

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 February 2001 (15.02.2001)

PCT

(10) International Publication Number
WO 01/10696 A1

(51) International Patent Classification⁷: B60T 17/02, (13/14, 13/16) (72) Inventor: WILSON, Robert, Keller; 51814 Currant Road, Granger, IN 46530 (US).

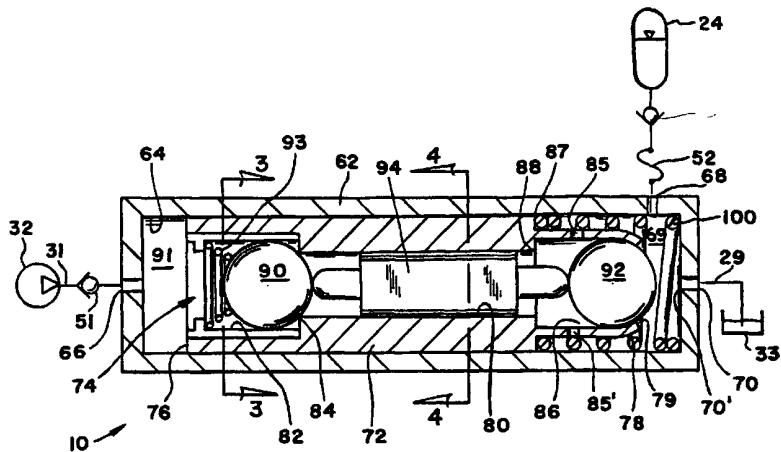
(21) International Application Number: PCT/US00/20980 (74) Agent: MCCORMICK, Leo, H., Jr.; 2112 Mishawaka Avenue, P.O. Box 4721, South Bend, IN 46634-4721 (US).

(22) International Filing Date: 1 August 2000 (01.08.2000)

(81) Designated State (national): JP.

(25) Filing Language: English

(84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).


(30) Priority Data:
09/372,130 11 August 1999 (11.08.1999) US

Published:
— With international search report.

(71) Applicant: ROBERT BOSCH CORPORATION [US/US]; 2800 South 25th Avenue, Broadview, IL 60155-4594 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CHARGING AND BLEED VALVE

WO 01/10696 A1

(57) Abstract: A valve (60) for use in a brake system (10) through which a source (32) of fluid charges an accumulator (24) to a desired fluid pressure level and through which fluid pressure present in a conduit (52) is communicated to a reservoir (33) in the absence of the flow of fluid from the source. The valve (60) has a housing (62) with a bore (64) therein with an entrance port (66) connected to the source of fluid (32), an exit port (68) connected by a flexible conduit (52) to the accumulator (24) and exhaust port (70) connected to the reservoir (33). A sleeve (72) which is located in bore (64) has an internal bore (74) with a first diameter (82) for retaining a first ball (90), a second diameter (80) for retaining a linkage member (94) and a third diameter (86) for retaining a second ball (92). The communication of fluid from the source (32) to the entrance port (66) developing a force across the sleeve (72) which moves the second ball (90) into engagement with an exhaust port (70) to interrupt communication to the reservoir (33) and allow fluid to flow from the entrance port (66) to the exit port (68) for charging the accumulator (24).

Charging and Bleed Valve

This invention relates to a valve through which fluid flows from a source to charge an accumulator in a brake system and which allows fluid to flow from the conduit to a reservoir in the absence of flow of fluid from the source.

5

BACKGROUND OF THE INVENTION

In brakes systems it has become a common practice to include a traction control function along with anti-lock brake capabilities. The traction control function utilizes many of the components necessary to achieve the anti-lock brake capabilities. However, in order for the 10 traction control function to achieve a desired level of operation, an accumulator is often included in the brake system. The accumulator is charged to a desired pressure level by the operation of a pump in the brake system. In charging the accumulator fluid is communicated from the pump through a flexible conduit. Unfortunately, the fluid pressure developed by the pump to charge the accumulator is maintained in the 15 conduit even after the pump has been turned off and as a result after a period of time and under some conditions it is possible that a leak may occur in the flexible conduit. In order to relieve the fluid pressure in the conduit it has been suggested that the flexible conduit be permanently 20 connected to a reservoir through a restricted orifice. This permanent connection allows the fluid pressure in the conduit to bleed to reservoir pressure over a period of time. Unfortunately this permanent connection also allows a portion of the fluid supplied to the accumulator by the pump to flow to the reservoir during the charging function and as a result the 25 efficiency of the pump is reduced by this flow to the reservoir.

