0 01/65357 Al

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

7 September 2001 (07.09.2001) PCT WO 01/65357 Al
(51) International Patent Classification’: GOO6F 9/00 (74) Agents: PAYNTER, L., Scott et al.; Woodward, Emhardt,
Naughton, Moriarty & McNett, Suite 3700, Bank One Cen-
(21) International Application Number: PCT/US01/04734 E‘E’ST)OW“’ 111 Monument Circle, Indianapolis, IN 46204
(22) International Filing Date: 14 February 2001 (14.02.2001) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
(25) Filing Language: English DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
(26) Publication Language: English LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
(30) Priority Data: TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
09/516,084 1 March 2000 (01.03.2000) US . .
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(71) Applicant (for all designated States except US): INTER- patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
ACTIVE INTELLIGENCE,'INC. [US/US]; Suite 300, patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
8909 Purdue Road, Indianapolis, IN 46268 (US). IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, B, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
(72) Inventor; and
(75) Inventor/Applicant (for US only): FLORMAN, Bruce Published:

[US/US]; 214 Bays Drive, Noblesville, IN 46060 (US).

with international search report

[Continued on next page]

(54) Title: PROCESSING LOAD DISTRIBUTION TECHNIQUES FOR CALL CENTERS AND OTHER PROCESSING SYS-

TEMS
w 24b
NN 54 2 2 e
leWHCH 0053 f24u - COMPUTER /
MPUTER ~ 30c COMPUTER
sie~ | [| 270+ 3o VENORY e
SERVER AN stver | | CPU
e || 2AL00R] | (e REPORTER RepoRicR| | |MEMORY He_ 3p,
P
32a Lo 3§c
230 2% /20
NETWORK -
2
34 Bl
560
- e 54c
H 620 e 62 ‘/
" SELECTOR 59b
MEMORY SELECIORIGOU cuent " 60b SELECTOR MEMORY (281
/ CPU CLIENT sio] U WENORY f CLIENT CPY ALU{
2 COMPUTER COMPUTER 60c CONPUTER
T \24d ; 29 ; \
TELEPHONE |~ 586 Me _[iriepron] - 58b ™ TTecepone| pu
(57) Abstract: A system of network computers is disclosed having a number of servers (30a-30c) and a number of clients (60a-60c).
The clients are each provided with a server selector routine (62a-62c) and the servers are each provided with a server reporter routine
(32a-32c¢). The server selector routine of any of the clients is operable to obtain server processing load information from the server
reporter routine of any of the servers. The server selector routine is responsive to a client activation request for a software task

designated for server execution to select two or more servers to interrogate for server processing load information and designate one
of the servers to execute the software task based in the server processing load information obtained by this interrogation.

wO 01/65357 A1 D00 OO0 O A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

WO 01/65357 PCT/US01/04734

10

15

20

25

PROCESSING LOAD DISTRIBUTION TECHNIQUES
FOR CALL CENTERS AND OTHER PROCESSING SYSTEMS

BACKGROUND

The present invention relates to computerized processing, and more
particularly, but not exclusively, relates to distributing processing tasks among a
number of networked computers.

With the advent of computer networks, interest has grown in the efficient
distribution of processing tasks among the resources coupled to the network. The
ability to balance processing load among these resources has become one focus of
distributed processing efforts. This interest is especially acute in the area of
computer networks utilized to manage various communications, such as telephone
calls, voice mail, e-mail, telefaxes, electronic chats, and the like.

Many load balancing approaches introduce a centralized component
between resources requesting services and those resources capable of providing
such services. Unfortunately, central components can prove to be a processing
bottleneck, impeding the speed with which processes are distributed and executed.
Also, centralized components can adversely impact overall reliability of the
network system.

Furthermore, it is occasionally desired to apply processing load balancing
to legacy applications and components for which load balancing was not provided.
Unfortunately, the addition of current distributed processing and corresponding
load balancing mechanisms to legacy applications often requires undesirable
modifications. Thus, there is a demand for further contributions in this area of

technology.

WO 01/65357 PCT/US01/04734

10

2

SUMMARY

One form of the present invention is a unique processing load distribution
technique. Other forms include unique systems and methods to balance processing
load among a number of servers of a computer network.

A further form includes operating a computer system that has several
clients and servers, and generating an activation request with one of the clients for
a software task that has been designated for server execution. One or more of the
servers are interrogated by this client and the client is provided information
corresponding to processing load for each of the servers interrogated. One of the
servers is selected to execute the task as a function of this information.

Still further forms, objects, features, aspects, benefits, advantages, and
embodiments of the present invention shall become apparent from the detailed

description and drawings provided herewith.

WO 01/65357 PCT/US01/04734

3

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic view of a computer system according to one

embodiment of the present invention.
5 FIG. 2 illustrates a flow chart of a distribution procedure performed by the

system of FIG. 1. .

FIGs. 3A and 3B illustrate a flow chart for a client-side distribution/load
balancing routine executed as part of the server selection operation of FIG. 2.

FIG. 4 illustrates a flow chart of a server-side distribution/load balancing

10 routine executed as part of the selection operation of FIG. 2.
FIG. 5 illustrates a flow chart of a start-up and maintenance routine to

support the procedure of FIG. 2.

WO 01/65357 PCT/US01/04734

10

15

20

25

30

4

DETAILED DESCRIPTION OF SELECTED EMBODIMENTS

For the purpose of promoting an understanding of the principles of the
invention, reference will now be made to the embodiments illustrated in the
drawings and specific language will be used to describe the same. It will
nevertheless be understood that no limitation of the scope of the invention is
thereby intended. Any alterations and further modifications in the described
embodiments, and any further applications of the principles of the invention as
described herein are contemplated as would normally occur to one skilled in the art
to which the invention relates.

FIG. 1 schematically illustrates computer system 20 of one embodiment of
the present invention. System 20 includes computer network 22 coupling together
a number of computers 24a, 24b, 24c, 24d, 24e, 24f (collectively designated
computers 24) by corresponding network pathways 26a, 26b, 26c, 26d, 26e, 26f
(collectively designated pathways 26). Network 22 may be in the form of a Local
Area Network (LAN), Wide Area Network (WAN), or other network type as
would occur to those skilled in the art. Computers 24 may all be of the same type,
or a heterogeneous combination of different computing devices coupled to network
22.

