol/chloroforme, les extrémités générées par les coupures XhoI et EcoRI ont été rendues franches par l'enzyme de Klenow (Biolabs) en présence des 4 dNTPs selon le protocole préconisé par le fournisseur. L'ADN plasmidique a enfin été précipité à l'alcool et incubé avec la ligase du phage T4 (Boehringer) dans les conditions préconisées. Des bactéries E. coli compétentes ont été transformées par une partie du mélange de ligation, le criblage des colonies issues de cette transformation a permis de sélectionner le plasmide pGmAc116T.

b- Les promoteurs :

Le promoteur p10 ou le promoteur polyédrine du virus de la polyéдрose nucléaire de Spodoptera littoralis (SLMNPV) sont amplifiés par PCR en utilisant des amorces permettant de reconstituer un site EcoRV en amont du promoteur, et un site BglII en aval. Le produit d'amplification est digéré par EcoRV et BglII, et les fragments portant les séquences promotrices sont insérés dans pGmAc116T préalablement digéré par ces mêmes enzymes. La digestion par EcoRV et BglII permet d'éliminer le promoteur polyédrine de AcMNPV, et de le remplacer par l'un des deux promoteurs cités plus haut.

Les plasmides obtenus sont respectivement appelés pGmAc10 (promoteur de la p10), ou pGmAc33 (promoteur de la polyéдрine).
Le promoteur synthétique a été produit par synthèse chimique sous forme des deux oligonucléotides complémentaires SEQ ID NO : 1 et SEQ ID NO : 2.
Une fois appariés, ces oligonucléotides reconstituent un ADN double brin directement utilisable dans une réaction de ligation.
Le plasmide pGmAc116T a été digéré par EcoRV et BglII pour éliminer le promoteur polyédrine de AcMNPV, et la séquence du promoteur synthétique a été insérée en remplacement. Le plasmide obtenu est appelé pGmAcSyn.

c- Peptide-signal :
La séquence codante choisie pour le peptide-signal est la suivante :
5' - ATG GGA TGG AGC TGT ATC ATC CTC TTC TTG GTA GCA ACA GCT ACA GGT GTC CAC TCC -3'
Elle est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 3.
Cette séquence a été synthétisée chimiquement sous forme de deux oligonucléotides complémentaires ayant des extrémités permettant l'insertion du duplex dans un site BglII. A l'une des extrémités du duplex, il y a une séquence correspondant à celle du début de la "charpente 1" (framework 1) des chaînes légères (avec le site SacI), suivie d'une séquence portant un site XhoI. Pour l'appariement, 15 µg de chacun des deux oligonucléotides sont incubés dans 50 µl de tampon (Tris 1 mM pH 7,5, EDTA 0,1 mM), pendant 5 minutes dans un bain marie à 70°C. Le bain est ensuite laissé refroidir jusqu'à température ambiante (22 à 25°C). Le mélange est utilisé directement dans les réactions de ligation avec les plasmides pGmAc10, pGmAc33, ou le plasmide pGmAcSyn préalablement coupés par BglII.
Les conditions de liglation sont les suivantes :

1μg du plasmide pGmAc choisi, coupé par BglII, 1μg de l'oligonucléotide bicaténaire portant la séquence codant pour le peptide-signal, 2μl de tampon ligase 10X (BOEHRINGER), eau distillée q.s.p. 19μl, 1 unité (1μl) de ligase (BOEHRINGER) ; l'incubation est effectuée à 22°C pendant 2 heures ; le produit de liglation est utilisé pour transformer des bactéries E.coli compétentes.

d- Région constante :
La séquence codante de la région constante de la chaîne légère κ humaine a été amplifiée par PCR en utilisant comme matrice de l'ADNC de lymphocytes B humains. Les lymphocytes humains (environ 5x10^8) ont été préparés à partir de 200 ml de sang en utilisant HISTOPAQUE® (SIGMA). L'ARN total a été extrait de ces lymphocytes en utilisant un kit PHARMACIA (RNA extraction kit). Le premier brin d'ADNC a été préparé à partir de l'ARN total à l'aide du kit "First-Strand cDNA synthesis kit" de PHARMACIA.

Les amorces utilisées pour amplifier le cDNA κ sont les suivantes :
* HuKbac :
5'-AG_CTC_GAG_ATC_AAA_CGG-3'
(le site XhoI est souligné).

Cette amorce correspond à une séquence consensus en 3' des séquences codant pour les domaines variables des chaînes légères d'immunoglobulines humaines (Jκ), et contient un site de coupure par XhoI.

Elle est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 4
* HuKfor :
5'-GAA_GAT_CTAACA_CTC_TCC_GCG_GTT_GAA_G-3'
(le site BglII est souligné).
Cette amorce est complémentaire de l'extrémité 3' des gènes CK humains et apporte un site BglII en aval du codon stop TAG.