SUMMARY OF THE INVENTION

In order to utilize the full capacity of a pump to charge an accumulator, the present invention has a valve which allows the entire output of a pump to flow to an accumulator during a charging operation 30 and when the flow from the pump terminates thereafter allows fluid to flow from a flexible conduit to a reservoir. The valve has a housing with

a first bore therein connected to the pump through an entrance port, to the accumulator through an exit port and to the reservoir through an exhaust port. A sleeve located in the first bore has a first end adjacent the entrance port and a second end adjacent the exhaust port. A second bore in the sleeve which extends from the first end to the second end has a central diameter section separated from a first end diameter section by a first shoulder and from a second end diameter section by a second shoulder. A first ball located in the first end diameter section is urged by a first spring toward the first shoulder. A flange on the second end of the sleeve retains a second ball in the second diameter section of the sleeve. Linkage located in the central diameter section has a first end, which engages the first ball, and a second end, which engages the second ball. A second spring located in the first bore urges the sleeve toward the entrance port to allow the first spring to seat the first ball on the first shoulder. With the first ball seated fluid communication is prevented through the central diameter section while permitting free communication between the exit port and the exhaust port to allow fluid in the conduit to flow to the reservoir. When the pump is activated fluid flow is communicated to the entrance port. The pressure of the fluid presented to the entrance port develops a charging force which acts on the first end of the sleeve and after overcoming the second spring initially moves the sleeve toward the exhaust port. As the sleeve approaches the exhaust port, the second ball is first to engage an exhaust seat surrounding said exhaust port. On engagement of the second ball with the seat fluid communication from the first bore to the reservoir is interrupted. Further movement of the sleeve occurs as the second spring is compressed, however, the second ball remains in a stationary position on the exhaust seat and the first ball which is connected by the linkage to the first ball also remains stationary as the first spring is now compressed with a charging seat of the first shoulder moving away from the first ball to allow fluid to flow to the accumulator by way of the second bore and exhaust port. When the accumulator is charged, flow of fluid through

the second bore terminates and the fluid pressure across the sleeve equalizes such that the second spring moves the sleeve toward the entrance port and again initiate communication between the exit port and exhaust ports as the first ball is again seated on the charging seat.

5 An advantage of the present invention is provided by limiting the time that a flexible conduit is under high pressure.

An object of this invention is to provide a valve for charging an accumulator and for bleeding a flexible conduit when the accumulator is charged to utilize a full capacity of a pump while limiting the exposure of 10 a conduit to high pressure.

A further advantage of this invention resides in a valve, which sequentially closes a flow communication path between an exit port and an exhaust port while opening a communication path between an entrance port and the exit port to supply pressurized fluid to an 15 accumulator.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic illustration of a brake system having an anti-lock brake system with traction control with a valve to charge an accumulator and exhaust a flexible conduit according to the present 20 invention;

Figure 2 is a sectional view of the valve of Figure 1 with an exit port connected to an exhaust to provide for communication to a reservoir;

Figure 3 is a sectional view taken along line 3-3 of Figure 2;

25 Figure 4 is a sectional view taken along line 4-4 of Figure 2; and

Figure 5 is a section view of the valve in Figure 1 with an entrance port connected to the exit port to provide for communication to an accumulator.

DETAILED DESCRIPTION

A portion of a brake system 10 is illustrated in Figure 1 for a vehicle having an actuation section 12 connected to first 14 and second

16 wheel brakes. The first 14 and second 16 wheel brakes each have speed sensors 18,18' which supply information to an ECU 20 for the vehicle and various solenoid valves 17,18 and 17'18' for performing an anti-lock function. In addition a solenoid 19 connected in a supply 5 conduit 22 from a brake booster 34 and an actuation conduit connected to an accumulator 24. Solenoid 19 is dedicated to performing a traction control function in responds to an input from the ECU 20. A pump 32 supplies the accumulator 24 and the brake booster 34 with pressurized fluid to effect a brake application in response to an input applied to pedal 10 36. A pressure switch 38 connected to a supply conduit 40 between the accumulator 24 and brake booster 34 is connected to the ECU 20. Signals from the pressure switch 38 control the operation of pump 32 for the development of pressurized fluid which is communicated through flexible conduit 52 to the supply conduit 40 and accumulator 24. When 15 accumulator 24 is charged to a desired fluid pressure level, pressure switch 38 communicates a signal to the ECU 20 a motor 30 associated with pump 32 is switched to an off mode. In order that the flexible conduit 52 is not continually exposed to high pressure once accumulator 24 is charged, a valve 60 allows fluid in the flexible conduit 52 to be 20 communicated through conduit 53 to reservoir 33 for pump 32.

