wo 2013/170205 A 1[I I 00000000 O 0 Y O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/170205 A1l

14 November 2013 (14.11.2013) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
HO04L 29/06 (2006.01) HO04L 29/08 (2006.01) kind of national protection available): AE, AG, AL, AM,
21) Tat tional Application Number- AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: PCT/US2013/040639 BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
10 May 2013 (10.05.2013) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
- . ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
61/645,517 10 May 2012 (10.05.2012) Us
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant: ORACLE INTERNATIONAL CORPORA- kind of regional protection available): ARIPO (BW, GH,
TION [US/US]; 500 Oracle Parkway, M/S Sop7, Redwood GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Shores, California 94065 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
(72) Taventors: JOHNSEN, Bjern Dag; Vilberggrenda 9, N- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
0687 Oslo (NO). NARASIMHAMURTHY, Prabhun-
andan; 500 Oracle Parkway, Redwood Shores, California MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
’ ’ . ’ TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
94065 (US). MOXNES, Dag Georg; Leirskallbakken 25, ML, MR, NE, SN, TD, TG)
N-1164 Oslo (NO). HOLEN, Line; Vitasen 17, N-1900 ? T T ’
Fetsund (NO). HODOBA, Predrag; Hoymyrfjellet 10, N- Published:
1389 Heggedal (NO). —  with international search report (Art. 21(3))
(74) Agents: MEYER, Sheldon, R. et al.; Fliesler Meyer LLP, __ before the expiration of the time limit for amending the

650 California Street, Fourteenth Floor, San Francisco,
California 94108 (US).

claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: SYSTEM AND METHOD FOR SUPPORTING STATE SYNCHRONIZATION IN A NETWORK ENVIRONMENT

700

FIGURE7

SM 702

Cument [
M_Key

i M_Key }
! Configuration

File r
! 710 i
\

Instracton to
Update
Curcent M_Key

7

Bwitch

701

(57) Abstract: A system and method can support network management in a network environment. The network environment can in -
clude a plurality of configuration daemons (CDs), wherein each CD resides on a switch in the network environment. The CD oper -
ates to receive a configuration file that includes a list of known management key (M_Key) values. Furthermore, the CD operates to
store the configuration file, and make the configuration file available to a local subnet manager(SM) on the switch, wherein the local
SM is associated with a currently used M_Key value. Then, the CD operates to update the local SM with a new M_Key, after receiv-
ing an instruction from a master CD that is associated with a master SM in the network environment.



10

15

20

25

30

35

40

WO 2013/170205 PCT/US2013/040639

SYSTEM AND METHOD FOR SUPPORTING STATE SYNCHRONIZATION IN A
NETWORK ENVIRONMENT

COPYRIGHT NOTICE
A portion of the disclosure of this patent document contains
material which is subject to copyright protection. The copyright
owner has no objection to the facsimile reproduction by anyone of
the patent document or the patent disclosure, as it appears in the
Patent and Trademark Office patent file or records, but otherwise
reserves all copyright rights whatsoever.

Field of Invention:

[0001] The present invention is generally related to computer systems and software, and is

particularly related to supporting a network environment.

Background:
[0002] The interconnection network plays a beneficial role in the next generation of super

computers, clusters, and data centers. High performance network technology, such as the
InfiniBand (IB) technology, is replacing proprietary or low-performance solutions in the high
performance computing domain, where high bandwidth and low latency are the key
requirements.

[0003] Due toits low latency, high bandwidth, and efficient utilization of host-side processing
resources, IB technology has been gaining acceptance within the High Performance Computing

(HPC) community as a solution to build large and scalable computer clusters.

Summary:

[0004] Described herein are systems and methods for supporting subnet managementin a
network environment. The network environment can include a plurality of configuration daemons
(CDs), wherein each CD resides on a switch in the network environment. The CD operates to
receive a configuration file that includes a list of known management key (M_Key) values.
Furthermore, the CD operates to store the configuration file, and make the configuration file
available to alocal subnet manager(SM) on the switch, wherein the local SMis associated with a
currently used M_Key value. Then, the CD operates to update the local SM with a new M_Key,
after receiving an instruction from a master CD that is associated with a master SM in the
network environment.

[0005] Described herein are systems and methods for supporting subnet managementin a
network environment. A network switch in the network environment can provide a transactional
interface, wherein the transactional interface allows a user to interact with the network
environment using a transaction. The transactional interface allows a user to group one or more

operations in the transaction, and ensures that no conflicting operations are included in the

-1-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

transaction.

[0006] Described herein are systems and methods for supporting subnet managementin a
network environment. The network environment can include a plurality of configuration daemons
(CDs), wherein a master CD is an active CD on a switch with a master subnet manager(SM).
The master CD operates to perform consistency check on one or more states associated with
one or more peer CDs in the network environment, and replicate a configuration file to the one or
more peer CDs, wherein the configuration file includes at least one management key (M_Key)
value.

[0007] Also described herein is a system for supporting network management in a network
environment. The system comprises means for receiving, via a configuration daemon (CD)on a
switch in the network environment, a configuration file, wherein the configuration file includes a
list of known management key (M_Key) values. The system further comprises means for storing
the configuration file, and means for making the configuration file available to a local subnet
manager(SM) on the switch, wherein the local SM is associated with a currently used M_Key
value. The system further comprises means for updating the local SM with a new M_Key, after
receiving an instruction from a master CD that is associated with a master SM in the network
environment.

[0008] Further described herein is a system for supporting network management in a
network environment. The system comprises a configuration daemon (CD) on a switch wherein
the CD is configured to receive a configuration file that includes a list of known management key
(M_Key) values. The system is also configured to store the configuration file, and to make the
configuration file available to a local subnet manager(SM) on the switch, wherein the local SM is
associated with an currently used M_Key value. The system is configured to update the local
SM with a new M_Key, after receiving an instruction from a master CD that is associated with a
master SM in the network environment.

[0009] Also described herein is a system for supporting network management in a network
environment. The system comprises means for providing a transactional interface at a network
switch, wherein the transactional interface allows a user to interact with the network environment
using a transaction. The system further comprises means for grouping one or more operations
in the transaction and means for ensuring that no conflicting operations are included in the
transaction.

[0010] Further described herein is a system for supporting network management in a
network environment. The system comprises a network switch, wherein the network switch is
configured to provide a transactional interface, wherein the transactional interface allows a user
to interact with the network environment using a transaction. The system is configured to group
one or more operations in the transaction and to ensure that no conflicting operations are

included in the transaction.



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

[0011] Also described herein is a system for supporting network management in a network
environment. The system comprises means for providing a plurality of configuration daemons
(CDs) in the network environment, wherein a master CD is an active CD on a switch with a
master subnet manager(SM). The system further comprises means for performing, via the
master CD, a consistency check on one or more states associated with one or more peer CDs in
the network environment, wherein each said peer CD is an active CD on a switch with a standby
SM and means for replicating a configuration file to the one or more peer CDs, wherein the
configuration file includes at least one management key (M_Key) value.

[0012] Further described herein is a system for supporting network management in a
network environment. The system further comprises a master configuration daemon (CD),
wherein the master CD is an active CD on a switch with a master subnet manager(SM), wherein
the master CD is configured to be configured to perform a consistency check on one or more
states associated with one or more peer CDs in the network environment, wherein each said
peer CD is an active CD on a switch with a standby SM. The system is also configured to
replicate a configuration file to the one or more peer CDs, wherein the configuration file includes

at least one management key (M_Key) value.

Brief Description of the Figures:

[0013] Figure 1 shows an illustration for supporting a management key (M_Key) protection
model in an IB network, in accordance with an embodiment of the invention.

[0014] Figure 2 shows an illustration for supporting a transactional command line interface
(CLI) in a network environment, in accordance with an embodiment of the invention.

[0015] Figure 3 illustrates an exemplary flow chart for supporting a transactional command
line interface (CLI) in a network environment, in accordance with an embodiment of the
invention.

[0016] Figure 4 shows an illustration for supporting subnet management using configuration
daemons (CDs) in a network environment, in accordance with an embodiment of the invention.
[0017] Figure 5 illustrates an exemplary flow chart for supporting subnet management using
configuration daemons (CDs) in a network environment, in accordance with an embodiment of
the invention.

[0018] Figure 6 shows an illustration for supporting a management key (M_Key)
configuration file in a network environment, in accordance with an embodiment of the invention.
[0019] Figure 7 shows an illustration for supporting state synchronization between a
configuration daemon (CD) and a subnet manager (SM) on a switch in a network environment, in
accordance with an embodiment of the invention.

[0020] Figure 8 illustrates an exemplary flow chart for supporting state synchronization

between a configuration daemon (CD) and a subnet manager (SM) in a network environment, in

-3-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

accordance with an embodiment of the invention.
[0021] Figure 9 illustrates a functional block diagram to show features in accordance with an

embodiment of the invention.

Detailed Description:

[0022] The invention is illustrated, by way of example and not by way of limitation, in the
figures of the accompanying drawings in which like references indicate similar elements. It
should be noted that references to “an” or “one” or “some” embodiment(s) in this disclosure are
not necessarily to the same embodiment, and such references mean at least one.

[0023] The description of the invention as following uses the Infiniband (IB) network as an
example for a high performance network. It will be apparent to those skilled in the art that other
types of high performance networks can be used without limitation.

[0024] Described herein are systems and methods that can support subnet management in

a network, such as an IB network.

InfiniBand (IB) Network and Management Key (M_Key) protection model

[0025] The IB networks can be referred to as subnets. An IB subnet can include a set of
hosts interconnected using switches and point-to-point links. Additionally, the IB subnet can
include at least one subnet manager (SM), which is responsible for initializing and bringing up
the network, including the configuration of all the switches, routers and host channel adaptors
(HCAs) in the subnet.

[0026] Figure 1 shows an illustration of supporting a management key (M_Key) protection
model in an IB network, in accordance with an embodiment of the invention. As shown in Figure
1, amanagement key, such as an M_Key 102, can be used to protect an IB fabric, such as an IB
subnet 100. The values for the M_Key 102 may only be known by fabric administrators 110,
which can have administrator access to the switches A-B 103-104 and the designated subnet
manager (SM) nodes 101.