Elle est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 5

L'amplification avec les amorces HuCKBAC et HuCKFOR a permis d'obtenir un fragment d'environ 340 pb contenant la totalité de la région CK encadrée des sites XhoI et BglII.

Le produit de l'amplification a été digéré par BglII et XhoI avant d'être cloné dans les sites XhoI-BglII des plasmides pGmAc portant la séquence codant pour le peptide-signal, pour donner les plasmides pBCK.

La composition du mélange de ligation est la suivante :

1 µg du plasmide pGmAc coupé par XhoI et BglII ; 200 ng du fragment Ck amplifié et digéré par BglII et XhoI, 2µl de tampon ligase 10X (BOEHRINGER), eau distillée q.s.p. 19µl, 1 unité (1µl) de ligase (BOEHRINGER).

L'incubation est effectuée à 22°C pendant 2 heures ; le produit de ligation est utilisé pour transformer des bactéries E.coli compétentes.

Exemple 2 - Cassette chaine légère Lambda (pBCλ) (figure 2) :

a. Région constante Cλ :

Comme pour la séquence codante de la région constante Ck, la séquence codante Cλ a été obtenue par amplification par PCR de l'ADN complémentaire des ARN messagers de lymphocytes B humains.

L'amplification par PCR de la région Cλ a été réalisée en présence de l'amorce OPP-HuCλ3', complémentaire de l'extrémité 3' des régions Cλ et apportant le site de restriction BglII et de l'amorce OPP-HuCλ5', complémentaire de l'extrémité 5' des régions Cλ et apportant le site de restriction XhoI.
Les séquences des deux amorces sont les suivantes :
*OPP-HuCλ3':
5'-CCT GTC AGA TCT ATG AAC ATT CTG TAG GGG-3'
(site BglII souligné)
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 6
*OPP-HuCλ5':
5'-CCG CCC TCC CTC GAG CTT CAA-3'
(site XhoI souligné)
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 7

Après coupure par les enzymes BglII et XhoI, la séquence Cλ amplifiée est insérée entre les sites XhoI et BglII du plasmide pBCX, préalablement déleté du gène CK par traitement par les enzymes BglII et XhoI et purification du fragment plasmidique de 7,8 kb.

Le plasmide obtenu est dénommé pBCλ.

L'insertion de la région constante lambda a été vérifiée par séquençage du plasmide pBCλ en présence des deux amorces OPP-HuCλ3' et OPP-HuCλ5'.

La cassette chaîne lambda (Cλ) est destinée au clonage des parties variables de chaînes légères de type lambda.

Ces parties variables sont amplifiées par PCR en utilisant d'une part une amorce (OPP-HuVλ5') qui hybride au niveau de la charpente 1 des chaînes légères et qui permet de reconstituer un site SacI, et d'autre part une amorce (OPP-HuV λ3') qui est quasiment complémentaire de l'amorce OPP-HuCλ5' et qui permet de reconstituer un site XhoI.

Les séquences de ces amorces sont les suivantes :
* OPP-HuV λ5':
5'-CA(GC)TCTGAGCTCAC(GT)CAG-3'
(site SacI souligné)
qui est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 8
* OPP-HuV3' :
5'-TTG AAG CTC CTC GAG GGA GGG CGG GAA-3'
(site XhoI souligné)
qui est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 9

Exemple 3 - Cassette chaîne lourde γ1 (pBCγ1)

(figure 3) :

a- Plasmide de transfert :
Le plasmide pGm16 [BLANC et al, Virology, 192, 651-654, (1993)] dérive d'un plasmide dans lequel a été cloné le fragment EcoRI-P du baculovirus AcMNPV contenant le gène p10. La quasi-totalité de la séquence codante a été déletée et remplacée par un site BglII permettant l'insertion de séquences à exprimer sous le contrôle du promoteur p10.

b- Le peptide-signal :
La séquence codante du peptide-signal pour la sécrétion de la chaîne lourde est une séquence artificielle, qui code pour un peptide ayant deux caractéristiques favorisant la sécrétion : hydrophobicité globale (cette caractéristique est commune à tous les peptides-signal), et présence de la séquence Val-His-Ser en amont du site de coupure par la "Signal-Peptidase".

La séquence codante de ce peptide-signal est la suivante :
5'-ATG GCT GTC CTG GTG TTC CTC TGC GTG TTT GCA TTT
CCC AGC TGT GTC CAC TCC-3'
Elle est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 10
Elle a été synthétisée chimiquement sous forme de brins complémentaires, de manière à ce qu'elle puisse être insérée dans un site BglII (figure 3). Les conditions d'appariement et de ligation sont identiques à
celles utilisées pour le clonage de la séquence codante du peptide-signal utilisée pour la chaîne légère.

