Abstract: The present invention relates to a plasma reformer which reforms methane (CH₄) and carbon dioxide (CO₂) which are injected through plasma (P) into a synthetic gas of which the main components are hydrogen (H₂) and carbon monoxide (CO). The microwave plasma reformer according to the present invention includes: a body unit (110) having a reaction space portion (111) formed therein in which the plasma (P) is generated, a methane supply pipe (112) injecting the methane into the reaction space portion (111), and a carbon dioxide supply pipe (113) injecting the carbon dioxide into the reaction space portion (111), which are respectively formed in the reaction space portion (111); a discharge pipe (120) received in the reaction space portion (111) of the body unit (110) and supplied with microwaves of a preset frequency in order to generate plasma in the reaction space portion (111); a light guide pipe (135) coupled to the body unit (110) so as to be connected to the discharge pipe (120) and which applies the microwaves which are transmitted to the discharge pipe (120); a hydrocarbon body supply pipe (140) disposed in the upper part of the body unit (110) and supplying a hydrocarbon body into the reaction space portion (111); and a chamber part (150) disposed on the inner side of the upper part of the body unit (110) and forming so as to project in the inner side direction along the circumference in order to reduce the inner diameter of the reaction space portion (111).
본 발명에 따르면, 플라즈마(P)를 통해 주입된 메탄(CH₄)과 이산화탄소(CO₂)를 개질하여 수소(H₂)와 일산화소(CO)를 주성분으로 하는 합성가스로 개질하는 플라즈마 개질기에 있어서, 내부에는 상기 플라즈마(P)가 생성되는 반응공간부(111)가 형성되고, 상기 메탄을 상기 반응공간부(111)의 내부로 주입하는 메탄공급관(112) 및, 상기 이산화탄소를 상기 반응공간부(111)의 내부로 주입하는 이산화탄소 공급관(113)으로 각각 형성된 물체부(110); 상기 물체부(110)의 반응공간부(111) 내에 완착되며, 기 설계된 주파수의 마이크로웨이브를 공급받아 상기 반응공간부(111) 내에서 플라즈마를 생성하는 방전관(120); 상기 방전관(120)과 연결되도록 상기 물체부(110)에 형성되어, 상기 마이크로웨이브를 전달받아 상기 방전관(120)에 인가하는 도파관(135); 상기 물체부(110)의 상부에 배치되고 상기 반응공간부(111)의 내부로 탄화수소소체를 공급하는 탄화수소체 공급관(140); 및 상기 물체부(110)의 상부 내측에 배치되고, 원주를 따라 내측방향으로 동출형성되어 상기 반응공간부(111)의 내경을 축소시키는 젤바부(150),를 포함하는 마이크로웨이브 플라즈마 개질기로 개시한다. [대표도] 도 3
명세서
발명의 명칭: 마이크로웨이브 플라즈마 개질기

기술분야
[1] 본 발명은 마이크로웨이브 플라즈마 개질기에 관한 것으로, 보다 상세하게는 플라즈마(P)를 통해 주입된 메탄(CH₄)과 이산화탄소(CO₂)를 개질하여 수소(H₂)와 일산화탄소(CO)를 주성분으로 하는 합성가스로 개질하는 플라즈마 개질기에 관한 것이다.

배경기술
[3] 일반적으로 수소와 일산화탄소의 혼합가스인 합성가스는 암모니아, 메탄올, 아세트산, DME(DiMethyl Ether), 항성 가솔린과 경유와 같은 화학원료와 환경적으로 청정 연료를 합성하는데 있어서 중요한 매개체 물질이며 상기와 같은 생산물들을 합성하기 위해서는 수소와 일산화탄소의 다양한 물비(H₂/CO)가 필요하다. 예를 들어, 메탄올을 합성하기 위해서는 2/1의 물비가, 아세트산 또는 Methyl Formate, DME를 합성하기 위해서는 1/1의 물비가 필요하다.

[5] 천연가스를 이용하는 합성가스를 제조하는 기술에는, 메탄의 스팀 개질(습식 개질), 메탄의 부분 산화(Partial Oxidation), 메탄의 이산화탄소 개질(간식 개질) 및, 상기 메탄의 스팀 개질과 이산화탄소 개질의 조합된 방식을 이용할 수 있으며, 합성가스를 생산하는 전문적이이고 잠재적 산업공정은 메탄의 스팀 개질 방법이다.

[6] 이 방법은 일반적으로 습식 개질이라 하며 수소/일산화탄소 물비는 3 또는 그 이상이며, 습식 개질은 암모니아 합성에 적당하지만 메탄올과 다른 많은 합성 공정들에서 여분의 수소를 필요로 한다. 반면에, 수소 공정 방면에서 1몰의 일산화탄소를 만드는 데에 최소한 1몰의 메탄이 필요하다.

[7] \[CH₄ + H₂O \rightarrow CO + 3H₂ \Delta H = 206kJ/mol \]
[8] \[CH₄ + CO₂ \rightarrow 2CO + 2H₂ \Delta H = 247kJ/mol \]

[10] 습식개질과 부분산화 공정과 비교했을 때, 이산화탄소 또한 탄소 소스(Carbon source)이기 때문에 화학양론적으로 CH₄-CO₂ 개질은 1몰의 일산화탄소를
만드는 데에 최대 1/2 볼의 메탄을 필요로 한다. CH₄·CO₂ 계절은 1/1의 수소/일산화탄소 몰비를 갖지만, 공정의 Feeding에서 메탄/일산화탄소 비율을 조절함으로써 수소/일산화탄소 몰비를 비교적 쉽게 제어할 수 있다. 그러므로, CH₄·CO₂ 계절로부터 합성가스는 아세트산 또는 Methyl Formate 제조공정에서 사용할 수 있을 뿐만 아니라, 습식 공정과 결합시켰을 때, 다양한 물질을 제조하는 데에 필요한 수소/일산화탄소 몰비를 단축시킬 수 있다.

[11] 그러나, CH₄·CO₂ 개질 공정은 높은 화열반응이며 산업에서 요구하는 조건을 만족시키기 위해서는 상당한 반응율(Reaction Rate)을 달성할 수 있는 특별한 방법들이 필요하다. 이런 맥락에서 측매와 플라즈마 기술들은 산업에서 요구하는 조건을 만족시킬 수 있는 잠재적 기술로서 여겨져 왔지만, 지금까지 상업화되지 못하였다.

[12] 도 1 및 도 2를 참고하면, CH₄·CO₂ 측매개질 공정은 그 측매 반응 공정에서 메탄과 일산화탄소는 측매로 제외된 Tubiform 고정충 반응기로 주입되며 반응에 필요한 열에너지의 반응기 외부에서 열연기가의 열소에너지로부터 공급된다. CH₄·CO₂ 측매개질 반응기는 메탄의 습식개질 반응기와 같이 사용될 수 있을지라도, CH₄·CO₂ 측매 개질 공정이 산업화 규모에서 상업화 규모로 넘어가는 데에 걸림돌이 되는 가장 큰 장벽은 측매 비활성화의 원인이 되는 측매 표면의 탄소 증착이다.

