
(19) United States
US 20090021522A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0021522 A1
Burley et al. (43) Pub. Date: Jan. 22, 2009

(54) METHODS AND APPARATUS FOR
MULTIPLETEXTURE MAPSTORAGE AND
FILTERING

(75) Inventors: Brent D. Burley, Monterey Park,
CA (US); J. Dylan Lacewell, Salt
Lake City, UT (US)

Correspondence Address:
DISNEY ENTERPRISES, INC.
C/O TOWNSEND AND TOWNSEND AND CREW
LLP
TWO EMBARCADERO CENTER, 8TH FLOOR
SAN FRANCISCO, CA 94111-3834 (US)

(73) Assignee: Disney Enterprises, Inc., Burbank,
CA (US)

(21) Appl. No.: 12/176,278

(22) Filed: Jul.18, 2008

Related U.S. Application Data

(60) Provisional application No. 60/961,363, filed on Jul.
19, 2007.

Publication Classification

(51) Int. Cl.
G09G 5/00 (2006.01)

(52) U.S. Cl. .. 34.5/582

(57) ABSTRACT

A method for a computer system including receiving a file
comprising textures including a first and a second texture, and
metadata, wherein the first texture need not have a predeter
mined geometric relationship to the second texture, wherein
the metadata includes identifiers associated with textures and
includes adjacency data, associating the first texture with a
first location on an object in response to an identifier associ
ated with the first texture, associating the second texture with
a second location on the object in response to an identifier
associated with the second texture, determining an edge of the
first texture is adjacent to an edge of the second texture in
response to the adjacency data, and performing a rendering
operation with respect to the first and the second Surface on
the object to determine rendering data in response to the first
texture and to the second texture.

300

SURFACE OF OBJECT DETERMINED

310

DETERMINE FACES ON THE SURFACE

320

TEXTURE MAPS DETERMINED

330

ASSOCATE TEXTURE MAPS TO FACE
IDENTIFIERS

340

DEFINE TEXTURE FILE TO INCLUDETEXTURE
MAPS AND METADATA (e.g. ADJACENCYDATA)

350

STORE TEXTURE FILE IN MEMORY

US 2009/0021522 A1 Jan. 22, 2009 Sheet 1 of 6 Patent Application Publication

PRIOR ART

FIG. 1B
PRIOR ART

Patent Application Publication Jan. 22, 2009 Sheet 2 of 6 US 2009/0021522 A1

FIG. 2B

Patent Application Publication Jan. 22, 2009 Sheet 3 of 6 US 2009/0021522 A1

... ...------- - 2 - 2 \ \ 18 1\ 3 17 3 x

- N.
r \ t. O A-12 12 N. --K 12 X 2 N3 g/

i 2-s /
13 7 13 K

| 8 |
t. O is I t-9-15 - 0 |

300
|

SURFACE OF OBJECT DETERMINED -

310
|

DETERMINE FACES ON THE SURFACE u

32O
|

TEXTURE MAPS DETERMINED -/

330

ASSOCATE TEXTURE MAPS TO FACE /
IDENTIFIERS

340

DEFINE TEXTURE FILE TO INCLUDETEXTURE /
MAPS AND METADATA (e.g. ADJACENCY DATA)

|

STORE TEXTURE FILE IN MEMORY -

Patent Application Publication Jan. 22, 2009 Sheet 4 of 6 US 2009/0021522 A1

400

DETERMINE SURFACE OF OBJECT TO BE
RENDERED

41 O

RETRIEVE TEXTURE FILE ASSOCIATED WITH
SURFACE OF OBJECT

420

ASSOCATE TEXTURE MAPS INTEXTURE FILE
TO FACE DENTIFIERS IN PROGRAMMEMORY

430

RETRIEVE ADJACENCY INFORMATION OF
TEXTURE MAPS FROM TEXTURE FILE

440
ORIENT TEXTURE MAPS ACCORDING TO
ADJACENCY INFORMATION IN PROGRAM

MEMORY

450

FILTERACROSS TEXTURE MAP / FACE
IDENTIFIER BOUNDARIES

460

USE FILTERED TEXTURE MAPS FOR
RENDERING PURPOSES

470

RENDER IMAGE INCLUDING SHADED SURFACE
OF OBJECT

48O

STORE REPRESENTATION OF IMAGE UPON
TANGIBLE MEMORY

490

RETRIEVE REPRESENTATION OF IMAGE FOR
DISPLAY TO USERS

FIG. 4

US 2009/0021522 A1 Jan. 22, 2009 Sheet 5 of 6 Patent Application Publication

FIG. 5A

FIG. 5B

US 2009/0021522 A1 Jan. 22, 2009 Sheet 6 of 6 Patent Application Publication

\

099)
~
)

· · |

Oz9 ,

>HO_LINOWN

069

US 2009/0021522 A1

METHODS AND APPARATUS FOR
MULTIPLETEXTURE MAPSTORAGE AND

FILTERING

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of U.S. Provi
sional Application No. 60/961,363, filed Jul. 19, 2007,
entitled “Per-Face Texture Mapping, which disclosure is
incorporated herein by reference for all purposes.

