APPARATUS FOR STRINGING TENNIS RACKETS

Filed Jan. 3, 1935

Inventor
J OHN W. HARROFF

C. R. Facken
Attorney
This invention relates to an apparatus for stringing tennis rackets.

As is well known, tennis rackets are strung in the factories and restrung after use solely by hand, it being necessary for the operator to thread through each individual string, and then to tighten it and tie it. The hand operations involved in stringing a tennis racket require substantial length of time, and a great amount of skill is required in order that the strings may be properly tensioned. Several efforts have been made to provide apparatus by means of which the stringing operations may be performed mechanically, but all machines of this type of which I am aware are only semi-automatic in operation, and the number of hand operations which must be performed are such that there is very little saving in the time required for stringing a racket.

A further object is to provide an apparatus for stringing tennis rackets wherein practically all of the operations are performed automatically, thus permitting a substantial number of rackets to be strung in a relatively short time.

A further object is to provide an apparatus of the character referred to wherein the only hand operations necessary in the stringing of a racket are the initial feeding of the cross and longitudinal strings and the tying of the ends of the strings.

A further object is to provide novel means for picking up a manually inserted string end and automatically threading it back and forth through the openings in the racket frame to complete the threading operation without the further intervention of hand work.

A further object is to provide an apparatus of the character indicated wherein the strings, after being completely threaded back and forth through all of the openings in the racket frame, are automatically and uniformly tensioned.

A further object is to provide a tennis racket stringing apparatus having novel means for weaving one set of strings with respect to the other set.

A further object is to provide novel feeding and guiding means for the strings of a tennis racket wherein one set of strings is fed back and forth through the suitable openings provided in the racket frame, and to provide novel means for thereafter feeding the other set of strings through the openings in the racket frame and for weaving the latter set of strings back and forth with respect to the set of strings first inserted.

A further object is to provide an apparatus of the character referred to having novel driving means for feeding the strings back and forth across and longitudinally of the racket.

A further object is to provide novel supporting means for the racket and the string guiding means, whereby a racket may be quickly inserted in position in the apparatus and quickly removed therefrom.

Other objects and advantages of the invention will become apparent during the course of the following description.

In the drawings I have shown one embodiment of the invention. In this showing—

Figure 1 is a side elevation of the apparatus,

Figure 2 is a plan view of the same,

Figure 3 is an enlarged fragmentary sectional view taken transversely of the apparatus substantially on line 3—3 of Figure 2 and indicating the frame of the racket, the guiding means for the strings, and associated elements, parts being broken away,

Figure 4 is an end view of the apparatus,

Figure 5 is a view taken substantially on the same plane as Figure 3 showing the upper portion of the apparatus on a somewhat smaller scale than Figure 3,

Figure 6 is a longitudinal sectional view taken substantially on line 6—6 of Figure 2, illustrating a portion of the frame of the racket, the string guiding means, and associated parts, portions of the device being broken away,

Figure 7 is an enlarged fragmentary vertical sectional view through a portion of the string guiding plates,

Figure 8 is a fragmentary perspective view of a portion of one of the guiding plates,

Figure 9 is an enlarged fragmentary plan view of a portion of a tennis racket in position on the apparatus showing a portion of the guiding tubes arranged outwardly of the racket,

Figure 10 is an edge view of a pair of the string feeding gear members,

Figure 11 is an enlarged detail sectional view taken transversely through one of the string guiding tubes,

Figure 12 is a detail sectional view of a portion of the guiding tubes and associated elements,

Figure 13 is an elevation of the same, and,

Figure 14 is a fragmentary detail sectional view of a portion of the guide plates showing one of the guide vanes associated therewith.

Referring to Figures 1, 2, and 4, the numeral 10 designates the main frame of the apparatus including a base plate 11, a working bed 12 arranged thereabove, and supporting legs 13 connecting the working bed 12 with respect to the base plate 11. All of the working operations of the apparatus are performed with a tennis racket supported on the working bed 12, and a racket 14 has been shown in position on the bed 12 in Figures 1 and 2. The bed 12 is recessed in its upper face as at 15 to receive a portion of the handle of the racket, as will be apparent.