[13] 한편, 플라즈마 CH₄·CO₂ 개질 공정은 아크 방전을 이용하여 매우 제한적인 조건에서 수행되었다. 측매 개질 공정과 비교하였을 때, 전자온도 화학반응과 열화학 반응을 가진 플라즈마 CH₄·CO₂ 개질 반응은 높은 전환율과 선택성을 보여주었으며 탄소 증착의 문제가 없었다. 그러므로, 플라즈마 발생의 에너지 사용이라는 문제에서도 불구하고 지난 10여년 동안 지속적 연구 관심의 증가를 보이고 있다.

[14] [선행기술문헌]
[15] (특허문헌 1) 한국 공개특허공보 제2010-0017757호(2010.02.16), 합성 가스의 제조 방법
[16] 발명의 상세한 설명
기술향세

[17] 본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 반응공간 내에서 생성되는 플라즈마와 내부로 주입되는 각 가스를 전반적으로 고르게 혼합시키며, 연소는 화염을 안정적으로 유지할 수 있는 마이크로웨이브 플라즈마 개질기를 제공하는 것에 있다.

[18] 또한, 본 발명의 다른 목적은 플라즈마를 이용한 건식 개질공정에 스팀(H₂O)를 주입하여 플라즈마 습식공정을 결합시킴으로써 플라즈마를 위한 전기에너지 사용량을 감소시키면서 수소/일산화탄소 물비를 제어하여 다양한 화학 물질을
생성할 수 있는 마이크로웨이브 플라즈마 개질기를 제공하는 것에 있다.

디블러, 본 발명의 또 다른 목적은 플라즈마를 통해 주입된 메탄(CH₄)과 이산화탄소(CO₂)를 개질하여 수소(H₂)와 일산화탄소(CO)를 주성분으로 하는 합성가스를 생성함으로써, 메탄의 소비는 감소시킴과 동시에 이산화탄소의 소비는 대폭 증가시킬 수 있는 마이크로웨이브 플라즈마 개질기를 제공하는 것에 있다.

파세 해결 수단

상기의 목적을 달성하기 위한 본 발명에 따른 마이크로웨이브 플라즈마 개질기는, 플라즈마(P)를 통해 주입된 메탄(CH₄)과 이산화탄소(CO₂)를 개질하여 수소(H₂)와 일산화탄소(CO)를 주성분으로 하는 합성가스로 개질하는 플라즈마 개질기에 있어서, 내부에는 상기 플라즈마(P)가 생성되는 반응공간부(111)가 형성되고, 상기 메탄을 상기 반응공간부(111)의 내부로 주입하는 메탄공급관(112) 및, 상기 이산화탄소를 상기 반응공간부(111)의 내부로 주입하는 이산화탄소 공급관(113)이 각각 형성된 몬체부(110); 상기 몬체부(110)의 반응공간부(111) 내에 안착되어, 기 설계된 주파수의 마이크로웨이브를 공급받아 상기 반응공간부(111) 내에서 플라즈마를 생성하는 방진관(120); 상기 방진관(120)과 연결되도록 상기 몬체부(110)에 체결되며, 상기 마이크로웨이브를 전달받아 상기 방진관(120)에 인가하는 도파관(135); 상기 몬체부(110)의 상부에 배치되고 상기 반응공간부(111)의 내부로 탄화수소재를 공급하는 탄화수소재 공급관(140); 및 상기 몬체부(110)의 상부 내측에 배치되고, 원주를 따라 내측방향으로 돌출형성되어 상기 반응공간부(111)의 내경을 축소시키는 챔버부(150)를 포함한다.

여기서, 상기 챔버부(150)의 내부에는 원주를 따라 통공된 볼 형상의 챔버공간부(151)가 형성되어, 상기 탄화수소재 공급관(140)은 상기 몬체부(110)를 관통하는 형태로 연장되어 상기 챔버공간부(151)와 연통되고, 상기 챔버부(150)에는 상기 챔버공간부(151)의 내부와 반응공간부(111)의 내부를 상호 연통시켜 상기 탄화수소재 공급관(140)을 통해 상기 챔버공간부(151)의 내부로 주입된 탄화수소재를 상기 반응공간부(111)의 내부로 분사하는 볼 수 개의 분할공급관(152)이 일정간격으로 이격되어 형성될 수 있다.

또한, 상기 분할공급관(152)은, 상기 챔버공간부(151)와 반응공간부(111)의 내부를 상호 연통시키는데, 상기 반응공간부(111)의 내부로 개구된 단부는 상기 챔버부(150)의 돌출된 선단부(153) 상에 형성될 수 있다.

또한, 상기 분할공급관(152)은, 상기 탄화수소재 공급관(140) 및 챔버공간부(151)의 직경보다 작은 직경을 가질 수 있다.

또한, 상기 탄화수소재 공급관(140)은, 상기 몬체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 탄화수소재가 상기
채비공간부(151)의 내벽면(154)에 의해 안내되어 와류를 형성하며 상기 채비공간부(151)로 주입될 수 있다.
[26] 또한, 상기 분할공간관(152)은, 상기 채비부(150)의 둔면에 대하여 접선(Tangent Line)된 형태로 형성되어, 상기 채비공간부(151)로부터 주입되는 탄화수소재가 상기 채비부(150)의 선탄면(153) 또는 폐체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)로 분사될 수 있다.
[27] 또한, 상기 분할공간관(152)은, 상기 채비부(150) 내에서 하부방향으로 일정 각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 하향하면서 와류되는 탄화수소재를 분사할 수 있다.
[28] 또한, 상기 이산화탄소 공급관(113)은, 상기 폐체부(110)의 측부 둔면에 배치되어, 상기 폐체부(110) 내에서 상부방향으로 일정 각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 상향하면서 와류되는 이산화탄소를 주입할 수 있다.
[29] 또한, 상기 이산화탄소 공급관(113)은, 상기 폐체부(110)의 둔면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 이산화탄소가 상기 폐체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)으로 유입되면서 상기 플라즈마 및 밴탄과 상호 혼합되어 반응할 수 있다.
[30] 또한, 상기 탄화수소재 공급관(140)으로 공급되는 탄화수소재는, 기체상태의 에탄, 프로판, 에틸렌, 부탄 또는, 액체상태의 DME, 가솔린, 정유, 동유, 빙커 C유, 정제된 페우 또는 고체상태의 석탄, 바이오매스 중 어느 하나일 수 있다.
[31] 또한, 상기 탄화수소재 공급관(140)은, 상기 탄화수소재가 밴탄이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입할 수 있다.
[32] 또한, 상기 이산화탄소 공급관(113)은, 이산화탄소와 밴탄이 상호 혼합된 혼합가스를 상기 반응공간부(111)의 내부로 주입할 수 있다.
[33] 또한, 상기 이산화탄소 공급관(113)은, 이산화탄소와 공기 또는 이산화탄소와 스팀이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입하거나, 상기 폐체부(110)의 둔면에는, 공기 또는 스팀을 상기 반응공간부(111)의 내부로 주입하는 공급관이 별도로 형성될 수 있다.
[34] 또한, 상기 폐체부(110)의 상단에는 상부방향으로 갈수록 내경이 확장되는 형태로 형성된 확장공간부(170)가 형성될 수 있다.
[35] 한편, 상기 확장공간부(170)의 경사면에는, 상향 돌출되게 형성되며, 상기 폐체부(110)의 중앙에서 외측방향으로 연장형성된 복수 개의 화염유도 블레이드(171)가 일정 간격 이격되며 방사형으로 배치될 수 있다.
발명의 효과
[36] 본 발명에 따른 마이크로웨이브 플라즈마 개질기에 의하면,
첫째, 물체부의 상부 내측에서 원주를 따라 내측방향으로 돌출 형성되어 반응공간부의 내경을 축소시키는 챔버부를 통해 개질반응이 발생하는 반응공간부 내부의 압력변화를 도모하여, 생성된 플라즈마(P), 화염 및, 주입된 메탄, 이산화탄소, 탄화수소계 등을 고압으로 혼합시킴으로써 개질효율을 증대시킬 수 있다.