Each of computers 24 is further designated as including a client or server.
For computers 24a, 24b, 24c; serveré 30a, 30b, 30c are respectively designated.
For computers 24d, 24e, 24f; clients 60a, 60b, 60c are respectively designated.
While computers 24 are each illustrated as being a server or cliént, it should be
understood that any of computers 24 may be arranged to include both a client and
server.

In the case of servers 30a, 30b, 30c (collectively designated servers 30),
each has a broker/reporter entity 32a, 32b, 32c¢ (collectively designated brokers
32), respectively. In the case of clients 60a, 60b, 60c (collectively designated
clients 60), each has a corresponding selector agent 62a, 62b, 62¢ (collectively
designated agents 62), respectively.

Each computer 24 includes a corresponding programmable processor or
Central Processing Unit (CPU) 27a, 27b, 27¢, 27d, 27¢, 27f (collectively

designated processors 27) and computer-readable memory 29a, 29b, 29¢, 29d, 29e,

WO 01/65357 PCT/US01/04734

10

15

20

25

30

5

29f (collectively designated memories 29), respectively. It should be understood
that each computer 24 may include more than one processor or CPU and more than
one type of memory, each of memories 29 being representative of one or more
types associated with the corresponding computer 24. Furthermore, it should be
understood that while six computers 24 are illustrated, more or fewer may be
utilized in alternative embodiments. |

Processors 27 may each be comprised of one or more components
configured as a single unit. Alternatively, when of a multi-component form,
processors 27 may each have one or more components located remotely relative to
the others. One or more components of each processor 27 may be of the electronic
variety defining digital circuitry, analog circuitry, or both. In one embodiment,
processors 27 each have a conventional microprocessor architecture provided in
the form of one or more integrated circuit chips. Each processor 27 may include
any oscillators, control clocks, interfaces, signal conditioners, filters, limiters,
converters, communication ports, and other types of operators as would occur to
those skilled in the art to implement the present invention.

Memories 29 may each include one or more types of solid-state electronic
memory, magnetic memory, or optical memory, just to name a few. By way of
nonlimiting example, each memory 29 may include solid-state electronic Random
Access Memory (RAM), Sequentially Accessible Memory (SAM) (such as the
First-In, First-Out (FIFO) variety or the Last-In First-Out (LIFO) variety),
Programmable Read Only Memory (PROM), Electrically Programmable Read
Only Memory (EPROM), or Electrically Erasable Programmable Read Only
Memory (EEPROM); an optical disc memory (such as a DVD or CD ROM); a
magnetically encoded hard disc, floppy disc, tape, or cartridge media; or a
combination of any of these memory types. Also, memory 29 may be volatile,
nonvolatile or a hybrid combination of volatile and nonvolatile varieties.

System 20 further illustrates Public Switched Telephone Network (PSTN)
52 coupled to computer-controlled telephone switch 54 of computer 24a by -
pathway 53. Switch 54 is also coupled to telephones 58a, 58b, 58c¢ (collectively
designated telephones 58) by pathways 56a, 56b, 56¢ (collectively designated

pathways 56), respectively. Telephones 58 may be in the form of a handset,

WO 01/65357 PCT/US01/04734

10

15

20

25

30

6

headset, or other arrangement as would occur to those skilled in the art.
Telephones 58a, 58b, 58c are each associated with one of computers 24d, 24e, 24f,
respectively, to provide stations 59a, 59b, 59¢ (collectively designated stations 59).
Switch 54 may be arranged in the form of a Private Branch Exchange (PBX),
predictive dialer, Automatic Call Distributor (ACD), a combination of these, or
another switching configuration as would occur to those skilled in the art.

In one embodiment, system 20 operates as a call center with computer 24a
being configured as a call center server host and computers 24d, 24e, 24f each
arranged as a call center client host. Accordingly, system 20 is designated as
including call center 21. For such an arrangement, additional telephones 58 may
be connected to switch 54 that each correspond to an additional client host to
provide more stations 59 (not shown). Typically call center applications of system
20 would include many more stations of this type, but only a few have been
illustrated in FIG. 1 to preserve clarity. Also, more than one computer 24 may be
configured as a call center server host.

Alternatively or additionally, system 20 may be arranged to provide for the
coordination, conversion, and distribution of a number of different forms of
communication, such as telephone calls, voice mail, faxes, e-mail, web chats, web
call backs, and the like. Furthermore, business/customer data associated with
various communications may be selectively accessed with system 20. This data
may be presented to an operator (call center agent) at each station 59 by way of a
station display monitor operably coupled to the corresponding computer 24. In
addition to a display monitor, each computer 24 of station 59 may be operably
coupled to one or more operator input devices such as a keyboard or mouse, just to
name a few.

It should be recognized that network 22 may include one or more elements
of PSTN 52. Indeed, in an alternative embodiment, network 22 and PSTN 52 are

provided as a common network. Still other alternative embodiments of the present

~ invention are not directed to telephone or communication operations.

Correspondingly, such alternatives need not include PSTN 52, switch 54, or

telephones 58.

WO 01/65357 PCT/US01/04734

10

15

20

25

30

7

System 20 is arranged to distribute software tasks from clients 60 among
servers 30 via network 22. Such tasks include, but are not limited to instances of
an object class, dedicated code segments, device interface operations, or any other
forms of software algorithms, routines, or modules as would occur to those skilled
in the art. Processing load balancing is performed through communications
between agents 62 and brokers 32. Generally, when one of clients 60 has a task
that can be distributed among servers 30, its corresponding agent 62 communicates
over network 22 with the brokers 32 to select a particular server 30 to perform the
task. During this communication, agent 62 for the requesting client 60 interrogates
each broker 32 to receive a bid corresponding to its server’s ability to promptly
perform the task to be distributed. The interrogating agent 62 accumulates the bids
from the interrogated brokers 32 and compares the bids to select a server 30.
Connection/distribution information is provided by the broker 32 of the selected
server 30 to establish remote performance of the task.