[0027] In the IB subnet 100, a secure HCA firmware implementation in HCA 121-124 can
keep the type and identity of various fabric nodes well defined. Each of the HCA121-124 can
implement a subnet management agent (SMA) component, e.g. SMAs 131-134. Each of the
SMAs 131-134 can be associated with an M_Key, e.g. M_Keys 141-144.

[0028] Furthermore, the connected switches A-B 103-104 can be controlled by the fabric
administrator 110, which can install new M_Key values 102, out-of-band, on switches 103-104.
Thus, any rogue SMA implementation 131-134 may not compromise the fabric administrator 110
defined M_Key 102 values that are used in the IB subnet/fabric 100.

[0029] Additionally, the fabric administrator 110 can ensure that there is infinite M_Key 102
lease time on the switches A-B 103-104. Thus, the host based software 161-164, e.g. a host

-4~



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

based subnet manager on different hosts 111-114 (including an operating system 151-154), may
not hijack the control of any switch A-B 103-104 in the IB subnet/fabric 100.

[0030] In accordance with an embodiment of the invention, a single M_Key 102 value (or a
single set of M_Key values) can be used for various nodes in the in the IB subnet 100 based on
the IB specification defined access restrictions. The correct value for a current M_Key 102 may
need to be specified before either reading or updating the M_Key 102, since the secure HCA
firmware can ensure that the “read protected” M_Key assigned to the local HCA 121-124 is not
exposed to local host based software.

[0031] In accordance with an embodiment of the invention, a designated subnet manager
101 can ignore any HCA ports with un-known M_Key value and leave the corresponding link not
initialized. The only impact of a hijacked HCA port M_Key can be that the HCA port may not be
operational, and the designated subnet manager 101 can prevent host based software from
communicating via this HCA port using normal communication, i.e. non-SMP/VL15 based
communication.

[0032] Furthermore, the HCA ports may be set up with finite lease time on M_Keys 102, e.qg.
due to a high availability concern with the subnet manager(s) 101 that maintains the M_Key 102
lease period.

[0033] In accordance with an embodiment of the invention, the M_Key 102 can be created
and managed by fabric administrators 110 and stored in secured memory on switches A-B 103-
104 and/or HCAs121-124. A microprocessor on a switch A-B 103-104 or a HCA121-124 can

access the memory for reading out the M_Key 102 or writing the M_Key 102 into the memory.

Transactional Command Line Interface (CLI)

[0034] In accordance with an embodiment of the invention, a transactional command line
interface (CLI) can be operating in a network environment, e.g. from a network switch with the
current master subnet manager (SM).

[0035] Figure 2 shows an illustration of supporting a transactional command line interface
(CLI) in a network environment, in accordance with an embodiment of the invention. As shown in
Figure 2, a switch 201 in a network environment, e.g. an IB subnet 200, can include a subnet
manager (SM) 202 and a configuration daemon (CD) 203.

[0036] Furthermore, the switch 201 can provide a transactional CLI 204, which allows a user
to configure and manage the IB subnet 200 using one or more transactions based on M_Key
205. As shown in Figure 2, a transaction 210, which allows the system to perform various
operations, can group one or more commands 212 between a start command 111 and a commit
command 213.

[0037] In accordance with an embodiment of the invention, a single upgrade transaction, e.g.

the transaction 210, may not perform conflicting operations. This can be implemented in a

-5-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

dynamic way where the initial operation(s) within the transaction 210 can define both the type of
transaction 210 and which operations are allowed. For example, the start command 211 to
initiate the transaction 210 can include parameter(s) that explicitly defines which operations are
allowed.

[0038] Alternatively, a logical commit operation in a single upgrade transaction 210 can be
implemented as several consecutive commit operations, each of which can represent a sub-
transaction that groups together a set of similar operations. For example, all remove operations
can be implemented as a sub-transaction before all add operations can be implemented as a
subsequent sub-transaction. Such an automated scheme can have the advantage of making the
normal update scenarios simpler for the user, and may also have the disadvantage of making
the handling of a partially failed transaction more complex in terms of defining which operations
have been completed and which have not.

[0039] Furthermore, the system allows the user to keep track of operations that can be
grouped within a single transaction, in order to simplifying the handling of a partially failed
transaction in terms of defining which operations may have been completed and which may have
not.

[0040] In accordance with an embodiment of the invention, the transaction start command
211 can ensure that conditions for completing and committing the transaction are fulfilled. If the
current conditions are not acceptable, the system allows the user to choose to abort the
transaction. Furthermore, the user can re-issue a commit operation in force mode, after the
failure of a normal commit due to current conditions.

[0041] Additionally, the command interface can generate a named template 220, which is a
configuration that is not committed to the fabric, but instead stored in a local or remote file
system. This named template 220 can also be generated from an already committed
configuration.

[0042] The command interface allows a named template 220 to be loaded following a
transaction start command 211. The named template 220 can also be a parameter for the start
command 211. The user is allowed to modify the configuration information from the loaded
named template 220 before committing it in the same way as any other configuration update.
[0043] Furthermore, the system can prepare different named templates 220 for different use
cases. Also, based on the named templates 220, the system can perform backup operations to
provide protection for the system, after a complete fabric outage, which may cause the loss of
configuration information from all peer CD instances 206 in the fabric. Furthermore, the named
template 120 allows an administrator to roll back to an earlier consistent configuration, when the
administrator has committed an incorrect configuration. Thus, the administrator can avoid
performing a potentially very complex sequence of explicit “undo” and “redo” operations.

[0044] In accordance with an embodiment of the invention, by not allowing the operation of

-6-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

changing current M_Key value 205 and the operation of deleting the (old) current M_Key value
205 in the same transaction, the system can avoid a race condition when a transaction fails into
a state where one SM may have a current M_Key that is unknown to one or more of the other
SM instances.

[0045] Appendix A provides further information with respect to providing a transactional
command line interface (CLI) in a network environment and various aspects of the platform
described throughout this disclosure. The information in Appendix A is provided for illustrational
purposes and should not be construed to limit all of the embodiments of the invention.

[0046] Figure 3 illustrates an exemplary flow chart for supporting a transactional command
line interface (CLI) in a network environment, in accordance with an embodiment of the
invention. As shown in Figure 3, at step 301, the system can provide a transactional interface at
a network switch, wherein the transactional interface allows a user to interact with the network
environment using a transaction. Then, at step 302, the system can group one or more
operations in the transaction. Furthermore, at step 303, the system can ensure that no conflicting

operations can be included in the transaction.

Configuration Daemon (CD)

[0047] Figure 4 shows an illustration of supporting subnet management using configuration
daemons (CDs) in a network environment, in accordance with an embodiment of the invention.
As shown in Figure 4, a network environment, e.g. an IB subnet 400, can include a plurality of
network switches, e.g. switches A-E 401-405.

[0048] Each of the network switches A-E 401-405 can include a subnet manager (SM)and a
configuration daemon (CD). For example, switch A 401 can include a CD A421 in addition to a
SM A 411. Here, SM A 411is the master SM that is responsible for managing the subnet 400.
Additionally, each of the switches B-E 402-405 includes a standby SM, e.g. one of SMs B-E 412-
415, and a CD instance, e.g. one of CDs B-E 422-425.

[0049] Before the system allows an operation to be performed on the IB subnet 400, the
master CD A 411 can perform a consistency check for various state information on the peer CD
instances B-E 422-425. Such state information can include availability, compatible
implementation/protocol version, correct current daemon run-time state, and correct current
configuration state/version.

[0050] Then, the master CD A 411 can replicate a new management key (M_Key)
configuration file 410 to the peer CDs B-E 422-425, before instructing the CDs B-E 422-425 to
update the related SMs B-E 412-415 with a current M_Key value.

[0051] In accordance with an embodiment of the invention, the system can ensure that the
master SM 411 always have a known M_Key list 430 that is longer than, or at least as long as,

any other list maintained by a standby SM instance. Also, the order of replication can ensure that

-7-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

a new shorter list is applied to the standby SMs before it is applied to the master SM.

[0052] Thus, the master SM may never have a known M_Key list 430 that is shorter than
any of the standby SM instances, and the system can use the length of the known M_Key list
430 as a criteria for determining mastership.

[0053] Furthermore, the order of replication can be based on the type of the transaction.
When the transaction is an "addonly” transaction, the new configuration file can be used to
update the known lists of the local (master) SM first, followed by the standby SM instances. If the
transaction is not "addonly”, then the local (master) SM is updated with the new known lists after
the new known lists have been replicated to the standby SMs.

[0054] The replication process is considered successfully completed, after all peer CDs have
confirmed receiving and storing the configuration file, and the configuration file have passed the
checksum and metadata checks. Then, the master CD A421 can complete the commit operation
by instructing each peer CD B-E 422-425 to update the related SM B-E 412-415 with the new
current M_Key value.

[0055] In accordance with an embodiment of the invention, the master CD A421 can update
the local SM A 411 after all peer CDs B-E 422-425 have been successfully updated. This
sequence can be independent of the particular type of a transaction.

[0056] Additionally, the system may not instruct the SM instances to change the current
M_Key value until all the SM instances, i.e. the actual SM instances — not just the corresponding
CD instances - have received the updated known M_Key list. Thus, a new current M_Key value
can always be known to all SMs, even when there is a transaction failure while updating the
current value.

[0057] In accordance with an embodiment of the invention, an active CD, e.g. a partition
daemon (PD) on an Oracle NM2 network switch, may not accept any commit or start command
when the local SM node configuration is not augmented with hostname and internet protocol
over InfiniBand (IPOIB) address list. Also, the CDs in the SM node list may need to have an
appropriate firmware version that allows a start and/or commit operation.

[0058] Furthermore, the switches in the system (i.e. including the switches in the SM node
list) need to have an appropriate firmware version before enabling the use of a secure M_Key
setting. Configuring secure M_Key in a system with an incompatible firmware version, e.g. an
older NM2 firmware, can cause some local operations, such as enabling/disabling local ports, to
become dysfunctional. These dysfunctional local operations can include both the enable/disable
operations based on explicit CLI commands, and automated enable/disable operations that are
performed during system boot and cable hot-plug.