둘째, 탄화수소계 공급관을 통해 공급된 탄화수소계는 다수 개의 분할공급관을 통해 분리되며 상기 반응공간부의 내부로 분산되며 주입되므로, 상기 플라즈마(P)와 각 가스류들을 전반적으로 고르게 혼합시킴으로써 개질효율을 더욱 증대시킬 수 있다.

셋째, 상기 분할공급관은 챔버부의 둘레면에 대하여 접선된 형태로 형성되어, 상기 반응공간부의 내부로 완곡되며 분산되므로, 상기 플라즈마(P)와 각 가스류들을 보다 효과적으로 혼합되면서 이상적으로 화합적 반응할 수 있음은 물론, 고온의 플라즈마 화염으로부터 챔버부, 방전관 및 물체부의 내벽면을 보호할 수 있다.

넷째, 상기 분할공급관은 챔버부 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 하향하면서 완곡되는 탄화수소계를 분사하며, 이산화탄소를 주입하는 이산화탄소 공급관은 물체부 내에서 상부방향으로 일정각도로 기울어진 상태로 배치되어 상향으로서 완곡되는 이산화탄소를 주입함으로써, 상기 이산화탄소 공급관으로부터 주입되는 이산화탄소에 의한 상승 기류는 개질된 합성가스의 배출방향에 대하여 순방향과류(Conventional Vortex Flow)로서 작용하며, 상기 분할공급관으로부터 주입되는 탄화수소계에 의한 기류는 개질된 합성가스의 배출방향에 대하여 역방향과류(Reverse Vortex Flow)로서 작용하게 되어, 각 가스 유동의 상호작용으로 반응공간부 내부에서 플라즈마, 이산화탄소, 메탄 및 탄화수소계가 상호 반응되어 개질될 수 있는 시간이 증가하면서 개질의 효율성이 극대화된다.

다섯째, 플라즈마를 통해 주입된 메탄과 이산화탄소를 개질하여 수소와 일산화탄소를 주성분으로 하는 합성가스를 생성함으로써, 상기 합성가스를 생성하는데 필요한 메탄의 소비는 감소시킴과 동시에 이산화탄소의 소비는 대폭 증가시킬 수 있다. 즉, 지구온난화 물질인 이산화탄소를 원료로 사용함으로써 이산화탄소를 저감할 수 있는 효과를 구현한다.

섯째, 플라즈마를 이용한 건설 개질공정에 스팀(H₂O)를 주입하여 플라즈마 습식공정을 결합시킴으로써 플라즈마 생성을 위한 전기에너지 사용량은 감소시키면서 수소/일산화탄소 분비를 제어하여 다양한 화학 물질을 생성할 수 있다.

도면의 간단한 설명

도 1 및 도 2는 종래의 촉매개질기를 이용한 개질장치의 구성을 나타낸 개략도,
도 3은 본 발명의 바람직한 실시예에 따른 마이크로웨이브 플라즈마 개질기의 구성은 나타낸 단면도,

도 4는 본 발명의 바람직한 실시예에 따른 이산화탄소 공급관이 몰체부와 접선된 형태로 배치되어 따라 이산화탄소가 완류되며 주입되는 동작원리를 나타낸 단면도,

도 5는 본 발명의 바람직한 실시예에 따른 마이크로웨이브 공급부의 구성은 나타낸 개략도,

도 6은 본 발명의 바람직한 실시예에 따른 탄화수소체 공급관 및 분할공급관이 몰체부 및 채퍼부에 각각 접선된 형태로 배치되어 따라 탄화수소체가 완류되며 주입되는 동작원리를 나타낸 단면도,

도 7은 본 발명의 바람직한 실시예에 따른 분할공급관이 채퍼부 내에서 하부방향으로 기울어진 상태로 배치된 구성은 나타낸 개략도,

도 8 및 도 9는 본 발명의 바람직한 실시예에 따른 확장공간부의 구성은 나타낸 사시도 및 평면도,

도 10은 본 발명의 바람직한 실시예에 따른 플라즈마 개질기의 몰체부 벽면에 광촉매가 도포되거나 벽면 내부에 광촉매가 채워진 상태를 나타낸 개략도,

도 11은 본 발명의 바람직한 실시예에 따른 플라즈마(P) 전자로부터 이산화탄소 분자의 다양한 여기경로(제닌)들로 전달되는 비열 이산화탄소 방전 애니지의 분율을 나타낸 그래프,

도 12는 본 발명의 바람직한 실시예에 따른 순수 CO₂ 플라즈마(P)의 Optical Emission Spectrum을 나타낸 그래프이다.

발명의 실시를 위한 최선의 형태

이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.

따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과한 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형이들이 있을 수 있음을 이해하여야 한다.

본 발명의 바람직한 실시예에 따른 마이크로웨이브 플라즈마 개질기(이하에서는 ‘플라즈마 개질기(100)’라 명칭함)는, 플라즈마(P)를 통해 메탄(CH₄)과 이산화탄소(CO₂)를 개질하여 수소(H₂)와 일산화탄소(CO)를 주성분으로 하는 합성가스로 개질함에 있어서, 반응공간부(111) 내에서
생성되는 플라즈마(P)와 내부로 주입되는 각 가스를 전반적으로 고르게 혼합시키며, 연소되는 플라즈마 화염을 안정적으로 유지할 수 있는 개질기로서, 도 3 내지 도 9에 도시된 바와 같이, 몰체부(110), 방전관(120), 도파관(135), 탄화수소체 공급관(140) 및, 캠퍼부(150)를 포함하여 구비된다.