Referring additionally to FIG. 2, one embodiment for implementation with.
system 20 is illustrated in flow chart form as software task distribution procedure
70. As shown, procedure 70 illustrates management of only one software task
requested by one of clients 60 for clarity; however, it should be understood that
procedure 70 may be executed multiple times by one or more of clients 60.
Procedure 70 begins with an activation request for a software task by one of clients
60 in stage 72. Procedure 70 then proceeds to conditional 74 to determine whether
the activation request is for a software task of the type to be distributed to one of
servers 30. If the software task is not to be distributed (corresponding to a negative
outcome of the test of conditional 74), then procedure 70 continues with stage 76
to execute the task locally or with a designated remote server. Procedure 70 halts
after execution of stage 76. If the test of conditional 74 is positive, then
distribution branch 80 of procedure 70 is engaged, as indicated by the downwardly
pointing arrow in FIG. 2. Branch 80 begins with stage 82. In stage 82, the
activation request is directed to the agent 62 corresponding to the requesting client
60.

In one nonlimiting example, conditional 74 is not implemented as a

dedicated software or hardware test, but rather is executed for a given task based

WO 01/65357 PCT/US01/04734

10

15

20

25

30

8

on the nature of a corresponding entry in a system registry. For this example, the
registry entry for a task that is to be distributed references an intermediate agent,
such as agent 62, which performs distribution and/or load balancing as more fully
described hereinafter. In contrast, tasks of a conventional type may be registered
in the usual manner, without an intervening agent.

In a further nonlimiting example, another more specific implementation of
stages 72, 76, 82 and conditional 74 of procedure 70 is described with respect to an
arrangement in which computers 24 each include the MICROSOFT WINDOWS
NT 4.0 operating system to perform client and server operations. This
arrangement is particularly suited for operation of a call center with system 20 as
previously described. The Distributed Component Object Model (DCOM) feature
of the NT 4.0 operating system provides a mechanism to distribute class object
activation requests from one of clients 60 to one of servers 30. Common functions
used for distributed reqﬁests are the functions CoCreatelnstance and
CoCreatelnstanceEx which are wrappers for calling the CoGetClassObject and
IClassFactory::CreateInstance functions. The CoGetClassObject function serves
as a starting point for activation of a software task, which for this embodiment may
be in the form of an instance of a desired class object. The CoGetClassObject
function takes a set of class context flags (CLSCTX) and server information
structure (COSERVERINFO) as parameters. Unfortunately, the NT 4.0 operating
system does not include a mechanism to regulate processing load between multiple
servers. As a result, these functions are typically set up to operate according to a
default behavior without load balancing among available servers.

Generally, when the DCOM mechanism on the client side (hereinafter
designated a DCOM client) wishes to initiate an instance of an object, it first
checks an internal table to see if there is a running instance of the class object
already available and returns a pointer to (a proxy for) that class object if one is
found. If there is not a running instance of the class object, the DCOM client looks
in the NT 4.0 operating system registry to determine how to locate or start an
appropriate server. If the class is under the registry index or “key” InprocServer 32
of NT 4.0, the Dynamic Link Library (DLL) named by this key’s value is loaded
with the LoadLibrary function, the address of the _DIlGetClassObject entry point

WO 01/65357 PCT/US01/04734

10

15

20

25

30

9

is queried with the GetProcAddress function , and that entry point is invoked to get
the necessary pointer. In contrast, if the class is registered with the LocalServer32
key, the executable program (EXE) named by that key’s value is started with the
CreateProcess function, and the DCOM mechanism waits up to 30 seconds for the
new process to register its class objects. Once the requested class object is
registered, the DCOM mechanism returns the pointer to that object. Additional
registry settings can be used to cause the server to be activated on a different host,
in which case the DCOM client contacts the DCOM mechanism operating on the
remote host which takes over the responsibility of finding or starting an
appropriate DCOM server.

It has been found that this existing DCOM mechanism may be utilized to
provide for load balancing of existing applications and components running under
the NT 4.0 operating system. For this procedure, when a client activation request
for an object instance corresponding to stage 72 of procedure 70 occurs, a DLL is
inserted under the InprocServer32 key for a corresponding DCOM class to be
distributed across multiple servers 30. For this embodiment, the inserted DLL
intercepts and re-directs activation requests from any client 60 making a
CoGetClassObject call that includes CLSCTX_INPROC_SERVER. Moreover, for
a DLL that can run in a surrogate process under the NT 4.0 operating system, it can
also be arranged to intercept and re-direct activation requests from any client
specifying an object to be executed by an out-of-process server.

Accordingly, for this embodiment, the client activation request stage 72 and
conditional 74 test may be accomplished through this interception and re-direction
procedure using the DCOM tools of the NT 4.0 operating system. Further, the
inserted DLL may be used to direct the activation request to the agent 62 of the
requesting client 60 as illustrated in stage 82; where agent 62 may be in the form of
an NT compatible software object class. Naturally, in another embodiment of the
present invention in which computers 24 do not include the NT 4.0 operating
system, stages 72, 76, 86 and/or conditional 74 are implemented differently.
Indeed, in other embodiments, different techniques may additionally or
alternatively be utilized to implement stage 72, conditional 74, stage 76, and/or

stage 82, regardless of the type of operating system or systems used.

WO 01/65357 PCT/US01/04734

10

15

20

25

30

10

Once stage 82 is performed, stage 84 is encountered to designate one of
servers 30 to perform the task. This designation takes place by performing a server
selection operation with the agent 62 for the requesting client 60 and brokers 32.
FIGs. 3A and 3B illustrate a client-side distribution/load balancing routine 160
executed by the agent 62 as part of this operation. Routine 160 starts with stage
162. In stage 162, the agent 62 for the requesting client 60 excludes any of servers
30 that are known to lack the particular software task desired to be distributed.
This capability and other data about servers 30 is maintained by each agent 62 and
1s updated at various stages as further described hereinafter. Typically, each agent
62 maintains server information in memory 29 of the computer 24 on which is
resides.

Conditional 164 is next encountered which tests whether the number of
servers known to have the capability to perform the task exceed a maximum limit
designated by “LIMIT”. If this limit is exceeded, then stage 166 is encountered to
perform a reduction of the number of server candidates. This reduction is
performed by accessing established server data maintained by the agent 62 of the
requesting client 60. This data includes estimated bids expected from the various
servers 30 that were not excluded as lacking the capability to perform the requested
task in stage 162. In stage 166, the estimates of the eligible servers 30 are
compared and sorted to identify a subset of servers 30 having the lowest estimated
bids and a total membership of LIMIT. This subset is provided as the candidate
servers in subsequent stages of routine 160. The bid estimates are determined as a
function of bid information from prior executions of routine 160, timing, and other
factors as explained in more detail in connection with stages 194 and 196 of
routine 160 (see FIG. 3B).