In more particular detail the valve 60 as shown in Figure 2 has a housing 62 having a first bore 64 therein. Housing 62 has an entrance port 66 connected to pump 32 by a conduit 31, an exit port 68 connected to accumulator 24 by flexible conduit 52 and an exhaust port 25 70 connected to the reservoir 33 by conduit 29. A sleeve 72 is located in bore 64 has a second bore 74 that extends from a first end 76 to a second end 78. The second bore 74 has a central diameter section 80 separated from a first end diameter section 82 by a first shoulder 84 and from a second end diameter section 86 by a second shoulder 88. The 30 sleeve 72 has a plurality of axial slots 81, 81'...81ⁿ separated by a corresponding plurality of lands 83, 83'...83ⁿ which extend from said first end 76 to shoulder 84 to define the first diameter section 82, see Figure

3. A first ball 90 is located in first diameter section 82 and maintained in axial alignment with a charging seat 84' formed by shoulder 84 by lands 83, 83'...83ⁿ. A first spring 93 retained in the first diameter section 82 of bore 74 acts on and urges first ball 90 toward charging seat 84 to define a charging chamber 91 within bore 64.

10 The sleeve 72 has a plurality of radial passages 85,85' through which the second diameter section 86 is connected with bore 64 and a second shoulder 87 located adjacent the second end 78. A second ball 92 is located in second diameter section 86 and retained in therein by a flange 79 formed by rolling end 78 in the shape of a partial sphere.

15 A tri-angular shaped linkage 94 as best-illustrated in Figure 4 is located in the central diameter section 80 has a first end 96 and a second end 98. The first end 96 engages the first ball 90 and the second end 98 engages the second ball 92. The length of the linkage 94 from the first end 96 to the second end 98 is such that with ball 90 seated on charging seat 84' the second ball 92 extends past end 78 of sleeve 72.

20 A second or return spring 100 located in bore 64 acts on shoulder 87 of sleeve 72 for urging sleeve 72 toward the charging chamber 91 and entrance port 60.

MODE OF OPERATION

With a vehicle is operating and accumulator pressure switch 38 supplies the ECU 20 with an indication of fluid pressure in the accumulator 24 is less than a desired level, the ECU 20 supplies an operational signal to motor 30 to activate pump 30. Activation of pump 30 causes fluid to flow through conduit 31 to charging chamber 91 in valve 60 by way entrance port 60. When the fluid pressure in charging chamber 91 reaches a predetermined value sufficient to develop a force across end 76 of sleeve to overcome spring 100, sleeve 72 will move toward the exhaust port 70. As end 78 of sleeve 72 approaches exhaust port 70 ball 92 will first engage an exhaust seat 70' to interrupt communication between exhaust chamber 69 and reservoir 33 through

exhaust port 70, see Figure 5. As spring 100 is further compressed, ball 92 and ball 90 are held stationary and sleeve 72 continues to move toward the exhaust chamber 69 such that charging seat 84' allows metered flow of fluid to flow in the second bore 74 for distribution to 5 accumulator 24 by way of the central diameter section 80, radial passages 85,85', exhaust chamber 69, exit port 68 and flexible conduit 52. Fluid continues to flow to the accumulator 24 until the desired fluid pressure is attained and thereafter pressure switch 38 supplies ECU 20 with a signal that the accumulator 24 is fully charged. Thereafter the 10 ECU 20 terminates the operational signal to motor 30 and pump 32 is idled.

In the absence of the flow of fluid from pump 32, the fluid pressure in the charging chamber 91 and exhaust chamber 69 equalize and thereafter spring 100 moves sleeve 72 toward the charging chamber 15 91. With the pressure in the charging chamber 91 and exhaust chamber 69 substantially equal, spring 100 acts on sleeve 72 to move sleeve toward the charging chamber 91. Initial movement of sleeve 72 toward the charging chamber moves charging seat 84' into engagement with ball 90 to interrupt communication from charging chamber 91 to the second bore 74. Further movement of sleeve toward the charging chamber 91 20 brings flange 79 into engagement with ball 92 to move ball 92 off exhaust port 70' and allow fluid to flow to the reservoir 33.