BACKGROUND OF THE INVENTION

0002 The present invention relates to computer generated
imagery, e.g. computer animation. More specifically, the
present invention relates to methods and apparatus for pro
viding texture maps to Surfaces with increased efficiency and
increased quality.
0003. The inventors of the present invention have previ
ously utilized a computer animation pipeline for modeling
elements for computer animation. Many of these elements
have been modeled using Catmull-Clark subdivision surfaces
and shaded using general-purpose shaders with multiple lay
ers (e.g. a dozen or more) of attributes Such as color and
displacement. These attributes are typically controlled by
texture maps that have been created using a combination of
procedural generation methods and hand-painting methods.
0004. The inventors of the present invention recognize that
using texture maps based upon procedurally-generated tex
tures generally provide faster and more predictable rendering
times. Further, procedurally-generated textures often pro
duce lower filtering and anti-aliasing artifacts. However,
purely procedural shaders are often computationally expen
sive, difficult to art direct, and are often difficult to anti-alias.
Accordingly, the inventors have determined that various
embodiments of computer animation pipelines should be
parameterized for painting.
0005. The inventors recognize that many parameterization
methods for an animation pipeline have been contemplated,
but few of them have considered the impact of pre-processing
ona production pipeline. For example, a pipeline with manual
intervention (e.g., manual adjusting of seam placement) is
time consuming for the user. As another example, a fully
automatic pipeline is also time consuming, as parameterizing
a mesh introduces an extra dependency in an animation pipe
line in-between modeling and painting/rendering.
0006. The inventors have previously implemented texture
mapping pipelines based upon decomposing Subdivision Sur
faces into rectangular groups of faces which are termed
“patches. Using conventional techniques, texture maps 100
are mapped from texture map coordinates of (s,t) to each of
the patches, using Surface coordinates (u, v). An example of
this mapping is illustrated in FIG. 1A. Such embodiments
have been considered robust but resource intensive. For
example, because each patch has required a separate texture
file 100, often a large number of separate texture files are
required for each surface. In light of this, within a scene, the
I/O (input/output) cost of accessing, for example 1,000,000
separate texture files, is considered by the inventors as very
time consuming. Additionally, other per-patch runtime costs
in tools for processing the patches (layout and animation
tools, painting tools, RIB generators, etc.) also reduce perfor

Jan. 22, 2009

mance. An additional drawback includes that patches must be
generated for a mesh before it can be painted or rendered with
full shading.
0007. Other drawbacks determined by the inventors
include that such pipelines often produce visual artifacts due
to clamping at patch boundaries. Such artifacts are often
visible when Smooth displacement maps are applied to a
Surface with a strong specular or reflective response. An
example of this is illustrated in FIG. 1B where a surface is
rendered with five patches. In FIG. 1B, patch seams 110 are
illustrated by the star-like pattern emanating from the center
of the surface. Some work-arounds for such artifacts have
included: limiting how users can define Smooth features of an
object, by modeling Smooth features into the base Surface
rather than using displacement maps; by adding noise to
displacement maps (if appropriate to the look); and/or by
using normal maps in addition to, or instead of displacement
maps. Such limitations undesirably restrict the creativity and
flexibility of the artists who are charged with producing the
computer generated imagery.
0008. The inventors have considered a number of alterna
tive ways to address the issues described above. However,
many alternatives do not consider the high quality filtering
needs of production rendering, and many do not improve
efficiency, and/or reduce pipeline efficiency.
0009. Once set of techniques utilize planar domains. In
Such techniques, parameterization methods flatten the entire
mesh onto a plane and use the planar coordinates as texture
coordinates. However, unless the mesh has genus 0 (is disk
like), unfolding the mesh requires one or more cuts. This
results in visible seam artifacts when filtering across cuts,
which map to discontinuous boundaries in texture space. One
technique places cuts in areas of high curvature and occlu
Sion. Another technique places cuts in areas of high curvature
and stores sideband data, which allows stitching of the bound
ary for seamless rendering. Such techniques, however do not
provide a solution for prefiltering of mipmaps, or the like.
0010 Distortion is also an issue with the methods above.
To reduce distortion, the mesh can be decomposed into mul
tiple patches which are separately flattened onto charts and
packed into a texture atlas. A drawback to this is that packing
wastes texture space, and seams still are apparent when adja
cent patches map to non-adjacent charts. In some methods, to
hide seams, a Small gutter around rectangular charts are pro
vided at each mipmap level. Additionally, the texture coordi
nates are adjusted so that a trilinear filter never spans a gutter.
All of these additional techniques, however, undesirably
increase the processing time.
0011. Another set of techniques utilize spherical and/or
other domains. In Such techniques, instead of mapping a mesh
to a plane, the mesh is mapped to a sphere, or the like.
Seamless, low-distortion mapping to a sphere were proposed
for genus 1 meshes, and a generalization of spherical map
ping was proposed for arbitrary meshes. Such techniques
sometimes distribute texture area very non-uniformly. In the
case of PolyCube maps, textures are stored on multiple cubes
which roughly approximate the mesh. However, PolyCube
maps have been asserted to be not practical for very complex
meshes, as is common found with state-of the art computer
generated imagery.
0012 Another set oftechniques rely upon projection map
ping, and does not require assigned UVs. In Such techniques,
texture values are looked up with a projection onto a plane or
other parametric Surface. A depth map is then used to prevent

US 2009/0021522 A1

texture values from projecting through geometry. The inven
tors believe that such techniques may work well for more
simple objects and would not obviate the need for a patch
creation step in a rendering pipeline. However, there may be
an increase in cost in painting and rendering of an element.
0013 Additional possible drawbacks includes that mul

tiple projections may be required to cover complex geometry,
and that blending between projections may require some
amount of overpainting and undesirable manual intervention
to remove artifacts. Other possible drawbacks include that
additional texture space and additional texture lookups may
be required. This is because additionally multiple perspective
matrix transforms, depth map and color map lookups may be
necessary per shading point.
0014. Yet another set of techniques rely upon volumetric
textures. In such examples, texture values can be stored in a
Volumetric data structure Such as a 3d grid, an octree, or a
Brick map. Grids, however, require a large amount of storage;
and adaptive, tree-based structures, such brick maps also
require much more storage than 2D textures. Other draw
backs include a logarithmic time for lookups; filtering issues
with Volumetric data, since filtering is linear and takes place
in three-dimensions rather than on a Surface; and colors can
bleed through nearby Surfaces (e.g., clothes and skin), so
those surfaces have to be stored in separate maps.
0015. In light of the above, techniques for providing tex
ture maps to Surfaces with increased efficiency and increased
quality are desired.