The test of conditional 164 and reduction of stage 166 is directed to
maintaining the number of servers 30 involved in routine 160 below a manageable
level. Typically, the maximum number of candidate servers 30, corresponding to
the value of LIMIT, is selected so that the burden presented to system 20 by these
servers does not overtake efficiency gains realized by performing task distribution.
The value selected for LIMIT may be based on one or more factors, including but

not limited to: the total number of servers, any network performance differences

WO 01/65357 PCT/US01/04734

10

15

20

25

30

11

of the servers, the type and complexity of the tasks to be distributed, and the degree
of loading of the servers 30 and network 22. The value of LIMIT may be static or
dynamically adjusted in accordance with one or more parameters, may be
uniformly or individually assigned with respect to each client 60 and/or task, or
otherwise assigned as would occur to those skilled in the art. It should be
appreciated that for a first time distribution of a given softvare task or a first time
activation of a given agent 62, stages 162 and 166 may not result in any exclusion
or reduction, respectively, of candidate servers. Alternatively, a randomized
reduction may be performed in stage 166 when anticipated or estimated bids have
not yet been determined. After performing stage 166, routine 160 proceeds to
stage 168. Likewise, if the test of conditional 164 is negative, routine 160
bypasses stage 166 to proceed directly to stage 168. Stage 168 sets index counter
Nto 1 (N=1).

Next, server interrogation loop 170 is entered starting with stage 172. In
stage 172, the server 30 corresponding to index N (alternatively designated “server
N”) is interrogated by the agent 62 of the requesting client 60 to solicit a bid
corresponding to server N’s ability and/or availability to perform the task. The
response from server N is communicated by its corresponding broker 32 to the
interrogating agent 62 via network 22. For the NT 4.0 operating system
embodiment previously described, broker 36 may be an instance of an object class
established through the DCOM protocol for distributing tasks to remote server
hosts. As reflected in conditional 174, if the response of the broker 32 indicated
that the task is not available for the particular server N, then the data maintained by
the interrogating agent 62 is updated in stage 175 to indicate server N lacks the
requisite task capability, and routine 160 proceeds to stage 178 to exclude server N
as a candidate. Accordingly, future interrogations by the agent 62 of the requesting
client 60 to distribute the pending type of task will exclude the current server N
during performance of stage 162.

If the test of conditional 174 is affirmative, routine 160 continues with
conditional 176. Conditional 176 times how long it takes the interrogated broker
36 to respond. If a response is not received within a predefined time interval, then

server N is excluded as a candidate in stage 178. This exclusion corresponds to a

WO 01/65357 PCT/US01/04734

10

15

20

25

30

12

server and/or broker 32 that is too busy to respond to an interrogating agent 62
within a reasonable amount of time. This time limit may be selected based on one
or more of the factors described in connection with the selection of LIMIT.
Likewise, the time limit may be statically or dynamically assigned; may be specific
to the client, server, or task type; or may be the same for all clients 60, servers 30,
and/or task types. Typically, the failure of a given broker 32 to respond within the
time limit does not exclude that server from future agent interrogations unlike the
case when it is determined a task is unavailable via conditional 174.

After performance of stage 178, loop 170 continues with stage 180
illustrated in FIG. 3B. Likewise, stage 180 is reached if the test of conditional 176
is negative. In stage 180, data maintained by the interrogating agent 62 is updated
for the particular server N undergoing interrogation in loop 170. Next, conditional
182 is encountered to determine if the index counter N equals the value previously
described in connection with conditional 164. If N does not equal LIMIT
(N#£LIMIT), routine 160 continues at stage 184 to increment index counter N
(N=N+1). From stage 184 routine 160 returns to stage 172 of loop 170 as
illustrated in FIG. 3A. Correspondingly, loop 170 is again performed with a
different one of the candidate servers 30 designated as server N. In this manner,
loop 172 is repeated, interrogating a different broker 32 with each repetition, until
a total number of servers 30 interrogated equals LIMIT.

Once N reaches LIMIT (N=LIMIT), conditional 182 is satisfied and loop
170 1s exited, as shown in FIG. 3B. Routine 160 then proceeds to termination
branch 190. In stage 192 of branch 190, agent 62 of the requesting client 60
selects the candidate server 30 with the lowest bid, as provided by that server’s
broker 32 in stage 172. The broker 32 of the selected server 30 sends
distribution/connection information to the requesting client 60 to facilitate
distributed execution of the subject task. In the case of the previously described
NT 4.0 embodiment, distribution may be established by returning an interface
(proxy) pointer back to the interrogating agent 62 of the requesting client 60.
Branch 190 proceeds from stage 192 to stage 194 to adjust the bid estimate for the
selected server 30 upward in correspondence with its increased processing load as

a result of being designated for task execution. In stage 196, estimates for other

WO 01/65357 PCT/US01/04734

10

15

20

25

30

13

servers 30 may be adjusted downward if a predefined time interval has passed
since the last interrogation for bids from such servers 30. Other factors may
alternatively or additionally be utilized to adjust bid estimates as would occur to
those skilled in the art. Also, it should be appreciated that adjustments of bid
estimates can be performed more than once during routine 160 or in a different
sequence as would occur to those skilled in the art. In one alternative embodiment,
bid estimate adjustments of one or more servers 30 are made as part of stage 166 in
addition or as an alternative to stage 196. After stage 196, routine 160 halts.

Referring additionally to FIG. 4, server-side distribution/load balancing
routine 230 is illustrated. Routine 230 is performed as part of the server selection
operation of stage 84 shown in FIG. 2. It should be appreciated that routine 230
operates as part of each broker 32 and selectively communicates with interrogating
agents 62 executing routine 160. Routine 230 begins with conditional 232.
Conditional 232 tests whether the desired task is available in response to an
interrogation by an agent 62 in stage 172 of routine 160. If the task is not
available, the broker 32 reports to the interrogating agent 62 in stage 234 of routine
230. In response, conditional 174 of routine 160 is negative, leading to stage 175.
If the task is available as tested by conditional 232, routine 230 proceeds to stage
236 to calculate processing load for the corresponding server 30. The processing
load calculation may include a number of factors such as the available percentage
of idle time for the corresponding processor 29, an average load level indication
for the processor 29, and/or a relative processing index or capability of the given
computer 24. Also, specifics relative to the performance of the desired task may
be utilized in this determination. For example, some tasks may require the use of
certain unique hardware resources that will result in a disproportionate degree of
loading compared to other computers and/or server arrangements. Indeed, there
are numerous factors that may be considered in calculating processing load.