[0059] In accordance with an embodiment of the invention, the system can log and report
the progress of various operations on the SM nodes. If the commit operation is not started or has

not fully completed for all SM nodes, then the relevant information can be logged and displayed

-8-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

as a warning. Also, when the system uses a "force" option, the operation may be reported as
either "fully successful" or "partially successful". On the other hand, when the system does not
use the "force" option, the operation may not be reported as "partially successful”. Furthermore,
if an SM node is lost during a commit operation (i.e. it was present when the commit was
commenced) then the operation may report a failure, and the user may then have the option to
perform another commit operation, or perform a force commit operation, with the same working
configuration.

[0060] Additionally, the system can perform force operations, even when some SM node
defined CD instances are not available.

[0061] For example, when an SM node instance was missing at one point in time and then
comes back as an incompatible SM node instance, e.g. an older version NM2 node. This system
may require the problematic instance to be removed from the SM node list, or be upgraded back
to a compatible SM node instance, before any subsequent secret M_Key configuration change
can be made.

[0062] In order for a stateful fail-over to work, e.g. with a SM enabled older version NM2,
there may not be any use of secret M_Keys in the fabric. The system can perform a
disablesecretmkey CLI command before the downgrade, or perform a disablesecretmkey CLI
command with "force" option after the downgrade, as a possible workaround for this case of
temporarily downgrading SM node instance.

[0063] Additionally, the disablesecretmkey CLI command with "force" option ¢an also be a
way to recover a SM node when downgrade already has taken place.

[0064] Figure 5 illustrates an exemplary flow chart for supporting subnet management using
configuration daemons (CDs) in a network environment, in accordance with an embodiment of
the invention. As shown in Figure 5, at step 501, the system can provide a plurality of
configuration daemons (CDs) in the network environment, wherein a master CD is an active CD
on a switch with a master subnet manager(SM). Then, at step 502, the master CD can perform
consistency check on one or more states associated with one or more peer CDs in the network
environment, wherein each said peer CD is an active CD on a switch with a standby SM.
Furthermore, at step 503, the master CD can replicate a configuration file to the one or more

peer CDs, wherein the configuration file includes at least one management key (M_Key) value.

The management key (M_Key) configuration file

[0065] In accordance with an embodiment of the invention, a management key (M_Key)
configuration file 610 can be transmitted between the configuration daemons (CDs). The
management key (M_Key) configuration file can include a trusted management key (M_Key)
value that is presented to a user, and one or more key values that are transparently generated

based on the trusted M_Key. Additionally, the M_Key configuration file can include one or more

-9-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

of a fixed function, function parameter, and a locally generated random number.

[0066] Figure 6 shows an illustration of supporting a management key (M_Key)
configuration file in a network environment, in accordance with an embodiment of the invention.
As shown in Figure 6, a switch 601 in the network environment 600 can include a subnet
manager (SM) 602 and a configuration daemon (CD) 603. Furthermore, the switch 601 can
provide a command line interface (CLI) 604, e.g. a "smsubnetprotection” CLI interface, to the
user.

[0067] While the CLI interface 604 may only present a single set of management key
(M_Key) values, e.g. a trusted M_Key 605 value, to the user, the underlying implementation in
the switch 601 can use additional sets of keys, which can be included in an M_Key configuration
file, e.g. the "PD_M_Key-config.conf" file for NM2 network Switch.

[0068] For example, the M_Key configuration file 610 can include: the trusted M_Keys 611
used for nodes defined as "trusted", the untrusted M_Keys 612 used for nodes that are
considered not trusted, and the subnet manager keys (SM_Keys) 613 used for basic SM-SM
authentication and negotiation.

[0069] The handling of different M_Keys for trusted and un-trusted nodes can ensure that
trusted M_Keys 611 used for trusted nodes (switches in particular) can not be observed/learned
by un-trusted nodes. This mechanism can also apply to the cases where the trusted nodes are
explicitly authenticated via encryption based protocols whereas the un-trusted nodes are not
authenticated at all.

[0070] The M_Key configuration file 610 can contain a list of symbolic and hex M_Key
values. Also, the M_Key configuration file 610 can contain an explicit identification of the current
M_Key value. In addition to the M_Key information, the M_Key configuration file 610 can also
include metadata information including format revision, time stamp and ID (e.g. NM2 hostname +
IP) for last update, update revision number and checksum.

[0071] Furthermore, the M_Key configuration file 610 can record each added value as a list
of associated values. Also, the CD instance 603 can keep track of the current status for the sets
of M_Key values, such as information on all the M_Key values with a specific type. For example,
the M_Key configuration file 610 can include multiple lines with three values in each line, where
each position in the line defines a key type and a complete line ¢can be defined as "current” or
"new-current”.

[0072] In accordance with an embodiment of the invention, the management key (M_Key)
configuration file 610 can be encrypted using a password 620 (e.g. with a default value). The
system can use the encrypted transfer, which is based on a common private password on each
node, in order to ensure that the sensitive data is not available to anyone being able to observe
data traffic on a management network connecting different CD instances.

[0073] Furthermore, when an "add" command is executed, the trusted M_Key value 605 is

-10-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

what a user of the CLI 604 relates to. Then, the system can generate the other key values
transparently for the CLI user. The additional values can be generated as the sum of the user
specified key value and a 64 bit value generated based on a unique permutation of the current
password. For example, the at least eight characters in the current password can be permutated
in a defined way for each key type - e.g. rotate one, rotate two.

[0074] In accordance with an embodiment of the invention, the system can ensure that any
formulas or parameters used to generate additional key values are not part of the information to
be replicated and synchronized among the SM nodes. For example, the M_Key values can be
generated as part of preparing the update transaction information, without relying on any state
for generating keys to be present among the CD or the SM instances when the configuration has
been defined.

[0075] Furthermore, new M_Key values can be generated as a function of both a currently
defined encryption password and a random value in order to minimize the risk of someone
deducting an original password or an original M_Key if either password or original M_Key should
become available to someone already knowing the derived M_Key value.

[0076] For example, in addition to the sum of the two 64 bit values, a platform generated
random number can be included in the sum, in order to prevent giving away the password value.
Thus, a party who knows both an un-trusted M_Key and a trusted M_Key encrypted with the
password will not be able to generate the corresponding password or trusted M_Key via a very
limited number of arithmetic operations.

[0077] Additionally, the use of incorrect password, e.g. as a result of not updating the
password correctly on all SM nodes, can cause a checksum error on the remote side. In order to
differentiate the type of checksum error due to incorrect password from the type of checksum
error due to file corruption during transfer, there can be a checksum for both the encrypted file
and a checksum for the original file version. Here, a checksum error for the encrypted file can
indicate a transfer error, whereas a checksum error for the un-encrypted file can indicate an
incorrect password. Also, there can be metadata for both the encrypted and un-encrypted files in
order to ensure consistency and multiple version compatibility at both levels.

[0078] In accordance with an embodiment of the invention, prior to initiating a transaction,
the system can ensure consistent password encryption for each CD.

[0079] A challenge for verifying the password encryption is that the password itself may not
be communicated explicitly across the potentially insecure management network. Instead, the
system can use the password to encrypt a well known message string (i.e. well known "a priori"
by all SM nodes). Then, the verification of consistency of the current password can be achieved
by sending the encrypted version of the well known message and having the peer SM nodes to
confirm that the decryption of the message results in the original well known message.

[0080] For example, the well known message can be the current password string itself.

-11-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

Furthermore, a dedicated well known string can be a more robust scheme, since the password
string typically has a limited length. Additionally, by maintaining a list of historical password or
key values, it is possible for the verification logic to check with older password/key values if the
current one fails and thereby identify a case of incomplete updates among the SM nodes. Also, a
remote check failure for the current value could lead to encryption and checking of older values
to determine whether the remote SM node has yet been updated with the current password
value.

[0081] In accordance with an embodiment of the invention, such a verification method can
also be used to verify that current public/private key infrastructure is consistent among the
involved SM nodes, i.e. to ensure that no accidental update has taken place following
authentication/verification during discovery/re-discovery. If public/private key infrastructure is in
place, then this can be used for encryption of replicated configuration information in order to

avoid maintaining a separate encryption password on each SM node.

Start Logic and Consistency Check

[0082] In accordance with an embodiment of the invention, when a transaction start
command is executed from a current master node, the state information on various subnet
manager (SM) nodes can be verified so that any inconsistencies in the state information can be
detected. Also, a pre-condition for an update transaction can be that the system has a consistent
(i.e. commit completed and correct checksums) configuration file with the same configuration
update revision number.

[0083] The administrator can ensure that correct configuration can be carried forward in an
IB subnet, following a failed update transaction that may cause the state information on the SM
nodes to be inconsistent. The administrator can initiate a new update transaction to bring the
various SM nodes in synchronization. Additionally, an administrator can verify that the
inconsistent state does not represent any unexpected condition, and can perform the diff
operations that can explicitly provide the detailed difference in various SM nodes or between a
specified pair of SM nodes.

[0084] Furthermore, when the local configuration on the current master SM node is not the
most recent one or is incorrect, the system can perform a special operation from the master SM
node to fetch the current configuration from another standby SM node, and use this configuration
as a starting point for the working configuration when performing a new update transaction.
Additionally, a special "force" option can be used to override consistency checks for both start
and commit operations, e.g. after the inconsistent state has been analyzed and the correct
configuration for synchronizing the various SM nodes have been determined by the
administrator.

[0085] In accordance with an embodiment of the invention, when fatal synchronization

-12-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

problems occurs in the IB subnet, the administrator can be allowed to resolve the underlying
problem before continuing or restarting any update transaction. For example, when performing a
commit operation, the configuration state of the various SM nodes is expected to be exactly the
same as the configuration state when the corresponding start operation was performed, i.e. any
change in this period may imply that some unsolicited state change has taken place and may
indicate a fatal synchronization error between the various SM nodes. Additionally, at both start
and commit time, it can be verified that only a single master is present among the SM nodes. If
otherwise, then there is a fatal synchronization problem among the SM nodes.

[0086] Furthermore, the consistency of encryption password value among the various SM
nodes can be verified as part of the transaction start operation, and can again be verified in the
initial part of the commit operation along with the verification that no configuration change has
taken place. Additionally, the state consistency checks can be available as command line

interface (CLI) subcommands from any SM node at any point in time.