SUMMARY OF THE INVENTION

0016. The present invention relates to computer generated
imagery. More specifically, the present invention relates to
methods and apparatus for texture mapping of Surfaces with
increased efficiency and increased quality. In various embodi
ments of the present invention, texturing methods retain the
advantages of patch-based texturing (generality, ease of
painting) while overcoming its drawbacks (patch assignment
step, high cost of disk I/O, displacement filtering artifacts).
0017. In various embodiments, the inventors realized that
traditional two dimensional texture files and filters impose
unnecessary constraints, and that multiple textures may be
stored along with metadata, e.g. adjacency data, face identi
fiers, in fewer (e.g. one) files. Accordingly, filtering across the
boundaries could easily be performed. Such embodiments
reduce or remove filtering seams, and reduce the cost of disk
I/O, since the number of texture files could be greatly reduced
(e.g. one custom texture file or texture data file). Additionally,
various embodiments Support, seamless filtering, thus mak
ing it feasible to assign a separate texture to every face, and
thus eliminating pipeline steps for segmenting the mesh into
patches.
0018. In various embodiments of the present invention, a
texture mapping system for Subdivision Surfaces is described
that reduces or does not require assigned texture coordinates.
This simplifies the production pipeline for computer gener
ated imagery, such as with three-dimensional computer ani
mated features, or the like. As will be described below, faces
of a control mesh are given respective textures using intrinsic
face parameterizations. Further, the textures may be stored in
a single file per mesh. In various implementations, mesh
connectivity information can be stored in the header of the
texture file. This feature enables filtering across face texture
boundaries with reduced visibility or invisible seams, even
for smooth displacement maps. Such features are believed to

Jan. 22, 2009

provide marked improvement over existing filtering methods.
Experimental results are provided to demonstrate that various
embodiments provide enhanced performance, enhanced tex
ture quality, and significant data I/O improvements.
0019. In various embodiments, new texture mapping
methods are disclosed which use the intrinsic per-face param
eterization of a mesh in which each face maps onto a unit
square Accordingly, no preprocessing is required to assign
texture coordinates. Various embodiments also reduce I/O
costs of accessing texture files during rendering, by including
multiple texture files in a single file. Various embodiments,
also greatly reduce or eliminate visible seams during render
ing processes, even for displacement maps, which are par
ticularly difficult to filter.
0020. In one embodiment, an example of custom file for
mat, called a Ptex (short for per-face texturing) is discussed.
Instead of packing textures into an atlas, a Ptex file stores all
the face textures in a linear array, along with a separate table,
indexed by a “faceid” that gives the texture dimensions and
an offset into the array. Additionally, face adjacency data is
stored compactly in the Ptex file.
0021. In various embodiments, a Mitchell filter Mitchell
and Netravali 1988) is used in a rendering pipeline that pro
vides a sharpness control making it Suitable for both sharp
color mapping and Smooth displacement filtering. Filtering
entirely within a face proved straightforward, and seamless
filtering across face boundaries is described in detail below. In
various embodiments, control meshes, or meshes may be
implemented as Catmull-Clark Subdivision control meshes.
In some embodiments, meshes are made of quads, or faces.
0022. According to one aspect of the invention, a method

is described. One technique includes receiving a data file
comprising a plurality of texture maps including a first texture
map and a second texture map and also including metadata.
The metadata includes identifiers associated with each of the
plurality of texture maps and also includes adjacency data that
specifies topological adjacency relationships between differ
ent ones of the texture maps. (For example, the adjacency data
can specify, for a particular texture map, which edge of which
texture map is adjacent to each edge of the particular texture
map.) A process may include associating the first texture map
with a first Surface location on an object in the memory in
response to an identifier associated with the first texture map.
and associating the second texture map with a second Surface
location on the object in the memory in response to an iden
tifier associated with the second texture map. Operations may
include determining an edge of the first texture map is adja
cent to an edge of the second texture map in memory in
response to the adjacency data, and performing a rendering
operation with respect to the first surface location and the
second Surface location on the object to determine rendering
data in response to the first texture map and to the second
texture map.
0023. According to another aspect of the invention, a com
puter system is described. One apparatus includes a disk
memory configured to store a data file comprising a plurality
of texture maps including a first texture map and a second
texture map, and metadata, wherein the first texture map need
not have a predetermined geometric relationship to the sec
ond texture map in the data file, wherein the metadata
includes identifiers associated with each of the plurality of
texture maps and includes adjacency data. A device may
include a random access memory, and a processor coupled to
the disk memory and to the random access memory, wherein

US 2009/0021522 A1

the processor is configured to determine an association of the
first texture map with a first Surface location on an object in
response to an identifier associated with the first texture map.
wherein the processor is configured to determine an associa
tion of the second texture map with a second Surface location
on the object in response to an identifier associated with the
second texture map, wherein the processor is configured to
determine an edge of the first texture map is adjacent to an
edge of the second texture map in response to the adjacency
data, and wherein the processor is configured to performing a
rendering operation with respect to the first Surface location
and the second Surface location on the object to determine
rendering data in response to the first texture map, to the
second texture map. In various systems, the random access
memory is configured to store the association of the first
texture map with the first Surface location and is configured to
store the association of the second texture map with the sec
ond surface location on the object in response to an identifier
associated with the second texture map.
0024. According to another aspect of the invention, a
method is described. One technique includes receiving a plu
rality of texture maps, and receiving a plurality of face iden
tifiers, wherein each face identifier is associated with a sur
face location on an object, and wherein each face identifier is
associated with a texture map from the plurality of texture
maps. A process may include receiving texture adjacency data
and determining a per-face texture file in response to the
plurality of texture maps, the plurality of identifiers, and the
texture adjacency data in a data file. An operation may include
storing the per-face texture file in memory. In various pro
cesses, the texture adjacency data specifies two or more tex
ture maps from the plurality of texture maps that are adjacent,
and the texture adjacency data specifies which edges of the
two or more texture maps are adjacent.