Once processing load is determined in stage 236, control flows to
conditional 238 to compare the processing load information to a threshold value
illustrated as variable “THRESHOLD”. The value of THRESHOLD corresponds
to a lightly loaded or minimally loaded processor 29 for which there is a high

probability that the bid of the responding broker 32 will be the lowest.

WO 01/65357 PCT/US01/04734

10

15

20

25

30

14

Accordingly, when conditional 238 is satisfied, routine 230 proceeds to stage 240
to initiate the task and report corresponding distribution/connection information
necessary to utilize the task at the same time that the bid corresponding to
processing load information is provided in subsequent stage 242. For the NT 4.0
operating system embodiment, the distribution connection information may be an
interface pointer (proxy) for an instance of the requested class object running on
the responding server 30. As a result, if the given server is selected, then fewer
communication exchanges will be necessary between the interrogating agent 62
and broker 32 to establish task distribution; thereby reducing the overhead imposed
by the distribution procedure 70. If the server 30 for the broker 32 responding
according to stage 240 of routine 230 is not selected in stage 192 of routine 160,
the distribution/connection information is disregarded or ignored by the
interrogating agent 62.

If conditional 238 is not satisfied, then routine 230 proceeds directly to
stage 242 to report processing load information in the form of a bid by the
interrogated broker 32. It should be appreciated that when a task in unavailable it
may be reported in the form of an infinite or excessively high bid recognized by
the interrogating agent 62 as being an unavailable task. Once stage 242 is
performed, process 230 halts.

While procedure 70 and routines 160, 230 utilize a “lowest bid” protocol to
select a server 30 to perform a given task, in other embodiments other protocols
may alternatively or additionally be utilized. For example, the processing load
information may be directly reported by brokers 32 and/or one or more parameters
corresponding to processing load may be reported to interrogating agents 62 by
brokers 32. In one alternative, agents 62 include the capability to vary the type of
processing load information and/or processing load parameters requested. In
another embodiment, the type of processing load information reported may be
server, client, and/or task type specific. In still other embodiments, the
interrogating agent 62 collects raw data about the performance of each interrogated
server 30 through a corresponding broker 32 and partially or completely calculates

processing load. Indeed, many techniques to exchange and determine server

WO 01/65357 PCT/US01/04734

10

15

20

25

30

15

processing load information as would occur to those skilled in the art are
contemplated.

Returning to FIG. 2, once the server selection operation of stage 84 has
been performed by executing routine 160 with the agent 62 of the requesting client
60, and routine 230 with each broker 32 for the candidate servers 30; procedure 70
continues with stage 86. In stage 86, execution of the distributed task with the
designated server 30 begins. Stage 86 may include establishing and exchanging
task connection information between the requesting client 60 and selected server
30 via network 22. Alternatively, it should be appreciated that some or all of this
information may have already been provided to the requesting client 60. Once
execution is started, procedure 70 then halts.

Referring next to FIG. 5, start-up and maintenance routine 320 for system
20 is illustrated. Routine 320 is directed to the establishment and maintenance of
information necessary for brokers 32 to communicate with each other and for
active agents 62 to identify active brokers 32. Stage 322 cdrresponds to an initial
start-up or activation of one of brokers 32, one of agents 62, or both. Each broker
32 and agent 62 maintains a prioritized broker list in the memory 29 of one of
computers 24 corresponding to the broker 32 or agent 62 being activated. In stage
322, the starting broker 32 or agent 62 interrogates the first entry on the list across
network 22. If contact cannot be established with the first entry, subsequent
entries are contacted until one is found. Once communication with a listed entry is
established, the broker list is updated with list entries of the contacted broker 32
that are indicated to be active. This active broker list is then saved by the
contacting broker 32 or agent 62. Routine 320 then proceeds to conditional 324.

In conditional 324, if the contacting entity is an agent 62, routine 320
proceeds to branch 360. On the other hand, if the contacting entity is not an agent
62, it defaults to a broker 32 designation according to conditional 324 and routine
320 proceeds to branch 330. Branch 330 starts with stage 332. In stage 332,
starting broker 32 continues to contact each new active broker 32 entered in its
updated list, and the active entries of each contacted broker 32 are added to the
active broker list of the contacting broker 32, until all its entries have been

contacted. If an entry fails to respond within a specified time-out period during

WO 01/65357 PCT/US01/04734

10

15

20

25

30

16

stage 332, such nonresponding brokers 32 are regarded as inactive. With the
conclusion of stage 332, all active brokers 32 are listed with the starting broker 32,
and the start-up phase is complete. After the start-up phase, each broker 32 enters
a maintenance loop starting with stage 334. In stage 334, the active broker 32 re-
establishes contact with each member of its active broker list from time to time,
and modifies the list as needed. After stage 334, conditional 338 is encountered to
determine whether the active broker 32 is to be terminated. If not, control returns
to stage 334, closing the maintenance loop to once again establish contact with
each member of the active broker list. The time interval between contacts is
selected such that its impact is negligible on the performance of system 20, and
may be uniform or variable. If the subject broker 32 has been terminated as tested
in conditional 336, then routine 320 halts.

Returning to branch 360, in the case of an active agent 62, its broker list is
periodically updated as it executes routine 160 in stage 362. This update may not
occur with every execution, but may be timed in a manner to provide negligible
impact to overall performance of system 20. In stage 364 of segment 360, there is
an interrogation from time to time of servers 30 that were previously indicated to
lack a given task. This interrogation is performed to determine if that task has
since been loaded on the given server. The time interval between actions in stages
362 and 364 should be relatively infrequent to provide negligible impact on the
performance of system 20, and may be uniform or variable. After stage 364,
conditional 366 tests whether the active agent 62 is to terminate. If not, routine
320 loops back to stage 362 and subsequently stage 364 until the given agent 62 is
terminated. The return loops provided from conditionals 336, 366 each function as
background routines for active brokers 32 and agents 62, respectively. Although
only described in terms of a particular broker 32 and agent 62, it should be
understood that routine 320 is performed for each active broker 32 and agent 62.
Routine 320 is invoked upon start-up or activation of a corresponding broker 32 or
agent 62 and continues to maintain the broker list of each entity as well as other
data in the case of agents 62.