Referring to Figures 3 to 8 inclusive the numer-
als 16 and 17 designate upper and lower guide plates respectively shaped in plan to correspond to the shape of the frame 18' of the racket and provided with the depressions 18 as indicated in Figures 3 and 6. These plates have their adjacent faces transversely grooved as at 18 and longitudinally groove as at 19. The grooves 18 are continuous except where they cross the grooves 19, as shown in Figure 8. Each groove 19, at alternate junction points of the grooves 18 is provided with a depressed groove portion 20, as shown in Figures 7 and 8. The grooves 19 adjacent the remaining junctions with the grooves 18 are provided with lugs 21 having curved guide faces 22. Transverse and longitudinal strings 23 and 24 are fed through the respective grooves 18 and 19, as will become apparent. The strings 23 are fed straight through the grooves 18, these grooves being straight and uninterrupted from end to end. The strings 24 are fed through the grooves 19 and are guided around the paths of the strings 23 by the curved lugs facing the depressed groove portions 20. The means referred to permits both sets of strings to be fed automatically through the racket since the second set of strings introduced into the apparatus is not interfered with by the other set during its passage through the apparatus. The grooves 18 and 19 obviously may be reversed with the straight grooves 18 extending longitudinally of the racket and the grooves 19 extending transversely of the racket together with their associated guide lugs 21 and depressed groove portions 20 arranged above and parallel to the shaft 40 and is also supported in bearings 47 carried by the members 43 and 44. The shaft 46 carries a plurality of parallel gears 45 keyed or otherwise secured thereto. A counter shaft 46 is arranged above and parallel to the shaft 40 and is also supported in bearings 47 carried by the members 43 and 44. The shaft 46 carries a plurality of gears 48 freely rotatable on the shaft 46 and meshing with the gears 45. A second set of gears 49 is carried by the shaft 46, between the gears 48. The set of gears 45 is fixed to the shaft 46 and is driven thereby through the medium of a gear 50 secured to the shaft 45. The gear 50 meshes with a similar gear 51, rotatably supported by the vertical member 43, and the gear 51, in turn, meshes with a gear 52 secured to the shaft 40.

It will be apparent that when the shaft 40 is driven in one direction, the gears 48 will rotate in the opposite direction since they mesh with the gears 45. On the other hand, the gears 49 rotate in the opposite direction to the gears 46, since shaft 46 is driven from the shaft 40 through the intermediate gear 51. The reverse rotation of the gears 48 and 49 is utilized for feeding the transverse strings of the racket back and forth therethrough. Upper and lower feed gears 53 and 54 are arranged in pairs corresponding to the grooves 18, one pair of these gears being illustrated in Figure 3. Each gear 54 meshes with one of the gears 48 or 49, to be driven thereby, and each gear 53 meshes with its associated gear 54 to be positively rotated by such gear and at the same speed.

A pair of the gears 53 and 54 is illustrated in Figure 10. As shown, these gears are mounted freely and freely rotatable on shafts 55 and 56 respectively, and these shafts extend through the respective guide plates 16 and 17. Each gear 53 and 54 is formed of integral spaced gear rings 57 connected by a curved intermediate portion 58, which may be the metal or plastic. The intermediate section of the gear may be covered with a rubber friction surface to tightly engage the strings. The intermediate space between a pair of gears, as shown in Figure 10, forms a sub-
stantially circular opening through which a string is adapted to pass, and such string is gripped by the curved ... journaled at its ends in the arms 75, and this shaft is arranged parallel to the shaft 88. A plurality of gears 93 are ar-
ranged on the shaft 88 and are keyed or other-
wise secured thereto. These gears mesh with
Corresponding gears 94 mounted on and freely
rotatable with respect to the shaft 82. A second
set of gears 94' are arranged on the shaft 95 and
are keyed or otherwise secured thereto. One end
of the shaft 92 carries a driving pinion 95 mesh-
ing with an intermediate pinion 96, as shown
in Figure 5. The pinion 96 is rotatably supported
by a stub shaft 97, carried by one of the arms 75,
and the pinion 96 meshes with a pinion 97 se-
cured to the shaft 88. It will be apparent that
the gears 94 rotate in a direction opposite to the
direction of rotation of the shaft 98, while the
gears 94' rotate in the same direction as the
shaft 98 because of the use of the intermediate
gear 96. Obviously, therefore, the gears 94 and
94' rotate in opposite directions, and this oppo-
site rotation is utilized for feeding adjacent lon-
gitudinal strings in opposite directions through
the racket.