[58] 먼저, 상기 몰체부(110)는, 본 발명의 바람직한 실시예에 따른 플라즈마 개질기(100)의 베이스를 형성하는 구성요소로서, 내부에는 상기 플라즈마(P)가 생성되는 반응공간부(111)가 형성되고, 상기 메탄을 반응공간부(111)의 내부로 주입하는 메탄공급관(112) 및, 상기 이산화탄소를 반응공간부(111)의 내부로 주입하는 이산화탄소 공급관(113)이 각각 형성된다.

[59] 여기서, 상기 이산화탄소 공급관(113)은, 도 4에 도시된 바와 같이 몰체부(110)의 둘레를 따라 동간격으로 이격되어 복수 개가 형성되며, 상기 몰채부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 이산화탄소가 상기 몰체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)으로 유입되면서 상기 플라즈마(P) 및 메탄과 상호 혼합되며 반응하도록 구비될 수 있다.

[60] 이로 인해, 외부로부터 공급되는 이산화탄소가 와류를 형성하며 상기 반응공간부(111)로 유입되면서 플라즈마와 상호 혼합되며 반응함으로써, 이산화탄소, 메탄, 플라즈마 및 탄화수소체가 반응공간부(111) 내에서 균일하게 혼합되면서 안정적으로 화학적 반응할 수 있음을 물론, 고온의 플라즈마 화염으로부터 방전관(120) 및 몰체부(110)의 내벽면(115)을 보호할 수 있는 것이다.

[61] 또한, 상기 이산화탄소 공급관(113)은 도 3에 도시된 바와 같이 상기 몰체부(110) 내에서 상부방향으로 일정각도로 기울여진 상태로 배치되어 상기 반응공간부(111)의 내부에 상향하면서 와류되는 이산화탄소를 주입할 수 있다.

[62] 이로 인해, 상기 이산화탄소 공급관(113)으로부터 주입되는 이산화탄소에 의한 기류는 개질된 혼합가스의 배출방향에 대하여 순방향 와류(Conventional Vortex Flow)로서 작용하게 되어, 플라즈마(P)의 하부로 주입되는 이산화탄소 기류의 세기를 증가시켜 상기 플라즈마와 이산화탄소가 보다 원활하게 혼합될 수 있다.

[63] 더불어, 상기 이산화탄소 공급관(113)은 이산화탄소와 기체상의 탄화수소체(예를 들면, 메탄)이 상호 혼합된 혼합가스를 상기 반응공간부(111)의 내부로 주입할 수 있다.

[64] 그리고, 상기 이산화탄소 공급관(113)은 이산화탄소와 공기, 산소 또는, 이산화탄소와 스팀이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부로 주입할 수 있으며, 상기 이산화탄소 공급관(113)과는 별개로 상기 몰체부(110) 또는 방전관(120)의 둘레에는 공기, 산소 또는, 스팀을 상기 반응공간부(111)의 내부로 주입하는 공급관(미도시)이 형성될 수 있다.

[65] 이와 같이, 상기 이산화탄소와 공기 또는 산소를 상호 혼합시켜 이산화탄소 공급관(113)으로 주입하여 반응공간부(111) 내부에 형성된 플라즈마에
공급함으로써 메탄의 부분산화 또는 연소 공정을 통한 반응기의 개질온도(반응기 내부의 온도 유지)를 제공할 수 있으며, 상기 스팀(H₂O)을 주입(단, Ratio of H₂O/CO₂ > 1)함으로써 메탄의 부분산화 공정을 통해 일산화탄소와 수소의 생산을 증가시킬 수 있다. 또한, 상시 스팀을 제어함으로써 Ratio of H₂/CO를 제어할 수 있다.

또한, 상기 몬체부(110)는, 내부에서 생성되는 고온 고압의 플라즈마(P) 및 화염의 고열에 의해 휘손되거나 파손되지 않도록 내화단열재 제절로 형성되는 것이 바람직하다.

한편, 본 발명의 바람직한 실시예에 따른 플라즈마 개질기(100)에서는, 상기 몬체부(110)의 내벽 또는 내부에 광촉매를 채워 촉매반응 공간을 구성함으로써, 플라즈마 개질후 개질 효율을 증대시킬 수 있다.

여기서, 도 10에는 본 발명의 바람직한 실시예에 따른 몬체부(110)의 내벽 또는 내부에 광촉매가 채워진 상태를 나타낸 개략도가 도시되어 있다.

일반적인 광촉매(ZnO, TiO₂, 등)는 통상 3.2eV의 에너지를 받게 되면 여기어 광촉매 역할을 하게 된다. 도 11에서 보듯이 Vibrational Excitation 모드들의 대부분은 0.5eV 이상의 에너지에서 이산화탄소를 여기시키고 바닥상태로 내려오면서 해당되는 에너지만큼의 빛을 낸다. 이런 이유로 플라즈마 개질기(100,200)의 내벽 또는 내부에 광촉매를 채워서 개질 효율을 높일 수 있고, 도 12에서 보듯이 순수 이산화탄소 플라즈마는 300-400 nm(~3.2 eV 근처)의 빛은 내면서 상기와 같은 이유로 광촉매를 여기시켜 개질 효과를 높일 수 있다.

상기 몬체부(110)에 채울수 있는 촉매는 하기의 [표 1]과 같다.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn-Based Oxide Catalysts</td>
<td>Mn-O/SiO₂</td>
</tr>
<tr>
<td>Cr-Based Oxide Catalysts</td>
<td>Cr₂O₃/SiO₂Cr₂O₃/ZrO₂Cr₂O₃/Al₂O₃C</td>
</tr>
<tr>
<td>Ga-Based Oxide Catalysts</td>
<td>Ga₂O₃/TiO₂</td>
</tr>
<tr>
<td>Ce-Based Oxide Catalysts</td>
<td>CeO₂CaO-CeO₂</td>
</tr>
<tr>
<td>Other Catalysts</td>
<td>Ni/Al₂O₃Ni/SiO₂Ni/MgORu/MgORu/Eu₂O₂Ru/Al₂O₃Ru/Al₂O₃Ru/MgO/Pt/MgO/Pt/ZrO₂Pd/MgOCu/SiO₂</td>
</tr>
</tbody>
</table>

상기 발전관(120)은, 몬체부(110)의 반응공간부(111) 내에 안착되며, 기 설정된 주파수의 마이크로웨이브를 공급받아 상기 반응공간부(111) 내에서 플라즈마를 생성하는 구성요소로서, 원통형상으로 형성되어 상기 반응공간부(111)과
동심원을 형성하도록 상기 몬체부(110)의 내벽면(115) 상에 수직배치된다.

