

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-519666
(P2004-519666A)

(43) 公表日 平成16年7月2日(2004.7.2)

(51) Int.Cl.⁷

GO1N 27/72

GO1R 33/12

// GO1N 33/543

F 1

GO1N 27/72

GO1R 33/12

GO1N 33/543

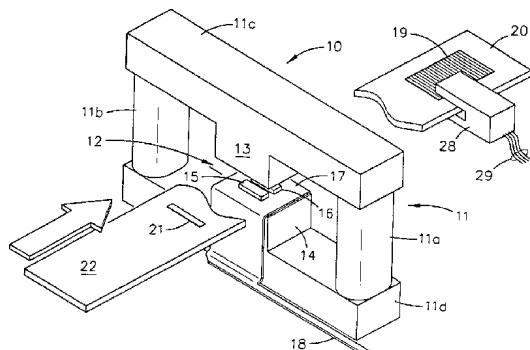
テーマコード(参考)

2 GO17

2 GO53

審査請求 有 予備審査請求 未請求 (全 53 頁)

(21) 出願番号 特願2002-566677 (P2002-566677)
 (86) (22) 出願日 平成14年2月12日 (2002.2.12)
 (85) 翻訳文提出日 平成15年7月28日 (2003.7.28)
 (86) 國際出願番号 PCT/US2002/005116
 (87) 國際公開番号 WO2002/067004
 (87) 國際公開日 平成14年8月29日 (2002.8.29)
 (31) 優先権主張番号 09/785,403
 (32) 優先日 平成13年2月16日 (2001.2.16)
 (33) 優先権主張国 米国(US)


(71) 出願人 502190933
 カンタム デザイン インコーポレーテッド
 アメリカ合衆国 92121 カリフォルニア サンディエゴ ソレント バレイ
 ロード 11578
 (74) 代理人 100083932
 弁理士 廣江 武典
 (74) 代理人 100121429
 弁理士 宇野 健一
 (72) 発明者 セイガー, ロナルド, イー.
 アメリカ合衆国 カリフォルニア州 92009 カールズバッド, マロウ コート
 1734

最終頁に続く

(54) 【発明の名称】磁性粒子の蓄積を検出および測定する方法と装置

(57) 【要約】

ホールセンサー(15, 16)を使用して磁性粒子の凝集物を検出および測定する装置が開示されている。低周波AC信号を使用して、DC磁場(23)中のホールセンサーを励磁、すなわちバイアスをかける。基板(22)上の粒子の数量を表す信号を発生させるため、粒子をホールセンサーとの作用関係に入らせる。このような検出および測定方法もまた本発明の一部分である。

【特許請求の範囲】**【請求項 1】**

非磁化状態の磁化可能粒子と対象分子との複合物を含んでいる磁性粒子の凝集物の定量的測度を行うための装置であって、

定義されたパターンの未知量である磁性粒子を拭くんだ凝集物のサンプルを受領するよう に形状化された基板であって、該サンプル内の磁性粒子は既知サイズと既知磁性特性を有 して前記対象分子と結合している状態の基板と、

前記磁化可能粒子が磁場に存在する時に該粒子を磁化する D C 磁場を提供する磁石と、 出力信号用導線を有し、前記サンプルと作用関係にある時に出力信号を発生させる前記磁場中の少なくとも一つの検出要素と、

サンプルパターンの前記対象分子の量を示す信号を提供するために前記少なくとも一つの 検出要素からの前記出力信号を変換する手段と、

を含むことを特徴とする装置。

【請求項 2】

少なくとも一つの検出要素はバイアス励起電流の流れるホールセンサー（15）を含むこ とを特徴とする請求項 1 記載の装置。

【請求項 3】

少なくとも 1 つの検出要素は磁気抵抗センサーを含むことを特徴とする請求項 1 記載の装 置。

【請求項 4】

少なくとも一つの検出要素はバイアス励起電流が流れる 2 体のホールセンサー（15、16）を含むこ とを特徴とする請求項 1 記載の装置。

【請求項 5】

少なくとも一つの検出要素は 2 体のホールセンサー（15、16）を含み、該 2 体のセン サーは加えられているバイアス励起電流の電源とそれぞれ接続していることを特徴とする 請求項 1 記載の装置。

【請求項 6】

励起電流は直列でホールセンサーを流れることを特徴とする請求項 4 または 5 に記載の装 置。

【請求項 7】

励起電流は並列でホールセンサーを流れることを特徴とする請求項 4 または 5 に記載の装 置。

【請求項 8】

励起電流は少なくとも 1 つのホールセンサーに接続した A C 励起電流であることを特徴と する請求項 2 記載の装置。

【請求項 9】

励起電流はホールセンサーに接続した A C 励起電流であることを特徴とする請求項 4 または 5 に記載の装置。

【請求項 10】

基板上のコード要素（19）と、
サンプルが少なくとも 1 つの検出要素と作用関係に入る時に該コード要素を読み込む位置 に搭載されたコードリーダー（28）と、

をさらに含むことを特徴とする請求項 1 記載の装置。

【請求項 11】

少なくとも一つの検出要素はサンプルの存在がもたらす D C 磁場における差を検出するこ とを特徴とする請求項 1, 4 あるいは 5 に記載の装置。

【請求項 12】

出力信号変換手段は、
少なくとも一つの検出要素の出力と接続した増幅器（25）と、
該増幅器と接続した平衡ステージ（27）と、

10

20

30

40

50

サンプルパターンの対象分子の量を示す信号を出力するロックインステージ(31)と、を含んだシグナルプロセッサを含むことを特徴とする請求項1,4または5に記載の装置。

【請求項13】

出力信号変換手段は、

少なくとも一つの検出要素の出力と接続した増幅器(25)と、

該増幅器と接続した平衡ステージ(27)と、

サンプルパターンの対象分子の量を示す信号を出力するロックインステージ(31)と、該ロックインステージと励起電流を同期的にカップリングさせる手段と、

を含んだシグナルプロセッサを含むことを特徴とする請求項4または5に記載の装置。

10

【請求項14】

バイアス励起電流源との接続手段と接続したホールセンサー(15)を含む検出手段を該バイアス励起電流源と接続させる手段をさらに含むことを特徴とする請求項1記載の装置。

【請求項15】

サンプルパターン中の対象分子を量的確定する方法であって、

基板状に所定の形状で未知量の前記対象分子を有した少なくとも一つのサンプルパターンを適用するステップであって、該サンプルパターンは前記対象分子にカップリングした既知サイズと既知磁性特性の粒子を含んでおり、磁性結合複合物サンプルを提供するステップと、

20

D C 磁場を提供するステップと、

前記サンプルパターンを磁場内に配置するために前記基板と磁場との間の相対動作を引き起こすステップと、

前記D C 磁場によって前記パターンの前記磁化可能粒子を励起して磁化し、その磁性粒子に磁場を乱させるステップと、

磁場における前記磁化された粒子の存在による磁場変化を検出するステップと、

磁場内の前記対象分子の量を示す信号を発生させるステップと、

を含むことを特徴とする方法。

【請求項16】

検出は少なくとも一つのホールセンサー(15)によって実行されることを特徴とする請求項15記載の方法。

30

【請求項17】

少なくとも一つのホールセンサーにA C バイアス励起電流(24)を加えるステップをさらに含むことを特徴とする請求項16記載の方法。

【請求項18】

サンプルパターンが磁場内に移動される時の基板の位置を検出するステップをさらに含むことを特徴とする請求項15記載の方法。

【請求項19】

磁場は磁石(11)によって発生されることを特徴とする請求項15記載の方法。

【請求項20】

磁場内の磁性粒子の量を示す信号はシグナルプロセッサによって発生されることを特徴とする請求項15記載の方法。

40

【請求項21】

少なくとも一つのホールセンサー及びシグナルプロセッサにA C バイアス励起電流を加えるステップをさらに含むことを特徴とする請求項20記載の方法。

【請求項22】

検出はグラジオメーター形態で接続された2体のホールセンサー(15、16)によって実行されることを特徴とする請求項15記載の方法。

【請求項23】

A C バイアス励起電流を直列でホールセンサーに流すステップをさらに含むことを特徴と

50

する請求項 2 2 記載の装置。

【請求項 2 4】

A C バイアス励起電流を並列でホールセンサーに流すステップをさらに含むことを特徴とする請求項 2 2 記載の装置。

【請求項 2 5】

少なくとも一つのホールセンサーに対する基板の位置を該基板上のコード要素 (19) および該センサーとの固定関係を有して搭載されているコードリーダー (28) によって確定するステップをさらに含むことを特徴とする請求項 1 6 記載の方法。

【請求項 2 6】

検出は少なくとも一つの磁気抵抗センサーによって実行されることを特徴とする請求項 1 10 記載の方法。

【請求項 2 7】

少なくとも一つの磁気抵抗センサーに対する基板の位置を該基板上のコード要素 (19) および該センサーとの固定関係を有して搭載されているコードリーダー (28) によって確定するステップをさらに含むことを特徴とする請求項 2 6 記載の方法。

【請求項 2 8】

D C 磁場は 500 ~ 1000 エルステッドの強度を有することを特徴とする請求項 1 記載の装置。

【請求項 2 9】

少なくとも一つの検出要素はホールセンサーであることを特徴とする請求項 2 8 記載の装置。 20

【請求項 3 0】

検出要素のサイズはサンプルパターンのサイズとほぼ同様になるように選ばれることを特徴とする請求項 1, 2, 4 あるいは 5 記載の方法。

【請求項 3 1】

検出はサンプルパターンとほぼ同様のサイズを有するよう選ばれた検出要素により行われることを特徴とする請求項 1 5 記載の方法。

【請求項 3 2】

D C 磁場は 500 ~ 1000 エルステッドの強度を有することを特徴とする請求項 1 5 記載の装置。 30

【発明の詳細な説明】

【0 0 0 1】

【技術分野】

本発明は、一般的には磁性粒子の存在の検出に関し、特に D C 磁気励起および粒子の磁気モーメントにもたらされた励起の大きさ検出によるこのような粒子の蓄積の定量的測度に関する。

【0 0 0 2】

【背景技術および発明解決しようとする課題】

分子が存在する混合体あるいは溶液の中でその粒子の存在を確定し、またできれば濃度を測定する技術へ高い関心が寄せられてきた。ある種の有機化合物の極めて低い濃度を測定することは状況によって望ましい。たとえば、医学では生理的流体（例：血液や尿）にもともと存在する、あるいは生物系に導入された（例：薬剤や汚染物質）特定の分子の濃度を通常は溶液中で確定することは非常に有用である。 40

【0 0 0 3】

対象である特定の化合物の存在を検出するのに普及している 1 つの方法は免疫学的検定方法である。この方法では、一般的にリガンドと呼ばれる特定の分子を検出するために、特に対象のリガンドと結合する非リガンドあるいは受容体とも呼ばれる第二の分子種を利用する。リガンドと非リガンドの結合状態を直接的あるいは間接的に測定あるいは推測することにより対象のリガンドの存在を検出する。

【0 0 0 4】

10

30

40

50

米国特許第4,537,861号でElingらはいくつかの検出法および測定法を開示している。この特許は、典型的には抗原および抗体であるリガンドと非リガンドとの結合反応の溶液中で同種免疫学的検定を実行するいくつかの方法に関係している。Elingは固体基板に付着させた非リガンド物質の分離部位の立体配列から成る立体パターンの作成を教示している。特有の物理的特性を有する分子や粒子を取り付けることによってラベル処理された対応リガンドは、標識(labelled)リガンドが立体パターン中で非リガンドと結合反応できるように固体基板に分散させられる。望ましい免疫学的検定は、標識結合複合体の立体パターン中の蓄積後、装置で固体基板をスキャンしてラベルの物理的特性を測定する。このスキャナは蛍光性、光学濃度、光散乱、色および反射率等を利用することができる。さらにElingによると、磁性粒子は標識結合複合体を溶液中あるいは固体基板上に蓄積するためにリガンドあるいは標識リガンドに付着させることができ、その後に上記のスキャン技術を利用する。