For the NT 4.0 operating system embodiments earlier described, the agents

62 and brokers 32 can be provided on each participating computer 24 in the form

WO 01/65357 PCT/US01/04734

10

15

20

25

30

17

of a distributor module with two logical classes, a first class corresponding to
agents 62 and a second class corresponding to brokers 32. Indeed, either of these
classes may involve one or more different objects. Furthermore, the distributor
module may be provided as an NT service to facilitate the start-up aspects of
routine 320. Naturally, in other embodiments, a different implementation may be
utilized regardless of operating system type. Indeed, in one alternative
embodiment, at least a portion of the agent 62 and/or the broker 32 is provided in
the form of hardware.

It should be recognized that the allocation of the process distribution/load
balancing function among all servers 30 and clients 60, provides a robust
mechanism to continue distribution, even if several servers 30 and corresponding
brokers 32 unexpectedly go off-line. Such off-line brokers 32 can be detected by
agents 62 or other entities based on the failure of the oft-line broker 32 to send a
response when expected. Off-line brokers 32 may be reported to other agents 62
and brokers 32 once detected, or each agent 62 may be left to make the
determination independently. When one or more brokers 32 go off-line, the
remaining brokers 32 can continue to participate in routines 160, 230 even if they
are left as two or more disjoint groups by the disorderly loss of the off-line brokers
32. Indeed, the re-establishment of contact with other brokers in stage 334 of
routine 320 from time to time eventually rejoins active broker groups that have
become separated. As a result, recovery from a catastrophic loss of several brokers
32 all at once is possible.

Many alternative embodiments are envisioned for the present invention. In
one example, a technique to migrate remote server execution of a distributed task
is included. In other alternatives, the general availability of all tasks with all
servers excludes the need to test whether a given task is available and routines 160,
230, and 320 may be modified accordingly. In still other alternatives, the
particular sequence and timing of various background loops and checks may be
adjusted depending on processing load or through other dynamic means as would
occur to those skilled in the art. Indeed, the various operations, stages,

conditionals, procedures, and routines of the present invention may be rearranged,

WO 01/65357 PCT/US01/04734

10

15

20

25

30

18

substituted, combined, deleted, reordered, or otherwise modified as would occur to
those skilled in the art.

In one embodiment, a method according to the present invention includes
operating a computer system including several clients and several servers;
generating an activation request with one of the clients for a software task that is
being designated for distributed server execution; selecting two or more servers in
response to the request based on data maintained about the servers by the one of
the clients; interrogating the two or more servers with the one of the clients;
providing the one of the clients server information corresponding to processing
load for each of the two or more servers in response to this interrogation; and
selecting one of the servers to execute the task as a function of the server
information.

In another embodiment, a system of network computers includes a number
of servers and a number of clients. The clients are each provided with a server
selector and the servers are each provided with a server reporter. The server
selector of any of the clients is operable to obtain server processing information
from the server reporter of any of the servers. The server selector is responsive to.
an activation request for a software object designated for server execution by a
corresponding one of the clients to select two or more servers to interrogate for the
server processing load information based on data maintained by the server selector
about the servers and designate one of the servers to execute the software object.

In a further embodiment, a computer system is operated including a
number of clients and a number of servers. An activation request is generated with
one of the clients for a software object to be executed by one of the servers and the
servers are interrogated with the one of the clients in response to the request. An
object pointer and server processing load information is provided to the one of the
clients from one of the servers in response to this interrogation.

In yet a further embodiment, a computer system including a number of
clients and a number of servers is operated and an activation request is generated
by one of the clients for a routine to be executed by one of the servers. The servers
are interrogated by this client in response to the request, and provided information

from each of the servers in responsé¢. This information corresponds to availability

WO 01/65357 PCT/US01/04734

10

19

of the routine. One of the servers is selected to execute the routine in accordance
with the information.

All publications, patents, and patent applications cited in this specification
are herein incorporated by reference as if each individual publication, patent, or
patent application were specifically and individually indicated to be incorporated
by reference and set forth in its entirety herein. While the invention has been
illustrated and described in detail in the drawings and foregoing description, the
same is to be considered as illustrative and not restrictive in character, it being
understood that only the preferred embodiment has been shown and described and
that all changes, equivalents, and modifications that come within the spirit of the

inventions defined by following claims are desired to be protected.

WO 01/65357 PCT/US01/04734

10

15

20

25

30

20

What is claimed is:

1. A method, comprising:
operating a computer system including several clients and several servers;
generating an activation request with a first one of the clients for a software
task, the software task being designated for distributed server execution;
selecting two or more servers in response to the request based on data
maintained about the servers by the first one of the clients;
interrogating the two or more servers with the first one of the clients;
providing the first one of the clients information corresponding to
processing load for each of the two or more servers in response to said
interrogating; and
selecting one of the servers to execute the task as a function of the

information.

2. The method of claim 1, wherein the data corresponds to one or more prior

server interrogations.

3. The method of claim 1, further comprising:

requesting server execution of a software object with a second one of the
clients;

selecting a subset of the servers with the second one of the clients based on
server data maintained by the second one of the clients, the server data being
determined from one or more prior server interrogation responses;

providing the second one of the clients a number of server characteristics
each corresponding to server processing load for a different member of the subset
in response to said requesting; and

designating one member of the subset to execute the software object in

accordance with the server characteristics.

WO 01/65357

10

15

20

25

30

21

4., The method of claim 1, wherein the computer system includes a host
computer with a telephone switch coupled to a telephone network, and further
comprising:

controlling the telephone switch with the host computer; and

directing a telephone call to a telephone associated with one of the clients

during said controlling.

5. The method of claim 1, further comprising measuring response time of
each of the number of servers to said interrogating to at least partially determine

processing load.

6. The method of claim 1, wherein the data maintained by the first one of the
clients includes a plurality of estimates each corresponding to processing load for a

different server.