여기서, 상기 방전관(120)의 중심축의 위치는 상기 도파관(135)으로부터
입력되는 마이크로웨이브 주파수와 상기 도파관(135)에 따라 달라지며,
관내파장의 1/4인 것이 바람직하다.

상기 도파관(135)은, 방전관(120)과 연결되도록 몬체부(110)에 체결되며, 상기
마이크로웨이브를 전달받아 방전관(120)에 인가하는 구성요소로서, 도 5에
도시된 바와 같이 마이크로웨이브 공급부(130)로부터 발생된 마이크로웨이브를
전달받아 상기 방전관(120)에 인가하도록 구비된다.

여기서, 상기 마이크로웨이브 공급부(130)는, 외부로부터 공급되는 구동전력을
인가받아 마이크로웨이브를 발전하는 고주파발전기(131)와, 상기
고주파발전기(131)에서 발전된 마이크로웨이브를 출력함과 동시에 입력진
부정함으로 인가되는 마이크로웨이브 에너지를 소멸시켜 상기
고주파발전기(131)를 보호하는 순환기(132), 상기 순환기(132)의 후단에
배치되며 파워를 모니터링하는 파워모니터(133), 상기 순환기(132)로부터
출력된 마이크로웨이브의 임파와 방사파의 세기를 조절하여 입플랜스 정합을
요도함으로써 상기 마이크로웨이브로 유효된 전기장이 방전관(120) 내에서
최대가 되도록 하는 튜너(134) 및, 상기 도파관(135)을 포함하여 구비된다.

상기 탄화수소체 공급관(140)은 상기 반응공간부(111)의 내부로 탄화수소체를
주입하여 반응공간부(111)에서 생성된 플라즈마(P)에 탄화수소체를 공급하는
구성요소로서, 상기 몬체부(110)의 상부에 배치되고 반응공간부(111)의 내부로
탄화수소체를 공급한다.

여기서, 상기 탄화수소체 공급관(140)은, 상술한 이산화탄소 공급관(113)과
마찬가지로, 몬체부(110)의 뒤편에 따라 등간격으로 이격되어 적어도 하나
이상이 형성되되, 도 6에 도시된 바와 같이 상기 몬체부(110)의 뒤편면에 대하여
접선(Tangent Line)된 형태로 형성되어, 외부로부터 공급되는 탄화수소체가 상기
몬체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기
반응공간부(111)으로 유입되면서 상기 이산화탄소, 플라즈마 및 메탄과 상호
혼합되며 반응하도록 구비될 수 있다.

이로 인해, 외부로부터 공급되는 탄화수소체가 상기 방전관(120) 또는
몬체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기
반응공간부(111)로 유입되면서 플라즈마와 상호 혼합되며 반응함으로써,
이산화탄소, 메탄, 플라즈마 및 탄화수소체가 반응공간부(111) 내에서 더욱
균일하게 혼합되면서 안정적으로 화학적 반응할 수 있으며, 상기
반응공간부(111) 내에서 와류되는 기류의 세기를 더욱 증대시킬 수 있다.

또한, 도 3에 도시된 바와 같이 상기 탄화수소체 공급관(140)은 상기
챔버부(150) 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 상기
반응공간부(111)의 내부에 하향하면서 와류되는 이산화탄소를 주입하도록
구비되는 것이 바람직하다.

[81] 이로 인해, 상기 이산화탄소 공급관(113)으로부터 주입되는 이산화탄소에 의한 상승 기류는 계절된 합성가스의 배출방향에 대하여 순방향 와류(Conventional Vortex Flow)로서 작용하며, 상기 탄화수소체 공급관(140)으로부터 주입되는 탄화수소체에 의한 하강 기류는 계절된 합성가스의 배출방향에 대하여 역방향 와류(Reverse Vortex Flow)로서 작용하게 되어, 각 가스 유동의 상호작용으로 반응공간부(111) 내부에서 플라즈마 화염과 이산화탄소, 메탄 및 탄화수소체가 상호 반응되어 계절될 수 있는 시간이 증가하면서 계절의 효율성을 극대화할 수 있다.

[82] 상기 탄화수소체는 탄소와 수소를 주로 포함하는 유기화합물로서, 기체, 액체, 고체의 탄화수소 화합물을 의미한다. 여기서, 상기 탄화수소체로서, 기체상태의 메탄, 프로판, 에틸렌, 부탄 또는, 액체상태의 DME, 가솔린, 경유, 등유, 벙커 C유, 정제된 페우 또는 고체상태의 석탄, 바이오메스 중 어느 하나를 이용할 수 있다.

[83] 여기서, 본 발명의 바람직한 실시예에 따른 플라즈마 계절기(100)에서는 상기와 같이 액체 또는 고체상의 탄화수소체를 이용할 수 있으나, 플라즈마(P), 화염, 이산화탄소와의 혼합효율 및, 연소시 반응공간부(111)의 내부벽면 상에 탄화수소체가 연소되면서 발생되는 연소된 연소산화물이 직통되는 현상이 최소화되도록 기계상의 탄화수소체를 이용하는 것이 바람직하다.

[84] 또한, 상기 탄화수소체 공급관(140)은, 상기 탄화수소체로 메탄을 이용하지 않는 경우, 탄화수소체와 메탄이 상호 혼합된 혼합물을 상기 반응공간부(111)의 내부에 형성된 플라즈마(P)로 주입하도록 구비될 수 있다.

[85] 따라서, 상기 탄화수소체로 고체 또는 액체의 탄화수소 화합물을 이용하는 경우, 반응공간부(111) 내에 형성된 플라즈마를 유지하지 못하거나 또는 불안정하게 유지될 수 있으므로, 상기 메탄을 해당 탄화수소체에 혼합하여 탄화수소체 공급관(140)을 통해 플라즈마로 주입할 수 있다.

[86] 한편, 탄화수소체 공급관(140)은, 상기 이산화탄소 공급관(113)의 물체부(110)에 대하여 직접된 방향과 같은 방향으로 채버부(150)에 대하여 직접되는 형태로 형성되도록써, 상기 이산화탄소 공급관(113)으로부터 반응공간부(111)의 내부로 와류되며 주입되는 이산화탄소의 주입방향과 같은 방향으로 탄화수소체가 와류되며 주입되도록 함으로써, 와류되는 기류의 세기를 더욱 증대시켜 플라즈마(P), 화염 및 각 가스류를 고압으로 혼합시킬 수 있다.

[87] 또한, 상기 탄화수소체 공급관(140)은, 상기 이산화탄소 공급관(113)의 물체부(110)에 대하여 직접된 방향과 반대 방향으로 채버부(150)에 대하여 직접되는 형태로 형성되도록써, 상기 이산화탄소 공급관(113)으로부터 반응공간부(111)의 내부로 와류되며 주입되는 이산화탄소의 주입방향과 반대 방향으로 탄화수소체가 와류되며 주입되도록 함으로써, 상기 반응공간부(111)의
내부에서 상기 와류되는 이산화탄소의 기류와 탄화수소체의 기류가 충돌하도록 하여 플라즈마(P), 화염유도 블레이드(171) 및 각 가스류간의 혼합물을 중대시켜 개질반응을 더욱 증대시킬 수 있다.