10

【0005】

実際、磁鉄鉱と不活性マトリクス材から成る磁性粒子は、生物化学分野で長い間使用されている。磁性粒子のサイズの範囲は直径数ナノメーターから数ミクロンで、15%から100%の磁鉄鉱を含む。これらはよく超常磁性粒子と呼ばれ、サイズが大きいものは磁気ビーズと呼ばれる。通常の手順は、粒子を特定のミクロ物体あるいは対象の粒子(例:蛋白質、ウィルス、細胞、DNA断片)と堅く結合させる生物学的活性物質で粒子表面を塗装する。それにより磁性粒子は“ハンドル”となり、通常は高強度の永久磁石によって提供される磁気傾斜を用いて物体を移動させたり、固定することが可能になる。Elingの特許は磁性粒子のこのような使用の一例である。希土類磁石および鉄極を使用した特製組立構造物は市販されており、利用可能である。

20

【0006】

これらの磁性粒子は主として結合物体を移動あるいは固定させるために使用されてきたが、いくつかの実験研究では結合複合体の存在を検出するためのタグとして使用されている。従来の結合複合物の検出と数量化では、対象の複合物に結合した放射能、蛍光あるいはリン光分子を使用してきた。これらの従来のタギング方法はさまざまな重大な弱点を持つ。放射能方法は発生する低レベル放射能廃棄物のもたらす健康面および処理面の問題があり、また処理が比較的遅い。蛍光あるいはリン光方法は、放射される光子がサンプル内の他の物質に吸収されるため量的精度および動的範囲において限局的である。(日本特許公開第63-90765号、1988年4月21日、藤沢ほか)さらに、蛍光あるいはリン光分子からの信号は、通常は数時間から最長数日で崩壊する。

30

【0007】

一方で、小量の磁性粒子からの信号は極度に小さいため、多くの利用法において最も感度の高い磁界検出器であると考えられている超伝導量子干渉素子(スキッド)に基づく検出器を多くの研究者が開発しようと試みてきたことは当然である。しかしながら、この方法には実質的な難点がいくつか含まれている。スキッドのピックアップループは低温で維持されなければならないため、サンプルはこれらのループと非常に緊密にカップリングするよう冷却されなければならない。これによって測定は許容できないほど長くなり、多くのバイオテクノロジー分野での利用法には不適切である。さらにこの方法はスキッドの通常の複雑性とその関連極低温部品のために非常に高価となり、安価なデスクトップ装置での使用には通常は不適切である。高Tc超伝導体に基づく設計でもこの難点を完全には解決できず、藤沢らにより記述されているように新たないくつかの問題を生じる。

40

【0008】

より伝統的な磁性粒子の検出および測量方法は、サンプルを強磁気傾斜に置き、サンプル上に発生する強度を測定するという強度磁気測定(force magnetometry)のいくつかの形態を典型的に含んできた。たとえば強度平衡磁気測定では、傾度が変化した際のサンプル重量の外見上の変化として強度を測定する。この方法の一例はロール特許第5,445,970号および第5,445,971号に開示されている。より複雑な技術は、マイクロマシンカンチレバーの偏向あるいは振動への粒子の影響を測定する

50

(Baselt et al., A Biosensor Based on Force Microscope Technology, Naval Research Lab., J. Vac. Science Tech. B., Vol 14, No. 2, 5頁, 1996年4月号参照)。これらの方針は本質的には磁気効果を機械反応に変換することによるため、振動、粘度、および浮力といったその他の機械効果の類と区別しなければならず、対象の測定が実質的に干渉されるために限定的である。

【0009】

米国特許第6,046,585号で、Simmonsはトロイダルマグネタイザーに小領域（隙間部）を提供した技術について記述している。その技術ではその隙間部内に1対（あるいは複数対）の誘導検出コイルが配置され、高周波振動磁場（ドライブ磁場）を発生させる。この場合個別の検出コイルのサイズは厳密に一致しているが巻き方向が反対であるため、その他の磁性体（例：磁気結合複合物に含まれる磁性粒子）の不在下ではコイル対の出力電圧はゼロとなる。すなわち、ドライブ磁場は同強度であるが対極でそれぞれの逆巻きコイルと結合するため、個別のコイルからの電圧は計算上合計ゼロになる。

【0010】

固体基板上の磁性粒子の蓄積が検出コイルに近接した隙間部に置かれると、振動ドライブ磁場は磁性粒子中に対応する振動磁化を形成し、検出コイルにより検出可能になる。Simmonsの特許では粒子蓄積の物理的なサイズは検出コイルの1つのサイズとほぼ等しいため、基板が検出コイル配列を通過した時に蓄積粒子は1コイル中で信号を発する。磁性この意味で粒子の蓄積は検出コイルを通過する時に検出コイル配列の有効バランスを変化させると考えられる。Simmonsによると、蓄積の物理的サイズが検出コイル配列中の個別の1コイルのサイズと一致すれば、いかなる特定の磁性粒子蓄積からでも最大信号を得られる。

【0011】

Simmonsの方法では（典型的には500から1000エルステッドの最大振幅を有する）高周波振動磁場は2つの機能を提供する。第一に、磁性粒子中に大きな磁化を形成し、第二に、振動磁場の高周波特性は磁性粒子の誘導された磁化をドライブ磁場と同周波数で振動させる（典型的には100KHz規模）。誘導検出コイル中に誘導された電圧は検出された信号の周波数に比例するため、誘導検出コイルに高周波ドライブ磁場を利用することにより装置の感度は増加して極めて微量の磁性粒子を検出することができる。

【0012】

Simmonsの開示した発明に関する係属中の特許出願は、基本的な概念をいろいろと応用している。第一に、隙間部の形成において高度な対称性を提供するE状磁気コアの使用について記述している。それによって検出コイルに対する高度なバランスを維持する一方で、大ドライブ磁場を形成することができる。第二にブラックスゲート、巨大磁気抵抗（GMR）、巨大磁気抵抗（CMR）、ならびにホール効果センサーなどの他のセンサーの使用を含む別検出システムが開示されており、上述のセンサーはすべて未だにACドライブ磁場を採用している。

【0013】

Simmonsの記述した検出システムは、磁性粒子の磁化を検出および測定するために磁性粒子を含んだ物質の基本的な磁気の性質を利用している。これに使用されているビーズは典型的には超常磁性と呼ばれ、印加磁場に配置された場合のみ磁性である。より具体的には、外的印加磁場の不在下ではビーズは磁性ではない。すなわちビーズは残留磁気を有していない。事実、バイオテクノロジー分野の利用法で使用されるビーズは、むしろ残留磁気を有さないように設計される。残留磁気を有するビーズは溶液中で塊になり、様々な問題を引き起こすためである。それゆえ、バイオテクノロジー分野で典型的に使用されるビーズの磁化の検出あるいは測定装置は、何れも測定中にビーズに外的磁場が加えられる場合のみ機能できる。この状況はテープやディスクの磁気フィルムが高残留磁気および大保磁磁場を有するように設計される磁気録音に使用される技術と区別されなければならない。（物質の保磁磁場は物質を完全に消磁するために加えられる磁場の値を提供する。）

10

20

30

40

50

) 実際、録音での利用では大きな残留磁気は情報を実際に保存する手段である。

【0014】

バイオテクノロジー分野での利用法で典型的に使用される磁性粒子は酸化鉄を含んで成り、典型的には Fe_3O_4 と Fe_2O_3 の混合物である。様々なメーカーの粒子の測定からこれらの粒子の飽和磁化はサイズに関わらず常に約 300 エルステッドであることが判明した。これはこの種のフェライト物質にとって非常に典型的な飽和磁場である。より具体的に述べると、これは 500 エルステッド未満で粒子により大きな磁場を加えると粒子の磁化はさらに増加し、検出される信号が増加する可能性があることを意味している。しかしながら、飽和磁場を超える磁場ではこの効果は激減され、ゆえに印加磁場でのさらなる增加は粒子の磁化の増加をほとんどあるいは全く提供しない。さらに、ほぼすべての磁気検出装置には周囲磁場に比例して増加する雑音源が存在する。それゆえ、飽和レベル以上に印加磁場を増やすことは、その信号対雑音比を減少させることにより測定の質を実際に下げる。また印加磁場での増加によって強磁性汚染物質からの信号への不都合な影響がより明白化する可能性もある。それゆえ、磁化を測定することによって存在する粒子の数量を確定したい場合は、通常は粒子の飽和磁場とほぼ等しい磁場を加えることでこのような測定への信号対雑音比を最良化できる。磁場は我々の場合は 500 エルステッドである。

【0015】

上記のように Simmonds の特許は粒子に大振動磁場を加え、また粒子内に誘導された振動磁化を検出することによって結合複合物中の超常磁気粒子の定量的測度を行う技術を記述している。ここで使用されるセンサーは大振動磁場の存在下で良的に機能するタイプのものでなければならない。Simmonds の装置は感度が非常に高く、非常に良く機能する。しかしながら Simmonds の設計をさらに複雑化する要因がいくつかある。最も重要なことに、Simmonds の検出システムは高周波（典型的には 100 KHz）において機能するため、サンプル / 基板の組み合わせと検出コイルとの間に静電結合効果が発生する。さらに、そのような高周波システムは常に印加 AC ドライブ磁場と検出された信号との間の位相シフトに影響される。このような検出システムを 100 KHz で操作する場合にはこれらの影響は多大であり、システムが粒子の磁化を正確に測定するためには対処されなければならない。さらに、トロイダルマグネットイザーの隙間部に高周波 AC 磁場を発生させるには大量の電力を必要とするが、検出器内の熱ドリフトを引き起こす可能性が特に装置が始めに加圧された直後に発生する。AC ドライブ磁場が高電力を必要とするため、この種のシステムが電池で作動する時には作動時間の長さも制限される。最終的に、磁石およびコイル内の AC ドライブは防止すべき RF 排出を発生させる可能性がある。

【0016】

【課題を解決するための手段】

本発明は磁性粒子（例：磁鉄鉱）の微小な蓄積および対象の結合複合物を直接的に検出および測定する非常に単純化された安価な方法および装置を提供する。

【0017】

本発明の主眼点は、磁性粒子中に磁化を誘導するために（従来技術の時間的に変化するドライブ磁場に代わる）DC 磁場を使用し、それをホールセンサーと組み合わせて誘導された磁化を検出することである。経時変化する磁場の代わりに DC 磁場を使用することの利点は大きい。

【0018】

本発明において DC 磁場を発生させるには磁場発生源は必要なく、従来技術の AC 被駆動システムに比べて非常に単純であり、部品のコストを約 2 枝引き下げることができる。必要な DC 磁場は、電力を消費せずに、適切な磁場特性を提供する安価な永久磁石と単数あるいは複数の鉄片を用いて発生させることができる。プロトタイプでは DC 磁場を発生させるために使用される部品は約 25 セント未満であった。それに比べて既存の装置に使用されている高周波 AC 磁場を発生させるための部品は 20 ドルを超え、その上多大な電力を要する。

【0019】

10

20

30

40

50

また、100KHzのAC磁場を発生させるために必要な電力は隙間部の容積に従って増加するため、ACドライブ磁場を用いた装置内の測定領域（隙間部）の容積を限定する。隙間部の高さに対する領域比を増加させることにより隙間部内の磁場均一性は高められるが、そのためにACドライブ磁場を使用するシステムでは電力消費が増加するという欠点がある。DC磁場を使用した場合では、隙間部の容積を増加する時にはそれに対応したさらに大きな永久磁石の使用のみが必要である。プロトタイプシステムは隙間部内でSimmonsのACシステムでの容積を倍以上上回る1000エルステッド規模の磁場を達成した。

【0020】

これらの測定を最適化するのに必要とされるやや大きな磁場（500エルステッド規模）は、いくつかのタイプのセンサーと互換性がない。しかしながら、強磁界においてホールセンサーの感度はほとんど落ちない。実際に、センサーはこの規模の磁場で最適に機能するように設計できる。また測定感度を最大限にするために、センサー領域をサンプルのサイズに一致させるべきである。GMRやCMRを含む別タイプのホールセンサーを上記の基準に準拠するように設計することができるが、基準に準ずるホールセンサーは市販されており、安価である。