- Régions constantes humaines :
 - IgG1 (Cγ1)

Le cDNA de la séquence codante de la région Cγ1 humaine a été amplifié par PCR en utilisant les amorce suivantes :

*HuCγ1BAC :

5' CAA GGT ACC ACG GTC ACC GTC TCC - 3'

(site KpnI souligné).

Cette amorce correspond à une séquence consensus des régions JH humaines (extrémités 3' des régions variables des chaînes lourdes humaines), et comprend un site KpnI.

Elle est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 11

*HuCγ1FOR :

5'-GAAGATC TCA TTT ACC CGG AGA CAG GGA G-3'

(site BglII souligné)

est identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 12

La séquence a été déterminée à partir de séquences Cγ1 humaines. L'amorce est complémentaire de l'extrémité 3' des Cγ1 humaines, et permet de reconstituer après amplification un site BglII en aval du codon stop.

La matrice utilisée pour amplifier la région Cγ1 humaine est le même mélange d'ADNc que celui utilisé pour l'amplification des séquences codantes Cκ et Cλ.

Le produit d'amplification a été séquencé et cloné dans le vecteur de transfert pGm16 portant la séquence codant pour le peptide-signal. La construction obtenue a été appelée pBCγ1 (figure 3).

Pour l'amplification des régions constantes des immunoglobulines IgG2, IgG3, IgG4, IgE, IgM et IgA, on utilise comme amorce 5' l'amorce HuCγ1BAC ci-dessus associée respectivement aux amorces 3' suivantes :
- IgG2 :
 HuCy1FOR,
- IgG3 :
 HuCy1FOR,
- IgG4 :
 HuCy1FOR,
- IgE :

5'-GAAGATC TCATT ACC GGG ATT TAC AGA- 3',
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 13

- IgM :

5'-GAAGATC TCA TTT ACC GGT GGA CTT GTC GTC-3',
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 14

- IgA :

5'-GAAGATCTCA GTA GCA GGT GCC GTC CAC CTC-3',
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 15.

Pour les régions constantes des IgGl, 2, 3 et 4, la même amorce est utilisée en 3' en raison de la grande conservation de séquences entre les différentes sous-classes dans cette partie. Pour les amorces utilisées pour les IgE, les IgM et les IgA, les sites de coupure BglII introduits sont soulignés.

Exemple 4 - Expression d'un anticorps chimère (souris-Homme) dans des cellules d'insecte infectées par un vecteur conforme à l'invention :

Le MAb K20 est un anticorps murin produit par un hybridome. Il est dirigé contre la sous-unité β des récepteurs CD29 des lymphocytes [BOUMSELL et al., J. Exp. Med. 152, p. 229 (1980)]. Un baculovirus recombinant conforme à l'invention a été utilisé pour exprimer un anticorps K20 chimère ayant les régions variables du K20 d'origine et les régions constantes humaines provenant des cassettes pBCK et pBCy1.
1. Clonage de la région variable de la chaîne légère κ de K20 :

L'ARN total de l'hybridome a été extrait à l'aide du kit "RNA extraction Kit" de PHARMACIA, et une transcription inverse a été réalisée en utilisant l'amorce VKFOR (First-Strand cDNA Synthesis kit ; PHARMACIA) :

*VKFOR :
5'- CGG TTT GAT CTC GAG CTT GGT CCC 3'

(site XhoI souligné)
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 16

Cette amorce est complémentaire de la séquence consensus à l'extrémité 3' de la région variable VK des gènes murins. Elle est destinée à amplifier les VK réarrangées avec les jonctions JK1 ou JK2 (qui sont les plus répandues), mais également celles réarrangées avec les jonctions JK4 ou JK5.

Le cDNA a été amplifié par PCR en utilisant d'une part l'amorce VKFOR et d'autre part l'amorce VK2BAC :

*VK2BAC :
5'- GAC ATT GAG CTC ACC CAG TCT CCA -3'

(site SacI souligné)
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 17.

Après amplification de la région VKK20, une digestion SacI-XhoI du produit d'amplification a été réalisée et le fragment obtenu a été cloné entre les sites SacI et XhoI du plasmide chaîne légère pBCCK pour donner le plasmide pBVKK20HuCK (figure 4A).

2- Clonage de la région variable de la chaîne lourde γ1 de K20 :
La transcription inverse sur l'ARN total extrait de l'hybridome producteur de K20 a été réalisée en utilisant l'amorce VHFOR. Cette même amorce, et l'amorce VHLBAC ont par la suite servi à amplifier la région VH à partir de l'ADNc :

*VHFOR :
5'-TGA GGA GAC GGT GAC CGT GGT _ACC TTG GC-3'
(Site KpnI souligné).
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 18

*VHLBAC :
5'-AG GT(C/G) (A/C)A(A/G) CTG CAG (C/G) AG TC(A/T) GG-3'
(Site PstI souligné)
identifiée dans la liste des séquences en annexe sous le numéro SEQ ID NO : 19.