State Synchronization between the CD and the SM

[0087] Figure 7 shows an illustration for supporting state synchronization between a
configuration daemon (CD) and a subnet manager (SM) on a switch in a network environment, in
accordance with an embodiment of the invention. As shown in Figure 7, a switch 701 in an IB
subnet 700 can include a subnet manager (SM) 702 and a configuration daemon (CD) 703.
[0088] When the CD 703 receives a new M_Key configuration file 710 as part of a commit
transaction, the CD 703 can store the new M_Key configuration file 710 and make the list of
known M_Key values 704 available to the local SM 702. Then, the SM 702 can start using the
new list of known M_Key values 704 in subnet probing/discovery operations. The SM 702 may
continue using the previously defined current M_Key value 705 when updating/setting M_Key
value for any subnet management agent (SMA) instance.

[0089] The CD 703 may not update the current M_Key value 705 used by the SM 702, prior
to receiving an instruction from the master CD. Also, the CD 703, when it is a standby CD, can
communicate the new list of known values 704 to the local SM 702, before the operation is
acknowledged to the master CD, which implements the distributed transaction.

[0090] Unlike partition configuration updates, the new list of known M_Keys 704 can be
made available to the SM 702 immediately, since this does not impose any state change in the
subnet, and the manual and automatic procedures can make sure that a new list of known
M_Key values 704 may always include any secret M_Key value that may be presentin a switch
node in the system (i.e. including a switch node with a disabled SM).

[0091] Furthermore, in order for the list of known M_Key values 704 to be used as part of the
consistency check and master election among secret key enabled SMs in the subnet, the order

of updates can ensure that the current master always has the largest list of known M_Key

-13-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

values, and thereby avoid any un-intended master handover in the middle of an update
transaction.

[0092] In accordance with an embodiment of the invention, the CD instance 703 can update
the local state information about the current M_Key value 705, when the CD instance 703 is
instructed by the master CD, which controls the commit operation. Also, the CD instance 703
can instruct the local SM 702 to start using the new current M_Key value, e.g. via a dedicated
SM CLI command.

[0093] Furthermore, whenever the SM 702 or CD 703 is restarted, the CD instance 703 can
update the SM 702 with the current local secret key configuration. Thus, the system can ensure
that the subnet management operation is always consistent with the current configuration, and
the system can ensure that no master election is performed without the current secret key
configuration in place. Also, the state synchronization between CD 703 and SM 702 during
startup can make sure that the SM 702 has the current configuration prior to initiating the initial
subnet discovery.

[0094] In accordance with an embodiment of the invention, the CD 703 can use a dedicated
SM CLI command to communicate the new list of known M_Key values 704 to the SM 702. For
example, the SM 702 may only receive the secret key configuration via the private CLI
commands, and may not perform any persistent storing of this configuration (i.e. the secret key
configuration may only be part of the SM run-time image).

[0095] The SM CLI command can include a plain list of comma separated hex M_Key values
that defines the list of known M_Key values 704. Furthermore, the SM CLI allows three separate
lists to be specified, in order to take three independent M_Key values as input, such as the
trusted M_Key, the untrusted M_Key and the SM_Key.

[0096] For example, in a NM2 switch, the new current M_Key value can be the same as
what was identified as "new current" in the replicated M_Key configuration file. The old current
M_Key value can remain to be part of the known M_Key list. (l.e. two update transactions may
be needed in order to delete a value that has been used as current.)

[0097] In order to ensure that a new current M_Key value is not activated prematurely, the
replicated configuration file may always contain information about the (still) currently used
M_Key value as well as the intended new value. When a set-current operation takes place (i.e.
the corresponding command is received from the master CD implementing the transaction), the
new M_Key value can be signaled to the SM 702, and then the recorded currently used M_Key
value can be updated to reflect the new specified value before the operation is acknowledged.
Thus, the master SM can have a known M_Key list longer than, or at least as long as, any other
list maintained by a standby SM.

[0098] Furthermore, the CD instance 703 can keep track of both the actual current M_Key

value 705 and the enabled state. For example, the handling of the disabling and enabling of

-14-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

secret M_Key for the SM 702 can be reflected via a value of zero for the disabled state, and a
non-zero current value for the enabled state. Furthermore, the CD instance 703 can provide the
value of zero, instead of the current value, to the SM 702, when the system is set to be in a
disabled state. Then, the CD instance 703 can signal the (real) current M_Key value to the SM
702, when the system is changed from a disabled state into an enabled state.

[0099] In accordance with an embodiment of the invention, the SM 702 can receive explicit
enable/disable notifications for the use of secret M_Keys. Also, the SM can use a readable
M_Key as defined in a configuration file, e.g. the opensm.conf file, when the use of secret M_Key
is disabled (as a default). Additionally, the readable M_Key value in the configuration file can be
maintained by the CLI commands. Furthermore, the M_Key protection bits to be used by the SM
702, which reflects readable M_Key, can be defined in the opensm.conf configuration file. On the
other hand, the M_Key protection bits can be implicitly defined when the "secret" mode is
enabled via the SM CLI interface.

[00100] Also, the M_Key lease time value can be a constant defined in the configuration file.
For example, a constant defined by the NM2 FW revision specific opensm.conf template can be
sufficient. Alternatively, the M_Key lease time value can be configurable. This M_Key lease time
value can be large (e.g. in the order of at least one minute) so that there is never any practical
risk that the SM can not refresh the lease time before the deadline (i.e. as long as at least one
SM is sweeping). Additionally, the platform level monitoring daemons can also have a role in
refreshing the local lease time.

[00101] Figure 8 illustrates an exemplary flow chart for supporting state synchronization
between a configuration daemon (CD) and a subnet manager (SM) in a network environment, in
accordance with an embodiment of the invention. As shown in Figure 8, at step 801, a
configuration daemon (CD) on a switch in the network environment can receive a configuration
file that includes a list of known management key (M_Key) values. Furthermore, at step 802, the
CD can store the configuration file, and make the configuration file available to a local subnet
manager(SM) on the switch, wherein the local SM is associated with an currently used M_Key
value. Then, at step 803, the CD can update the local SM with a new M_Key, after receiving an

instruction from a master CD that is associated with a master SM in the network environment

Failed Update Transaction and Master Subnet Manager (SM) Failover

[00102] When a update transaction is successfully completed, the configuration daemons
(CDs) on all subnet manager (SM) nodes can have the same configuration, e.g. with the same
configuration update revision number. Additionally, the CDs can either have the same current
M_Key value or have no new current M_Key value.

[00103] On the other hand, a failed update transaction may cause an availability or

-15-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

configuration issue with the current SM nodes in an IB subnet. For example, when an update
transaction fails during the replication phase, the CDs may have different current update revision
number values (and with different file checksums). Also, if the replication phase is completed
successfully, but the update of current M_Key value is not completed, then the CDs may have
the same update revision number values and same basic file checksums, but with the different
current M_Key value.

[00104] In these scenarios, the administrator can use a CLI command provided by the SM
Node switches, e.g. the listactive command provided by the NM2 switches, in order to discover
and resolve the current status. Then, the administrator can decide how to perform another
update transaction on the current master CD, in order to bring the system to a well defined state,
e.g. using force options and updating the list of SM nodes in the system.

[00105] If a failed transaction leaves the current persistent configuration with both an old
current M_Key value and a new current M_Key value, then any new transaction can start out in
this state, and behave as if a set-current CLI command had been executed for the M_Key value
thatis reflected as "new" in the current configuration file. Furthermore, the user can be aware of
this current status, and is allowed to modify the setting if needed. Additionally, a failure to
observe the rules for what operations can be performed following a failed transaction can lead to
an incorrect master election in the subnet, e.g. causing either multiple or no master SMs in the
subnet.

[00106] In accordance with an embodiment of the invention, the transaction start command
can present all relevant state information for the configuration on all SM nodes to the user. Also,
the transaction start command can make sure that the user is aware of any inconsistencies, e.g.
after a failure of an updated transaction. Furthermore, the transaction start command can
perform special force actions in order to initiate a transaction, and allows the user to select the
starting point configuration from any of the available SM nodes.

[00107] If the active master is operational after a failure of an updated transaction, the first
step to handle the failed update transaction is to check availability and configuration of other SM
nodes, potentially based on error logs/messages from the failed update transaction. If the
problem can be corrected, then the same transaction can be retried (i.e. without use of force
mode). If the problem can not be corrected (e.g. an SM node - potentially the old master - is no
longer operational/available), then any delete operation may not be re-tried in force mode, since
this operation may delete a key value that may still be in use by an enabled SM.

[00108] In accordance with an embodiment of the invention, a disable operation can be
retried in force mode, since the disable operation does not change the current known key list and
does not impose any danger of incorrect master election procedures. Furthermore, depending
upon the SM priorities and globally unique identifiers (GUIDs) of the currently available SM

nodes relative to the failed SM node(s), the disabled or enabled state of the system may change

-16-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

as the failed SM nodes become operational again.

[00109] Furthermore, force retrying a failed enable operation is safe, since it does not impose
any danger of incorrect master election procedures. Also, the state of the system in terms of
enabled/disabled state of the master may not be certain when the same key configuration is
present.

[00110] Additionally, force retrying an add operation is safe, since it may increase the number
of known keys and thereby it can ensure that the SM nodes have received this update and may
take precedence in terms of master election relative to the currently unavailable SM node(s).
[00111] Inaccordance with an embodiment of the invention, by setting a newly added key as
current, the system can be configured for fencing off a SM on the unavailable SM node(s). Thus,
the SM on the unavailable SM node(s) may not influence the state of any node (potentially
including itself) that has received the updated secret M_Key value.

[00112] The system can use force-add and set-current operations to ensure the fencing off an
SM node with un-defined state, without any need for physical service actions. Such fencing
mechanism allows the SM nodes configuration to be changed, and also allows the current
partition policy to be updated.

[00113] When aleaf switch is in an undefined state that can cause the partitioning state of the
directly connected hosts to be not controllable, the partitioning configuration may not be updated
or changed in a way that conflicts with the current configuration that is assumed to be
implemented by an active SM on that leaf switch.