Check valve 41 located between the flexible conduit 52 and conduit 40 assures that fluid does not flow from the accumulator 24 toward valve 60. Fluid flow from the flexible conduit 52 continues until 25 the pressure level therein is at a value as defined by the force of spring 100. Similarly a check valve 51 in conduit 31 assures that the fluid pressure in charging chamber 91 is not dissipated by the flow of fluid back to pump 32.

I claim:

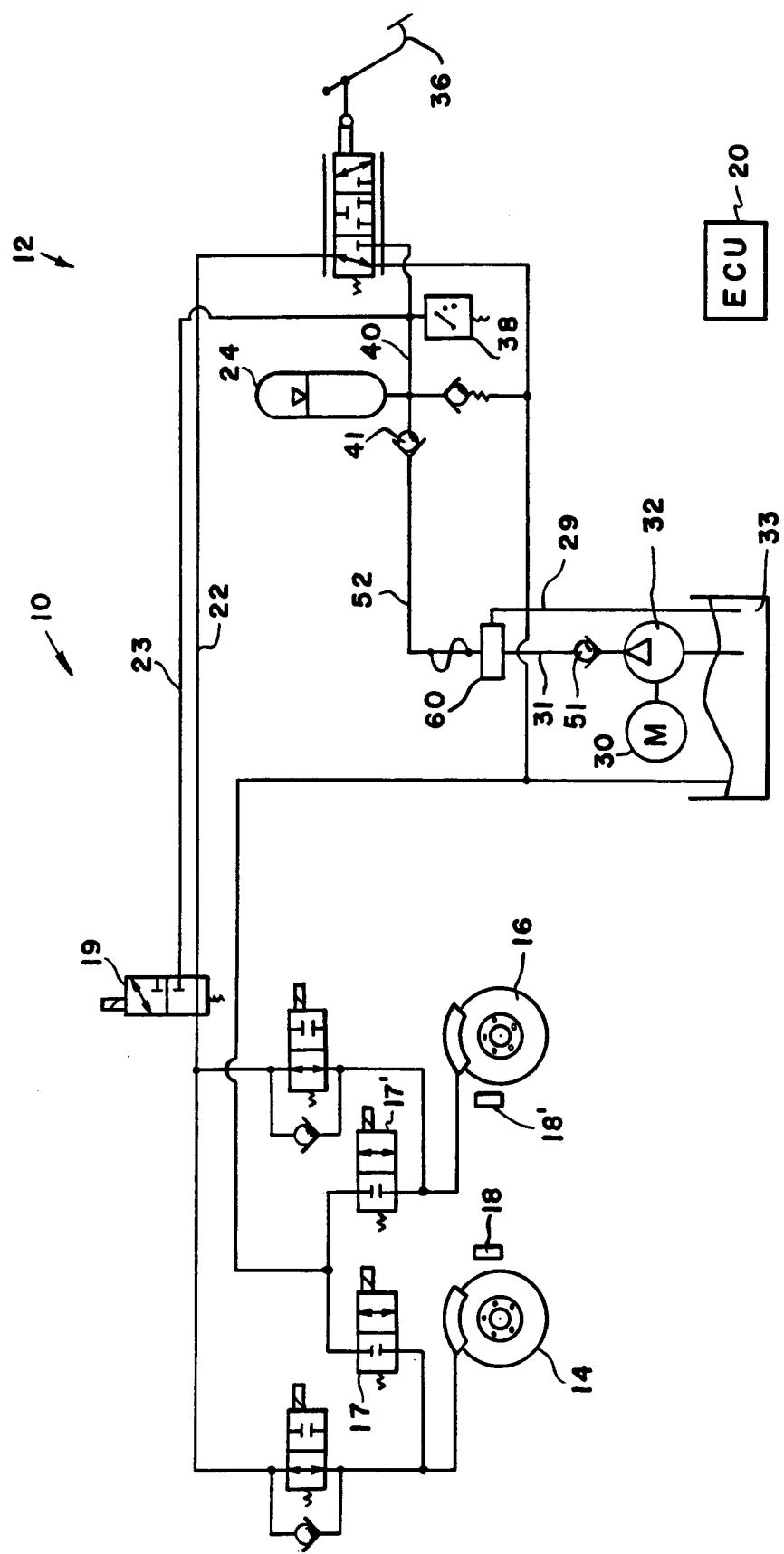
1. A valve (60) for use in a brake system (10) through which a source (32) of fluid charges an accumulator (24) to a desired fluid pressure level and through which fluid pressure present in a conduit (52) is communicated to a reservoir (33) in the absence of the flow of fluid from said source (32), said valve (60) being characterized by a housing (62) having a first bore (64) therein with an entrance port (66) connected to said source of fluid (32), an exit port (68) connected to said accumulator (24) and an exhaust port (70) connected to said reservoir (33); a sleeve (72) located in said first bore (64), said sleeve (72) having a second bore (74) that extends from a first end (76) to a second end (78), said second bore (74) having a central diameter section (80) separated from a first end diameter section (82) by a first shoulder (84) and from a second end diameter section (86) by a second shoulder (88); a first ball (90) located in said first end diameter section (82), a first spring (93) for urging said first ball (90) toward said first shoulder (84); a second ball (92) located in said second diameter section (86) and retained in said second diameter section (86) by a flange (79) on said second end (78) of said sleeve (72); linkage (94) located in said central diameter section (80) having a first end (96) and a second end (98), said first end (96) engaging said first ball (90) and said second end (98) engaging said second ball (92); and a second spring (100) located in said first bore (64) for urging said sleeve (72) toward said entrance port (66) to allow said first spring (93) to seat said first ball (90) on said first shoulder (84) and prevent communication between said central diameter section (80) and said entrance port (66) while permitting free communication between said exit port (68) and said exhaust port (70) to allow fluid in said conduit (52) to flow to said reservoir (33), said second spring (100) being compressed by a charging force developed by pressurized fluid from said source (32) acting on said first end (76) of said sleeve (72), said charging force initially moving said sleeve (72) toward said exit port (68) to bring said