더불어, 상기 탄화수소체 공급관(140)은, 상기 반응공간부(111)의 내부로 공급되는 탄화수소체의 주입방향을 반응공간부(111) 내에서 직하방으로 형성되어 따라 상기 탄화수소체의 기류가 반응공간부(111) 내에서 생성된 플라즈마(P)의 내부 깊은 위치까지 주입시켜 플라즈마(P)에 의한 개질반응 시간이 증대되도록 구비될 수도 있다.

상기 채비부(150)는, 반응공간부(111)의 내경을 축소시켜 개질반응이 발생하는 반응공간부(111) 내부의 압력변화를 발생시키는 구조요소로서, 상기 몬체부(110)의 상부 내측에 배치되며, 원주를 따라 내측방향으로 돌출형식되어 상기 반응공간부(111)의 내경을 부분적으로 축소시킨다.

여기서, 도 3 및 도 6에 도시된 바와 같이 상기 채비부(150)의 내부에는 원주를 따라 통공된 형평형상의 채비공간부(151)가 형성되며, 상기 탄화수소체 공급관(140)은 몬체부(110)를 통하는 형태로 연장되어 상기 채비공간부(151)과 연통되고, 상기 채비부(150)에는 채비공간부(151)의 내부와 반응공간부(111)의 내부를 상호 연통시키며 상기 탄화수소체 공급관(140)을 통해 채비공간부(151)의 내부로 주입된 탄화수소체를 반응공간부(111)의 내부로 분사하는 복수 개의 분할공급관(152)이 일정간격으로 이격되어 형성된다.

또한, 도 3에 도시된 바와 같이 상기 분할공급관(152)은, 채비공간부(151)와 반응공간부(111)의 내부를 상호 연통시키며, 상기 반응공간부(111)의 내부로 개구된 단부는 상기 채비부(150)의 돌출된 선단면(153) 상에 형성되는 것이 바람직하다.

더불어, 상기 분할공급관(152)은, 탄화수소체 공급관(140) 및 채비공간부(151)의 적정보다 작은 적정을 갖도록 형성되어, 상기 탄화수소체 공급관(140)을 통해 공급되는 탄화수소체의 기류보다 상대적으로 높은 압력으로 상기 반응공간부(111)를 양방향으로 가압하여 탄화수소체를 분사할 수 있다.

이와 같이, 탄화수소체 공급관(140)을 통해 공급된 탄화수소체는 단수 개의 분할공급관(152)을 통해 분기되며 상기 반응공간부(111)의 내부로 분산되며 주입되므로, 상기 플라즈마(P)와 각 가스류들을 전반적으로 고르게 혼합시킴으로써 개질효율을 더욱 증대시킬 수 있다.

그리고, 상기 분할공급관(152)은 도 6에 도시된 바와 같이, 상기 채비부(150)의 돌레반이에 대하여 접선(Tangent Line)된 형태로 형성되어, 상기 채비공간부(151)로부터 주입되는 탄화수소체가 상기 채비부(150)의 선단면(153) 또는 몬체부(110)의 내벽면(115)에 의해 안내되어 와류를 형성하며 상기 반응공간부(111)로 분사되는 것이 바람직하다.

이로 인해, 상기 반응공간부(111) 내에서 플라즈마(P)와 각 가스류들을 보다 효과적으로 혼합되면서 안정적으로 화학적 반응할 수 있음을 뿐만, 고온의
플라즈마 화염으로부터 챔버부(150), 방전관(120) 및 몬체부(110)의 내벽면(115)을 보호할 수 있다.

[96] 더불어, 도 7에도시된 바와 같이 상기 분할공급관(152)은, 상기 챔버부(150) 내에서 하부방향으로 일정각도로 기울어진 상태로 배치되어 상기 반응공간부(111)의 내부에 하향하면서 와류되는 탄화수소계를 분사하는 것이 바람직하다.

[97] 이와 같이, 상기 분할공급관(152)은 반응공간부(111)의 내부로 하향하면서 와류되는 탄화수소계를 분사하며, 이산화탄소를 주입하는 이산화탄소 공급관(113)은 몬체부(110) 내에서 상부방향으로 일정각도로 기울어진 상태로 배치되어 상향하면서 와류되는 이산화탄소를 주입함으로써, 상기 이산화탄소 공급관(113)로부터 주입되는 이산화탄소에 의한 상승 기류는 개질된 황성가스의 배출방향에 대하여 순방향 와류(Conventional Vortex Flow)로서 작용하며, 상기 분할공급관(152)으로부터 주입되는 탄화수소계에 의한 기류는 개질된 황성가스의 배출방향에 대하여 역방향 와류(Reverse Vortex Flow)로서 작용하게 되어, 각 가스 유동의 상호작용으로 반응공간부(111) 내부에서 플라즈마(P), 이산화탄소, 메탄 및 탄화수소계가 상호 반응되어 개질될 수 없는 시간이 증가하면서 개질의 효율성이 극대화된다.

[98] 한편, 도 3, 도 8 및 도 9에 도시된 바와 같이 상기 몬체부(110)의 상단 즉, 상기 챔버부(150)의 정상부에는 상부방향으로 갈수록 내경이 확장되는 형태로 형성된 확장공간부(170)가 형성되어, 상기 챔버부(150)를 거쳐 상기 확장공간부(170)로 유입되면서 상기 플라즈마(P) 및 각 가스류와 연소되는 화염은 오리피스 효과에 의해 유속이 증대된 상태로 상호 혼합되어 개질반응을 발생시킬 수 있음은 물론, 상기 화염이 보다 넓은 범위로 연소할 수 있게 되므로 개질효율을 보다 증대시킬 수 있다.

[99] 여기서, 상기 상기 확장공간부(170)의 정사면에는, 상향 돌출되게 형성되며, 상기 몬체부(110)의 중앙에서 외측방향으로 연장형성된 복수 개의 화염유도 블레이드(171)가 일정각도 이격되며 방사형으로 배치되는 것이 바람직하다. 이로 인해, 상기 이산화탄소 공급관(113) 및 분할공급관(152)의 접선된 구조에 의해 와류되며 상승하는 플라즈마 화염 및 각 가스류는 상기 화염유도 블레이드(171)에 의해 내경이 확장되는 방향으로 기류가 안내되면서 상승하게 되어, 보다 안정적인 기류형성을 도모할 수 있게 된다.