Après amplification et digestion par PstI et KpnI, la région VH de K20 a été insérée dans le plasmide chaine lourde au niveau des sites PstI-KpnI. Le plasmide chargé a été appelé pBVHK20HUCγ1 (figure 4B).

3- Construction d'un virus recombinant produisant le K20 chimère (figure 5):
 a- Insertion de la chaine lourde :
 Le plasmide chargé pBVHK20HUCγ1 a été utilisé en cotransfection avec l'ADN d'un baculovirus modifié appelé AcSLp10 [CHAABIHI et al., J. Virol., 67, 2664-2671 (1993)], qui est dépourvu du gène polyédrine (promoteur+séquence codante), mais porte la séquence codante de la polyédrine sous contrôle du promoteur P10, dans le locus naturel P10. Ce virus produisant des polyédres dans les cellules infectées, la recombinaison au niveau du locus P10 peut ainsi être facilement
détectée. Les conditions de cotransfection sont les suivantes : 500 ng d’ADN viral sont mélangés avec 5 µg
d’ADN plasmidique et 40 µl de solution DOTAP (BOEHRINGER) dans 3 ml de milieu de culture sans sérum pour cellules
d’insectes. Ce mélange est utilisé pour recouvrir 4 x 10⁶
cellules Sf9 (ATCC35CRL 1711) ; après 4 heures de
contact, le mélange de cotransfection est remplacé par 4
ml de milieu complet et l’incubation est faite à 27°C
pendant 5 jours.

A la suite de la cotransfection, le virus
produisant la chaîne lourde de l’anticorps K20 chimère
sous le contrôle du promoteur P10 a été purifié par la
technique des plages de lyse. Ce virus a été appelé
AcSLp10-K20H.

b- Insertion de la chaîne légère :
Le plasmide chargé pBVKK20HUCK a été utilisé
en cotransfection avec l’ADN du baculovirus modifié
AcSLp10-K20H.

Les doubles recombinants ont été sélectionnés
par la technique de la dilution limite, associée à
l’ELISA et/ou à l’hybridation moléculaire.
Après la cotransfection, on effectue une gamme
de dilutions du surnageant infectieux, et chaque dilution
est utilisée pour l’infection de cellules d’insectes.
Trois jours après l’infection, les surnageants sont
testés en ELISA pour rechercher la présence d’anticorps
de type humain correctement assemblés. Les surnageants
des puits les plus positifs pour les dilutions les plus
importantes sont à leur tour dilués et utilisés pour
infecter d’autres cultures ; après quelques cycles
dilution/infection, les surnageants enrichis en
baculovirus produisant l’anticorps entier sont étalés sur
un tapis cellulaire, et clonés par la méthode des plages
de lyse.

Exemple 5 - Production et purification de
l’anticorps K20 :
Le virus double-recombinant a été amplifié par une série de passages sur des cellules d'insecte en culture. Le stock viral a été ensuite utilisé pour infecter une culture agitée en spinner (500 ml de culture à 10^6 cellules par ml).

Après 72 heures d'infection, la culture est récoltée et centrifugée à 1000 g pour clarifier le surnageant. Ce dernier a été concentré jusqu'au 1/3 de son volume initial par centrifugation à travers une membrane ayant un seuil de coupure de 30 kDa (CENTRIPEP 30, Amicon) (1ère centrifugation : 1000g, 20°C, 30 minutes ; élimination du filtrat ; 2ème centrifugation : 1000g, 20°C, 20 minutes).

La solution a été équilibrée dans un tampon de fixation sur protéine A, par dilution dans ce tampon suivie d'une nouvelle concentration par centrifugation (tampon de dilution : Glycine 1,5M, NaCl 3M; pH 8,9). La solution équilibrée est ensuite passée dans une colonne de protéine A, elle même équilibrée dans le même tampon que la solution de K20. Après rinçage de la colonne, l'anticorps est élué par un tampon d'éclution (Acétate 0,1M, NaCl0,5M; pH3). L'éclution est suivie en mesurant la DO à 280 nm. Les fractions contenant l'anticorps ont été mélangées et concentrées par centrifugation à travers une membrane ayant un seuil de coupure de 10 kDa (CENTRIPEP 10, AMICON). La solution concentrée est diluée avec du PBS puis reconcentrée de la même manière. La solution d'anticorps obtenue est conservée à +4°C dans le PBS (137 mM NaCl ; 2,7 mM KCl ; 4,3 mM Na₂HPO₄-7H₂O; 1,4 mM KH₂PO₄).