7. The method of claim 6, further comprising adjusting one of the estimates
corresponding to the one of the servers selected to execute the task to reflect a

processing load increase.

8. The method of claim 6, further comprising adjusting one of the estimates to
reflect a decrease in processing load in response to passage of a selected time
interval determined relative to a most recent interrogation of a corresponding one

of the servers.

9. The method of claim 1, further comprising:

-executing an application program with the first one of the clients, the
software task being an object belonging to an object class selected for distributed
processing among the servers;

intercepting the activation request from a nominal processing flow;
directing the activation request to a distribution routine of the first one of

the clients; and

PCT/US01/04734

WO 01/65357 PCT/US01/04734

10

15

20

25

30

22

wherein the information corresponds to a number of current bids to execute
the object, the current bids each being from a different one of the two or more
servers, the data corresponds to bid estimates for the servers, and the two or more

servers selected for said interrogating correspond to the lowest bid estimates.

10. A system of networked computers, comprising:

a number of servers; and

a number of clients, the clients each being provided with a server selector
and the servers each being provided with a server reporter, the server selector of
any of the clients being operable to obtain server processing load information from
the server reporter of any of the servers; and

wherein the server selector is responsive to a client activation request for a
software object designated for server execution by a corresponding one of the
clients to select two or more servers to interrogate for the server processing load
information based on data maintained by the server selector about the servers and

designate one of the servers to execute the software object.

11. The system of claim 10, wherein the server reporter of each of the servers

includes means for bidding on the execution of the software object.

12. The system of claim 10, wherein the server selector of each of the clients
includes means for generating a number of estimates each representative of server

processing load and each corresponding to a different one of the servers.

13. The system of claim 10, wherein the server selector of each of the clients is
operable to maintain the data to indicate which of the servers has the capability to

execute the software object.

14. The system of claim 10, wherein the server selector of each of the clients is
operable to base the data on one or more prior interrogations of one or more of the

SErvers.

WO 01/65357 PCT/US01/04734

10

15

20

25

30

23

15. The system of claim 10, wherein the clients and the servers each reside on a
different one of the networked computers, and at least one of the networked
computers includes a telephone switch coupled to a telephone network and a

telephone associated with one of the clients.

16. The system of claim 10, wherein the server reporter is operable to return a
pointer to an instance of the software object if a corresponding one of the servers

has a processing load below a predefined threshold.

17. A method, comprising:

operating a computer system including a number of clients and a number of
Sservers;

generating an activation request with a first one of the clients for a software
object to be executed by one of the servers;

interrogating the servers with the first one of the clients in response to the
request;

providing an object pointer and server processing load information to the
first one of the clients from a first one of the servers in response to said

interrogating.

18. The method of claim 17, further comprising:

providing another object pointer and further server processing load
information to the first one of the clients from a second one of the servers in
response to said interrogating; and

selecting one of the first and second one of the servers to execute an
instance of said software object based on the server processing load information
from the first one of the servers and the further server processing load information

from the second one of the servers.

19. The method of claim 17, further'comprising maintaining data at the first

one of the clients corresponding to one or more prior interrogations of the servers.

WO 01/65357 PCT/US01/04734

10

15

20

25

30

24

20. The method of claim 17, wherein the object pointer is provided to the first
one of the clients by the first one of the servers only if the server processing load
information indicates a processing load level for the first one of the servers that is

below a predefined threshold.

21. The method of claim 17, further comprising:

generating a number of estimates each relating to a processing load of a
different one of the servers;

upwardly adjusting one of the estimates in response to selection of a
corresponding one of the servers to execute an instance of the software object; and

downwardly adjusting another of the estimates after a predetermined time

interval passes without interrogating another of the servers.

22. The method of claim 17, further comprising maintaining data at the first
one of the clients relating to capability of the servers to generate an instance of the

software object.

23. The method of claim 17, further comprising:

executing an application program with a second one of the clients, said
executing including generating a different activation request for a different
software object for server execution;

intercepting the different activation request from a nominal processing
flow;

directing the different activation request to a distribution routine of the
second one of the clients;

selecting a subset of the servers with the second one of the clients based on
server data maintained by the second one of the clients, the server data being
determined from one or more prior server interrogation responses;

providing the second one of the clients a number of server characteristics
each corresponding to server processing load for a different member of the subset;

and

WO 01/65357 PCT/US01/04734

10

15

20

25

30

25

designating one member of the subset to execute the different software

object in accordance with the server characteristics.

24. The method of claim 17, further comprising:

determining the server processing load information corresponds to a
processing load level below a predefined threshold with the first one of the servers;
and

returning the object pointer in response to said determining.

25. The method of claim 17, further comprising operating a call center with the

computer system.

26. A method, comprising:

operating a computer system including a number of clients and a number of
SEervers;

generating an activation request with a first one of the clients for a routine
to be executed by one of the servers;

interrogating each of the servers with the first one of the clients in response
to the request;

providing the first one of the clients information from each of the servers in
response to said interrogating, the information corresponding to availability of the
routine; and

selecting a first one of the servers to execute the routine with the first one

of the clients in accordance with the information from each of the servers.

27. The method of claim 26, wherein the information further corresponds to

server processing load for each of the servers.

28. The method of claim 26, wherein the information corresponds to a bid by
each of the servers to execute the routine, the bid being proportional to processing

load for each of the servers.

WO 01/65357 PCT/US01/04734

10

15

20

25

26

29. The method of claim 26, further comprising maintaining data at the first

one of the clients corresponding to one or more prior interrogations of the servers.

30. The method of claim 26, further comprising generating a number of

estimates each relating to a processing load of a different one of the servers.

31. The method of claim 26, wherein the computer system includes a telephone
switch coupled to a telephone network and further comprising operating a call

center with the computer system.

32. The method of claim 31, further comprising:

executing an application program with a second one of the clients, said
executing including generating a different request for a different routine for server
execution;

intercepting the different request from a nominal processing flow;

directing the different request to a distribution routine of the second one of
the clients;

selecting a subset of the servers with the second one of the clients based on
server data maintained by the second one of the clients, the server data being
determined from one or more prior server interrogation responses;

providing the second one of the clients a number of server characteristics
each corresponding to server processing load for a different member of the subset;
and

designating one member of the subset to execute the different routine in

accordance with the server characteristics.