【0021】

この種の技術に使用される典型的なホールセンサーは、約10から20ミリアンペアの電流が流される。センサーの出力電圧は印加磁場とバイアス電流の両方に比例する。ゆえにバイアス電流の変動は対応する出力信号中の変動を引き起こすため、非常に安定したDC電流を形成するのは難しいだろう。しかしながら、典型的には数キロヘルツでホールセンサーにAC電流を流すことより非常に安定したピーク振幅が発生するので、この問題は容易に対処できる。この方法でホールセンサーにバイアスをかけることによりこの検出システムは数キロヘルツで機能することもでき、達成可能信号対雑音レベルを大幅に高めるために位相検出システムを有効利用できる。（しかしながら、AC電流は本発明に必要ではない。この場合は、センサーにバイアス電流を供給する電子回路の安定性にさらに強い必要性が存在する。）

DC磁場を使用した検出システムはまた、サンプルとセンサーとの間の静電効果に対して非常に免疫性が高い。Simmonsの高周波ACシステムでは、サンプル基板中の誘電特性は誘導性検出コイルの大きな静電結合を引き起こし、見せかけの信号を発生させる可能性もある。適切な位相検出スキームを使用してこれらを拒絶できるが、ホールセンサーを用いたDCシステムはAC静電結合効果への抵抗性が高い。

【0022】

この好適実施例では2体の個別のホール効果センサーは並んで印加磁場に配置され、対応センサー対を形成する。センサーはそれぞれ検出した磁場を示す信号を発生する。一方のセンサーからの信号は他方から減算され、一方のセンサーで他方のセンサー中の信号に対するその一方のセンサーの磁場の差を示す信号を形成する。これらの信号を電子的に減算することにより印加磁場のもたらす不適切な信号を激減させる。そのようなセンサーの構成は、地磁気検出産業ではグラジオメーターと呼ばれている。

【0023】

この測定は、粒子がDC磁場に同時に露出される時に、磁気に影響される粒子の定義されたパターンをホールセンサーに通過および接近させて実行する。Simmonsの従来技術によると、磁性粒子パターンの空間規模をホールセンサーの物理的規模にほぼ一致させることは重要である。この場合、磁性粒子のパターンは通過の際に第一ホールセンサーによって検出され、第一センサーの検出領域から離れた後に引き続き第二ホールセンサーに検出される。2体のホールセンサーは対極性の信号を発生するように接続されているため、2体のセンサー間の差信号は2体のセンサーを通過する際の立体パターンの位置の関数であり、存在する粒子の数量を表す。

【0024】

【発明を実施するための最良の形態】

10

20

30

40

50

以下の詳細な説明では図面を利用して本発明の目的、特徴および利点をより明確に説明してゆく。図1は本発明による装置10を示している。永久磁石構造体11は中脚部分13、14の間に形成される隙間部12を含んだE状構造を持つ。磁石は磁石要素11a、11bと鉄柱片11c, 11dを含んでいる。ホールセンサー15, 16は面17に搭載される。この面はホールセンサーとそれらが尾部18のリード線によって接続されている回路との間に必要なすべての外部接続を提供する柔軟なプリント基板でもよい。

【0025】

サンプル21は基板22の定義されたパターン（通常は1ミリ×2ミリ）中に配置され、隙間部12内にホールセンサー15, 16を通過して移動され、後述のようにたとえば図4の回路から出力信号を提供する。この動作とセンサー出力は後に図7と図8を利用してさらに詳述される。

【0026】

別形態として、基板22は上面にバーコード19のプリントされている延長部20を有することができる。バーコードは光学検出器か、あるいは適切な導線29とともに図示されているバーコードリーダー28に読みとられる。バーコードはサンプルパターン21から所定の間隔を置いて配置され、リーダー28はホールセンサーに対する固定位置を有する。そのためリーダーからの信号は、ホールセンサーに対するサンプルパターンの位置情報を提供できる。

【0027】

光学検出器はかなり精密な装置であり、1本のバーコード線が検出器を通過する度に2パルスを発する。第一パルスはバーコード線の最前線に対応し、第二パルスは（方形）バーコード線の最後線に対応する。ここではこれらのパルスは2体のホールセンサーの電圧出力を測定および保存するデータ収集電子機器を作動させるために使われる。またAC電流がホールセンサーにバイアスをかけるのに使われた場合に電流逆流を制御するために使用される。これに似た方法で、光学検波器（または第二光学検波器）からのパルスはデータ収集プロセスを作動および終了させるために利用できる。ゆえに、バーコード情報は電子制御システムにデータ収集を開始あるいは終了する時を知らせ、またサンプルが通過する時のホールセンサーからの信号の各測定に対する位置情報を提供する。

【0028】

図2はホールセンサーの作動原理を示している。低周波ACはホールセンサー15をバイアスあるいは励磁するためにI+あるいはI-で加えられ、センサーの検出領域15bは基板15a上にある。後にさらに詳述されるように、図4と図5の回路には出力電圧V+およびV-が加えられる。磁石11からの印加磁場は矢印23で示されている。

【0029】

図4の回路は図1の実施例に関する。この好適実施例は低周波交流24に励磁されるホールセンサー対を有する。センサー対からの出力電圧信号は、増幅器25, 26によって高インピーダンス法で検出される。続いて回路は2体のセンサー信号の合計と差を表す信号を発生する。センサー近隣での磁性サンプルの不在下で平衡ステージ27の出力信号を最小化するために要素30を用いて平衡増幅率を調節することで、ステージはさらなる信号処理を行う。次に平衡ステージからの利得信号はロックインステージ31への信号入力として利用される。ロックインステージへの基準入力は、好適には信号増幅器32を介して励振源24から同期的にカップリングされる。ロックインステージの出力は存在する粒子物質の量を示す。適切な出力はロックインステージに同期的にカップリングされた励振源を使用しない別方法でも得ることができる。

【0030】

ロックインステージはロックイン技術による信号処理に使用される。この技術は一般的であり、信号処理技術では“位相弁別検出”、“ミキシング”、あるいは“ヘテロダイニング”とも呼ばれる。それは2つの出力と1つの入を持つ信号処理ステージとして記述されている。この技術は測定装置をAC信号で励磁させ、交流励起と同期の出力信号を検索

する。この技術は検出装置に存在する信号雑音および干渉を拒絶する。図4の実施例では、交流励起手段24はホールセンサーを励磁する電流である。励起信号と同期の信号は当該分野では広く認識され、また前述されたように、ロックイン信号処理ステージへの基準入力信号として使用される。センサーからの差信号は、ロックインステージへの別の入力として形成される。この差信号はオプションとして、上記平衡ステージにより調節される。ここで記述されている装置の場合は、ロックインステージの出力信号は存在する粒子物質21の量を示す。センサー雑音と干渉が最小化される周波数スペースの領域で信号検出が実行されるような励起周波数を選択することが望ましい。励起周波数の倍数である周波数で検出することもまた望ましい。

【0031】

10

上記の信号処理は、能動的および受動的アナログ電子機器、デジタル信号処理、あるいはこれらの併用を含む多くの利用可能な手段によって原則的には実行できる。またアナログ・デジタル変換器、デジタル・アナログ変換器、あるいはその両方を含んでよい。

【0032】

測定するサンプルを図1のような非常に狭い隙間部を通過させるための必要条件はいくつかの利用法では不可能だろう。たとえば、サンプルパターンが非常に厚い基板あるいは体積の大きな物質の表面上に置かれた時に、そのような固体表面を非常に小さな隙間部に通すことは不可能であろう。この種の利用法では必須DC磁場は図3のような構成によって発生させることができる。この構成では鋭く加工された鉄柱先端はDC磁場をホールセンサーの背側から発生させる。このいわゆる片面磁石構造により、より大きくて厚い基板が使用できるが、ホールセンサー（およびサンプル）の位置における磁場が不均一となる不利点も提供される。そのため装置の口径測定は困難になり、定量的測度の精度を低下させ得る。たとえば、不均一な磁場のために測定はサンプルとセンサーの分離に大きく影響されることになり、そのためサンプルの小さな位置変動は測定の不確実性を高める。しかしながら、図3の装置の出力は、図1の実施例が使用できず粒子数の正しい予測が必要な場合には有用である。

20

【0033】

30

図3の装置でこの測定を実行するには、基板37上の磁気感応粒子36の定義されたパターンを矢印42の方向でセンサー41の近隣に移動させ、同時に永久磁石構造体43の印加磁場の近隣に移動させる。磁石構造体43は永久磁石38と鋭い形の柱片39を含み、それらは搭載装置40により互いに固定されている。搭載装置はプラスチックのごとき非導電性素材でよい。ホールセンサー41を搭載する面を提供するために、柱片39と磁石38の間の空間はプラスチック40aで充填できる。分離したプラスチック要素でも良いし、搭載装置40と一体構造でも良い。搭載装置40は面40aに固定できるように提供され、固定を補助するために孔部40bが提供される。パターン化粒子とセンサー間との距離の関数としての結果の信号は、サンプル粒子が存在していない時の信号と比較して粒子物質36の量を示す。

【0034】

40

図5は図3の実施例の回路図である。ここではホールセンサー41は低周波交流電流44で励磁される。センサーからの出力電圧信号は、増幅器45によって高インピーダンス法で検出される。励起に比例する信号は46にてセンサーの電圧を示すこの信号と合計される。センサー近隣で磁性サンプルが存在しない場合、平衡ステージ47の出力信号を最小化するために、このステージで平衡化装置48によって平衡増幅率を調整することによって信号は平衡化される。続いてこの結果の合計信号は、上記の好適グラジオメーター実施例で記述された方法と同様に、増幅器52を通る励起信号と同期の基準信号を利用してロックインステージ51で検出される。ロックインステージの出力は存在する粒子物質36の量を示す。

【0035】

図6は本発明はホールセンサーにバイアスをかける2つの方法を規定していることを示す。図4ではホールセンサー15, 16は直列接続されているため、両方に同じバイアス電

50

流が流れている。バイアス電流のいかなる変動によっても出力電圧での変化が生じるため、一方のセンサーで変化があった場合にはその変化は他方のセンサーからの（異符号の）同一の変化によって正確に相殺される。しかしながら、それぞれのホールセンサーの長さに沿った大きな電圧降下も存在するため、2体のホールセンサーでV+とラベルされている電圧点はむしろ異なる電位差である。これで第一センサーのV-接続を第二センサーのV+接続に単純に接続することが防止される。（これらの2点を結合させると、バイアス電流の短絡電流経路が第一センサーのV-点から第二電流のV+点まで効果的に形成される。）図4に示すように、それぞれのホールセンサーに分離した差動増幅器25, 26を取り付けて使用することで、この問題を避けることができる。またACバイアス電流を使用する場合に2体のセンサー間の電圧差が大きい場合は、両センサー上の電圧点での電位はかなり大きな電位間で急速に切り換わるため不利でもある。

10

【0036】

図6は別の構成を示しており、ここでは2体のホールセンサー15, 16へのバイアス電流55は並列接続されている。この構成は一つのセンサーを通過するバイアス電流中の変動に起因する誤信号の影響をさらに受けやすい。それはこのような変動は他方のセンサーの類似変動に必ずしも正確に一致しないためである。しかしながら、この構成では2体のセンサーのV+点およびV-点での電位はすべてがほぼ同じ電圧である。実際、センサーが完全に一致していると仮定するなら、（ホール電圧がゼロであるような）磁場の不在下では2体のセンサーの4電圧タップは完全に同様の電圧になるだろう。ゆえに、この構成では2体のホールセンサーの電圧タップは互いに接続され、一体の差動増幅器56を用いて2センサーのホール電圧の差が検出される。増幅器57、平衡ステージ58およびロッケインステージ59を通過する基準入力は前記同様に機能する。