BRIEF DESCRIPTION OF THE DRAWINGS

0025. In order to more fully understand the present inven
tion, reference is made to the accompanying drawings.
Understanding that these drawings are not to be considered
limitations in the scope of the invention, the presently
described embodiments and the presently understood best
mode of the invention are described with additional detail
through use of the accompanying drawings.
0026 FIGS. 1A-B illustrate examples of problems with
the prior art;
0027 FIGS. 2A-C illustrate examples of embodiments of
the present invention;
0028 FIG. 3 illustrates a flow diagram according to vari
ous embodiments of the present invention;
0029 FIG. 4 illustrates a flow diagram according to vari
ous embodiments of the present invention;
0030 FIGS. 5A-B illustrate examples according to vari
ous embodiments of the present invention;
0031 FIG. 6 is a block diagram of a typical computer
system according to various embodiments of the present
invention.

DETAILED DESCRIPTION OF THE INVENTION

0032 Various embodiments for per-face texture mapping
are described herein. In some embodiments, textures are
directly mapped to surfaces of objects without the need for
mathematically mapping (u, v) coordinates of the texture
maps to the (s,t) coordinates of Surface. In various embodi

Jan. 22, 2009

ments, texture maps are associated with a Surface of an object
and are stored within a single texture file. In other embodi
ments, more than one texture file may be used. In various
embodiments, the texture maps are identified within the
single texture file by a parameters such as faceid, u, v),
where faceid is a given identifier for the relevant face. In this
example, parameters u and V provide the appropriate mapping
of the texture within the relevant face of the surface.
0033. Further description of certain embodiments of per
face texture mapping can be found in a paper by the inventors
of the present application, “Ptex: Per-Face Texture Mapping
for Production Rendering.” Proceedings of the Eurographics
Symposium on Rendering 2008, pp. 1155-1164 (2008) (“the
Ptex Paper'). The Ptex Paper is incorporated herein by refer
ence in its entirety for all purposes.
0034. In FIG. 2A, a surface is illustrated 200 having a
number of faces. In various examples, each face may be
embodied as a quadrilateral, however, in other embodiments,
other shapes, e.g. triangles, hexagons, or other polygons, may
be used. As can be seen in this example, each face 200 is
associated with a respective texture map (as can be seen via
the (u, v) texture parameters). FIG. 2B includes an example of
adjacent faces as identified by face identifiers. For example,
face id 250 is below face id 280, is to the right of face id 240,
is to the left of face id 260, and is above face id 220.
0035 FIGS. 2B-C illustrate examples according to vari
ous embodiments. In some embodiments, texture maps are
stored sequentially in the texture file, however, textures,
including adjacent textures need not have a fixed or predeter
mined location within the texture file or geometric relation
ship within the texture file. In addition to the texture maps,
additional data (e.g. metadata) may be stored in the texture
file. In various embodiments, face identifiers (faceids) are
given for each texture map. In some embodiments, these
faceids are used to associate texture maps to appropriate
surface faces on an object. Other metadata that may be stored
in the texture file may include adjacency information for the
texture maps. In other words, how the texture files are ori
ented with respect to each other in memory for rendering
purposes.
0036 Invarious examples, to provide the in-memory adja
cency information, each side or edge of a texture map has a
defined ordering: bottom-0, right=1, top-2, left-3, although
any other ordering may be used. In various embodiments, for
each face, each side or edge is associated with two param
eters: the faceid of the adjacent face, and which edge of the
adjacent face touches the face. In the example of FIG.2B, for
example, for faceid=250, the bottom edge (O) is adjacent to
edge (2) of faceid=220. In such a case, the texture file may
specify faceid=250 {0,220, 1}. As another example, the right
edge (1) of faceid=250 is adjacent to edge (3) of faceid=260.
In such a case, the texture file may specify, faceid=250 {1,
{260.3}}. In some embodiments, adjacency information may
be provided for diagonal edges, if desired.
0037. The example in FIG.2Cillustrates that faces may be
specified to be adjacent in a number of ways. As an example,
the “left' edge (3) of faceid=12 is adjacent to the top edge (2)
of faceid=8. More specifically, faceid=12 {3, faceid=8.2}}.
In various embodiments, other ways to specify adjacency
information can be used. As examples, for faceid=7, adja
cency information may be specified as: {adjfaces-1, 8, 17.
-1, adjedges(O), 3, 0, (O), where the ordering of the adja
cency information is implicitly: the bottom face, the right
face, the top face, and the left face. In this embodiment, if an

US 2009/0021522 A1

adjacent face is at the edge of a mesh or boundary, the faceid
is set to -1, thus, the bottom 0 and left edges 3 of faceid=7 are
on Such a boundary, thus the first and last values are set to -1.
In this example, the face adjacency information states that the
right edge 1 and the top edge 2 of faceid=7 are adjacent to
faces 8 and 17, respectively. In this embodiment, if the adja
cent face is at the edge or a mesh boundary, the adjacent edge
is defined as (O). Accordingly, the bottom 0 and left edges of
face-7 are at an edge, thus the first and last values are set to
(0). Further, the edge adjacency data indicates that the right
side 3 of face 8 is adjacent to edge 1 of face 7, and the bottom
side 0 of face 17 is adjacent to edge 2 of face 7. In one specific
example, for a single texture (faceid=25) that wraps around a
cylinder, the adjacency information may be specified as: {adj
faces:-1.25.-1.25, adjudges(O).3.(O).2. In still other
embodiments, other ways to indicate such adjacency infor
mation may be provided, for example, in a separate file from
the texture file, or the like.
0038. In various embodiments, based upon the in-memory
adjacency information, when filtering is required for a face,
the textures for adjacent faces in the defined orientation are
then used. Continuing the example above, if filtering across
edge 2 of face 12, in memory, the texture assigned faceid 18
is retrieved and rotated such that the bottom edge 0 abuts or is
adjacent to edge 2 of face 12. Because filtering is continuous
over texture map boundaries, artifacts described in the prior
art are greatly reduced.
0039 FIG. 3 illustrates a flow diagram according to vari
ous embodiments of the present invention. More specifically,
FIG. 3 illustrates the process of forming a texture file having
the features described above. Initially, a surface of an object is
determined, step 300. In various embodiments, this may be
performed by performing a preliminary rendering of the
object. Next, in various embodiments, the individual faces on
the surface of the object are determined, step 310. In some
embodiments, each face may be assigned a face identification
number, and the adjacency information for each face may also
be determined.
0040. Using any number of techniques, texture maps may
be specified, step 320. In various examples, a texture may be
scanned or digitized, electronically created, “painted via 2D
painting, or the like. Next, based upon the texture maps, each
texture map is associated with a face identifier, step 330. In
various embodiments, the texture file is then created, step 340
to include the texture maps and meta data such as the asso
ciation of the texture maps to face identifier, and adjacency
information for each face identifier. In various embodiments,
the texture maps are stored in a linear array. The texture file
may then be stored, step 350, for later use during rendering.
Further details and examples pertaining to creation of texture
files can be found in the Ptex Paper.
0041 FIG. 4 illustrates a flow diagram according to vari
ous embodiments of the present invention. More specifically,
FIG. 4 illustrates the process of using a texture file described
above. Initially, an object to be rendered is determined, step
400. Next, based upon the surface of the object that is to be
rendered, an embodiment of a texture file, described above,
may be retrieved from memory, step 410. In the embodiments
described above, more than one texture map is typically
stored in the texture file.