La qualité de l'anticorps a été contrôlée par électrophorèse sur gel de polyacrylamide-SDS, en utilisant comme témoin une IgG1 humaine du commerce (SIGMA). Cette expérience a montré que l'anticorps chimère non-réduit (ponts disulfure intacts) migre au même niveau que l'anticorps humain témoin.
Après traitement par le dithiotréitol (DTT), on observe l'apparition de deux bandes correspondant aux chaines lourdes et légères, et migrant au même niveau que les chaines de l'anticorps humain témoin également réduit au DTT.

Pour confirmer les résultats précédents, les protéines des fractions comprenant l'anticorps ont été transférées sur une membrane de nitrocellulose, et les chaines H et L ont été détectées par des anticorps spécifiques des région Cy1 et Ck humaines.

Cette expérience démontre que l'anticorps produit par les cellules d'insectes est bien constitué de chaines H et L, et que les parties constantes de ces chaines sont reconnues par des anticorps spécifiques.

Exemple 6 - Test de l'activité et de la spécificité du K20 produit par les cellules d'insectes :

1- Expériences d'immunofluorescence :
Des lymphocytes humains portant le récepteur CD29 ont été fixés sur lame de verre puis incubés en
présence du K20 chimérique produit conformément à l'Invention, du K20 murin d'origine, ou du tampon seul.

Après une série de rinçages, on rajoute ou bien un anticorps secondaire fluorescent spécifique du K20 chimérique produit conformément à l'Invention, ou bien un anticorps secondaire fluorescent spécifique du K20 murin d'origine.

Après un nouveau rinçage, les préparations ont été observées au microscope pour visualiser la fluorescence. Ceci a montré que le K20 chimérique produit conformément à l'Invention se fixe de manière spécifique sur les lymphocytes portant le CD29, tout comme le témoin positif K20 murin d'origine ; aucune fluorescence n'a été détectée en l'absence des anticorps K20.

2- Inhibition de la prolifération des lymphocytes CD4+ par K20 :

La prolifération est mesurée en comptant la quantité de thymidine ³H incorporée après 4 jours de culture suite aux traitements par les anticorps. On observe 50 à 70% d'inhibition de la prolifération quand les cellules ont été incubées avec l'anticorps K20 produit conformément à l'Invention.

L'anticorps K20 murin d'origine (témoin positif) inhibe également la prolifération des lymphocytes activés dans les mêmes proportions : 50 à 70%.
Exemple 7 - Comparaison de l'efficacité du promoteur Syn et du promoteur polyédrine :

Deux virus double-recombinants ont été construits selon le protocole décrit dans les exemples 1 à 4 ci-dessus :
- dans l'un d'entre eux (virus 1) la chaîne lourde est sous contrôle du promoteur P10, et la chaîne légère est sous contrôle du promoteur polyédrine ;
- dans l'autre, (virus 2) la chaîne lourde est sous contrôle du promoteur P10, et la chaîne légère est sous contrôle du promoteur Syn.

La quantité d'anticorps sécrétée par des cellules infectées par l'un ou l'autre de ces deux virus est déterminée comme décrit à l'exemple 5.

Les résultats sont illustrés par le Tableau I ci-dessous, qui indique la quantité d'anticorps sécrétés (en µg/ml) à différentes périodes après l'infection (p.i.) :

<table>
<thead>
<tr>
<th></th>
<th>12 h p.i.</th>
<th>24 h p.i.</th>
<th>48h p.i.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,31</td>
<td>0,96</td>
<td>8,9</td>
</tr>
<tr>
<td>2</td>
<td>1,24</td>
<td>2,72</td>
<td>9,9</td>
</tr>
</tbody>
</table>

Ces résultats montrent que la sécrétion d'anticorps est plus précoce et plus importante lorsque le promoteur Syn est utilisé.
LISTE DE SEQUENCES

(1) INFORMATIONS GENERALES:

(i) DEPOSAINT:

(A) NOM: PROTEINE PERFORMANCE (SOCIETE ANONYME)
(B) RUE: ROUTE D'ALES
(C) VILLE: SAINT-CHRISTOL-LES-ALES
(E) PAYS: FRANCE
(F) CODE POSTAL: 30380

(A) NOM: CERUTTI MARTINE
(B) RUE: 2957, ROUTE DE MONTEZE
(C) VILLE: SAINT CHRISTOL-LES-ALES
(D) ETAT OU PROVINCE: FRANCE
(E) PAYS: FRANCE
(F) CODE POSTAL: 30380

(A) NOM: CHAABIHI HASSAN
(B) RUE: 30B, AVENUE JULES GUESDE
(C) VILLE: ALES
(D) ETAT OU PROVINCE: FRANCE
(E) PAYS: FRANCE
(F) CODE POSTAL: 30100