20

【0037】

これらの2構成はどちらもその他の測定システムの特定構造次第で好適実施例になりうる。たとえば、AC電流バイアスを使用する際には並列接続バイアススキームは好適であり、センサーが直列に配線されたACバイアスを用いる場合の大きな電圧の揺れを除去することができる。

20

【0038】

反対に、DC電流バイアスを使用する場合には直列接続バイアススキームはより望ましい。どのような場合でも、直列接続/並列接続、AC/DCのどのような組み合わせでも強調されるべき特徴に応じて利用できる。

30

【0039】

図7と図8はセンサー反応およびサンプルとセンサーの相対動作のさらなる詳細を示す。磁気信号を背景から区別ができるものとするために、電子センサー信号を録音している間にサンプルをセンサーに対して移動させることは有利である。これは図7に示されている。単数あるいは複数のセンサー15, 16上にサンプル21が移動すると、サンプルの磁束はセンサー内にカップリングする。位置関数として録音されるセンサー信号（図8）は、サンプルパターンの形状およびセンサーの空間反応を示す。図1のようにグラジオメータ構造に2体のセンサーが含まれる場合、サンプルは一方のセンサーに近接した時に一極の信号を発生させ、他方のセンサーに近接した時に対極の信号を発生させる。

40

【0040】

図8はサンプル位置に対して座標で示された測定値集合を示す。実線曲線は最小二乗法を用いて理想的反応関数に適合した曲線を示している。位置および信号電圧の情報を両方使用して、サンプルの磁気モーメントの完全な計算値を導くことができることは明白である。これは磁気背景のレベルから独立的であり、信号電圧のいかなる電子的ずれあるいは不均衡のずれからも独立的である。

【0041】

好適には、鉄柱片は鉄製であるが、高透磁率を有する必要がある。それらはコバルト、ニッケルあるいは必要な特性を有する適切な合金で提供できる。柱片はカーブさせて、隙間部12のような隙間部を正面にすることができる。図1のように2つの磁石ではなく、ひ

50

とつのC型磁石を使用できる。基板22は対象領域21を持った横方向フロー膜でよい。好適には、基板は非導電性であって非電磁素材により構成され、プラスチック、木材、あるいは上記の必要条件を満たすその他の素材で構成できる。基材22は手動でセンサーを通過させることができる。あるいはステッピングモーター、サーボモーター、あるいはサンプルをセンサーに対して移動させることのできる別手段を用いて動作を機械化しても良い。本発明にとって動作方法は決定的ではない。

【0042】

本発明のシステムは、1ナノボルトから10ミクロボルトの範囲で優れた感度を持つ。すなわち、本発明は大きな磁場(500~1000エルステッド)の存在下で極小信号を検出する高感度磁性センサーに利用できる。検出された信号は対象の粒子の存在に起因する磁場中の変化であり、変化はミリエルステッド規模である。ここで有効な等式は、

$$V = I B / e n d$$

である。

式中のVは検出された電圧変動、

Iはバイアス電流、

nはキャリヤ密度、。

Bは印加磁場、

dは検出面の厚み、

eはキャリヤ電荷。

【0043】

変更や改善が当業者によって発明の範囲内で加えられることは明白である。したがって本発明は「請求の範囲」およびその均等物によってのみ限定される。

【図面の簡単な説明】

【図1】図1は本発明の装置の好適実施例の斜視図である。

【図2】図2は図1の実施例に使用されているホールセンサーを示している。

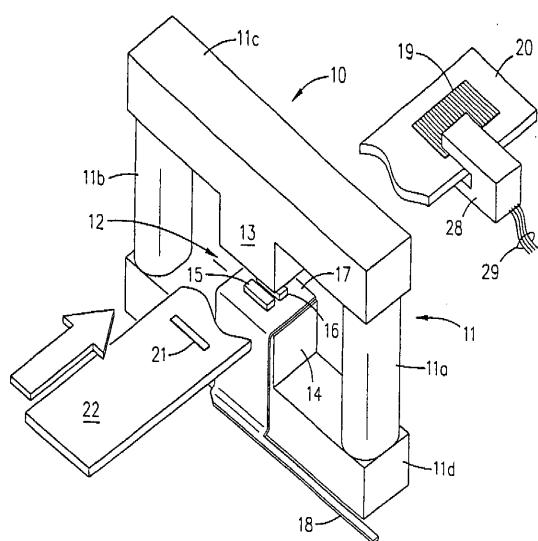
【図3】図3は本発明の別実施例の斜視図である。

【図4】図4は図1の実施例で利用可能な例示回路のブロック図である。

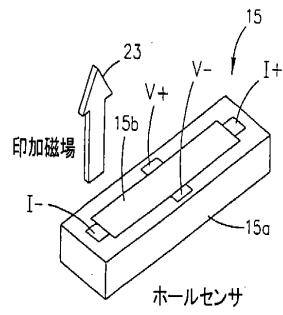
【図5】図5は図3の実施例で利用可能な例示回路のブロック図である。

【図6】図6は図1のホールセンサーをバイアスさせる別方法を組み込んだブロック図である。

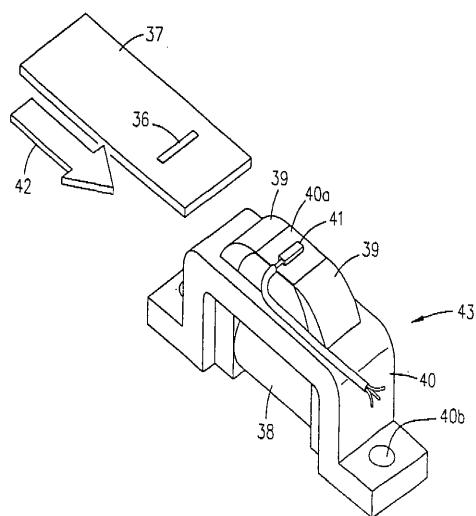
10

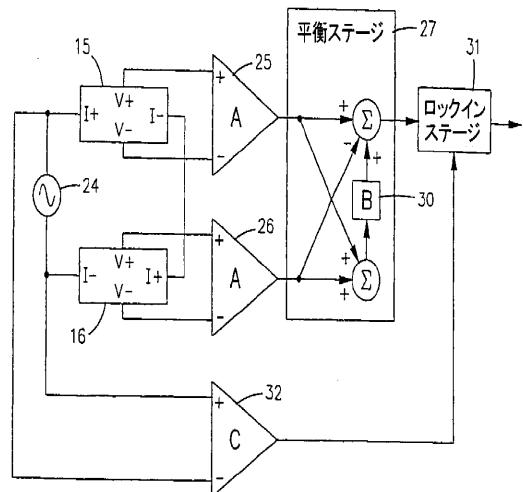

20

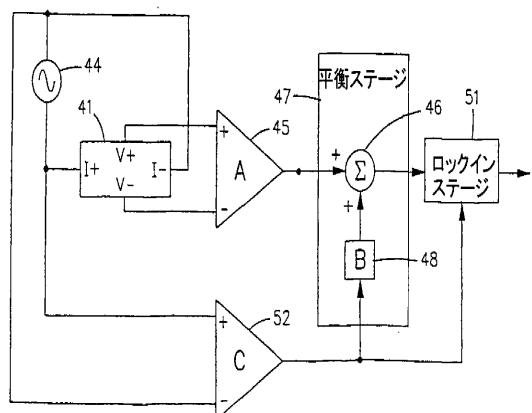
30

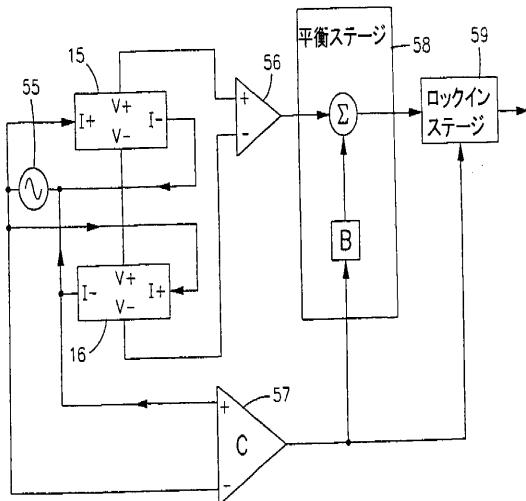

【図7】図7は図1のセンサーに対するサンプルの動きを示す概略断面図である。

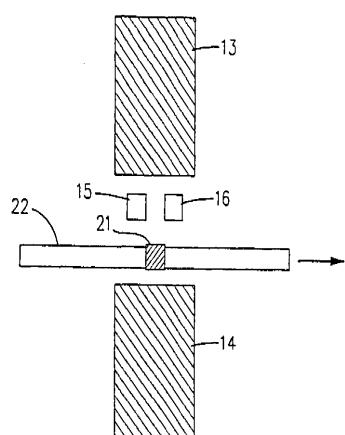
【図8】図8は図7に示される動作に従うセンサー出力の曲線グラフである。

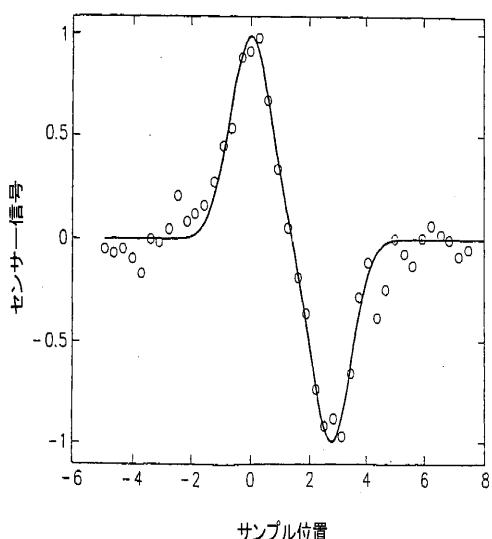

【 図 1 】


【 図 2 】


【 図 3 】


【図4】


【図5】


【図6】

【図7】

【図8】

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
29 August 2002 (29.08.2002)

PCT

(10) International Publication Number
WO 02/067004 A1(51) International Patent Classification: G01R 33/12.
G01N 33/48, 33/487

(US) DIEDERICHS, Jost, H. [DE/US]; 12956 Christman Lane, Poway, CA 92064 (US). JENSEN, Kurt, G. [US/US]; 13014 Pangyo Drive, Poway, CA 92064 (US). BLACK, Randall, C. [US/US]; 5639 Glenstone Way, San Diego, CA 92121 (US).

(21) International Application Number: PCT/US02/05116

(22) International Filing Date: 12 February 2002 (12.02.2002)

(25) Filing Language: English

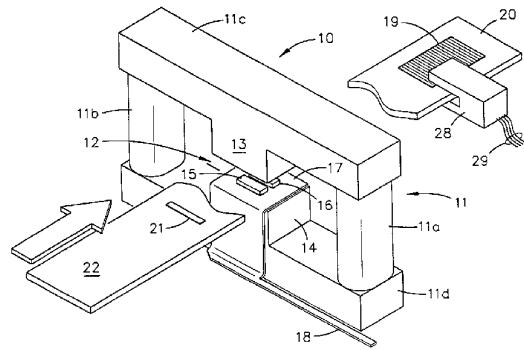
(74) Agent: MAXHAM, Lawrence, A.; The Maxham Firm, 750 B Street, Suite 3100, San Diego, CA 92101 (US).

(26) Publication Language: English

(81) Designated States (national): AE, AG, AI, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, IR, IU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PI, PT, RO, RU, SD, SE, SG, SI, SK, SI, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(27) Inventor: and

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent


(75) Inventors/Applicants (for US only): SAGER, Ronald, E. [US/US]; 1734 Mallow Court, Carlsbad, CA 92009 (US). SIMMONDS, Michael, B. [US/US]; 123 Commerce Drive, Suite B1, P.O. Box 2846, Mammoth Lakes, CA 93546

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR DETECTION AND MEASUREMENT OF ACCUMULATIONS OF MAGNETIC PARTICLES

WO 02/067004 A1

(57) Abstract: Apparatus for detection and measurement of agglomerations of magnetic particles employing Hall sensors (15, 16). A low frequency AC signal (24) is employed to excite or bias the Hall sensors which reside in a DC magnetic field (23). The particles are moved into operative relationship with the Hall sensors in order to generate a signal representing the number of particles on the substrate (22). The method for such detection and measurement is also part of the invention.