Each of the gears 94 and 94' is associated with
a pair of the gears 53 and 54 previously de-
scribed, and such gears need not be again referred to in
detail. As shown in Figures 3 and 5, each of the
gears 94 and 94' meshes with one of the upper
wheel 53 which, in turn, meshes with one of the
lower gear wheels 54 to positively drive the
latter and thus feed the longitudinal strings
through the grooves 15.

The operation of the apparatus is as follows:
The present apparatus is particularly intended
for use in tennis racket factories where substan-
tial quantities of identical rackets are made.
While the device is capable of use for restrin-
grackets, it will be apparent that separate types
of apparatus will be required for rackets of dif-
erent shapes and sizes. It will be apparent, how-
ever, that this is a matter of little consideration
in factories where large quantities of rackets of
identical shapes and sizes are made, as stated.
When it is desired to string a racket, the guide
plate 17 is placed in position on the bed plate 12
with the pins 17 in engagement with the openings
in the lugs 76 to properly position the plate 17.
The racket is then placed in position with the
handle arranged in the recess 15, and suitable
means may be employed for supporting por-
tions of the racket frame such as extensions on
the lugs 76, as shown in Figure 3, or any other
suitable means. The top plate 15 is then placed
in position within the racket frame, as shown in
Figures 3 and 6.

The U-shaped frame 73 will have been elevated
from the position shown in Figures 4 and 5 by
the previous turning of the screw 83 and thus
it will be apparent that the racket and the plates
16 and 17 may be placed in position in a manner
appropriate to be described. The screw 83 is then rotated to
move the frame 73 downwards and the arm
portions 75 of the frame are clamped against the
top plate 16, as shown in Figure 3, and this clamping
action obviously holds both plates 16 and 17 rigid-
lly in position. The desired movement of the
detable elements carried by the frame, and accordingly the gears 94
and 94' will be brought into mesh with their
respective gears 93. Moreover, the gear 95 will be
brought into mesh with the gear 99, and the appa-
reatus is then ready for operation.

The motor 39 is started, and its operation drives
the shaft 40 and rotates the gears 45 thereon.
These gears in turn mesh with the gears 48 to
drive the latter, while the gears 49 will be driven
by the shaft 45, through the gears 50, 51, and 52.
As previously stated, the gears 48 and 49 rotate in opposite directions and these gears mesh with the lower gears 50 of the transverse set of feed gears and alternate sets of these gears will be rotated in opposite directions. It will be noted that the two gears 45 adjacent the center of the length of the racket are arranged a distance apart equal to the distance between two adjacent racket strings whereas the remaining gears 48 are spaced apart a distance equal to the distance between every other pair of the strings. Hence the two strings adjacent the center of the racket will be fed transversely thereof in the same direction, and this arrangement is provided to permit the two ends of the string to form 18 at the points of the racket to be inserted in two adjacent openings, as indicated in Figure 2.

The string 23 is cut to a length sufficient to form all of the cross strings, whereupon the two ends of the string are inserted in the two openings adjacent the center of the length of the racket, as stated, and the ends of the string are fed by hand through the openings 35 referred to and through the corresponding transverse guide grooves 18 until the ends of the string are engaged by the corresponding feed gears 53 and 54. No further attention is then required on the part of the operator to complete the insertion of the cross strings. The gears 53 and 54 referred to feed the string across the remaining half of the width of the racket, thence out through the corresponding openings to the other side of the racket and around the guide tubes 37 adjacent such openings. These tubes turn the ends of the string into the next adjacent openings 35 and through the corresponding guide grooves 18 until the next pair of gears 53 and 54 engage the ends of the string to continue the feeding action.

It will be apparent that the feeding action is continued back and forth across the racket with the ends of the string passing through successive openings 35 to form successive transverse strings toward the ends of the racket, the tubes 37 serving to turn back the ends of the string as they pass through the successive openings 35. In this connection it will be noted that during the passage of the cross strings through the apparatus, the vanes 33' will be turned to properly direct the ends of the string through the openings 35 through which the string passes outwardly through the racket frame, and to guide the ends of the strings into certain of the guide tubes 37 adjacent the points where the ends of the string pass inwardly through the openings 35. Similarly, the vanes 30' in the multiple tubes 37 are turned to guide the strings in the proper directions as will be apparent.