[00114] In order to update or change the partitioning configuration, the leaf switch can be
brought to a well defined state with no active SM, or the SM can be brought in synchronization
with the rest of the SM nodes, via some additional service actions.

[00115] In accordance with an embodiment of the invention, the system can support master
SM failover in the middle of an M_Key update transaction, which follows the same ACID
transaction principles as partition policy updates.

[00116] The system can distribute the new list of known M_Key values first, and define a new
M_Key value as current for all the SMs in the final part of the commit operation. Also, the
enhanced master election protocol can ensure that the elected master can always be the SM
that has the longest list of known key values and can be best suited to handle the current
configuration.

[00117] Thus, the system can ensure that there may never be a case where a new master
SMis not be able to discover/configure the subnet because of lack of knowledge about the most
recent M_Key value. For example, all SM enabled switch nodes can have the same new policy if
the policy is enabled on any one of switch nodes, otherwise if the policy has not been replicated
to all SMs, then no SM can have the new policy enabled.

[00118] Figure 9illustrates a functional block diagram to show features of an embodiment of

-17-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

the invention. The present features may be implemented as system 900 for supporting network
management in a network environment. The system 900 includes one or more microprocessors
and a configuration daemon (CD) 910 on a switch running on the one or more microprocessors.
The CD 910 operates to receive at the receiving unit 920 a configuration file that includes a list of
known management key (M_Key) values; to store in the storing unit 930 the configuration file, to
make the configuration file available to a local subnet manager (SM) on the switch, wherein the
local SM is associated with an currently used M_Key value; and to update on the updating unit
940, the local SM with a new M_Key, after receiving an instruction from a master CD that is
associated with a master SM in the network environment.

[00119] According to one embodiment, there is disclosed a system for supporting network
management in a network environment on one or more microprocessors. The system comprises
means for receiving, via a configuration daemon (CD) on a switch in the network environment, a
configuration file, wherein the configuration file includes a list of known management key
(M_Key) values. The system also comprises means for storing the configuration file, and
making the configuration file available to a local subnet manager(SM) on the switch, wherein the
local SMis associated with a currently used M_Key value. The system further comprises means
for updating the local SM with a new M_Key, after receiving an instruction from a master CD that
is associated with a master SM in the network environment.

[00120] Preferably the system comprises means for including in the configuration file a trusted
M_Key and one or more key values that are transparently generated based on the trusted
M_Key.

[00121] Preferably the system comprises means for continuing using the old current M_Key
when updating/setting M_Key value for any subnet management agent (SMA) instance until the
local SM is updated with the new M_Key.

[00122] Preferably the system comprises means for using, via the CD, a dedicated SM
command line interface (CLI) command to update the local SM.

[00123] Preferably the system comprises means for updating, via the CD, the local SM with
current local secret key configuration when at least one of the SM and CD is restarted.
[00124] Preferably the system comprises means for containing in the configuration file
information about the currently used M_Key value as well as the intended new M_Key value.
[00125] Preferably the system comprises means for recording the currently used M_Key
value in the list of known M_Key values.

[00126] Preferably the system comprises means for using the new M_Key value to fence off a
SM on an unavailable node.

[00127] Preferably the system comprises means for ensuring that the master SM has a
known M_Key list not shorter than any M_Key list maintained by a standby SM instance.

[00128] Preferably the system comprises means for initiating a commit operation on the

-18-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

master CD.

[00129] According to one embodiment, there is disclosed a system for supporting network
management in a network environment. The system comprises a configuration daemon (CD) on
a switch wherein the CD is configured to receive a configuration file that includes a list of known
management key (M_Key) values. The system is configured to store the configuration file, and
to make the configuration file available to a local subnet manager(SM) on the switch, wherein the
local SM is associated with a currently used M_Key value. The system is also configured to
update the local SM with a new M_Key, after receiving an instruction from a master CD that is
associated with a master SM in the network environment.

[00130] Preferably the system is capable of having said configuration file include a trusted
M_Key and one or more key values that are transparently generated based on the trusted
M_Key.

[00131] Preferably the system is capable of having said local SM continue using the old
current M_Key when updating/setting M_Key value for any subnet management agent (SMA)
instance until the local SM is updated with the new M_Key.

[00132] Preferably the system is capable of having said CD operate to use a dedicated SM
command line interface (CLI) command to update the local SM.

[00133] Preferably the system is capable of having said CD operate to update the local SM
with current local secret key configuration when at least one of the SM and CD is restarted.
[00134] Preferably the system is capable of having said configuration file contain information
about the currently used M_Key value as well as the intended new M_Key value.

[00135] Preferably the system is capable of having said CD operate to record the currently
used M_Key value in the list of known M_Key values.

[00136] Preferably the system is capable of having said new M_Key value used to fence off a
SM on an unavailable node.

[00137] Preferably the system is capable of having said master CD operate to ensure that the
master SM has a known M_Key list not shorter than any M_Key list maintained by a standby SM
instance.

[00138] According to one embodiment, there is disclosed a system comprising supporting
network management in a network environment on one or more microprocessors. The system
comprises means for providing a transactional interface at a network switch, wherein the
transactional interface allows a user to interact with the network environment using a transaction.
The system further comprises means for grouping one or more operations in the transaction and
means for ensuring that no conflicting operations are included in the transaction.

[00139] Preferably the system comprises means for associating the network switch with a
subnet manager (SM) in the network environment.

[00140] Preferably the system comprises means for allowing the transactional interface to be

-19-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

a command line interface (CLI).

[00141] Preferably the system comprises means for using one or more commands to perform
the one or more operations, wherein the one or more commands are grouped between a start
command and a commit command in the transaction.

[00142] Preferably the system comprises means for ensuring that one or more conditions for
completing and committing the transaction are fulfilled at the beginning of the transaction.
[00143] Preferably the system comprises means for allowing the user to abort the transaction
if one or more current conditions are not acceptable.

[00144] Preferably the system comprises means for allowing the user to issue a commit
operation in force mode, in which case the commit operation can succeed when one or more
configuration daemons are not available.

[00145] Preferably the system comprises means for initiating an update transaction following
a previously failed update transaction to bring a plurality of SM nodes in synchronized.
[00146] Preferably the system comprises means for enabling a secret management key
(M_Key) before starting the transaction.

[00147] Preferably the system comprises means for setting an defined M_Key value as a
M_Key value that will be used by a SM following a subsequent commit operation.

[00148] According to one embodiment, there is disclosed a system for supporting network
management in a network environment. The system comprises a network switch, the wherein
the network switch is configured to provide a transactional interface, wherein the transactional
interface allows a user to interact with the network environment using a transaction. The system
is further configured to group one or more operations in the transaction and to ensure that no
conflicting operations are included in the transaction.

[00149] Preferably the system is capable of having a network switch associated with a subnet
manager (SM) in the network environment.

[00150] Preferably the system is capable of having the transactional interface a command line
interface (CLI).

[00151] Preferably the system is capable of having the network switch operate to use one or
more commands to perform the one or more operations, wherein the one or more commands are
grouped between a start command and a commit command in the transaction.

[00152] Preferably the system is capable of having the network switch operate to ensure that
one or more conditions for completing and committing the transaction are fulfilled at the
beginning of the transaction.

[00153] Preferably the system is capable of having the network switch operate to allow the
user to abort the transaction if one or more current conditions are not acceptable.

[00154] Preferably the system is capable of having the network switch operate to allow the

user to issue a commit operation in force mode, in which case the commit operation can

-20-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

succeed when one or more configuration daemons are not available.

[00155] Preferably the system is capable of having the network switch operate to allow the
user to initiate an update transaction following a previously failed update transaction to bring a
plurality of SM nodes in synchronized.

[00156] Preferably the system is capable of having the network switch operate to allow the
user to enable a secret management key (M_Key) before starting the transaction.

[00157] According to one embodiment, there is disclosed a system for supporting network
management in a network environment on one or more microprocessors. The system comprises
means for providing a plurality of configuration daemons (CDs) in the network environment,
wherein a master CD is an active CD on a switch with a master subnet manager(SM). The
system also comprises means for performing, via the master CD, consistency check on one or
more states associated with one or more peer CDs in the network environment, wherein each
said peer CD is an active CD on a switch with a standby SM. The system further comprises
means for replicating a configuration file to the one or more peer CDs, wherein the configuration
file includes at least one management key (M_Key) value.

[00158] Preferably the system comprises means for instructing, via the master CD, the one or
more peer CDs to update the standby SMs with the at least one M_Key value.

[00159] Preferably the system comprises means for determining an order for replicating the
configuration file to the one or more peer CDs based on a type of a transaction.

[00160] Preferably the system comprises means for using the configuration file to first update
one or more known lists of M_Key values on the master SM, when the transaction is an add-only
transaction.

[00161] Preferably the system comprises means for using the M_Key configuration file to first
update one or more known lists of M_Key values on the one or more standby SMs, when the
transaction is not an add-only transaction.

[00162] Preferably the system comprises means for allowing the one or more states to
include availability of the one or more peer CDs, compatible implementation/protocol version,
correct current daemon run-time state, and correct current configuration state/version on the one
or more peer CDs.

[00163] Preferably the system comprises means for verifying consistent encryption password
for each CD prior to initiating a transaction.

[00164] Preferably the system comprises means for prohibiting changing a new current
M_Key value and deleting an old current M_Key value in a same transaction.

[00165] Preferably the system comprises means for ensuring that the master SM has a
known M_Key list not shorter than any M_Key list maintained by a standby SM instance.
[00166] Preferably the system comprises means for initiating a commit operation on the

master CD.

21-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

[00167] According to one embodiment, there is disclosed a system for supporting network
managementin a network environment. The system comprises a master configuration daemon
(CD), wherein the master CD is an active CD on a switch with a master subnet manager(SM),
wherein the master CD is configured to perform consistency check on one or more states
associated with one or more peer CDs in the network environment, wherein each said peer CD
is an active CD on a switch with a standby SM. The system is also configured to replicate a
configuration file to the one or more peer CDs, wherein the configuration file includes at least
one management key (M_Key) value.

[00168] Preferably the system is capable of having the master CD operate to instruct the one
or more peer CDs to update the standby SMs with the at least one M_Key value.

[00169] Preferably the system is capable of having an order for replicating the configuration
file to the one or more peer CDs be determined based on a type of a transaction.