WO 02/067004 A1

(BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, *For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.*
NE, SN, TD, TG).

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

**METHOD AND APPARATUS FOR DETECTION AND
MEASUREMENT OF ACCUMULATIONS OF
MAGNETIC PARTICLES**

5 TECHNICAL FIELD

This invention relates generally to sensing the presence of magnetic particles, and more particularly to quantitatively measuring accumulations of such particles by means of DC magnetic excitation and sensing of the amplitude of the resulting excitation of the magnetic moments of the particles.

10

BACKGROUND ART

Much attention has been given to techniques for determining the presence, and possibly the level of concentration, of minute particles in a larger mixture or solution in 15 which the particles reside. It is desirable in certain circumstances to measure very low concentrations of certain organic compounds. In medicine, for example, it is very useful to determine the concentration of a given kind of molecule, usually in solution, which either exists naturally in physiological fluids (for example, blood or urine) or which has been introduced into the living system (for example, drugs or contaminants).

20 One broad approach used to detect the presence of a particular compound of interest is the immunoassay technique, in which detection of a given molecular species, referred to generally as the ligand, is accomplished through the use of a second molecular species, often called the antiligand or the receptor, which specifically binds to the ligand of interest. The presence of the ligand of interest is detected by measuring, or inferring, either directly 25 or indirectly, the extent of binding of ligand to antiligand.

A good discussion of several detection and measurement methods appears in U.S. patent 4,537,861 (Elings et al.). The patent is directed to several ways to accomplish homogenous immunoassays in a solution of a binding reaction between a ligand and an antiligand which are typically an antigen and an antibody. The teaching of Elings is to

5 create a spatial pattern formed by a spatial array of separate regions of antiligand material attached to a solid substrate. The corresponding ligand, which has been previously labeled by attaching to it a molecule or particle which has a particular physical characteristic, is then dispersed over the solid substrate such that the labeled ligand can produce a binding reaction with the antiligand in the spatial patterns. After the labeled bound complexes have

10 been accumulated in the spatial patterns, equipment is used to scan the solid substrate, thereby measuring the physical characteristic of the labels to provide the desired immunoassay. The scanner may be based on fluorescence, optical density, light scattering, color and reflectance, among others. In addition, Elings further teaches that the magnetic particles may also be attached to either the ligand or the labeled ligand for the purpose of

15 accumulating the labeled bound complexes within the solution or onto the prepared substrate surface, after which the scanning techniques previously described are employed.

Indeed, magnetic particles made from magnetite and inert matrix material have long been used in the field of biochemistry. They range in size from a few nanometers up to a few microns in diameter and may contain from 15% to 100% magnetite. They are often

20 described as superparamagnetic particles or, in the larger size range, as magnetic beads. The usual methodology is to coat the surface of the particles with some biologically active material which will cause them to bond strongly with specific microscopic objects or particles of interest (proteins, viruses, cells, DNA fragments, for example). The magnetic

particles then become "handles" by which the objects can be moved or immobilized using a magnetic gradient, usually provided by a strong permanent magnet. The Elings patent is an example of this use of magnetic particles. Specially constructed fixtures using rare-earth magnets and iron pole pieces are commercially available for this purpose.

5 Although these magnetic particles have been used primarily for moving or immobilizing the bound objects, some experimental work has been done on using the particles as tags for detecting the presence of the bound complexes. Historically the detection and quantification of the bound complexes has been accomplished by means of radioactive, fluorescent, or phosphorescent molecules which are bound to the complexes
10 of interest. These prior tagging techniques have various important weaknesses. Radioactive methods present health and disposal problems of the resulting low-level radioactive waste, and they are also relatively slow. Fluorescent or phosphorescent techniques are limited in their quantitative accuracy and dynamic range because emitted photons may be absorbed by other materials in the sample (see Japanese patent publication
15 63-90765, published 21 Apr. 1988, Fujiwara et al.). Furthermore, the signal from the fluorescent or phosphorescent molecules normally decays over a period of hours or perhaps days, at the most.

On the other hand, since the signal from a tiny volume of magnetic particles is exceedingly small, it has been natural that researchers have tried building detectors based
20 on Superconducting Quantum Interference Devices (SQUIDs), which are well known to be the most sensitive detectors of magnetic fields for many applications. There are several substantial difficulties with this approach, however. Since the pickup loops of the SQUID must be maintained at cryogenic temperatures, the sample must be cooled to obtain a very

close coupling to these loops. This procedure makes the measurements unacceptably tedious, and is inappropriate for many biotechnology applications. In addition, the general complexity of SQUIDS and their associated cryogenic components renders them extremely expensive and generally unsuitable for use in an inexpensive desktop instrument. Even a 5 design based on "high T_c" superconductors does not completely overcome these objections, and would introduce several new difficulties, as discussed in Fujiwara et al.

More traditional approaches to detecting and quantifying the magnetic particles have typically involved some form of force magnetometry, in which the sample is placed in a strong magnetic gradient and the resulting force on the sample is measured. In a force- 10 balance magnetometer, for example, the force is measured as an apparent change in the weight of the sample as the gradient is changed. An example of this technique is shown in Rohr patents 5,445,970 and 5,445,971. A more sophisticated technique measures the effect of the particle on the deflection or vibration of a micromachined cantilever (see Baselt et al., *A Biosensor Based on Force Microscope Technology*, Naval Research Lab., J. Vac. 15 Science Tech. B., Vol 14, No. 2, 5pp, April 1996). These approaches are all limited in that they rely on converting an intrinsically magnetic effect into a mechanical response, which must then be distinguished from a large assortment of other mechanical effects such as vibration, viscosity, and buoyancy, which can substantially interfere with the intended measurement.

20 In U.S. patent 6,046,585, Simmonds describes a technique employing a small region (the "gap") in a toroidal magnetizer, within which one places a pair (or multiple pairs) of inductive detection coils and generates a high-frequency oscillating magnetic field (the "drive field"). In this implementation, the individual detection coils are carefully

matched in size but counter-wound, so that in the absence of any other magnetic materials (such as magnetic particles which are part of magnetic bound complexes) the pair of coils produces a zero output voltage. In other words, the drive field couples exactly the same but with opposite polarity to each of the counter-wound coils, so that the voltages from the 5 individual coils algebraically sum exactly to zero.

When an accumulation of magnetic particles on a solid substrate is placed in the gap in close proximity to the detection coils, the oscillating drive field produces a corresponding oscillating magnetization in the magnetic particles, which can then be detected by the detection coils. In the Simmonds patent, the physical size of the particle accumulations are 10 closely matched to the size of one of the detection coils so that the accumulation of particles gives a signal in one coil at a time as the substrate is moved past the detection coil array.

In this sense, one can think of the accumulation of magnetic particles as changing the effective balance of the detection coil array as the particle accumulation moves past the detection coils. As taught in Simmonds, the largest signal is obtained from any given 15 accumulation of magnetic particles when the physical dimensions of the accumulation matches the dimensions of one of the individual coils in the detection coil array.

In the Simmonds implementation, the high frequency oscillating field (typically having a maximum amplitude of 500 to 1000 Oersted) serves two functions. First, it produces a large magnetization in the magnetic particles, and secondly, the high frequency 20 nature of the oscillating field causes the induced magnetization of the magnetic particles to oscillate at the same frequency as the drive field (typically of order 100KHz). Since the voltage induced in the inductive detection coils is proportional to the frequency of the detected signal, using a high frequency drive field with the inductive detection coils

increases the sensitivity of the device and allows one to detect an extremely small quantity of magnetic particles.

- A pending patent application related to the invention disclosed in Simmonds extends the basic concept in several ways. First, it describes the use of an E-core design
- 5 to provide higher symmetry in forming the gap, thereby allowing one to generate large drive fields while maintaining a high degree of balance with respect to the detection coils.
- Secondly, it discloses the use of alternative detection systems, including the use of other sensors such as fluxgate, giant magneto-resistance (GMR), colossal magneto-resistance (CMR), and Hall effect sensors, all still employing an AC drive field.
- 10 The detection system described by Simmonds exploits the fundamental magnetic behavior of the material comprising the magnetic particles to detect and measure their magnetization. The beads used in these applications are typically described as superparamagnetic, meaning that the beads are magnetic only when placed in an applied magnetic field. More specifically, they are not magnetic in the absence of an externally
- 15 applied field, which is equivalent to saying that the beads have no (zero) remanent magnetization. In fact, beads used in biotechnology applications are rather carefully designed to have zero remanent magnetization because beads which do have a remanent magnetization stick together and clump up when placed in solution, causing a variety of problems. Hence, any device designed to detect or measure the magnetization of the beads
- 20 typically used in biotechnology applications can work only if an external field is applied to the beads while the measurement is being performed. This situation should be distinguished from the techniques used in magnetic recording, where the magnetic film on the tape or disc is specifically designed to have a high remanent magnetization and a large

coercive field. (The coercive field of a material gives the value of magnetic field that must be applied to completely demagnetize the material.) In fact, in recording applications the large remanent magnetization is the means by which information is actually stored.

The magnetic particles typically used in biotechnology applications are comprised
5 of iron oxide, which is typically a mixture of Fe_3O_4 and Fe_2O_3 , and measurements on particles from a variety of manufacturers have shown that the saturation magnetization of all these particles, regardless of their size, is about 300 Oersted. This is a very typical saturation field for these type of ferrite materials. To be more specific, this means that below about 500 Oersted, applying a larger field to the particles increases the magnetization
10 of the particles, potentially increasing the signal to be detected. At fields above the saturation field, however, this effect is greatly reduced so that further increases in the applied magnetic field produce little or no increase in the magnetization of the particles. Furthermore, in virtually every magnetic detection system, noise sources exist that increase in proportion to the ambient magnetic field. Hence, increasing the applied field beyond the
15 saturation level can actually degrade the measurement by decreasing its signal-to-noise ratio. The increase in the applied field can also make the undesired contribution to the signal from ferromagnetic contaminants more apparent. Hence, if one wishes to determine the number of particles present by measuring their magnetization, the optimal signal-to-noise ratio for such a measurement will normally be achieved by applying a magnetic field
20 which is about the same as the saturation field of the particles – in our case about 500 Oersted.

As discussed above, the Simmonds patent describes a technique for making quantitative measurements of superparamagnetic particles in bound complexes by applying

a large oscillating magnetic field to the particles and detecting the oscillating magnetization induced in the particle. In this implementation, the sensors must be of the type which function well in the presence of a large oscillating magnet field. The Simmonds apparatus is extremely sensitive and works very well. However, there are several factors which add 5 complexity to the Simmonds design. Most importantly, because the Simmonds detection system works at a high frequency (typically about 100KHz), there are capacitive coupling effects between the sample/substrate combination and the detection coils. In addition, such high frequency systems are always subject to phase shifts between the applied AC drive field and the detected signal. These effects can be very large when operating such a 10 detection system at 100KHz, and must be precisely accounted for if the system is to make an accurate measurement of the magnetization of the particles. Furthermore, generating the high frequency AC drive field in the gap of the toroidal magnetizer requires a significant amount of power, producing the possibility of thermal drifts in the detection electronics, especially immediately after the unit is first energized. The high power requirements of the 15 AC drive field also impose a limitation on the length of time during which any such system can operate when running on battery power. And finally, the AC drive in the magnet and coil can potentially generate RF emissions which must be guarded against.

DISCLOSURE OF INVENTION

20 Broadly speaking, the present invention provides a greatly simplified and inexpensive method and apparatus for directly sensing and measuring very small accumulations of magnetic particles (for example, magnetite) and consequently, the bound complexes of interest.

A central feature of this invention is the use of a DC magnetic field (which replaces the time varying drive field in the prior art) to induce a magnetization in the magnetic particles, combined with the use of Hall sensors to detect the induced magnetization. The advantages of using a DC field instead of a time varying field are significant.