[100] 그러므로, 상기 몬체부(110)의 상단에는 원통형상의 노즐부(180)가 장착되어 상기 확장공간부(170)을 통해 안정적인 기류를 형성하며 후단으로 배출되는 화염 및 개질된 황성가스의 배출을 유도한다.

[101] 상술한 바와 같은 본 발명의 바람직한 실시예에 따르는 플라즈마 개질기(100)의 각 구성 및 기능에 의해, 몬체부(110)의 상부 내측에서 원주를 따라 내측방향으로 돌출형성되어 반응공간부(111)의 내경을 축소시키는 챔버부(150)를 통해 개질반응이 발생하는 반응공간부(111) 내부의 압력변화를 도모하여 생성된
플라즈마(P) 및 주입된 메탄, 이산화탄소, 탄화수소체 등을 고압으로 혼합시킴으로써 개질효율을 증대시킬 수 있음을 알뿐, 반응공간(111) 내에서 생성되는 플라즈마(PI)와 내부로 주입되는 각 가스류들을 전반적으로 고르게 혼합시키며, 연소되는 화염을 안정적으로 유지할 수 있다.

또한, 플라즈마(P)를 통해 주입된 메탄과 이산화탄소를 개질하여 수소와 일산화탄소를 생성함으로써 생성된 가스를 생성함으로써, 상기 합성가스를 생성하는데 필요한 메탄의 소비는 감소시킴과 동시에 이산화탄소의 소비는 대폭 증가시킬 수 있다. 즉, 지구온난화 물질인 이산화탄소를 원료로 사용함으로써 이산화탄소를 저감할 수 있는 효과를 구현할 수 있다.

다음이, 플라즈마(P)를 이용한 건식 개질공정에 스텐(H2O)를 주입하여 플라즈마 습식공정을 결합시킴으로써 플라즈마(PI) 생성을 위한 전기에너지 사용량은 감소시키면서 수소/일산화탄소 물질을 제어하여 다양한 화학 물질을 생성할 수 있다.

이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
청구범위

[청구항 1] 플라즈마(P)를 통해 주입된 메탄(CH₄)과 이산화탄소(CO₂)를 개질하여 수소(H₂)와 탄산화탄소(CO)를 포함하는 합성가스로 개질하는 플라즈마 개질기에 있어서, 내부에는 상기 플라즈마(P)가 생성되는 반응공간부(111)가 형성되고, 상기 메탄을 상기 반응공간부(111)의 내부로 주입하는 메탄공급관(112) 및, 상기 이산화탄소를 상기 반응공간부(111)의 내부로 주입하는 이산화탄소 공급관(113)이 각각 형성된 물체부(110);

상기 물체부(110)의 반응공간부(111) 내에 안착되며, 기 설정된 주파수의 마이크로웨이브를 공급받아 상기 반응공간부(111) 내에서 플라즈마를 생성하는 방전관(120);

상기 방전관(120)과 연결되도록 상기 물체부(110)에 채결되며, 상기 마이크로웨이브를 전달받아 상기 방전관(120)에 인가하는 도파관(135);

상기 물체부(110)의 상부에 배치되고 상기 반응공간부(111)의 내부로 탄화수소제를 공급하는 탄화수소제 공급관(140); 및 상기 물체부(110)의 상부 내측에 배치되고, 원주를 따라 내측방향으로 돌출형성되어 상기 반응공간부(111)의 내경을 축소시키는 챗버부(150);을 포함하는 플라즈마 개질기.

[청구항 2] 제 1항에 있어서,

상기 챗버부(150)의 내부에는 원주를 따라 통공된 평 형상의 챗버공간부(151)가 형성되며,

상기 탄화수소제 공급관(140)은 상기 물체부(110)를 통과하는 형태로 연장되어 상기 챗버공간부(151)와 연결되고,

상기 챗버부(150)에는 상기 챗버공간부(151)의 내부와 반응공간부(111)의 내부를 상호 연통시켜 상기 탄화수소제 공급관(140)을 통해 상기 챗버공간부(151)의 내부로 주입된 탄화수소제를 상기 반응공간부(111)의 내부로 분사하는 복수 개의 분합공급관(152)이 일정간격으로 이격되어 형성된 것을 특정으로 하는 플라즈마 개질기.

[청구항 3] 제 2항에 있어서,

상기 분합공급관(152)은,

상기 챗버공간부(151)와 반응공간부(111)의 내부를 상호 연통시키며,

상기 반응공간부(111)의 내부로 개구된 단부는 상기 챗버부(150)의 돌출된 선단면(153) 상에 형성된 것을 특징으로
하는 플라즈마 개질기.

[청구항 4]
제 3항에 있어서,
상기 분할공급관(152)은,
상기 탄화수소채 공급관(140) 및 채비공간부(151)의 직경보다
작은 직경을 갖는 것을 특징으로 하는 플라즈마 개질기.

[청구항 5]
제 4항에 있어서,
상기 탄화수소채 공급관(140)은,
상기 몰체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로
형성되어, 외부로부터 공급되는 탄화수소채가 상기
채비공간부(151)의 내벽면(154)에 의해 안내되어 와류를 형성하며
상기 채비공간부(151)로 주입되는 것을 특징으로 하는 플라즈마
개질기.

[청구항 6]
제 5항에 있어서,
상기 분할공급관(152)은,
상기 채비부(150)의 둘레면에 대하여 접선(Tangent Line)된 형태로
형성되어, 상기 채비공간부(151)로부터 주입되는 탄화수소채가
상기 채비부(150)의 선단면(153) 또는 몰체부(110)의
내벽면(115)에 의해 안내되어 와류를 형성하며 상기
반응공간부(111)로 분사되는 것을 특징으로 하는 플라즈마
개질기.

[청구항 7]
제 6항에 있어서,
상기 분할공급관(152)은,
상기 채비부(150) 내에서 하부방향으로 일정각도로 기울여진
상태로 배치되어 상기 반응공간부(111)의 내부에 하향하면서
와류되는 탄화수소채를 분사하는 것을 특징으로 하는 플라즈마
개질기.

[청구항 8]
제 7항에 있어서,
상기 이산화탄소 공급관(113)은,
상기 몰체부(110)의 측부 둘레에 배치되며, 상기 몰체부(110)
내에서 상부방향으로 일정각도로 기울여진 상태로 배치되어 상기
반응공간부(111)의 내부에 상향하면서 와류되는 이산화탄소를
주입하는 것을 특징으로 하는 플라즈마 건식 개질기.

[청구항 9]
제 8항에 있어서,
상기 이산화탄소 공급관(113)은,
상기 몰체부(110)의 둘레면에 대하여 접선(Tangent Line)된 형태로
형성되어, 외부로부터 공급되는 이산화탄소가 상기 몰체부(110)의
내벽면(115)에 의해 안내되어 와류를 형성하며 상기
반응공간부(111)으로 유입되면서 상기 플라즈마 및 매탄과 상호
혼합되며 반응하는 것을 특징으로 하는 플라즈마 건식 개질기.