second ball (92) into engagement with an exhaust seat (70') surrounding said exhaust port (70) to interrupt communication from said first bore (64) to said reservoir (33) and with further movement compress said first spring (93) to allow said first ball (90) to move off an communication seat 5 defined by said first shoulder (84) and allow fluid to flow to said accumulator (24) by way of said second bore (74) and exhaust port (70).

2. The valve (70) as recited in claim 1 wherein said sleeve (72) is further characterized by a plurality of radial passages (85,85')through which said second diameter section (86) is connected 10 with said first bore (64) to allow fluid to freely flow to said exit port (70).

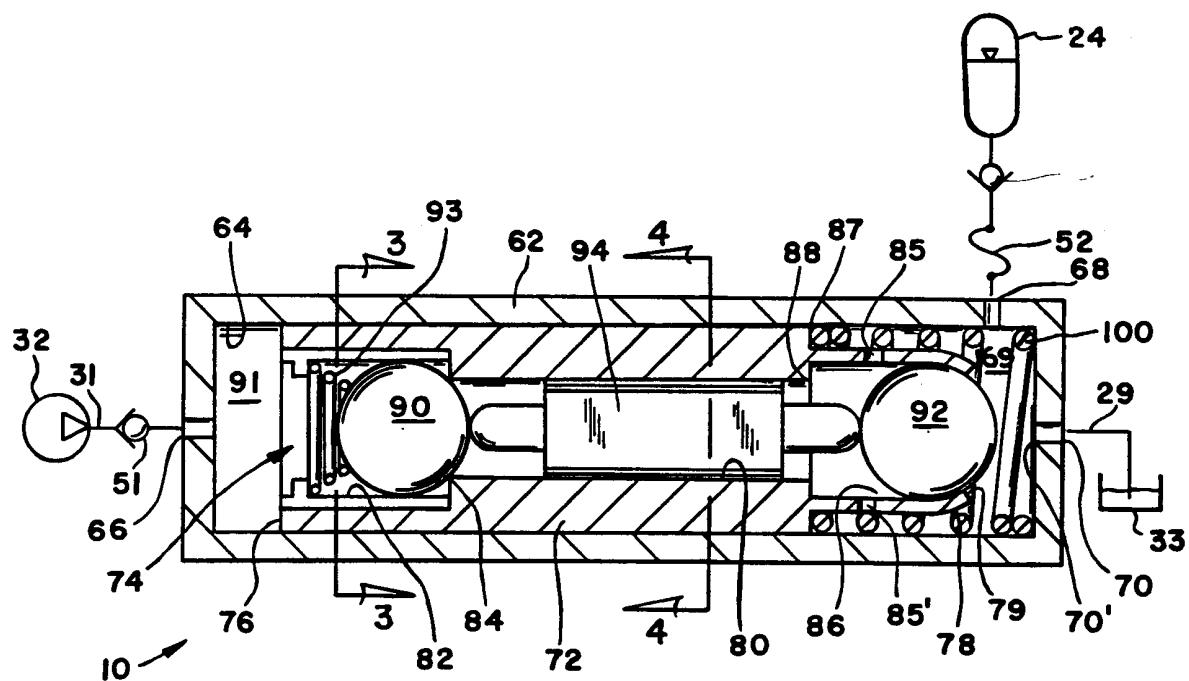
3. The valve (70) as recited in claim 2 wherein said sleeve further characterized by a plurality of axial slots (81, 81'…81ⁿ) separated by a corresponding plurality of lands (83, 83'…83ⁿ) which extend from said first end (76) to said first shoulder (84), said first ball (90) being 15 aligned by said second bore (74) by said plurality of lands (83, 83'…83ⁿ) while said plurality of axial slots (81, 81'…81ⁿ) allow fluid to be freely communicated to said central diameter section (80).