5 Generating a DC magnetic field in the implementation of this invention requires no field generating power source, is much simpler to implement than the prior AC driven system in the prior art, and can reduce the cost of the components by about two orders of magnitude. The requisite DC magnetic field can be generated without power consumption by using inexpensive permanent magnets and one or more pieces of iron to provide the
10 appropriate field profile. In an exemplary prototype, the components used to produce the DC magnetic field cost less than about 25 cents. In contrast, the components used to generate the high frequency AC field used in previous devices cost in excess of twenty dollars and require significant power.

The power requirement to generate the 100KHz AC field also limits the volume of
15 the measurement region (the gap) in the devices which use an AC drive field, because the power required to generate the field increases with the volume of the gap. Increasing the ratio of area to height of the gap improves the field uniformity in the gap, but in systems which use AC drive fields this carries the penalty of increased power consumption.
Increasing the volume of the gap when using a DC magnetic field requires only that
20 correspondingly larger permanent magnets be used. A prototype system achieved fields in the order of 1000 Oersted in gaps having more than twice the volume of the Simmonds AC system.

The rather large magnetic field required to optimize these measurements (of order 500 Oersted) is incompatible with some types of sensors. However, the sensitivity of Hall sensors is not substantially degraded in high fields. In fact, Hall sensors can be designed to perform optimally in fields of this magnitude. The sensor area should also be matched 5 to the sample size to maximize measurement sensitivity. While other types of Hall sensors, including GMR and CMR sensors, can be engineered to meet the above criteria, Hall sensors matching these criteria are readily available and inexpensive.

A typical Hall sensor that might be used in this type of implementation is biased with approximately 10 to 20 millamps of current. The output voltage of the sensor is 10 proportional to both the applied field and the bias current. Hence, variations in the bias current will produce corresponding variations in the output signal, and it can be difficult electronically to produce extremely stable DC currents. This problem can be easily addressed, however, by applying an AC current to the Hall sensors, typically at a few kilohertz, which allows the generation of very stable peak amplitudes. Biasing the Hall 15 sensors in this fashion also allows the detection system to work at a few kilohertz, thereby taking advantage of phase detection techniques to greatly improve the achievable signal-to-noise levels. (However, it should be understood that an AC current is not required in this invention, in which case there is simply a more stringent demand on the stability of the electronic circuitry that supplies the bias current for the sensors.)

20 A detection system using a DC magnetic field will also be largely immune to capacitive effects between the sample and the Hall sensors. In the high-frequency AC system of Simmonds, the dielectric properties in the sample substrate can cause significant capacitive coupling between the inductive detection coils, producing spurious signals.

While these can be rejected using appropriate phase detection schemes, the DC system using Hall sensors is highly resistant to AC-coupled capacitive effects.

In the preferred embodiment, two individual Hall effect sensors are placed next to each other in an applied magnetic field, to form a matched pair of sensors. Each sensor 5 produces a signal indicative of the magnetic field detected by the sensor. The signal from one sensor is subtracted from the other to form a resultant signal indicative of the difference in magnetic field in one sensor versus the signal in the other sensor. Performing this subtraction of signals electronically will significantly attenuate the unwanted resultant signal due to the applied field. Such a configuration of sensors is known as a "gradiometer" 10 in the magnetic sensing industry.

In practice the measurement is performed by moving a well-defined pattern of magnetically susceptible particles past the two Hall sensors and in close proximity to them, while the particles are simultaneously exposed to the DC magnetic field. As taught in the Simmonds prior art, it is important to have the spatial dimensions of the pattern of magnetic 15 particles closely match the physical dimensions of the Hall sensor. In this case, the pattern of magnetic particles is detected by the first Hall sensor as it moves past, and then after leaving the detection area of the first sensor, it is subsequently detected by the second Hall sensor. Since the two Hall sensors are connected such that they produce signals of opposite polarity, the difference signal between the two sensors is a function of the position of the 20 spatial pattern as it moves past the two sensors, thereby indicating the number of particles present.

BRIEF DESCRIPTION OF DRAWING

The objects, features and advantages of the invention will be more clearly perceived from the following detailed description, when read in conjunction with the accompanying drawing, in which:

- 5 Fig. 1 is a perspective representation of a preferred embodiment of the apparatus of this invention;
- Fig. 2 shows a Hall sensor as employed in the Fig. 1 embodiment;
- Fig. 3 is a perspective view of an alternative embodiment of the invention;
- Fig. 4 is a block diagram of exemplary circuitry which would be employed with the
- 10 Fig. 1 embodiment;
- Fig. 5 is a block diagram of exemplary circuitry which could be employed with the Fig. 3 embodiment;
- Fig. 6 is a block diagram incorporating an alternative manner of biasing the Hall sensors of Fig. 1;
- 15 Fig. 7 is a schematic cross section showing the motion of the sample relative to the sensors of Fig. 1; and
- Fig. 8 is a plot of sensor outputs pursuant to the motion illustrated in Fig. 7.

BEST MODE FOR CARRYING OUT THE INVENTION

- 20 With reference now to the drawing, and more particularly to Fig. 1, there is shown an apparatus 10 configured in accordance with the present invention. Permanent magnet structure 11 is shown as having an E configuration, with gap 12 formed between middle leg segments 13 and 14. The magnet is comprised of magnet elements 11A and 11B and iron pole pieces 11C and 11D. Hall sensors 15 and 16 are mounted on surface 17, which is

contemplated to be a flexible printed circuit board providing all the external connections required between the Hall sensors and circuitry to which they are connected by means of the leads in tail 18.

Sample 21 is placed in a defined pattern (generally 1mm x 2mm) on substrate 22
5 and is moved into gap 12 past Hall sensors 15 and 16 to provide output signals from the
Fig. 4 circuitry, for example, as discussed in detail below. Further details of this motion
and the sensor outputs will be set out later in discussing Figs. 7 and 8.

As an alternative improvement, substrate 22 may be formed with extension 20 on
which is printed bar code 19. The bar code is read by optical detector or bar code reader 28,
10 shown with appropriate electrical leads 29. The bar code is spaced from sample pattern 21
by a predetermined distance and reader 28 has a fixed position with respect to the Hall
sensors. The signals from the reader can then provide information about the position of the
sample pattern with respect to the Hall sensors.

As contemplated, the optical detector is a fairly sophisticated commercial device
15 which issues two pulses each time one of the bar code lines passes through the detector.
The first pulse corresponds to the leading edge of the bar coded line, and the second pulse
(in quadrature) corresponds to the trailing edge of the bar coded line. In this
implementation, these pulses are used to trigger the data collection electronics which
measures and stores the voltage output of the two Hall sensors, and these pulses are also
20 used to control the current reversal when an AC current is used to bias the Hall sensors.

In a similar manner, the pulses from the optical detector (or perhaps a second optical
detector) can be used to initiate and terminate the data collection process. Hence, the bar
code information can tell the electronic control system when to start and stop the data

collection, as well as provide the position information for each measurement of the signal from the Hall sensors as the sample moves past.

The principal of operation of a Hall sensor is shown in Fig. 2. Low frequency AC is applied at I₊ and I₋ to bias or excite Hall sensor 15, the sensitive area 15B of which is on substrate 15A. Output voltages V₊ and V₋ are applied to the Figs. 4 and 5 circuitry as will be explained in greater detail below. The applied magnetic field from magnet 11 is represented by arrow 23.

The circuit of Fig. 4 relates to the Fig. 1 embodiment. This preferred embodiment has the Hall sensor pair excited by a low frequency alternating current 24. The output voltage signals from the sensor pair are sensed in a high impedance manner by amplifiers 25 and 26. This circuitry then produces signals indicative of the sum and difference of the sensor signals in the pair. Further signal processing by balancing stage 27 is accomplished by adjusting the balance gain by means of element 30 to minimize the output signal of this stage in the absence of a magnetic sample in the proximity of the sensors. The resultant signal from the balancing stage is then used as the signal input to lock-in stage 31. A reference input to the lock-in stage is preferably synchronously coupled from excitation source 24 via signal amplifier 32. The output of the lock-in stage represents the amount of particle material present. A suitable output could be obtained in other ways without the synchronously coupled excitation source to the lock-in stage.

The lock-in stage is employed for signal processing by the lock-in technique. This technique is common and is also known as "phase sensitive detection," "mixing," and "heterodyning" in the art of signal processing. It is described as a signal processing stage having two inputs and an output. The technique entails exciting the measurement apparatus

with an AC signal, and looking for an output signal synchronous to the alternating excitation. This technique serves to reject signal noise and interference present in the sensing apparatus. In the Fig. 4 embodiment, alternating excitation means 24 is the current used to excite the Hall sensors. A signal synchronous with the excitation signal is used as

5 the "reference" input signal to the lock-in signal processing stage, as is commonly recognized in the art and as discussed above. The resultant difference signal from the sensors is configured as the other input to the lock-in stage. This difference signal may be optionally conditioned by the balancing stage mentioned above. In the case of the instrument described here, the output signal of the lock-in stage will be indicative of the

10 amount of particle material 21 present. It is desirable to select the excitation frequency such that signal detection occurs in a region of frequency space where sensor noise and interference are minimized. It may also be desirable to detect at a frequency that is a multiple of the excitation frequency.

The actual implementation of the signal processing described above may in

15 principle be accomplished by many available means, including active and passive analog electronics, digital signal processing, or a combination of these. The implementation may also include analog-to-digital or digital-to-analog conversion, or both.

The requirement to pass the sample to be measured through a very narrow gap, as

shown in the configuration of Fig. 1, may not be acceptable in some applications. For

20 example, when the sample pattern has been deposited on a very thick substrate or even on the surface of some bulk material, it may be impossible to pass such a solid surface through a sufficiently small gap. For this type of application, the requisite DC magnetic field may be generated by a configuration such as shown in Fig. 3, in which sharply shaped iron "pole

tips" generate a DC magnetic field from the back side of the Hall sensors. While this so-called "single sided" magnet design does allow the use of larger and bulk substrates, it has the disadvantage that the magnetic field at the position of the Hall sensors (and the sample) is non-uniform. This makes calibration of the instrument difficult, and can degrade the 5 accuracy of the quantitative measurements to be made. For example, the non-uniform magnetic field will make the measurements strongly dependent on the separation between the sample and the sensors, so that small variations in the position of the sample will produce large uncertainties in the measurement. However, the output of the Fig. 3 apparatus can be useful in situations where the Fig. 1 embodiment cannot be used and a 10 good estimate of the particle count is needed.

This measurement in the Fig. 3 apparatus is made by moving a well-defined pattern of magnetically susceptible particles 36 on substrate 37 into proximity of sensor 41 in the direction of arrow 42 and simultaneously in proximity to the magnetic field applied by means of permanent magnet structure 43. Magnet structure 43 is comprised of permanent 15 magnet 38 and sharply shaped pole pieces 39, which are secured together by mounting device 40. The mounting device may be any non-conductive material such as plastic. In order to provide a surface on which to mount Hall sensor 41, the volume between pole pieces 39 and magnet 38 may be filled with plastic 40A. That may be a separate plastic element or it may be unitary with mounting device 40. Mounting device 40 is configured 20 to be secured to a surface and holes 40B are provided to facilitate such attachment. The resulting signal, as a function of distance between the patterned particles and the sensor, compared with the signal when no sample particles are present, is indicative of the amount of particle material 36.

A circuit diagram for the embodiment of Fig. 3 is shown in Fig. 5. Here, Hall sensor 41 is excited by a low frequency alternating current 44. The output voltage signal from the sensor is sensed in a high impedance manner by amplifier 45. A signal proportional to the excitation is then summed at 46 with this signal indicative of the voltage 5 across the sensor. Signal balancing occurs by adjusting the balancing gain in balancing stage 47 with balancing device 48 to minimize the output signal of this stage in the absence of a magnetic sample in the proximity of the sensors. The resulting sum signal is then detected by lock-in stage 51 using a reference signal synchronous to the excitation signal through amplifier 52 in the same manner as described in the preferred gradiometer embodiment above. The output of the lock-in stage represents the amount of particle 10 material 36 present.