[00170] Preferably the system is capable of having the master CD operate to use the
configuration file to first update one or more known lists of M_Key values on the master SM,
when the transaction is an add-only transaction.

[00171] Preferably the system is capable of having the master CD operate to use the M_Key
configuration file to first update one or more known lists of M_Key values on the one or more
standby SMs, when the transaction is not an add-only transaction.

[00172] Preferably the system is capable of having the one or more states include availability
of the one or more peer CDs, compatible implementation/protocol version, correct current
daemon run-time state, and correct current configuration state/version on the one or more peer
CDs.

[00173] Preferably the system is capable of having a consistent encryption password verified
for each CD prior to initiating a transaction.

[00174] Preferably the system is capable of having an operation to change a new current
M_Key value and an operation to delete an old current M_Key value is prohibited in a same
transaction.

[00175] Preferably the system is capable of having the master CD operate to ensure that the
master SM has a known M_Key list not shorter than any M_Key list maintained by a standby SM
instance.

[00176] According to an embodiment, there is disclosed a method for supporting network
management in a network environment, comprising providing a transactional interface at a
network switch, wherein the transactional interface allows a user to interact with the network
environment using a transaction; grouping one or more operations in the transaction; and
ensuring that no conflicting operations are included in the transaction.

[00177] According to an embodiment, there is disclosed a method for associating the network

switch with a subnet manager (SM) in the network environment.

-22-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

[00178] According to an embodiment, there is disclosed a method that is capable of allowing
the transactional interface to be a command line interface (CLI).

[00179] According to an embodiment, there is disclosed a method for using one or more
commands to perform the one or more operations, wherein the one or more commands are
grouped between a start command and a commit command in the transaction.

[00180] According to an embodiment, there is disclosed a method for ensuring that one or
more conditions for completing and committing the transaction are fulfilled at the beginning of the
transaction.

[00181] According to an embodiment, there is disclosed a method for allowing the user to
abort the transaction if one or more current conditions are not acceptable.

[00182] According to an embodiment, there is disclosed a method for allowing the user to
issue a commit operation in force mode, in which case the commit operation can succeed when
one or more configuration daemons are not available.

[00183] According to an embodiment, there is disclosed a method of initiating an update
transaction following a previously failed update transaction to bring a plurality of SM nodes in
synchronized.

[00184] According to an embodiment, there is disclosed a method for enabling a secret
management key (M_Key) before starting the transaction.

[00185] According to an embodiment, there is disclosed a method for setting an defined
M_Key value as a M_Key value that will be used by a SM following a subsequent commit
operation.

[00186] According to an embodiment, there is disclosed a system for supporting network
management in a network environment, comprising one or more microprocessors; a network
switch, running on the one or more microprocessors, wherein the network switch operates to
provide a transactional interface, wherein the transactional interface allows a user to interact with
the network environment using a transaction; group one or more operations in the transaction;
and ensure that no conflicting operations are included in the transaction.

[00187] According to an embodiment, there is disclosed a system, wherein the network switch
is associated with a subnet manager (SM) in the network environment.

[00188] According to an embodiment, there is disclosed a system, wherein the transactional
interface is a command line interface (CLI).

[00189] According to an embodiment, there is disclosed a system wherein the network switch
operates to use one or more commands to perform the one or more operations, wherein the one
or more commands are grouped between a start command and a commit command in the
transaction.

[00190] According to an embodiment, there is disclosed a system wherein the network switch

operates to ensure that one or more conditions for completing and committing the transaction

-23-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

are fulfilled at the beginning of the transaction.

[00191] According to an embodiment, there is disclosed a system wherein the network switch
operates to allow the user to abort the transaction if one or more current conditions are not
acceptable.

[00192] According to an embodiment, there is disclosed a system wherein the network switch
operates to allow the user to issue a commit operation in force mode, in which case the commit
operation can succeed when one or more configuration daemons are not available.

[00193] According to an embodiment, there is disclosed a system wherein the network switch
operates to allow the user to initiate an update transaction following a previously failed update
transaction to bring a plurality of SM nodes in synchronized.

[00194] According to an embodiment, there is disclosed a system wherein the network switch
operates to allow the user to enable a secret management key (M_Key) before starting the
transaction.

[00195] According to an embodiment, there is disclosed a non-transitory machine readable
storage medium having instructions stored thereon that when executed cause a system to
perform the steps comprising providing a transactional interface at a network switch, wherein the
transactional interface allows a user to interact with a network environment using a transaction;
grouping one or more operations in the transaction; and ensuring that no conflicting operations
are included in the transaction.

[00196] According to an embodiment, there is disclosed a method for supporting network
management in a network environment, comprising providing a plurality of configuration
daemons (CDs) in the network environment, wherein a master CD is an active CD on a switch
with a master subnet manager(SM); performing, via the master CD, consistency check on one or
more states associated with one or more peer CDs in the network environment, wherein each
said peer CD is an active CD on a switch with a standby SM; and replicating a configuration file
to the one or more peer CDs, wherein the configuration file includes at least one management
key (M_Key) value.

[00197] According to an embodiment, there is disclosed a method for instructing, via the
master CD, the one or more peer CDs to update the standby SMs with the at least one M_Key
value.

[00198] According to an embodiment, there is disclosed a method for determining an order for
replicating the configuration file to the one or more peer CDs based on a type of a transaction.
[00199] According to an embodiment, there is disclosed a method for using the configuration
file to first update one or more known lists of M_Key values on the master SM, when the
transaction is an add-only transaction.

[00200] According to an embodiment, there is disclosed a method for using the M_Key

configuration file to first update one or more known lists of M_Key values on the one or more

-24-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

standby SMs, when the transaction is not an add-only transaction.

[00201] According to an embodiment, there is disclosed a method for allowing the one or
more states to include availability of the one or more peer CDs, compatible
implementation/protocol version, correct current daemon run-time state, and correct current
configuration state/version on the one or more peer CDs.

[00202] According to an embodiment, there is disclosed a method for verifying consistent
encryption password for each CD prior to initiating a transaction.

[00203] According to an embodiment, there is disclosed a method for prohibiting changing a
new current M_Key value and deleting an old current M_Key value in a same transaction.
[00204] According to an embodiment, there is disclosed a method for ensuring that the
master SM has a known M_Key list not shorter than any M_Key list maintained by a standby SM
instance.

[00205] According to an embodiment, there is disclosed a method for initiating a commit
operation on the master CD.

[00206] According to an embodiment, there is disclosed a system for supporting network
management in a network environment, comprising one or more microprocessors; a master
configuration daemon (CD) running on the one or more microprocessors, wherein the master CD
is an active CD on a switch with a master subnet manager(SM), wherein the master CD
operates to perform consistency check on one or more states associated with one or more peer
CDs in the network environment, wherein each said peer CD is an active CD on a switch with a
standby SM; and replicate a configuration file to the one or more peer CDs, wherein the
configuration file includes at least one management key (M_Key) value.

[00207] According to an embodiment, there is disclosed a system wherein the master CD
operates to instruct the one or more peer CDs to update the standby SMs with the at least one
M_Key value.

[00208] According to an embodiment, there is disclosed a system wherein an order for
replicating the configuration file to the one or more peer CDs can be determined based on a type
of a transaction.

[00209] According to an embodiment, there is disclosed a system wherein the master CD
operates to use the configuration file to first update one or more known lists of M_Key values on
the master SM, when the transaction is an add-only transaction.

[00210] According to an embodiment, there is disclosed a system wherein the master CD
operates to use the M_Key configuration file to first update one or more known lists of M_Key
values on the one or more standby SMs, when the transaction is not an add-only transaction.
[00211] According to an embodiment, there is disclosed a system wherein the one or more
states include availability of the one or more peer CDs, compatible implementation/protocol

version, correct current daemon run-time state, and correct current configuration state/version on

5=



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

the one or more peer CDs.

[00212] According to an embodiment, there is disclosed a system wherein consistent
encryption password is verified for each CD prior to initiating a transaction.

[00213] According to an embodiment, there is disclosed a system wherein an operation to
change a new current M_Key value and an operation to delete an old current M_Key value is
prohibited in a same transaction.

[00214] According to an embodiment, there is disclosed a system wherein the master CD
operates to ensure that the master SM has a known M_Key list not shorter than any M_Key list
maintained by a standby SM instance.

[00215] According to an embodiment, there is disclosed a non-transitory machine readable
storage medium having instructions stored thereon that when executed cause a system to
perform the steps comprising providing a plurality of configuration daemons (CDs) in a network
environment, wherein a master CD is an active CD on a switch with a master subnet
manager(SM); performing, via the master CD, consistency check on one or more states
associated with one or more peer CDs in the network environment, wherein each said peer CD
is an active CD on a switch with a standby SM; and replicating a configuration file to the one or
more peer CDs, wherein the configuration file includes at least one management key (M_Key)
value.

[00216] The present invention may be conveniently implemented using one or more
conventional general purpose or specialized digital computer, computing device, machine, or
microprocessor, including one or more processors, memory and/or computer readable storage
media programmed according to the teachings of the present disclosure. Appropriate software
coding can readily be prepared by skilled programmers based on the teachings of the present
disclosure, as will be apparent to those skilled in the software art.

[00217] In some embodiments, the present invention includes a computer program product
which is a storage medium or computer readable medium (media) having instructions stored
thereon/in which can be used to program a computer to perform any of the processes of the
present invention. The storage medium can include, but is not limited to, any type of disk
including floppy disks, optical discs, DVD, CD-ROMSs, microdrive, and magneto-optical disks,
ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMSs, flash memory devices, magnetic or
optical cards, nanosystems (including molecular memory |Cs), or any type of media or device
suitable for storing instructions and/or data.

[00218] The foregoing description of the present invention has been provided for the
purposes of illustration and description. It is not intended to be exhaustive or to limit the
invention to the precise forms disclosed. Many modifications and variations will be apparent to
the practitioner skilled in the art. The embodiments were chosen and described in order to best

explain the principles of the invention and its practical application, thereby enabling others skilled

-26-



WO 2013/170205 PCT/US2013/040639

in the art to understand the invention for various embodiments and with various modifications
that are suited to the particular use contemplated. It is intended that the scope of the invention

be defined by the following claims and their equivalence.