(A) NOM: DEVACHELLE GERARD
(B) RUE: 137, CHEMIN DE L'ESPERVETTE
(C) VILLE: SAINT-CHRISTOL-LES-ALES
(D) ETAT OU PROVINCE: FRANCE
(E) PAYS: FRANCE
(F) CODE POSTAL: 30380

(A) NOM: GAUTHIER LAURENT
(B) RUE: 186, GRANDE RUE
(C) VILLE: ALES
(D) ETAT OU PROVINCE: FRANCE
(E) PAYS: FRANCE
(F) CODE POSTAL: 30100

(A) NOM: KACZOREK MICHEL
(B) RUE: 81, BOULEVARD DE LA LERONDE
(C) VILLE: MONTFERRIER
(D) ETAT OU PROVINCE: FRANCE
(E) PAYS: FRANCE
(F) CODE POSTAL: 34980

(A) NOM: LERFAN MARIE-PAULE
(B) RUE: 4, RUE DU VALLON
(C) VILLE: CLAPIERS
(D) ETAT OU PROVINCE: FRANCE
(E) PAYS: FRANCE
(F) CODE POSTAL: 34830

(A) NOM: POUL MARIE-ALIX
(B) RUE: 10, RUE DE DOCTEUR ROUX
(C) VILLE: MONTPELLIER
(D) ETAT OU PROVINCE: FRANCE
(E) PAYS: FRANCE
(F) CODE POSTAL: 34000

(ii) TITRE DE L' INVENTION: BACULOVIRUS RECOMBINAINT ET SON UTILISATION POUR LA PRODUCTION D'ANTICORPS MONOCLONAUX

(iii) NOMBRE DE SEQUENCES: 19

(iv) FORME DECHIFFRABLE PAR ORDINATEUR:
 (A) TYPE DE SUPPORT: Floppy disk
 (B) ORDINATEUR: IBM PC compatible
 (C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
 (D) LOGICIEL: PatentIn Release #1.0, Version #1.30 (OEB)

(2) INFORMATIONS POUR LA SEQ ID NO: 1:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 76 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xiv) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

ATCAAATAAA TAAGTTTTTT AAGAATGCG TACGTTTTTT GTATTTATAT TAAAATCTTA

TACTGTTAAA AGATCG

76

(2) INFORMATIONS POUR LA SEQ ID NO: 2:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 80 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xiv) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

TAGTTTTTATTACAAAA TTICTTAAAGC ATGCAAAAA CATAAAAATATTGAGAT

ATGACATTATA CTAGCCTAG

80

(2) INFORMATIONS POUR LA SEQ ID NO: 3:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 57 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: double
 (D) CONFIGURATION: linéaire
(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:
ATGGGATGGA GCGCAGATC TCTCTTCTTG GTACCACAAG CTAAGGTTGT CCACTCC

(2) INFORMATIONS POUR LA SEQ ID NO: 4:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 17 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:
AGCTGTGAGAT GAAACGG

(2) INFORMATIONS POUR LA SEQ ID NO: 5:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 28 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:
GAAGATCTAA CACTCAGG AGTGAAG

(2) INFORMATIONS POUR LA SEQ ID NO: 6:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:
CCTGTCAGAT CATGAACAT TCTGAGGAG

(2) INFORMATIONS POUR LA SEQ ID NO: 7:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 21 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xii) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:

CCGCCCCTCCC TCGAGCTCA A

(2) INFORMATIONS POUR LA SEQ ID NO: 8:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 18 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xii) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

CASTCTGAGC TCAACKCAG

(2) INFORMATIONS POUR LA SEQ ID NO: 9:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 27 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xii) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:

TTGAAACGCC TCGAGGAGG GCGGAA

(2) INFORMATIONS POUR LA SEQ ID NO: 10:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 57 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: double
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:
ATGGCTGCC TGGTGGTGGT CTCCTGCTG GTGCCATTGC CGAGCTGGT CCACCTCC

(2) INFORMATIONS POUR LA SEQ ID NO: 11:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 24 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:
CAAGATACCA CCGTCAGGT CTCC

(2) INFORMATIONS POUR LA SEQ ID NO: 12:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 29 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:
GAAGATCTCA TTTACCCGA GACGCGGAS

(2) INFORMATIONS POUR LA SEQ ID NO: 13:

(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 28 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:
GAAGATCTCA TTTACCGGA TTTACAGA

(2) INFORMATIONS POUR LA SEQ ID NO: 14:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 31 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xii) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

GAAGATCTCA TTTACCGG TACGGTGT C

(2) INFORMATIONS POUR LA SEQ ID NO: 15:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 31 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xii) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:

GAAGATCTCA GIACGAGGT CCGTCACCT C

(2) INFORMATIONS POUR LA SEQ ID NO: 16:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 24 paires de bases
 (B) TYPE: nucléotide
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xii) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:

CGTTTGATC TOGACCTGG TCCC

(2) INFORMATIONS POUR LA SEQ ID NO: 17:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 24 paires de bases
 (B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:
GACATTGAGC TCAACCAGTC TCCA

(2) INFORMATIONS POUR LA SEQ ID NO: 18:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 29 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:
TGAGGAGACG TIGACCCCTG GACCTTGGC

(2) INFORMATIONS POUR LA SEQ ID NO: 19:
(i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 22 paires de bases
(B) TYPE: nucléotide
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 19:
AGGTSAAMCT GCAGAGCOW GG
REVENDICATIONS

1) Baculovirus recombinant, constituant un vecteur d'expression utilisable pour la production d'immunoglobulines dans une cellule d'insecte, et caractérisé en ce qu'il comprend :

- une cassette d'expression comprenant une séquence codant pour au moins une partie d'une chaîne H d'une immunoglobuline, laquelle séquence est placée sous contrôle transcriptionnel d'un premier promoteur de baculovirus,

- une cassette d'expression comprenant une séquence codant pour au moins une partie d'une chaîne L d'une immunoglobuline, laquelle séquence est placée sous contrôle transcriptionnel d'un second promoteur de baculovirus;

le premier et le second promoteur étant deux promoteurs différents, et étant situés dans deux locus différents.

2) Baculovirus recombinant selon la revendication 1, caractérisé en ce que l'un des promoteurs est situé à l'emplacement occupé chez le baculovirus sauvage, par le promoteur de la polyédrine et l'autre est situé à l'emplacement occupé chez le baculovirus sauvage, par le promoteur de la P10.

3) Baculovirus recombinant selon une quelconque des revendications 1 ou 2, caractérisé en ce que les deux promoteurs sont des promoteurs forts.

4) Baculovirus recombinant selon la revendication 3, caractérisé en ce que au moins l'un des promoteurs est choisi dans le groupe constitué par :

- le promoteur P10 ;
- le promoteur polyédrine ;
- un promoteur synthétique, dénommé promoteur Syn, et constitué par un fragment d'ADN double-brin dont
la séquence, représentée dans la liste de séquence en annexe sous les numéros SEQ ID NO:1 et SEQ ID NO: 2, est la suivante :

5) Baculovirus recombinant selon une quelconque des revendications 1 à 4, caractérisé en ce que chaque cassette d'expression comprend : (i) un promoteur fort de baculovirus, et sous contrôle dudit promoteur : (ii) une séquence codant pour un peptide-signal ; (iii) une séquence codant pour un domaine variable d'immunoglobuline ; (iv) une séquence codant pour un domaine constant d'une chaîne H ou L d'immunoglobuline.

6) Baculovirus recombinant selon la revendication 5, caractérisé en ce que la séquence codant pour un peptide-signal placée sous contrôle du premier promoteur, est différente de la séquence codant pour un peptide-signal placée sous contrôle du second promoteur.

7) Baculovirus recombinant selon une quelconque des revendications 5 ou 6, caractérisé en ce qu'au moins une des séquences codant pour un peptide-signal code pour un peptide qui possède une séquence His-Val-Ser immédiatement en amont du site de coupure utilisé par la signal-peptidase.

8) Baculovirus recombinant selon l'une quelconque des revendications 5 à 7, caractérisé en ce que la séquence codant pour le domaine constant d'immunoglobuline est une séquence d'origine humaine.

9) Cellule d'insecte, infectée par un baculovirus recombinant selon une quelconque des revendications 1 à 8.

10) Procédé de préparation d'une immunoglobuline, caractérisé en ce que l'on met en culture des cellules d'insecte, selon la revendication 9.
et en ce que l'on extrait ladite immunoglobuline à partir du milieu de culture.

11) Immunoglobuline, caractérisée en ce qu'elle est susceptible d'être obtenue par le procédé selon la revendication 10.

12) Procédé de préparation d'un baculovirus recombinant selon une quelconque des revendications 1 à 8, lequel procédé est caractérisé en ce que :
- l'on prépare un premier plasmide de transfert contenant comprenant une séquence codant pour au moins une partie de chaîne H d'immunoglobuline, sous contrôle transcriptionnel d'un premier promoteur fort d'un baculovirus ;
- l'on prépare un second plasmide de transfert comprenant la séquence codant pour au moins une partie de chaîne L d'immunoglobuline, sous contrôle transcriptionnel d'un second promoteur fort dudit baculovirus ;
le premier et le second promoteur étant deux promoteurs différents ;
- l'on procède à la recombinaison homologue de l'un et de l'autre desdits plasmides avec l'ADN d'un baculovirus ;
- après réplication de l'ADN viral dans les cellules transfectées, l'on procède à la sélection des baculovirus recombinants ayant intégré la séquence codant pour au moins une partie de chaîne H et la séquence codant pour au moins une partie de chaîne L d'immunoglobuline.