The feed gears 53 and 54 act as pushers as they successively take up the ends of the strings until the operation is completed and the center of the length of the string 23 is drawn up tight against the racket frame. The first set of guide rollers can then draw no more string into the racket, but tightens the center of the length of the string to the proper tension by frictional engagement with the string. Each successive pair of the guide rollers operates in the same manner, and accordingly after the string has been completely inserted, the feed rollers operate as tensioning rollers to draw the transverse strings taut to the proper degree. In this connection it will be noted that the pushing action of the feed rollers operates to advance the string successively back and forth, the end of the string being pushed around the successive guide tubes 37 until no more string can be drawn into the racket. From this point on, as previously stated, the feed rollers act to tension the strings, and initially this action draws the string out of all of the feed tubes 37 through the inner openings 38 thereof and into snug contact with the racket frame.

The operation of inserting the longitudinal strings is substantially identical with the operation just described and need not be referred to in detail. The longitudinal string is cut to an ample length and inserted through the transverse handle opening 35, whereupon the ends of the string are inserted into the guide openings 38 by hand and fed through the grooves 18 until they are picked up by the first set of the rollers 53 and 54 which feed the longitudinal strings. The string is thus advanced completely throughout the length of the racket to form the innermost pair of longitudinal strings, whereupon the string leaves the racket frame to be guided by the corresponding guide tubes 37 back into the racket to form the next adjacent pair of strings. This operation is continued until the strings are fed back and forth to complete all of the longitudinal strings. It will be noted during the insertion of the longitudinal strings that the vanes 30' and 33' are reversed with respect to the positions of these elements previously described in order that the strings may be properly guided through the respective openings 35 and into and out of the longitudinal grooves 18. After all of the longitudinal strings have been inserted, the feed rollers act as tensioning means to draw the strings out of the guide tubes 37 and stretch them taut. The ends of the string then may be tied in the usual manner.

As will be apparent from an examination of Figures 6, 7, and 8, all of the guide grooves 18 are straight throughout their length, and the transverse strings are thus fed straight back and forth across the racket. In order to prevent interference between the inserted transverse and longitudinal strings and to properly interlace the strings, the guide grooves 18 and 33 are curved guide faces 22 to be guided thereby into the adjacent depression 20, and this depression will then turn the string and guide it downwardly into the next continuation of the groove 19, after which the operation is continued. Thus the advancing end of the string 24 will be fed alternately above and below the groove 18 to thus be interlaced with respect to the transverse strings 23.

Since the depressed groove portions 20 and 60 guide lugs 21 operate to maintain the advancing end of the string 24 out of the path of the transverse strings 23, it will be apparent that the first set of strings introduced into the apparatus will not interfere with the passage of the second set of strings therethrough. It also will be apparent that either set of strings may be introduced first, and depending on the manner in which the feed rolls are set, the rackets readily may be strung completely in from 3 to 5 minutes, as distinguished from the slow tedious hand operations which have been previously practiced. While the grooves 18 have been designed as being provided with the means for interlacing the strings with respect to each other, it will be apparent that the ap-
The arrangement may be reversed with the grooves 19 formed straight, and with the lugs 21 and depressed groove portions 20 formed in the grooves 18. The various operations will be identical in either case, as will be apparent.

After the racket has been completely strung, the motor 39 is stopped and the multiple guide tubes 37 are removed, whereby free access may be had to the ends of the strings. The openings 10 33 through which the transverse strings pass from the racket frame after all of the strings have been inserted are provided with tapered pins driven therein by hand. The purpose of these pins is to maintain the tension of the strings during the subsequent tying operations. After the pins have been driven into the openings in the manner stated, the screw 43 is turned upwardly to elevate the frame 73 and all of the gearing carried thereby. The racket and the two plates 16 and 17 then may be lifted from the apparatus and the plates removed from the racket frame. Each end of the cross string is then inserted through one of the next adjacent openings 35 and secured to the nearest longitudinal string by means of a half-hitch, whereupon the tapered pins are then removed. The ends of the longitudinal strings are inserted under the loops of the longitudinal strings which lie against the racket frame and have been drawn taut. The method of securing the ends of the strings is conventional and need not be illustrated or described in detail.