0042. In various embodiments, texture maps are retrieved
from the texture file based upon respective face identifiers,
step 420. The adjacency information for each of the texture
maps are also retrieved from the texture map, step 430. Next,

Jan. 22, 2009

the texture maps are oriented in memory according to the
adjacency information, step 440. As discussed above, in vari
ous embodiments, because texture maps map directly to the
Surface of the object, the need to map from local coordinates
(u, v) of the texture map to the surface coordinates (s,t) of the
Surface is greatly reduced, if not eliminated.
0043. In various embodiments, filtering across boundaries
of the adjacent texture maps is performed, step 450. Greater
detail regarding filtering embodiments will be given below,
and alternative filtering embodiments are described in the
Ptex Paper. Subsequently, the filtered texture maps are used
for rendering purposes, step 460. In some examples, the tex
ture maps may specify Surface parameters for rendering, e.g.
roughness, Smoothness, reflectivity, color, color patterning,
and the like. In various examples, an image having a repre
sentation of the surface of part of the object may be rendered,
step 470. The image may subsequently be stored on a tangible
media, step 480. Such as a hard disk, optical disk, optical
media (e.g. film media), reflective media (e.g. paper), or the
like. In various embodiments, one or more users may retrieve
the image from a tangible media, and view the image, step
490. The users may include animators, engineers, consumers
at a computer or a home theater, a theater audience, or the like.
0044. In various embodiments of the present invention, a
Mitchell Filter is used for texture filtering, described above.
More specifically, the Mitchell Filter is a separable, piece
wise cubic filter using a kernel k(x) where the number of free
parameters of the general cubic is reduced to two by imposing
symmetry and C1 continuity constraints; for instance, k(X)
can be defined as:

k(x)=0, otherwise.

0045. In various embodiments, the filtering can further be
constrained Such that:

0046. The filtering results may then range from soft to
sharp. In some embodiments, the value B=/3 is determined to
be appropriate for general use. For convenience, in some
examples a sharpness parameteris defined as sharpness=1-B.
0047. In various embodiments, the data stored in the tex
ture maps are considered in determining a value of B to use.
In some examples, for displacement mapping texture maps,
where smooth reflectance, the inventors have determined that
B=1 is suitable; for color mapping or blend weighting texture
maps, the inventors have determined that B-1 is suitable,
giving an approximation of a low-pass filter.
0048 FIG. 1B illustrates an example of artifacts deter
mined according to various examples of a Mitchell filter. As
can be seen in portion 120, a sample-frequency ripple noise or
artifact can be seen. This noise was determined to have a
period equal to the texture map spacing. The inventors have
determined that the Mitchell filter described above produces
little if any sample-frequency noise when the filter is an
integral filter width, because the filter is separable and the
kernelk has the following property for all x:

US 2009/0021522 A1

X. k(x - n) = 1

0049. In various embodiments, the kernel is normalized to
keep volume equal to 1.0 and to obtain a sufficient flat-field
response. In various embodiments, to normalize the kernel,
the weights are discretely normalized.
0050. In various embodiments of the present invention, the
Mitchell filter is applied to perform the texture filtering. In
Some embodiments of the present invention, each face
includes a texture map, as well as a power of two texture that
is aligned with the shading grid. In some examples, a pre
filtered power-of two reductions can be stored in the texture
file, described above or generated on demand (e.g. on the fly),
from the nearest available resolution for the texture map.
0051. In various embodiments, for a given filter region of
size duxdv, the lowest pre-filtered texture resolution (res,
res) is selected where the texels are no larger than the filter
S17

0052 where indicates the ceiling function.
0053. In light of this, the filter width is typically between
1.0 and 2.0 texels, and the kernel requires approximately 4 to
8 samples in each direction.
0054. In various embodiments, a grid of kernel values
from the Mitchell equation are initially calculated. Next,
when the kernel overlaps an edge of the face, the kernel is split
and applied piecewise to each overlapped face.
0055. In some embodiments, special blending methods
are used for special cases such as an extraordinary vertex, if a
neighboring face has insufficient resolution, or the like. If the
main face has insufficient resolution for the selected filter
resolution, filtering is performed upon the highest resolution
texture map available.
0056. In cases where there are filter transitions to different
pre-filtered texture resolutions, a discontinuity may be intro
duced. In various embodiments to reduce Such discontinui
ties, the neighborhood of the transition to the two nearest
resolutions can be evaluated and blended in a manner similar
to a RenderMan texture “lerp' option.
0057. In various situations, the inventors have determined
that modifications to the filtering process described above are
desirable. One instance is when there is a resolution mismatch
between adjacent face textures. FIG. 5A illustrates an
example according to various embodiments of the present
invention. More specifically, FIG. 5A illustrates textures 500,
510,520 and 530 having different texture resolution.
0058. In such an example, simply clamping the filter area
to the local resolution can result in a discontinuity across the
shared edge. Accordingly, in various embodiments, to elimi
nate the discontinuity, a blending operation is performed
between two smooth surfaces: the surface reconstructed from
the local face alone (which is continuous up to the edge) and
the Surface reconstructed from the highest common resolu
tion of the two faces (which is continuous across the edge). In
various embodiments, the blend region is defined to be
approximately between 1.5 and 2.5 texels from the edge.
More specifically, the distance of 1.5 texels is the point at
which the local kernel would need the missing texels from the
adjacent face in various embodiments. The blend region is