With reference to Fig. 6 it can be appreciated that the invention contemplates two ways to bias the Hall sensors. In Fig. 4, Hall sensors 15, 16 are connected in series, so exactly the same bias current flows in both sensors. Since any variations in the bias current 15 cause a change in the output voltage, any changes in one sensor will be exactly cancelled by the exact same change (of the opposite sign) in the other sensor. However, since there is also a significant voltage drop along the length of each of the Hall sensors, this also means that the voltage points labeled V+ on the two Hall sensors are at rather different voltage potentials. This prevents simply connecting the V- connection at the first sensor 20 to the V+ connection of the second sensor. (Connecting these two points effectively produces a short-circuit current path for the bias current – from the V- point of the first sensor to the V+ point of the second sensor.) As shown in Fig. 4, this problem is avoided by using separate differential amplifiers 25, 26 attached to each of the Hall sensors. A

large voltage difference between the two Hall sensors is also disadvantageous when using an AC bias current, because the voltage potentials at the voltage points on both sensors rapidly switch between fairly large potentials.

An alternative configuration is shown in Fig. 6 in which bias current 55 to the two Hall sensors 15, 16 is connected in parallel. This design is more susceptible to erroneous signals arising from variations in the bias current through one sensor, because such variations will not necessarily be exactly matched by a similar variation in the other sensor. However, in this design the voltage potentials at the V+ and V- points on the two sensors will all be at about the same voltage. Indeed, if the sensors were perfectly matched, in the absence of any magnetic field (such that the Hall voltage is zero) all four of the voltage taps on the two sensors would be at exactly the same voltage. Hence, in this configuration, the voltage taps of the two Hall sensors are connected together and a single differential amplifier 56 is used to detect the difference of the Hall voltages across the two sensors. Reference input through amplifier 57 and balancing stage 58 and lock-in stage 59 function in the same manner as previously described.

Either of these two configurations could be a preferred implementation, depending on the specific design of the rest of the measurement system. For example, the parallel bias scheme might be preferred when using AC current bias, thereby eliminating the large voltage swings when using an AC bias with the sensors wired in series. Conversely, the series bias scheme may be more desirable when using DC current bias. In any event, any combination of series/parallel and AC/DC can be used, depending on the features to be emphasized.

With reference now to Figs. 7 and 8, more details of the sensor response and relative motion of the sample and sensors are provided. In order to make the magnetic signal distinguishable from the background it is advantageous to move the sample relative to the sensor while recording the electronic sensor signal. This is illustrated in Fig. 7. As

5 sample 21 moves over one or multiple sensors (15, 16) the magnetic flux of the sample will couple into the sensor. The sensor signal (Fig. 8), recorded as a function of position, reflects the geometry of the sample pattern and the spatial response of the sensor. If there are two sensors in a gradiometer configuration, as in Fig. 1, the sample will generate a signal of one polarity while close to one sensor, it will generate a signal of the opposite

10 polarity while close to the other sensor.

Fig. 8 illustrates an ensemble of measurements plotted versus sample position. The solid curve represents a curve fit of an ideal response function using the method of least squares. It is clear that using both the position and signal voltage information, an absolute calculation of the magnetic moment of the sample can be derived. This is independent of

15 the level of magnetic background and independent of any electronic or imbalance offsets in the signal voltage.

While the magnet pole pieces are preferably made of iron, the requirement is to have high magnetic permeability. They could be made of cobalt, nickel, or an appropriate alloy having the necessary characteristics. The pole pieces could be curved so that the gap, such as gap 12, is out front. Instead of the two magnets of Fig. 1, a single C-shaped magnet could be used. Substrate 22 could be a lateral flow membrane having region of interest 21. The substrate is preferably non-conductive and made of non-magnetic material, and could be made of plastic, wood, or other material satisfying these requirements. Substrate 22 can

WO 02/067004

PCT/US02/05116

be moved by hand past the sensors, or the motion may be mechanized by using a stepper motor, a servo motor, or other means of generating motion by which the sample is moved relative to the sensors. The manner of motion is not critical to the invention.

The system of the invention has excellent sensitivity, in the range of 1 nanovolt to 5 10 microvolts. In other words, the invention is for a very sensitive magnetic sensor in the presence of large fields (500-1000 Oersted) to detect very small signals. The signals detected are changes in the magnetic field due to the presence of the target particles and the changes may be in the order of milli-Oersteds. The equation which is operative here is:

$$V = \frac{IB}{end}$$

10 Where V is the voltage change detected;
I is the bias current;
n is the carrier density;
B is the applied field;
d is the thickness of the sensing surface; and
15 e is the carrier charge.

In view of the above disclosure it is likely that modifications and improvements will occur to those skilled in this technical field which are within the scope of the invention as contemplated. Accordingly, the invention is to be limited only by the claims and equivalents thereto.

CLAIMS

What is claimed is:

1. Apparatus (10) for making quantitative measurements of agglutinations of target magnetic particles, said apparatus comprising:
 - a substrate (22) configured to receive samples (21) including said target particles in defined patterns thereon, the samples being comprised of magnetic particles of known size and magnetic characteristics bound to the target particles to form magnetic bound complex samples;
 - a magnet (11) for generating a DC magnetic field;
 - at least one magnetic field sensing element (11A or 11B) having an output signal conductor;
 - means for causing movement between said substrate and the magnetic field so that the samples are placed in operative relationship with said at least one sensing element which has a resultant output signal; and,
 - a signal processor for converting said output signals from said at least one sensing element to provide a signal indicative of the quantity of the samples in a pattern.

2. The apparatus of claim 1, wherein said magnetic field sensing element having an output signal conductor is positioned in the DC magnetic field.

3. The apparatus of claim 1, wherein said at least one sensing element
2 comprises a Hall sensor (15) with a bias excitation current flowing through said Hall
sensor.

4. The apparatus of claim 1 or 2, wherein said at least one sensing element
2 comprises a magneto-resistive sensor.

5. The apparatus of claim 1, wherein said at least one sensing element
2 comprises two Hall sensors (15, 16) with a bias excitation current flowing through said
sensors.

6. The apparatus of claim 1 or 2, wherein said at least one sensing element
2 comprises two Hall sensors (15, 16), each adapted to connect to a source of bias excitation
current to be applied to said sensors.

7. The apparatus of claim 2 or 5, wherein the excitation current flows through
2 said Hall sensors in series.

8. The apparatus of claim 2 or 5, wherein the excitation current flows through
2 said Hall sensors in parallel.

9. The apparatus of claim 2 or 3, wherein the excitation current is an AC
2 excitation current connected to said at least one Hall sensor.

10. The apparatus of claim 2 or 5, wherein the excitation current is an AC
2 excitation current connected to said Hall sensors.

11. The apparatus of claim 1 or 2, and further comprising:
2 a code element (19) on said substrate; and
a code reader (28) mounted in position to read said code element when the samples
4 are moved into operative relationship with said at least one sensing element.

12. The apparatus of claim 1, wherein said at least one sensing element senses
2 the difference in the DC magnetic field caused by the presence of the samples.

13. The apparatus of claim 5, wherein said at least one sensing element senses
2 the difference in the DC magnetic field caused by the presence of the samples.

14. The apparatus of claim 6, wherein said at least one sensing element senses
2 the difference in the DC magnetic field caused by the presence of the samples.

15. The apparatus of claim 1, wherein said signal processor comprises:
2 an amplifier (25) connected to the output of said at least one sensing element;
a balancing stage (27) connected to said amplifier; and
4 a lock-in stage (31), the output of which is the signal indicative of the quantity of
said samples in a pattern.

16. The apparatus of claim 5, wherein said signal processor comprises:
- 2 an amplifier (25) connected to the output of said at least one sensing element;
- 4 a balancing stage (27) connected to said amplifier;
- 6 a lock-in stage (31), the output of which is the signal indicative of the quantity of said samples in a pattern; and
- means for synchronously coupling excitation current to said lock-in stage.

17. The apparatus of claim 2, and further comprising:
- 2 means for connecting said sensing means to a source of excitation current;
- 4 said sensing means comprises a Hall sensor (15) connected to said means for connecting to the bias excitation current source.

18. The apparatus of claim 2, wherein said signal processor comprises:
- 2 an amplifier (25) connected to the output of said at least one sensing element;
- 4 a balancing stage (27) connected to said amplifier; and
- 6 a lock-in stage (31), the output of which is the signal indicative of the quantity of said samples in a pattern.

19. The apparatus of claim 5, wherein said signal processor comprises:
- 2 an amplifier (25) connected to the output of said at least one sensing element;
- 4 a balancing stage (27) connected to said amplifier;
- 6 a lock-in stage (31), the output of which is the signal indicative of the quantity of said samples in a pattern; and

6 means for synchronously coupling excitation current to said lock-in stage.

20. A method for quantitatively measuring target particles, said method

2 comprising:

4 applying at least one sample pattern in a predetermined configuration on a substrate
4 (22), the sample pattern being comprised of magnetic particles of known size and magnetic
characteristics coupled to the target particles to form magnetic bound complex samples;

6 creating a DC magnetic field;

8 causing relative motion between the substrate and the magnetic field to place the
sample pattern within the magnetic field to excite the magnetic particles in the pattern and
cause the magnetic particles to perturb the magnetic field;

10 sensing the magnetic field changes caused by the magnetic particles; and

creating a signal representative of the quantity of magnetic particles in the field.

21. The method of claim 20, wherein said relative motion generates said
2 magnetic field and said sensing step senses the magnetic field generated by the magnetic
particles.

22. The method of claim 20, wherein said sensing is accomplished by means of
2 at least one Hall sensor (15).

23. The method of claim 22, and further comprising applying an AC bias
2 excitation current (24) to the at least one Hall sensor.

24. The method of claim 20, and further comprising sensing the position of
2 the substrate as the sample pattern is moved into the magnetic field.

25. The method of claim 20, wherein the magnetic field is created by means of
2 a magnet (11).

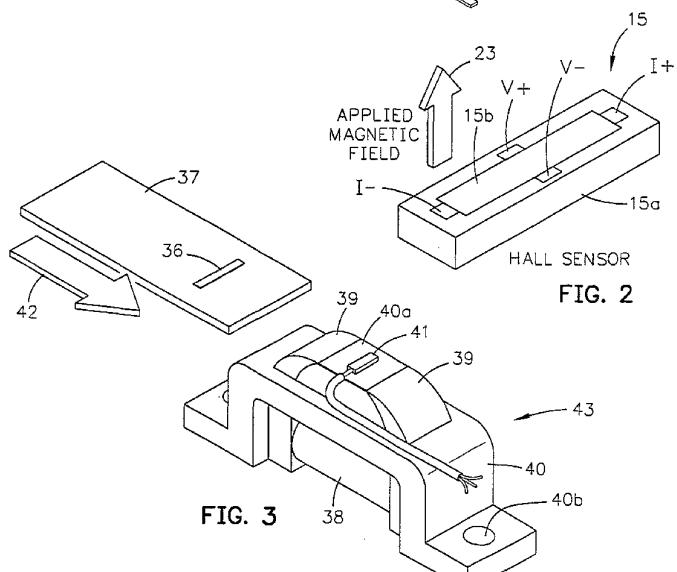
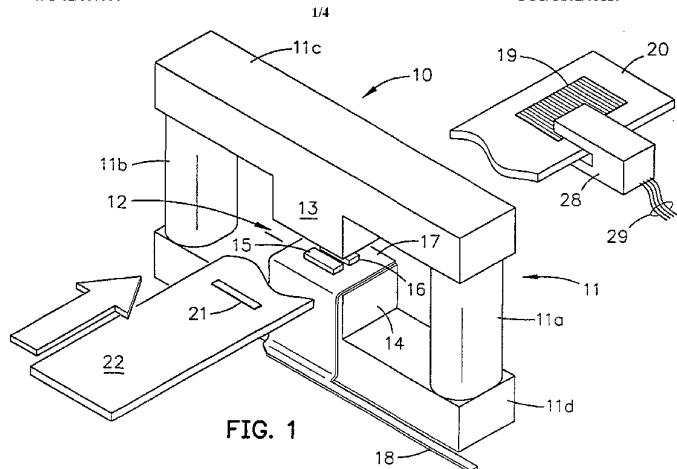
26. The method of claim 20, wherein the signal representing the quantity of
2 magnetic particles in the field is created by a signal processor.