[청구항 10]
제 9항에 있어서,
상기 탄화수소체 공급관(140)으로 공급되는 탄화수소체는,
기체상태의 에탄, 프로판, 에틸렌, 부탄 또는, 액체상태의 DME,
가솔린, 경유, 등유, 벤커 C유, 정제된 페우 또는 고체상태의 석탄,
바이오매스 중 어느 하나인 것을 특징으로 하는 플라즈마 건식
개질기.

[청구항 11]
제 1항에 있어서,
상기 탄화수소체 공급관(140)은,
상기 탄화수소체와 메탄이 상호 혼합된 혼합물을 상기
반응공간부(111)의 내부로 주입하는 것을 특징으로 하는 플라즈마
건식 개질기.

[청구항 12]
제 1항에 있어서,
상기 이산화탄소 공급관(113)은,
이산화탄소와 메탄이 상호 혼합된 혼합가스를 상기
반응공간부(111)의 내부로 주입하는 것을 특징으로 하는 플라즈마
건식 개질기.

[청구항 13]
제 1항에 있어서,
상기 이산화탄소 공급관(113)은, 이산화탄소와 공기 또는
이산화탄소와 스텐이 상호 혼합된 혼합물을 상기
반응공간부(111)의 내부로 주입하거나,
상기 몰체부(110)의 둘레에는, 공기 또는 스텐을 상기
반응공간부(111)의 내부로 주입하는 공급관이 별도로 형성된 것을
특징으로 하는 플라즈마 개질기.

[청구항 14]
제 1항 내지 제 13항 중 어느 한 항에 있어서,
상기 몰체부(110)의 상단에는 상부방향으로 길수록 내경이
확장되는 형태로 형성된 확장공간부(170)가 형성된 것을 특정으로
하는 플라즈마 개질기.

[청구항 15]
제 14항에 있어서,
상기 확장공간부(170)의 경사면에는,
상향 돌출되게 형성되며, 상기 몰체부(110)의 중앙에서
외측방향으로 연장형성된 복수 개의 조합으로 편레이드(171)가
일정간격 이격되며 방향으로 배치되는 것을 특정으로 하는
플라즈마 개질기.

[청구항 16]
제 1항 내지 제 13항 중 어느 한 항에 있어서,
상기 몰체부(110)의 내벽 또는 내부에는 광촉매가 채워진
촉매반응공간이 형성된 것을 특정으로 하는 플라즈마 개질기.

[청구항 17]
제 1항 내지 제 13항 중 어느 한 항에 있어서,
상기 몬체부(110)는, 내화단열재 제질로 형성된 것을 특징으로 하는 플라즈마 개질기.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
B01J 19/12(2006.01)i, C01B 3/22(2006.01)i, B01J 7/00(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B01J 19/12; B01D 53/32; H05H 1/30; C01B 3/32; H05H 1/26; F23D 99/00; C01B 3/22; B01J 7/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPO internal) & Keywords: plasma, hydrogen, carbon monoxide, discharge tube and microway

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>KR 10-0581476 B1 (UHM, Han Sup) 23 May 2006 See the entire document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-2012-0060273 A (KOREA BASIC SCIENCE INSTITUTE) 12 June 2012 See the entire document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0945038 B1 (AARON CO., LTD. et al.) 05 March 2010 See the entire document</td>
<td>1-17</td>
</tr>
<tr>
<td>A</td>
<td>KR 10-0864695 B1 (UHM, Han Sup) 23 October 2008 See the entire document</td>
<td>1-17</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Date of the actual completion of the international search
22 JANUARY 2014 (22.01.2014)

Date of mailing of the international search report
28 JANUARY 2014 (28.01.2014)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 189 Seonam-ro, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-0581476 B1</td>
<td>23/05/2006</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2012-074156 A1</td>
<td>07/06/2012</td>
</tr>
<tr>
<td>KR 10-0945038 B1</td>
<td>05/03/2010</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>KR 10-0864695 B1</td>
<td>23/10/2008</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
국제조사보고서

A. 발명이 속하는 기술분야(국제특허분야(IPC))
BO1J 19/12(2006.01)i, C01B 3/22(2006.01)i, BO1J 7/00(2006.01)i

B. 조사된 분야
조사된 최소문헌(국제특허분야를 기재)
BO1J 19/12; B01D 53/32; H05H 1/30; C01B 3/32; H05H 1/26; F23D 99/00; C01B 3/22; BO1J 7/00
조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국등록실용신안공보 및 한국공개실용신안공보: 조사된 최소등록문헌에 기재된 IPC
일본등록실용신안공보 및 일본공개실용신안공보: 조사된 최소등록문헌에 기재된 IPC
국제조사의 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(예상하는 경우))
eCOMPASS(특허청 내부 검색시스템) & 카워드: 플라즈마, 수소, 일산화탄소, 방전관 및 마이크로웨이

C. 관련문헌
카테고리*	인용문헌명 및 관련 구절(예상하는 경우)의 기재	관련 성정향
A | KR 10-0584176 B1 (임원실) 2006.05.23 | 문서전체참조
A | KR 10-2012-0062273 A (한국기초과학연구원) 2012.06.12 | 문서전체참조
A | KR 10-0945038 B1 (주식회사 아름 외 2명) 2010.03.05 | 문서전체참조
A | KR 10-0864995 B1 (임원실) 2008.10.23 | 문서전체참조

* 인용된 문헌의 특별 카테고리:
“T” 국제출원일 또는 우선일 후에 공개된 문헌으로, 출원과 상응하지 않으며 발명의 기초가 되는 한마디 이론을 이해하기 위한 인용된 문헌
“X” 특별한 관련성이 없는 문헌, 해당 문헌 하나만으로 정구된 발명의 신규성 또는 진보성이 없는 것으로 본다.
“Y” 특별한 관련성이 있는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 상업적으로 자명한 경우 정구된 발명은 진보성이 없는 것으로 본다.
“&” 동일한 데이터문헌에 속하는 문헌

추가 문헌이 C(계속)이 기재되어 있습니다. ❌ 대응특허 관련 발명지를 참조하십시오.

국제조사의 실제 완료일
2014년 01월 28일 (28.01.2014)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정서로 189, 4층 (동산동, 정부대전청사)
팩스 번호 +82-42-472-7140

식사관
강민구
전화번호 +82-42-481-5609

식사 PCT/ISA/210 (두 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 독립문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>KR 10-0561476 B1</td>
<td>2006/05/23</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-0945038 B1</td>
<td>2010/03/05</td>
<td>없음</td>
<td></td>
</tr>
<tr>
<td>KR 10-0864685 B1</td>
<td>2008/10/23</td>
<td>없음</td>
<td></td>
</tr>
</tbody>
</table>

서식 PCT/ISA/210 (대응특허 추가용지) (2009년 7월)