Jan. 22, 2009

defined to be 1 texel wide, which is determined to be a small
and reasonable value given that the feature size of the local
face is a texel in various embodiments. In other embodiments,
larger blend widths can give visibly smoother results but at
the cost of detail loss and increased expense.
0059. In specific examples, a blending is performed using
a C Smooth quintic step function, Smoothstep(x), where:
0060 smoothstep(x)=0 if x<0;
0061 smoothstep(x)=1 if x>1; and
0062 smoothstep(x)=6xx"10x otherwise.
0063. In various embodiments, filtering may be performed
across either the u or V edges for Some quadrant of the face.
For example, between face 530 and 520, in region 540,
between face 530 and 510, in region 550, and the like.
0064. In other embodiments, filtering may be performed
across both the u and V edges for some quadrant of the face,
e.g. blended region 560, between face 500, face 510 and face
520. In such embodiments, region 540 and region 550 inter
sect at blended region 560, and a bi-directional smoothstep is
used. In Such cases, up to four separate surface textures may
be required: one with the local resolution, one with the com
mon u face resolution, one with the common V face resolu
tion, and one with the highest common resolution of all four
face textures.

0065. In the example in FIG. 5A, since blend widths
depend on the local resolution, they can be discontinuous
across the edge. Accordingly, the blend widths must be
smoothly blended, as illustrated by region 570. In various
embodiments, the blended surface is everywhere smooth.
However, the Smoothstep may form a visible ridge along the
edge in Some cases, due to the difference in height between
the B-spline approximation of the local high-resolution Sur
face and the common low-resolution Surface. In various
embodiments, the ridge can be reduced by increasing the
texture resolution, and/or using a larger blend width (up to
half the face width less 1.5 texels).
0066. In other embodiments, blending can also be avoided
or reduced by either making all the faces the same resolution,
or increasing the resolution to the point where sufficient reso
lution is available from the texture file.

0067. Another instance where modifications to the filter
ing process described may be desirable includes “extraordi
nary vertexes.” FIG. 5B illustrates an example of an extraor
dinary vertex 580, where more than four faces intersect at a
common point.
0068. In some embodiments, if continuity at the edge is
not important, for example when filtering color, then just
ignoring the corner face may be acceptable. Additionally, for
displacement filtering, the discontinuity is usually and not
noticeable, if it is Sub-pixel. Such as when using a high reso
lution. However, for smooth B-spline displacement filtering
with a low resolution texture, where the discontinuity projects
to several pixels on screen, the discontinuity may be unac
ceptable.
0069. In various embodiments, to address such situations,
texels are treated as Subdivision control points and evaluated
using Stam's method 1998), known in the literature. Using
Stam's method, the “control points' include of 9 texels from
the current face, plus an additional 4N texels from the other
faces surrounding vertex 580. Before evaluation, the texels
are first subdivided. In various embodiments, after subdivi
sion, the innermost 2N--8 texels are used for Stam's evalua
tion within 0:5 texel units of vertex 580 in both the u and v

US 2009/0021522 A1

directions. Further, the remaining points are used for regular
evaluation between 0:5 and 1:5 units, as discussed above.
0070 Another instance where modifications may be desir
able is in the case of larger filter widths. In Such cases, aliasing
is a concern, and increasing the number of samples is often
impractical.
0071. In various embodiments where a large filter width is
used, a prefiltering method is used where a 1x1 (i.e. constant)
per-face value is repeatedly blended by performing a box
filtering operation onto neighbors. Subsequently a bilinear
interpolation is performed between the blended values to
determine the filtered samples.
0072. In various embodiments, traditional three-dimen
sional paint packages are used to define texture maps. As
described above, texture maps are packed into a single file for
painting purposes. In various embodiments, the single file is
then converted into the appropriate texture file format
described above. One limitation to this approach, however, is
that the texture resolution is typically restricted by the
OpenGL limit, currently 4k by 4k.
0073. In various embodiments, a proprietary paint appli
cation is used to natively support the texture file (Ptex). More
specifically, each face is separately allocated in System
memory with no packing. Separate texture maps are Sup
ported in OpenGL, but this is not currently practical as
OpenGL driver performance often degrades with more thana
few thousand textures. Accordingly, in Some embodiments,
texture maps are dynamically allocated into fixed sized "tex
ture pages' corresponding to an OpenGL texture. Additional
pages are added as needed to accommodate additional texture
maps. In various embodiments, the resolution for each face is
initially based on a user-specified texel density (i.e., texels per
object-space unit). Faces, either individually or in groups, can
then be selected by the user and their resolution can be
increased or decreased as needed from a single pixel up to 4k
by 4k per face.
0074. In various embodiments, texture maps may be
defined to represent displacement maps. In one specific
embodiment, to generate displacement maps, a mesh from a
sculpting application is input into a custom developed baking
tool. In response to the mesh, vector displacements using
parametric Subdivision evaluation are determined.
0075. In various embodiments, vector displacements
require three channels. Since the detailed mesh was created
by Subdividing the base mesh N times and moving vertices,
there is a simple parent-child correspondence between faces
on the two meshes. Specifically, every face in the base mesh
is the parent of 2'x2' child faces on the detailed mesh, and
the ordering of child faces is deterministic. For each base
face, a 3-channel floating point displacement texture is cre
ated having resolution 2''''', so that each child face will
be sampled 2x2 times. In various embodiments, at the (u, v)
location for each texel, Stam's method 1998 may then be
used to evaluate the base face and the corresponding child
face. The difference of the two limit points is stored as a
vector displacement.
0076. In some embodiments, the texture file may be used

to store baked procedurally shaded values. Per-face textures
maps in the texture file provide an ideal format for baking
Such data, because the textures on each face are typically
aligned with the shading grid. In various embodiments within
a PRMan shader (“PRMan” refers to Pixar's Photorealistic
Renderman software), a “bake3d call is used to generate a
point cloud file which can be read using PRMan's point cloud