4. The valve (70) as recited in claim 3 wherein said plurality 20 of lands (81, 81'…81ⁿ) define said first diameter section (82) of said sleeve (80).

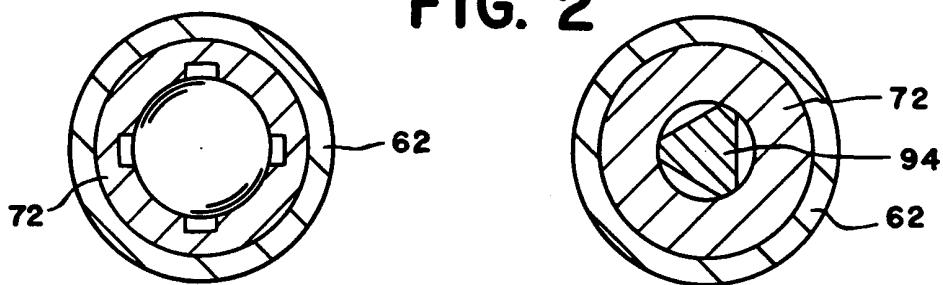

5. The valve (70) as recited in claim 4 wherein in the absence of flow of fluid from said source (32) through said entrance port (68) the fluid pressure acting on said first end (76) of said sleeve (72) and said second end (78) of said sleeve (72) equalized and said second spring 25 (100) thereafter moves said sleeve (72) away from said exhaust port (70) to interrupt communication between said central diameter section (80) while opening communication between said exit port (68) and said exhaust port (70) to allow fluid to flow from said conduit (52) to said reservoir (33) and thereby relieve any pressure in the fluid in said conduit (52). 30

6. The valve (70) as recited in claim 5 further characterized by a first check valve (41) in said conduit (52) which restricts the flow of

-9-


fluid from said accumulator (24) toward said exit port (70) and a second check valve (51) in a second conduit (31) which restricts the flow of fluid from entrance port (66) toward said source of fluid (32).

1/2



二
三

2/2

FIG. 2

FIG. 3

FIG. 4

FIG. 5

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 00/20980

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 B60T17/02 B60T13/14 B60T13/16

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 B60T

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	DE 32 18 344 A (LUCAS INDUSTRIES) 17 November 1983 (1983-11-17) page 9, line 1 -page 13, line 15; figure 1 -----	1
A	GB 806 972 A (BOULTON PAUL AIRCRAFT LTD) the whole document -----	1
A	US 3 896 845 A (DONALD R. PARKER) 29 July 1975 (1975-07-29) -----	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

2 November 2000

Date of mailing of the international search report

08/11/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Harteveld, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 00/20980

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
DE 3218344	A 17-11-1983	NONE	
GB 806972	A	NONE	
US 3896845	A 29-07-1975	NONE	