13) Procédé selon la revendication 12, caractérisé en ce que chaque plasmide de transfert utilisé porte un insert comprenant :
- une cassette d'expression telle que définie dans la revendication 5, et de part et d'autre de cette cassette, des séquences de baculovirus homologues de celles des régions flanquant la portion du génome viral
en remplacement de laquelle on souhaite insérer ladite cassette.

14) Procédé selon la revendication 13, caractérisé en ce que lesdites séquences de baculovirus sont homologues de celles des régions flanquant le gène de la p10, ou homologues de celles des régions flanquant le gène de la polyédrine.

15) Procédé selon la revendication 14, caractérisé en ce que l'ADN de baculovirus avec lequel est effectuée la recombinaison homologue des plasmides de transfert est constitué par l'ADN d'un baculovirus préalablement modifié par insertion de deux sites Bsu36I de part et d'autre de la séquence codant pour la protéine P10 (ces deux sites étant les seuls pour l'enzyme concernée dans le génome dudit baculovirus modifié), et digéré par l'enzyme Bsu36I.
FIGURE 2
FIGURE 3
FIGURE 4
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification Code</th>
<th>Classification Code</th>
<th>Classification Code</th>
<th>Classification Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>C12N15/86</td>
<td>C07K16/28</td>
<td>C12N7/01</td>
<td>C12N5/10</td>
</tr>
</tbody>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

<table>
<thead>
<tr>
<th>IPC</th>
<th>Classification Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC</td>
<td>C12N C07K</td>
</tr>
</tbody>
</table>

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REIS, U. ET AL. 'Antibody production in silkworm cells and silkworm larvae infected with a dual recombinant Bombyx mori nuclear polyhedrosis virus' cited in the application see the whole document ---</td>
<td></td>
</tr>
</tbody>
</table>
| | ZU PUTLIZ, J. ET AL. 'Antibody production in baculovirus infected insect cells' cited in the application see the whole document --- | -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier document but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other mean
 * "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

6 April 1995

Date of mailing of the international search report

02.05.1995

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel: (+31-70) 340-2040, Tx: 31 651 epi nl, Fax: (+31-70) 340-3016

Authorized officer

Chambonnet, F
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO, A, 92 05265 (THE TEXAS A & M UNIVERSITY SYSTEM) 2 April 1992 see the whole document</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>WO, A, 92 05264 (THE TEXAS A & M UNIVERSITY SYSTEM) 2 April 1992 see the whole document</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>WO, A, 93 09238 (THE UPJOHN COMPANY) 13 May 1993 see the whole document</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>WO, A, 90 14428 (UNIVERSITY OF GEORGIA RESEARCH FOUNDATION) 29 November 1990 see page 22, line 19 - line 30; claim 11; figure 4; example VI</td>
<td>1-15</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B- 650682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 8655091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2091887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 6502990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 8751691</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2091886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-D- 69101713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-T- 69101713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES-T- 2054508</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 6500920</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2120137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 6510910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A- 5820790</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 2033070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T- 4501065</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 5244805</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

| CIB 6 | C12N15/86 | C07K16/28 | C12N7/01 | C12N5/10 | C12N15/13 |

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

| CIB 6 | C12N | C07K |

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

C. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie *</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visitées</th>
</tr>
</thead>
</table>

X Voir la suite du cadre C pour la fin de la liste des documents

X Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

 - "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
 - "E" document antérieur, mais publié à la date de dépôt international ou après cette date
 - "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
 - "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
 - "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

 - "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
 - "X" document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré seul
 - "Y" document particulièrement pertinent, l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est assorti à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
 - "Z" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée: 6 Avril 1995

Date d'expédition du présent rapport de recherche internationale: 02.05.1995

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tél. (+31-70) 340-2040, Tlx. 31 651 epo nl,
Fax (+31-70) 340-3016

Fonctionnaire autorisé: Chambonnet, F.
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO, A, 93 09238 (THE UPJOHN COMPANY) 13 Mai 1993 voir le document en entier</td>
<td>1-15</td>
</tr>
<tr>
<td>A</td>
<td>WO, A, 90 14428 (UNIVERSITY OF GEORGIA RESEARCH FOUNDATION) 29 Novembre 1990 voir page 22, ligne 19 - ligne 30; revendication 11; figure 4; exemple VI</td>
<td>1-15</td>
</tr>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevets</td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-B-650682</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-8655091</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2091887</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-6502990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-8751691</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2091886</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-D-69101713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-T-69101713</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES-T-2054508</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-6500920</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2120137</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-6510910</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-5820790</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2033070</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-4501065</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A-5244805</td>
</tr>
</tbody>
</table>