27. The method of claim 26, and further comprising applying an AC bias
2 excitation current to the at least one Hall sensor and to the signal processor.

28. The method of claim 20, wherein said sensing is accomplished by means of
2 two Hall sensors (15, 16) connected in gradiometer configuration.

29. The method of claim 28, and further comprising applying an AC bias
2 excitation current in series through the Hall sensors.

30. The method of claim 28, and further comprising applying an AC bias
2 excitation current in parallel through the Hall sensors.



31. The method of claim 22, and further comprising determining the position
2 of the substrate with respect to the at least one Hall sensor by means of a code element (19)
on the substrate and a code reader (28) mounted in fixed relationship to the sensor.

32. The method of claim 20, wherein said sensing is accomplished by means of
2 at least one magneto-resistive sensor.

33. The method of claim 32, and further comprising determining the position
2 of the substrate with respect to the at least one magneto-resistive sensor by means of a code
(19) element on the substrate and a code reader (28) mounted in fixed relationship to the
4 sensor.

WO 02/067004

PCT/US02/05116

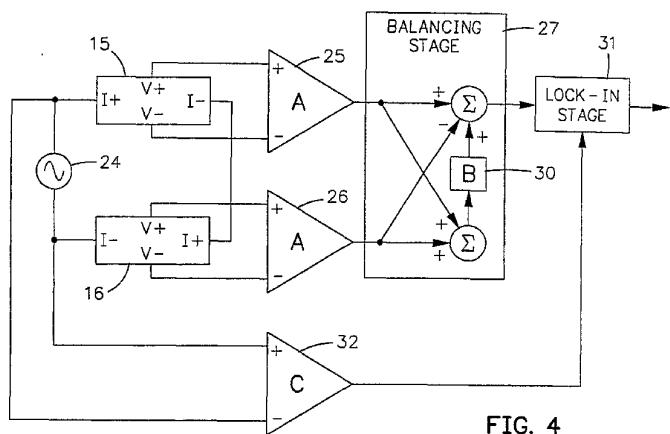


FIG. 4

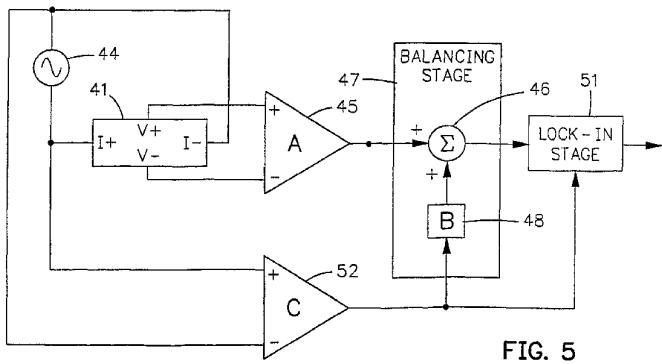


FIG. 5

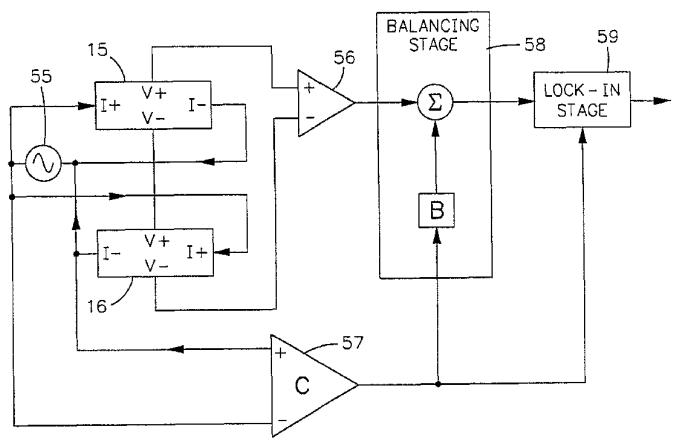


FIG. 6

WO 02/067004

PCT/US02/05116

4/4

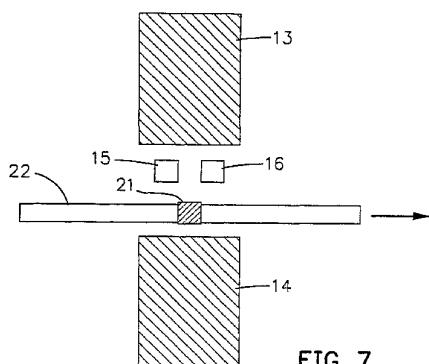


FIG. 7

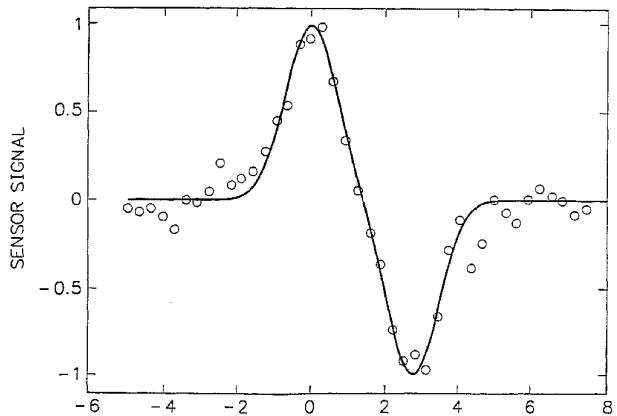


FIG. 8

SAMPLE POSITION

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
29 August 2002 (29.08.2002)

PCT

(10) International Publication Number
WO 02/067004 A1(51) International Patent Classification⁵: G01R 33/12,
G01N 33/48, 33/487(US). DIEDERICHS, Jost, H. [DE/US]; 12956 Christ-
man Lane, Poway, CA 92064 (US). JENSEN, Kurt, G.
[US/US]; 13014 Papago Drive, Poway, CA 92064 (US).
BLACK, Randall, C. [US/US]; 5639 Glenstone Way, San
Diego, CA 92121 (US).

(21) International Application Number: PCT/US02/05116

(22) International Filing Date: 12 February 2002 (12.02.2002)

(24) Agent: MAXHAM, Lawrence, A., The Maxham Firm,
750 B Street, Suite 3100, San Diego, CA 92101 (US).

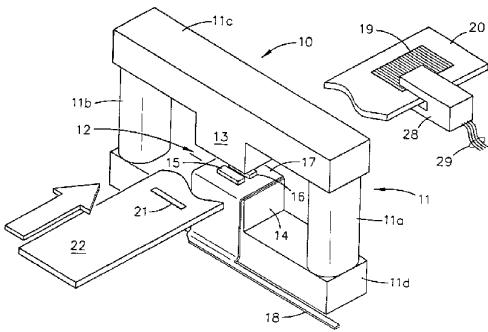
(25) Filing Language: English

(83) Designated States (national): AL, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, IIR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, ME, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TI, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

(26) Publication Language: English

(30) Priority Data: 09/785,403 16 February 2001 (16.02.2001) US

(71) Applicant (for all designated States except US): QUANTUM
DESIGN, INC. [US/US]; 11578 Sorrento Valley
Road, Suite 30, San Diego, CA 92121 (US).


(72) Inventors; and

(75) Inventors/Applicants (for US only): SAGER, Ronald, E.
[US/US]; 1734 Mallow Court, Carlsbad, CA 92009 (US);
SIMMONDS, Michael, B. [US/US]; 123 Commerce Drive,
Suite B1, P.O. Box 2846, Mammoth Lakes, CA 93546(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR DETECTION AND MEASUREMENT OF ACCUMULATIONS OF MAGNETIC
PARTICLES

WO 02/067004 A1

(57) Abstract: Apparatus for detection and measurement of agglomerations of magnetic particles employing Hall sensors (15, 16). A low frequency AC signal (24) is employed to excite or bias the Hall sensors which reside in a DC magnetic field (23). The particles are moved into operative relationship with the Hall sensors in order to generate a signal representing the number of particles on the substrate (22). The method for such detection and measurement is also part of the invention.

WO 02/067004 A1

(BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NL, SN, TD, TG). Date of publication of the amended claims: 24 October 2002

Published:
— with international search report
— with amended claims

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		Inte nal Application No PCT/US 02/05116
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 G01R33/12 G01N33/48 G01N33/487		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 G01R G01N G01D		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, COMPENDEX, INSPEC		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	GB 2 207 510 A (MANCHESTER LASERS;UNIV MANCHESTER) 1 February 1989 (1989-02-01) abstract page 1 -page 10 figures 1-5 ---	1-3, 12-14, 20-22,25
A	US 6 046 585 A (SIMMONDS MICHAEL BANCROFT) 4 April 2000 (2000-04-04) cited in the application column 4, line 1 -column 7, line 24 figures 1-6 ---	1,7, 11-16, 20,21, 24,26, 28,31-33 -/-
<input checked="" type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents:		
A document defining the general state of the art which is not considered to be of particular relevance		
E earlier document but published on or after the international filing date		
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		
T later document published after the international filing date but prior to the priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
X document of particular relevance to the claimed invention; combination of document and claimed invention is sufficient to involve an inventive step when the document is taken alone		
Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.		
Date of the actual completion of the International search 23 July 2002		Date of mailing of the international search report 31/07/2002
Name and mailing address of the ISA European Patent Office, P.B. 5618 Patentlaan 2 NL-2233 RA Hague Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3076		Authorized officer Modesto, C

Form PCT/ISA/210 (second sheet) (July 1982)

INTERNATIONAL SEARCH REPORT		Int'l Application No PCT/US 02/05116
C(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 537 861 A (ELINGS VIRGIL B ET AL) 27 August 1985 (1985-08-27) cited in the application column 7, line 3 -column 17, line 62 figures 1-8 -----	1,2,4, 11-16, 18-21, 24-26, 31-33

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT				Inte nal Application No PCT/US 02/05116
Information on patent family members				
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
GB 2207510	A 01-02-1989	AU 2081488 A WO 8900702 A1	13-02-1989 26-01-1989	
US 6046585	A 04-04-2000	AU 9207998 A BR 9815566 A CA 2311301 A1 CN 1279764 T EP 1036328 A1 JP 2001524675 T WO 9927369 A1 US 6275031 B1 US 2001052769 A1 US 2001052770 A1	15-06-1999 31-10-2000 03-06-1999 10-01-2001 20-09-2000 04-12-2001 03-06-1999 14-08-2001 20-12-2001 20-12-2001	
US 4537861	A 27-08-1985	CA 1214991 A1 EP 0117988 A1 JP 59147266 A	09-12-1986 12-09-1984 23-08-1984	

Form PCT/ISV/210 (patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,P,L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

(72)発明者 シモンズ,マイケル,ピー.

アメリカ合衆国 カリフォルニア州 93546 マンモス レイクス,ピー.オー.ボックス
2846,スイート ピー1,コマース ドライブ 123

(72)発明者 ディードリクス,ジョスト,エイチ.

アメリカ合衆国 カリフォルニア州 92064 ポウェイ,クリスマン レーン 12956

(72)発明者 ジエンセン,カート,ジー.

アメリカ合衆国 カリフォルニア州 92064 ポウェイ,パパゴ ドライブ 13014

(72)発明者 ブラック,ランダル,シー.

アメリカ合衆国 カリフォルニア州 92121 サン ディエゴ,グレンストーン ウェイ 5
639

F ターム(参考) 2G017 AC09 AD53 BA05 CA01 CA21 CB04 CB06 CC02 CC03
2G053 AA06 AB01 BA08 BB03 BB05 BB11 BC02 BC03 BC20 CA05
CA06 CB16 CB22