PCT/US01/04734

WO 01/65357

1/6

44

I
Moy INOHAITAL [~ 485 uzoznmétﬂn_ pgg -~ | INOHdI13L
. _ o 400 il "
¥31NdN0I 209 N ¥31NdH0)
AN e - a7 Tak
09—
J6r T ORI | | |yorggms] 9087 D 40103135 | | | AONIN N pez
> n%/\ 4010313 <
279) ~ 079
%e 7 479 08¢
95|
157 — Psz
7
Ve YSOMLIN
07 26T D§7
AY qz¢ 27AY
457
N ~ /
208~ aoman] | [¥3080d3 Iy 414043 RN e A R
908 TR
o nd) LENNEN one/ | 4IM3S Nd9 //EN N,
o1z A8 NSONIN| | NdO " %
431NdK0J 90¢ ~-4/7 N YIINdHOD | HoLIMS ;
> /N0 oy < -
0 a7 - v~

WO 01/65357

2/6

(_ START)
/

CLIENT ACTIVATION REQUEST

PCT/US01/04734

70

76
P

74 -
DISTRIBUTE NO
AMONG SERVERS ?
82

80

/|

EXECUTE TASK
WITH CLIENT OR
DEDICATED SERVER

YES

\\
DIRECT ACTIVATION REQUEST TO
CLIENT'S SERVER SELECTOR AGENT

SELECT SERVER TO
PERFORM TASK |84

BEGIN EXECUTION OF TASK
WITH SELECTED SERVER

(_ STOP)

Fig. 2

WO 01/65357 PCT/US01/04734
3/6

START | 160
GwD ~
/

EXCLUDE SERVERS THAT ARE
KNOWN TO LACK TASK CAPABILITY

164
NUMBER OF SERVERS NO
WITH TASK > LIMIT ?
166
YES
f/

REDUCE NUMBER OF SERVER
CANDIDATES WITH BID ESTIMATES

168
N

N =1

FROM
Fig. 3B

172
" INTERROGATE SERVER N

10 PROVIDE BID

174
V\< TASK AVALABLE 7 >0 '
' | /

" YES SER%PE%ATDEATA
176
7 CRESPONSE THE-O0UT ?\/YES s
NO EXCLUDE AS
A CANDIDATE

|

60 10
Fig. 38

Fig. 3A

WO 01/65357 PCT/US01/04734
4/6

FROM
Fig. 3A
180
/

170
UPDATE DATA l _/

MAINTAINED BY AGENT
, 184 l
182
NO a
TN = UMIT ? N = N+
192
< YES
SELECT SERVER WITH LOWEST 60 T0
190 BID FOR DISTRIBUTION Fig 3A
ADJUST ESTIMATE FOR _194
SELECTED SERVER UPWARD
196
\

ADJUST ESTIMATE FOR OTHER
SERVERS DOWNWARD AFTER PASSAGE
OF SELECTED TIME INTERVAL

(STOP)

Fig. 3B

WO 01/65357

254

NO

PCT/US01/04734

5/6

230

(_START)

232

N

REPORT TO
CLIENT

/
CTASK AVALABLE ?>’V

236
| YES o

CALCULATE PROCESSING LOAD

=

238
ROCESSING LOAD NO
THRESHOLD ?

oS

REP
CONN

ORT DISTRIBUTION/
ECTION INFORMATION

RE

PORT PROCESSING

LOAD INFORMATION (BID) [_ 945

(STOP)
Fig. 4

WO 01/65357

BSO\I

322 f

532

(_START)

6/6

CONTACT BROKER
FROM CURRENT LIST

524

AGENT ?

o YES

PCT/US01/04734

320

/

NO

ALL CONTACTED
TIME-0UT

CONTACT EACH NEW
_/'| CONTACT FROM UPDATED
LIST AND CONTINUE
LIST UPDATES UNTIL

OR

354

/.J

CONTACT WITH EACH

AS NEEDED

PERIODICALLY RE-ESTABLISH

OF LIST AND MODIFY LIST

MEMBER

536

—ﬂ< TERMINATE 2 >”
YES

UPDATE LIST

CLIENT-SIDE
ROUTINE EXECUTION

PERIODICALLY DURING k

562
560

PERIODICALLY DETERMINE
IF ANY EXCLUDED SERVERS
HAVE BEEN UPGRADED T0

INCLUDE A DISTRIBUTED TASK

\,364

YES

(_STOP)

Fig.

5

366

—NO< TERNATE 2 5~

INTERNATIONAL SEARCH REPORT International application No.

PCT/US01/04734

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOG6F/9/00
US CL :709/201, 202, 203, 223, 226, 229; 714/15; 395/610
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 709/201, 202, 203, 223, 226, 229; 714/15; 395/610

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

East search terms: processing load, load balancing, multiple servers and clients and response time,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 5,774,668 A (CHOQUIER et al.) 30 June 1998, abstract, figs. | 1-32
1, 5,7, col. 2 lines 14-65, col. 8 lines 14-35, col. 12 lines 55-col.
13 lines 3.
Y US 5,951,694 A (CHOQUIER et al.) 14 September 1999, abstract, | 1-32
figs 1,5, col. 1llines 45-col. 2 lines 57, col. 25 lines 49-col. 26 lines
23.
Y.P US 6,167,427 A (RABINOVICH et al.) 26 December 2000,| 1-32

abstract , col. 3 lines 945 and col. 4 lines 7-53.

I:l Further documents are listed in the continuation of Box C. D See patent family annex.

the priority date claimed

* Special categories of cited documents: T later document published afier the international filing date or priority
waw . L ' date and not in conflict with the application but cited to understand the
A document defining the general state of the art which is not considered principle or theory underlying the invention
to be of particular relevance
e . . . : . X" document of particular relevance; the claimed invention cannot be
E earlier document published on or after the international filing date considered novel or ot be considered to involve an inventive step
"L” document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other ") 3 . .
special reason (as specified) Y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
0" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means . being obvious to a person skilled in the art
“p” document published prior to the international filing date but later than »g~ document member of the same patent family

Date of the actual completion of the international search

20 MARCH 2001

Date of mailing of the international search report

26 APR 2001

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No.

(703) 305-3230

Authorized officer

AYAZ R. SHE

Telephone No. (23) 305-9648

R Mettizs

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