27-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

Appendix A

A sample CLI Interface

[00219] Forexample, the Oracle NW2 network switch can provide a smsubnetprotection CLI
interface to support the transactional protocol as described in the above sections. The
smsubnetprotection CLI interface can provide the following commands:

start

[00220] The start command can check (via CD) whether all required CD instances
("smnodes") are available and operational. If so, the system can establish a working copy of the
current M_Key configuration. The starf command can include options to force start, to implicitly
enable, and to specify a type (e.g. "addonly” or "deleteonly") for the transaction.

[00221] Ifforce option is chosen, the operation can succeed if not all CDs are available, but a
warning to the user as well as a log entry identifying the set of "missing" CDs can be made if not
all CDs are available.

[00222] In order for the start command to succeed, the enabled status for the use of secret
M_Key may need to be set. The enabled status can initially be set via using the
enablesecretmkey command, or via choosing the "enable" option that can be specified for the
start command. The reason for having the "enable" option for the starf command is to ensure that
secret M_Key usage can be enabled together with a defined current value and/or list of known
values.)

[00223] Furthermore, if "addonly" type is specified for a transaction, then no delete operations
is allowed in this transaction (vice versa if "deleteonly” is specified). It is also not legal to specify
both "deleteonly" and "addonly" for the same transaction. If neither "deleteonly” nor "addonly" is
specified, then only a set-current operation is allowed. On the other hand, the set-current

operation can be used independently of whether the transaction is "addonly" or "deleteonly".

listactive

[00224] The listactive command can display the last committed list of M_Keys as well as the
current M_Key value and the enabled status. This command can be invoked independently of
any on-going transaction. The listactive command can include options for listing symbolic and/or
hex.

listworking
[00225] The listworking command can display the resulting list and current base of changes

since the last start command (i.e. that has not been committed). The listworking command can

-08-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

include options for listing symbolic and/or hex.

listlocalmkey

[00226] The listlocalmkey command can display the current M_Key value (if any) defined for
local switch chip (e.g. an IS4 instance). The output can reflect if any M_Key is defined, and if so
if it is "readable” or "secret". Additionally, the output can reflect the case where no M_Key is used.
[00227] In the case of configuration errors (e.g. provoked by manual access to the sysfs
interface), the output can also reflect illegal, or un-supported, protection bit values. Also, the
output can reflect that the NM2 SM is not able to manage this node, e.g. when the M_Key value
is zero, but the protection bit value indicates a "secret” mode.

[00228] This operation can be performed from any NM2 independently of local SM enabled or

master status.

setlocalsecretmkey

[00229] The setlocalsecretmkey command can set the M_Key value for the local 1S4 instance
to the specified value and set the associated mode to "secret” (i.e. the M_Key protect bits). The
setlocalsecretmkey command can include options for specifying symbolic with password
requirements or plain hex.

[00230] This operation can be performed from any NM2 node, independently of local SM
enabled or master status. The value zero is not a legal secret M_Key value, and the CLI

command can reject it.

add

[00231] The add command can add a new M_Key value to the working list. The add
command can include options for specifying symbolic with password requirements or plain hex.
The add command is only legal if the transaction has been started with "addonly" option.
[00232] The revoking of any incorrectly added value(s) can be accomplished by explicitly
aborting the current transaction via the abort subcommand. This ensures that the adding and
then

the setting current of a newly added value is cleaned up in a consistent and well defined way.

delete

[00233] The delete command can remove an existing M_Key value from the list. The delete
command can include options for specifying symbolic or plain hex.

[00234] This command is only legal if the transaction is started with "deleteonly” option.

Furthermore, it is not legal to remove the "current” value, nor the "old current" value, which is

-29-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

enforced by the interface. Also, it is not legal to delete any value that may still exist as "current”
for any NM2 node in the system that may be temporarily offline at the moment. This constraint
may not be enforced by the interface, but can be documented as a rule that the administrator
should follow.

[00235] Additionally, the revoking of any incorrectly deleted value(s) can be accomplished by

explicitly aborting the current transaction via the abort subcommand.

set-current

[00236] The set-current command can set an already defined M_Key value as the current
M_Key value that is used by the master SM following a subsequent commit operation. The set-
current command can include options for specifying symbolic or plain hex.

[00237] When updating current M_Key value, then the old current M_Key value can be
recorded. It is not legal to both update the current M_Key value and delete the old current
M_Key value in the same update transaction. Also, multiple set-current operations during the
same transaction can be legal as long as they all identify a currently defined M_Key value, and
only the last operation prior to commit may have any impact on the resulting active configuration.
[00238] If no current M_Key value is defined when a configuration is committed, then this is
accepted, but the result is the same as if the configuration had been disabled.

[00239] Once a current M_Key value is defined via the set-current command, then it is not
possible to unset it unless the configuration is disabled. This also implies that it is not possible to
add more known values while a configuration is disabled.

[00240] Thus, in order to update the known list when in disabled mode, the configuration has
to be temporarily enabled while the configuration is updated, but can then be immediately

disabled again afterwards.

commit

[00241] The commit command can make the configuration that has been (re)defined since the
last start operation active in the system via the PD-PD commit protocol. The commit command
can include option for force commit.

[00242] By default, the operation can fail if not all defined ("smnodes") PD instances are
present. If "force" option is specified, then the operation may still succeed if not all PD instances

are available but a warning and log message can be generated.

abort
[00243] The abort command can discard all operations that have not been committed since
the last start command without any impact on the active configuration. Any incorrect argument to

delete or add commands can be revoked by performing an abort operation.

-30-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

setpassword

[00244] The setpassword command can define a password to be used for encrypting M_Key
list before replicating to other nodes. Furthermore, same password can be defined on all
"smnodes" NM2s and can be updated in the same controlled way as when updating "smnodes"
membership.

[00245] The password with an alphanumeric string of at least 8 characters is considered
strong. The system may provide a built in-default password value, which can be replaced via the
setpassword command.

[00246] The method for encryption can be based on a open source toolkit, where the user
supplied password can be used as input to the encryption/decryption algorithms.

[00247] The specified password can also be used to generate derived key values based on
key values specified by the add command. The specified password can be persistently recorded
locally on the NM2, until it is explicitly updated again.

[00248] Whenever a password has been updated on one "smnode”, it has to be updated on

the other "smnodes" before any transaction can take place.

enablesecretmkey

[00249] The enablesecretmkey command can represent an implicit start and commit
transaction for the currently defined configuration. The enablesecretmkey command can include
option for "force start/commit”.

[00250] Ifno configuration is currently defined, then the command may have no effect, except
for verifying that all "smnodes" peers are available and in the correct state, and also setting the
enabled status to “enabled”. (The enabled status is a dedicated flag in the underlying
configuration file.) If no configuration is currently defined, then the enabled status may have no

effect on the operation of the SM.

disablesecretmkey

[00251] The disablesecretmkey command can represent an implicit start /commit transaction
for the currently defined configuration with the side effect that no secret M_Key value can be
used by any SM on "smnodes". Unlike an ordinary transaction, the start /commit transaction
does not update the current M_Key value defined by the configuration, but sets the "enabled
status" to "disabled". The disablesecretmkey command can include option for "force
start/commit”.

[00252] The disabled status implies that the SM may either be using any already defined
readable M_Key value, or not use any M_Key value at all. Also, the list of known secret M_Key

values can still be defined, and the master SM can still be able to discover and manage any

-31-



10

15

WO 2013/170205 PCT/US2013/040639

port/node that was not available during the initial update to "non-secret” M_Key, but that is now
available and with one of the known secret M_Key values active.

[00253] The update transactions, e.g. the transactions caused by commit, enablesecretmkey
or disablesecretmkey subcommands, can be implemented in a way that is safe in terms of that
the master election state within an operational subnet with NM2 2.1 firmware on all SM enabled
NM2s can be well defined also if the transaction fails.

[00254] Furthermore, a failed transaction may be repeated in order to try to complete it
successfully in the case of a transient problem without any inherent risk of more dramatic
inconsistencies. Also, fencing operations, such as defining an additional known key value as well
as making it current, can be done in force mode to ensure that an NM2 node with unknown state
may not be able to modify the state of the subnet.

[00255] Additionally, the disabling use of secret keys following a failed update transaction, or
the deletion of known key values following a failed transaction may lead to inconsistent master
election in the subnet and may therefore not be attempted before the set of smnodes have not
been brought to a consistent state.

[00256] Here, bringing the system to a consistent state can involve performing a
enablesecretmkey or an update transaction from the current master, based on whether the

(possibly new) master has the updated (desired) current configuration.

-32-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

Claims:

What is claimed is:

1. A method for supporting network management in a network environment, comprising:

receiving, via a configuration daemon (CD) on a switch in the network environment, a
configuration file, wherein the configuration file includes a list of known management key
(M_Key) values;

storing the configuration file, and making the configuration file available to a local subnet
manager(SM) on the switch, wherein the local SM is associated with an currently used M_Key
value; and

updating the local SM with a new M_Key, after receiving an instruction from a master CD

that is associated with a master SM in the network environment.

2. The method according to Claim 1, further comprising:
including in the configuration file a trusted M_Key and one or more key values that are

transparently generated based on the trusted M_Key.

3. The method according to Claims 1 or 2, further comprising:
continuing using the old current M_Key when updating/setting M_Key value for any

subnet management agent (SMA) instance until the local SM is updated with the new M_Key.

4. The method according to any preceding Claim, further comprising:
using, via the CD, a dedicated SM command line interface (CLI) command to update the
local SM.

5. The method according to any preceding Claim, further comprising:
updating, via the CD, the local SM with current local secret key configuration when at

least one of the SM and CD is restarted.
6. The method according to any preceding Claim, further comprising:
containing in the configuration file information about the currently used M_Key value as

well as the intended new M_Key value.

7. The method according to any preceding Claim, further comprising:

recording the currently used M_Key value in the list of known M_Key values.

-33-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

8. The method according to any preceding Claim, further comprising:

using the new M_Key value to fence off a SM on an unavailable node.

9. The method according to any preceding Claim, further comprising:
ensuring that the master SM has a known M_Key list not shorter than any M_Key list

maintained by a standby SM instance.