The apparatus is relatively inexpensive to build, particularly in view of the fact that there is a substantial duplication of parts throughout the apparatus, thus eliminating the necessity for the manufacture of a large number of different parts. For example, all of the gears 53 and 54 are identical with each other, and all of the gears 45, 46, 48, 49, 53, 54, and 94 are identical. The apparatus is of such a character as to permit the ready insertion of a racket and the positioning of the parts for the stringing operations, and the racket is readily removed from the apparatus when the stringing has been completed. The apparatus is particularly adapted for use in tennis racket factories where quantity production is of importance and wherein large numbers of identical rackets are manufactured. Since the amount of skilled hand work is substantially reduced in the making of rackets, the cost of production of the rackets is correspondingly reduced. The tension of the strings, moreover, is not left to the judgment of the operator, but all rackets will have their strings tensioned to the same extent because of the operation of the feed gears 53 and 54.

It is to be understood that the form of the invention hereinafter shown and described is to be taken as a preferred example of the same and that various changes in the shape, size and arrangement of parts may be resorted to without departing from the spirit of the invention or the scope of the subjoined claims.

I claim:

1. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with corresponding grooves forming guide openings for the passage of the racket strings, said openings registering at their ends with the string openings of the racket frame, and means for fixing the racket strings through said guide openings.

2. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with corresponding grooves forming guide openings for the passage of the racket strings, said openings registering at their ends with the string openings of the racket frame, and means for fixing the racket strings through said guide openings.

3. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with corresponding grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings of the racket frame, and a plurality of pairs of wheels for feeding the racket strings through said guide openings, each pair of wheels being grooved in its periphery to define a circular opening between the wheels registering with one of said guide openings.

4. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with corresponding grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings of the racket frame, a plurality of pairs of wheels for feeding the racket strings through said guide openings, each pair of wheels being arranged in edge to edge relation in a common plane and grooved in their periphery to define a circular opening between the wheels registering with one of said guide openings, and means for driving said wheels.

5. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with corresponding grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings of the racket frame, a plurality of pairs of wheels for feeding the racket strings through said guide openings, each pair of wheels being arranged in edge to edge relation in a common plane and grooved in their periphery to define a circular opening between the wheels registering with one of said guide openings, each pair of wheels being provided with gear portions meshing with each other to effect simultaneous rotation of said wheels, and means for driving one wheel of each pair.

6. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with transverse parallel grooves and longitudinal parallel grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings of the racket frame, said plates being provided with means for guiding the strings passing through one set of
guide openings alternately above and below the lines of the strings passing through the other set of guide openings.

7. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with transverse parallel grooves and longitudinal parallel grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings in the racket frame, said plates being provided with means for guiding the strings passing through one set of guide openings alternately above and below the lines of the strings passing through the outer set of guide openings, and means for feeding the racket strings through said guide openings.

8. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with transverse parallel grooves and longitudinal parallel grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings in the racket frame, said plates being provided with means for guiding the strings passing through one set of guide openings alternately above and below the lines of the strings passing through the outer set of guide openings, and a plurality of pairs of wheels for feeding the racket strings through said guide openings, each pair of wheels being arranged in edge to edge relation in a common plane and grooved in their periphery to define a circular opening between the wheels registering with one of said guide openings.

9. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with transverse parallel grooves and longitudinal parallel grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings in the racket frame, said plates being provided with means for guiding the strings passing through one set of guide openings alternately above and below the lines of the strings passing through the other set of guide openings, a plurality of pairs of wheels for feeding the racket strings through said guide openings, each pair of wheels being arranged in edge to edge relation in a common plane and grooved in their periphery to define a circular opening between the wheels registering with one of said guide openings and means for driving said wheels.

10. Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with transverse parallel grooves and longitudinal parallel grooves forming guide openings for the passage of the racket strings, said guide openings registering at their ends with the string openings in the racket frame, said plates being provided with means for guiding the strings passing through one set of guide openings alternately above and below the lines of the strings passing through the other set of guide openings, a plurality of pairs of wheels for feeding the racket strings through said guide openings, each pair of wheels being arranged in edge to edge relation in a common plane and grooved in their periphery to define a circular opening between the wheels registering with one of said guide openings and means for driving said wheels.
Apparatus of the character described comprising a pair of complementary guide plates corresponding in shape and size to the inside of a tennis racket frame and adapted to be arranged therein in face to face relation, said plates being provided in their adjacent faces with corresponding grooves forming guide openings for the passage of the racket strings, said openings registering at their ends with the string openings of the racket frame, means for feeding the racket strings through said guide openings, and a plurality of guide means arranged outwardly of the racket frame to receive the end of a string project}