Jan. 22, 2009

file API. In such examples, the texture file (Ptex) coordinate
(faceid, u, v) is used in place of the usual 3d Surface coordi
nate, P. Additionally, the resampling then takes place within
the per-face texture space.
0077 Embodiments of the present invention using an inte
grated texture file (Ptex file) can reduce the number of I/O
calls required for rendering by up to a factor of 100 as com
pared to using multiple texture files per Surface, making ren
dering more efficient. To the extent that rendering is I/O
bound, the reduction in I/O calls can also improve overall
rendering time. In some embodiments, render time may be
further reduced due to the separable filter and dynamic aniso
tropic reductions.
0078 FIG. 6 is a block diagram of typical computer sys
tem 600 according to an embodiment of the present invention.
In the present embodiment, computer system 600 typically
includes a display 610, computer 620, a keyboard 630, a user
input device 640, computer interfaces 650, and the like.
0079. In various embodiments, display (monitor) 610 may
be embodied as a CRT display, an LCD display, a plasma
display, a direct-projection or rear-projection DLP, a micro
display, or the like. In various embodiments, display 610 may
be used to visually display user interfaces, images, or the like.
0080. In various embodiments, user input device 640 is
typically embodied as a computer mouse, a trackball, a track
pad, a joystick, wireless remote, drawing tablet, voice com
mand system, eye tracking system, and the like. User input
device 640 typically allows a user to select objects, icons, text
and the like that appear on the display 610 via a command
such as a click of a button or the like.
I0081 Embodiments of computer interfaces 650 typically
include an Ethernet card, a modem (telephone, satellite,
cable, ISDN), (asynchronous) digital subscriber line (DSL)
unit, FireWire interface, USB interface, and the like. For
example, computer interfaces 650 may be coupled to a com
puter network, to a FireWire bus, or the like. In other embodi
ments, computer interfaces 650 may be physically integrated
on the motherboard of computer 620, may be a software
program, Such as Soft DSL, or the like.
I0082 In various embodiments, computer 620 typically
includes familiar computer components such as a processor
660, and memory storage devices, such as a random access
memory (RAM) 670, disk drives 680, and system bus 690
interconnecting the above components.
I0083. In some embodiments, computer 620 includes one
or more Xeon microprocessors from Intel. Further, in the
present embodiment, computer 620 typically includes a
UNIX-based operating system.
I0084 RAM 670 and disk drive 680 are examples of com
puter-readable tangible media configured to store data Such as
geometrical descriptions of objects, texture maps, displace
ment maps, procedural shading maps, Ptex maps, embodi
ments for creating texture files, and using texture files for
rendering purposes, a rendering engine, executable code pro
viding functionality described above, or the like. Types of
tangible media include magnetic storage media such as
floppy disks, networked hard disks, or removable hard disks:
optical storage media such as CD-ROMS, DVDs, holo
graphic memories, or bar codes; semiconductor media Such
as flash memories, read-only-memories (ROMS); battery
backed Volatile memories; networked storage devices, and
the like.
I0085. In the present embodiment, computer system 600
may also include Software that enables communications over

US 2009/0021522 A1

a network such as the HTTP, TCP/IP, RTP/RTSP protocols,
and the like. In alternative embodiments of the present inven
tion, other communications Software and transfer protocols
may also be used, for example IPX, UDP or the like.
I0086. In some embodiments of the present invention, a
graphical processor unit, GPU, may be used to accelerate
various operations, described below. Such operations may
include determining performance style models, determining
output performance data, or the like.
0087 FIG. 6 is representative of a computer system
capable of embodying the present invention. It will be readily
apparent to one of ordinary skill in the art that many other
hardware and Software configurations are Suitable for use
with the present invention. For example, the computer may be
a desktop, portable, rack-mounted or tablet configuration.
Additionally, the computer may be a series of networked
computers. Further, the use of other micro processors are
contemplated, such as CoreTM microprocessors from Intel;
PhenomTM, TurionTM 64, OpteronTM or AthlonTM micropro
cessors from Advanced Micro Devices, Inc.; and the like.
Further, other types of operating systems are contemplated,
such as Windows Vista R, WindowsXPR, WindowsNTR), or
the like from Microsoft Corporation, Solaris from Sun Micro
systems, LINUX, UNIX, and the like. In still other embodi
ments, the techniques described above may be implemented
upon a chip or an auxiliary processing board.
0088. In some embodiments, not all of the above computer
components are required. Accordingly, many types of con
figurations for computational devices can be used to imple
ment various methods described herein. Further, processing
components having different levels of computational power,
e.g. microprocessors (including RISC processors, embedded
processors, or the like) can also be used to implement various
embodiments.

0089. In other embodiments of the present invention, com
binations or sub-combinations of the above disclosed inven
tion can be advantageously made. The block diagrams of the
architecture and graphical user interfaces are grouped for
ease of understanding. However it should be understood that
combinations of blocks, additions of new blocks, re-arrange
ment of blocks, and the like are contemplated in alternative
embodiments of the present invention.
0090 The specification and drawings are, accordingly, to
be regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that various modifications and
changes may be made thereunto without departing from the
broader spirit and scope of the invention as set forth in the
claims.