10. The method according to any preceding Claim, further comprising:

initiating a commit operation on the master CD.

11. A computer program comprising program instructions for running on one or more

microprocessors to perform all the steps of the method of any preceding claim.

12. A computer program comprising the computer program of claim 11 provided on a

machine-readable medium.

13. A system for supporting network management in a network environment, comprising:
one or more Microprocessors;
a configuration daemon (CD) on a switch running on the one or more microprocessors,
wherein the CD operates to
receive a configuration file that includes a list of known management key (M_Key)
values;
store the configuration file, and make the configuration file available to a local
subnet manager(SM) on the switch, wherein the local SM is associated with an currently
used M_Key value; and
update the local SM with a new M_Key, after receiving an instruction from a

master CD that is associated with a master SM in the network environment.

14. The system according to Claim 13, wherein:
the configuration file includes a trusted M_Key and one or more key values that are

transparently generated based on the trusted M_Key.

15. The system according to Claims 13 or 14, wherein:

the local SM continues using the old current M_Key when updating/setting M_Key value
for any subnet management agent (SMA) instance until the local SM is updated with the new
M_Key.

-34-



10

15

20

25

30

35

WO 2013/170205 PCT/US2013/040639

16. The system according to any of Claims 13-15, wherein:
the CD operates to use a dedicated SM command line interface (CLI) command to

update the local SM.

17. The system according to any of Claims 13-16, wherein:
the CD operates to update the local SM with current local secret key configuration when

at least one of the SM and CD is restarted.

18. The system according to any of Claims 13-17, wherein:
the configuration file contains information about the currently used M_Key value as well

as the intended new M_Key value.

19. The system according to any of Claims 13-18, wherein:
the CD operates to record the currently used M_Key value in the list of known M_Key

values.

20. The system according to any of Claims 13-19, wherein:

the new M_Key value is used to fence off a SM on an unavailable node.

21. The system according to any of Claims 13-20, wherein:
the master CD operates to ensure that the master SM has a known M_Key list not

shorter than any M_Key list maintained by a standby SM instance.

22. A non-transitory machine readable storage medium having instructions stored thereon
that when executed cause a system to perform the steps comprising:

receiving, via a configuration daemon (CD) on a switch in a network environment, a
configuration file, wherein the configuration file includes a list of known management key
(M_Key) values;

storing the configuration file, and making the configuration file available to a local subnet
manager(SM) on the switch, wherein the local SM is associated with an currently used M_Key
value; and

updating the local SM with a new M_Key, after receiving an instruction from a master CD

that is associated with a master SM in the network environment.

23. A computer program for causing a computer to implement the method recited in any one
of Claims 1 to 10.

-35-



PCT/US2013/040639

WO 2013/170205

113

i

101 (NS}
jefizuely wUGNS

LRSI -

178

Pl YING

T
»

LN (A
S AT e

~
-
Rl TPl

¥Z1 (YDH)

jopdepy jpULRYY) 1S0H

qr

4

\.

( wiso )

(vo1 womg 1504 )
¥14 150H

™

iy

£l e
; . w.v:m .,p“
\Ae i S

-
Ral I g

£Z1 {YDH)
jpydepy suueyn) 1804

=5

il ™y
( ciso )

(o1 prig 1804 )

\ i1 3180H J

o

L 3H4N0Id

¥ UOHMG

AR A

R
- -

*
* -

P4 S T
SRS

Rl SR L

zzi (yoHl
opdepy paueyS 180K

FEL viHS

T
~
- -

Wi
ey

RSP

’

P

FARL I IEY
iojdepy puULBYS IS0

ar

e ™
( zs1s0 )

( z91 Homg ys0H )
 ZiiIsoH

S

==

7 “
(_wsiso )
(191 wmgisoy )

L




PCT/US2013/040639

2/9

WO 2013/170205

Z 3N

VOE YOUmG

o st St ot Attt i At el e A e b s o ol

q\ .p. ) . -
. {15} vowseg S0
: . ueneinByuon saUEISY (JO
H ¢1Z PUBURUOGTD HUIWD DY wod
3 S S
]

,.......,..._.....:
et 1
SPUBLLILIOS 2104 10 BUG AN ,
,,,,,,, el 202
N v , (ng) ebeuep

ugng

“ L
S e JM TN
; 02z :

t apppdway | m%mm, |

i DAUEN ; _f., AWy

e e vt ot o o 20 s s oo e’
00¢



PCT/US2013/040639

WO 2013/170205

39

£ 3NOId

UORsESURI} A1) Ul P8 PO sk suoneiado Buiouos ou ey Buunsug
Gm\\/.\\

A

uohoRsuel a1 Ul suoiziado ai0us Jo auo Budno s

£0E

uogoesues g Buish
\/r.\\ JUBLIONALIS RIOMISU BY ] LBIA JOBIDILL O] JOSN B SAMOfE 208N [RUCROREURE
Lo U UIBIBLM 'UDUMS ¥ IOMIDU B 1B 90BUSTL |BuogsesURE B BUPIADIY




PCT/US2013/040639

WO 2013/170205

479

Y FAHNDIA

G0y 3 yohmg YOV O YOG

GE¥ vy

syenyden speayday

LWor Y Uoling

V¥
v Qo

sypeoydoy apensday

0P O UolAg v 8§ UYnmg

¥4 4
240

oy
g3a0

_ | SRS |

]
!
aLy
ﬁ a4 uchenByuo s



PCT/US2013/040639

WO 2013/170205

5/9

g 3HNDIS

m%\,/\\

anjea (Ao ) Aoy Jua wabeusiy U0 Bea) 1B sepmoul 3 uonenByuon
oy tiaseys "SI0 10ad  2iowt 1o 3uo By} 0} oy uoneshiyuoo e Bugeoyday

208

S AGPURE 2 LI A LDUAMS B UC (10 SARDE UB $E G0 1ood pies 4yors
LIS UM JUBLULGHA US SIOMISL 24 U 5{10) 1990 BI0W JG SUO UM DIIRISOSSE
SRS DIOW O 2UC UG YO ASUSISISUGD (1D JeIsEw oy vin ‘Buntioisy

05

{inNe)ebeuwaul pugns
JBIEBUL B YA UD HAMS B UO (37 RARCE UB S} {10 JISEW B LB UM TUBUILOHAUS
NIGAEU o Ul {503 ) suowaep uogeinByuod jo Aeind g Buipiaoid




PCT/US2013/040639

WO 2013/170205

6/9

\.

£ig4Aey WS

Z19 A9 W paisniun

119 Aoy i paysnay

§19 sfid uoneinbyuod

A

9 FHNOHA

.

-~ T
I 029 N

\ piomsseqd /
~ o~

—
|

JUUURUR |

109 4OHMG

£09
aa

508
Aavi 1
paISIL




PCT/US2013/040639

WO 2013/170205

719

L AN

0z4
AT JUBLRYD
a1epdn
0} HORINRSLY

VoL UOHMG

\\Iullllluul!.

josor |
| Aol |
raang
N o

TAVERR 11

o
o=
[~

0L
B4
uonesnfguen
Aoy

Pt btk ks bt ety



PCT/US2013/040639

WO 2013/170205

819

8 JHNOIA

mmm\//\\

JISILOIAUD U0 el B} Ut S 9158 B YA DEIBIDOSER 81 JBUL 00 JSei
e oy vogonasyy ue Buy masal 1aye ‘Asy I MBU B UM WS 1800} o Bunepdn

208

anea Aoy iy pesn ARUSLING uB L
DEIBIDOSSE St S (20 O 341 LIRS 'UDIIMSE Byt uo (g ebeurul PUGNS 00|
2 0} sjqrpeae o vopeinfi guon sy Bupew pue ey uogemnbyuoa sy Bupoag

£08

sanjea (Aa ) ») Aoy wswsbheunu uMmouy
3O 181 B sapnou ajg uog einByuos oyl iasoum ‘o uoneinfyund B USWIUCHAUS
MIOMIEU A1 U Yo § B o {G9) uswisep uoprinByuos v eia ‘Bulnnoey




PCT/US2013/040639

WO 2013/170205

919

6 FHNOIA

oom\/\

SHOSSF00Hd FHOW HG INO

LIND ONREIO LS

0Ls .\

LINO ONIAEOZH

0é6 .\

Gi6 .\




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/040639

A. CLASSIFICATION OF SUBJECT MATTER

INV. HO4L29/06 HO4L29/08
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4L

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data, COMPENDEX, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

30 October 2007 (2007-10-30)

figures 1-5

paragraphs [0055] - [0066]
figures 1-10

figures 6-8

column 3, Tine 49 - column 6, line 42
column 7, Tine 1 - column 8, Tine 11
column 9, Tine 53 - column 10, Tine 25

X US 7 290 277 B1 (CHOU NORMAN C [US] ET AL) 1-23
(

A WO 2012/037518 Al (ORACLE INT CORP [US]; 1-23
JOHNSEN BJORN-DAG [NO]; HOLEN LINE [NO];
MOXNES) 22 March 2012 (2012-03-22)

A US 6 941 350 B1 (FRAZIER GILES ROGER [US] 1-23
ET AL) 6 September 2005 (2005-09-06)
column 9, Tine 38 - column 11, line 20

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

13 September 2013

Date of mailing of the international search report

23/09/2013

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Ghomrasseni, Z

Form PCT/ISA/210 (second sheet) (April 2005)




INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2013/040639
Patent document Publication Patent family Publication

cited in search report date member(s) date

Us 7290277 Bl 30-10-2007  NONE

WO 2012037518 Al 22-03-2012 CN 103125097 A 29-05-2013
CN 103125098 A 29-05-2013
CN 103125102 A 29-05-2013
EP 2617157 Al 24-07-2013
EP 2617159 Al 24-07-2013
EP 2617165 Al 24-07-2013
US 2012069730 Al 22-03-2012
US 2012072562 Al 22-03-2012
US 2012072563 Al 22-03-2012
US 2012072564 Al 22-03-2012
US 2012079090 Al 29-03-2012
US 2012079580 Al 29-03-2012
WO 2012037512 Al 22-03-2012
WO 2012037518 Al 22-03-2012
WO 2012037520 Al 22-03-2012

US 6941350 Bl 06-09-2005  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)




	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report