What is claimed is:
1. A method for a computer system including a memory,

the method comprising:
receiving a data file comprising a plurality of texture maps

including a first texture map and a second texture map
and further comprising metadata, wherein the metadata
includes identifiers associated with each of the plurality
of texture maps and further includes adjacency data
specifying topological adjacency relationships between
different ones of the plurality of texture maps;

associating the first texture map with one or more first
Surface locations on an object in the memory in response
to an identifier associated with the first texture map:

Jan. 22, 2009

associating the second texture map with one or more sec
ond Surface locations on the object in the memory in
response to an identifier associated with the second tex
ture map:

determining an edge of the first texture map is adjacent to
an edge of the second texture map in memory in
response to the adjacency data; and

performing a rendering operation with respect to the one or
more first Surface locations and the one or more second
Surface location on the object to determine rendering
data in response to the first texture map and to the second
texture map.

2. The method of claim 1 wherein the first texture map is
selected from a group consisting of color data, displacement
data, shading data.

3. The method of claim 1 wherein a resolution of the first
texture map and a resolution of the second texture map are
different.

4. The method of claim 3 further comprising performing a
filtering operation upon the first texture map and the second
texture map.

5. The method of claim 1 further comprising associating
the first texture map with one or more third surface locations
on the object in the memory in response to another identifier
associated with the first texture map.

6. The method of claim 1 wherein performing the rendering
operation comprises performing a filtering operation in
response to the edge of the first texture map being adjacent to
the edge of the second texture map.

7. The method of claim 1 wherein each of the plurality of
texture maps has a polygonal shape having a plurality of
edges.

8. The method of claim 7 wherein the adjacency data
includes, for each of the plurality of texture maps, an associ
ated list of adjacent face identifiers and adjacent edge identi
fiers.

9. The method of claim 8 wherein the adjacency data for
one of the plurality of texture maps includes a special value
indicating that a first edge of the one of the plurality of texture
maps is not adjacent to any other one of the plurality of texture
maps.

10. The method of claim 7 wherein at least one of the
texture maps has a quadrilateral shape.

11. The method of claim 7 wherein at least one of the
texture maps has a triangular shape.

12. The method of claim 10 wherein
wherein a texture map identifier associated with the iden

tifier associated with the first texture map is selected
from a group consisting of the identifier associated with
the second texture map, the identifier associated with the
first texture map, an identifier not associated with any
texture map.

13. A computer system comprising:
a disk memory configured to store a data file comprising a

plurality of texture maps including a first texture map
and a second texture map, and metadata, wherein the
first texture map need not have a predetermined geomet
ric relationship to the second texture map in the data file,
wherein the metadata includes identifiers associated
with each of the plurality of texture maps and includes
adjacency data;

a random access memory;
a processor coupled to the disk memory and to the random

access memory, wherein the processor is configured to

US 2009/0021522 A1

determine an association of the first texture map with
one or more first Surface location on an object in
response to an identifier associated with the first texture
map in response to the data file, wherein the processor is
configured to determine an association of the second
texture map with one or more second Surface locations
on the object in response to an identifier associated with
the second texture map in response to the data file,
wherein the processor is configured to determine an
edge of the first texture map is adjacent to an edge of the
second texture map in response to the adjacency data,
and wherein the processor is configured to performing a
rendering operation with respect to the one or more first
Surface locations and the one or more second Surface
locations on the object to determine rendering data in
response to the first texture map and to the second tex
ture map:

wherein the random access memory is configured to store
the association of the first texture map with the one or
more first Surface locations and is configured to store the
association of the second texture map with the one or
more second surface locations on the object in response
to an identifier associated with the second texture map.

14. The computer system of claim 13 wherein the first
texture map is selected from a group consisting of texture
data, displacement data, shading data.

15. The computer system of claim 13 wherein a resolution
of the first texture map and a resolution of the second texture
map are different.

16. The computer system of claim 15 wherein the proces
sor is also configured to perform a filtering operation upon the
first texture map and the second texture map.

17. The computer system of claim 13 wherein the proces
sor is also configured to determine an association of the first
texture map with one or more third Surface locations on the
object in response to another identifier associated with the
first texture map.

18. The computer system of claim 13 wherein the proces
sor is also configured to performing a filtering operation
across the edge of the first texture map.

19. The computer system of claim 13
wherein the processor is also configured to determine a

desired resolution for the first texture map; and
wherein the processor is also configured to receive a first

texture map having the desired resolution in response to
the data file.

Jan. 22, 2009

20. A method for a computer system, the method compris
ing:

receiving a plurality of texture maps;
receiving a plurality of face identifiers, wherein each face

identifier is associated with a surface location on an
object, and wherein each face identifier is associated
with a texture map from the plurality of texture maps;

receiving texture adjacency data;
determine aper-face texture file in response to the plurality

of texture maps, the plurality of identifiers, and the tex
ture adjacency data in a data file; and

storing the per-face texture file in memory;
wherein the texture adjacency data specifies two or more

texture maps from the plurality of texture maps that are
adjacent, and wherein the texture adjacency data speci
fies which edges of the two or more texture maps are
adjacent.

21. The method of claim 20 further comprising:
determining a plurality of resolutions for a texture map

from the plurality of texture maps; and
wherein the per-face texture file is also determined in

response to the plurality of resolutions for the texture
map.

22. The method of claim 20 wherein the first texture map is
selected from a group consisting of texture data, displace
ment data, shading data.

23. The method of claim 20

wherein the plurality oftexture maps includes a first texture
map and a second texture map; and

wherein a resolution of the first texture map and a resolu
tion of the second texture map are different.

24. The method of claim 20
wherein the plurality of texture maps includes a first texture
map and a second texture map:

wherein the plurality of face identifiers includes a first face
identifier and a second face identifier; and

wherein the first texture map is associated with both the
first face identifier and the second face identifier.

25. The method of claim 20 further comprising:
retrieving the per-face texture file from the memory; and
performing rendering operations in a scene including the

object in response to the per-face texture file.
c c c c c

