
JP 4783005 B2 2011.9.28

10

20

(57)【特許請求の範囲】
【請求項１】
　条件分岐を含むソースプログラムを変換して、２以上の命令を並列して実行できるコン
ピュータを対象とする目的プログラムを生成するプログラム変換装置であって、
　前記ソースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のう
ちの一つの実行経路を指定する実行経路指定手段と、
　前記区間にある全ての命令群を基に、その命令群に相当する第一コード列を生成する第
一コード列生成手段と、
　前記実行経路指定手段によって指定される実行経路上の命令群だけに相当する第二コー
ド列を生成し、当該生成において条件分岐命令については、他の実行経路への分岐条件が
成立しない場合に前記区間における当該条件分岐命令以降の命令を続行し、他の実行経路
への分岐条件が成立する場合に前記区間における当該条件分岐以降の命令の実行を中止す
るコードを当該条件分岐命令に相当するコードとして生成する第二コード列生成手段と、
　前記ソースプログラムの前記区間に後続する部分の命令群を基に、その命令群に相当す
る第三コード列を生成する第三コード列生成手段と、
　前記第一コード列と、前記第二コード列とを、前記コンピュータに並列実行させるよう
に、かつ、前記第二コード列において他の実行経路への分岐条件が成立しない場合には前
記第二コード列に継続して前記第三コード列を実行させ、前記第二コード列において他の
実行経路への分岐条件が成立する場合には第一コード列に継続して第三コード列を実行さ
せるように編成した目的プログラムを生成する目的プログラム生成手段とを備える

(2) JP 4783005 B2 2011.9.28

10

20

30

40

50

　ことを特徴とするプログラム変換装置。
【請求項２】
　前記目的プログラム生成手段は、
　前記コンピュータにおいて前記第一コード列の終了が前記第二コード列の終了よりも早
い場合には、前記第二コード列を実行している前記コンピュータのプロセッサエレメント
に第二コード列の実行を停止させるコードを前記第一コード列の後に含んで編成された目
的プログラムを生成する
　ことを特徴とする請求項１記載のプログラム変換装置。
【請求項３】
　前記プログラム変換装置は更に、
　前記ソースプログラムを実行形式に変換した実行プログラムをコンピュータに実行させ
ることで、前記区間において実行された頻度が高い順に、当該頻度が第一位の実行経路を
当該コンピュータから取得する実行経路取得手段を備え、
　前記実行経路指定手段は、前記取得手段により取得された前記第一位の実行経路を指定
する
　ことを特徴とする請求項１記載のプログラム変換装置。
【請求項４】
　前記プログラム変換装置は更に、
　前記コンピュータが並列実行可能な命令数ｍを取得する命令上限取得手段を備え、
　前記実行経路取得手段は更に、
　前記区間における実行頻度が第２位以下の実行経路を取得し、
　前記実行経路指定手段は、
　前記実行経路を前記命令数ｍに基づき、前記実行経路取得手段によって取得された、第
一位から第ｎ（ｎ＝ｍ－１）位までの実行経路を指定し、
　前記第二コード列生成手段は、前記実行経路指定手段によって指定された第一位から第
ｎ位までの実行経路を、実行経路ごとに合計ｎ個のコード列に変換し、
　前記目的プログラム生成手段は、
　前記第一コード列と前記第二コード列生成手段により生成された前記ｎ個のコード列を
並列実行させるようにコードを編成した目的プログラムを生成する
　ことを特徴とする請求項３記載のプログラム変換装置。
【請求項５】
　前記第二コード列生成手段は更に、
　前記第二コード列生成手段により生成された第一位から第ｎ位のｎ個のコードのうち、
他の実行経路への条件分岐が発生しなかったコード列以外のコード列を停止させる停止コ
ードを含んで生成する
　ことを特徴とする請求項４記載のプログラム変換装置。
【請求項６】
　前記プログラム変換装置は更に、
　前記コンピュータのメモリの形態が、前記コンピュータの全てのプロセッサエレメント
が一つのメモリを共有するメモリ共有型であるか、前記コンピュータの全てのプロセッサ
エレメントが固有のメモリを有するメモリ分散型かであるかのいずれの形態のメモリを使
用しているかの情報を取得するメモリ情報取得手段を備え、
　前記目的プログラム生成手段は、前記メモリ情報取得手段により取得したメモリ情報に
基づき、メモリ共有型である場合に、前記第一コード列と前記第二コード列において利用
される前記ソースプログラム中の元となる変数がそれぞれ独立した変数として扱うコード
になっている目的プログラムを生成する
　ことを特徴とする請求項１記載のプログラム変換装置。
【請求項７】
　前記目的プログラム生成手段は、
　前記停止コードによって停止させられたスレッドをプロセッサエレメントが消去せずに

(3) JP 4783005 B2 2011.9.28

10

20

30

40

50

保持しておくコードを含んで目的プログラムを生成する
　ことを特徴とする請求項５記載のプログラム変換装置。
【請求項８】
　前記プログラム変換装置は更に、
　前記目的プログラムを前記コンピュータに適合するように機械語に変換する機械語変換
手段を備える
　ことを特徴とする請求項１記載のプログラム変換装置。
【請求項９】
　条件分岐を含むソースプログラムを実行形式である実行形式プログラムに変換して、か
つ、２以上の命令を並列して実行できるプログラム変換実行装置であって、
　前記ソースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のう
ちの一つの実行経路を指定する実行経路指定手段と、
　前記区間にある全ての条件分岐を含んだ命令群を基に、その命令群に相当する第一コー
ド列を生成する第一コード列生成手段と、
　前記第一コード列を含む第一プログラムを実行する実行手段と、
　前記実行手段が前記第一プログラムを実行することにより得られた前記区間における実
行経路のうち実行頻度が高い順に、当該実行頻度が第一位の実行経路を取得する取得手段
と、
　前記取得手段によって取得された実行経路を前記実行経路指定手段によって指定し、当
該実行経路上の命令群に相当する第二コード列を生成し、当該生成において条件分岐命令
については、他の実行経路への分岐条件が成立しない場合に前記区間における当該条件分
岐命令以降の命令を続行し、他の実行経路への分岐条件が成立する場合に前記区間におけ
る当該条件分岐以降の命令の実行を中止するコードを当該条件分岐命令に相当するコード
として生成する第二コード列生成手段と、
　前記ソースプログラムの前記区間に後続する部分の命令群を基に、その命令群に相当す
る第三コード列を生成する第三コード列生成手段と、
　前記第一コード列と、前記第二コード列とを、並列実行するように、かつ、前記第二コ
ード列において他の実行経路への条件分岐が発生しない場合には前記第二コード列に継続
して前記第三コード列を実行し、前記第二コード列において他の実行経路への条件分岐が
発生する場合には前記第一コード列に継続して前記第三コード列を実行するように編成し
た目的プログラムを生成する目的プログラム生成手段とを備え、
　前記実行手段は前記第一プログラムを実行する代わりに前記目的プログラムを実行する
　ことを特徴とするプログラム変換実行装置。
【請求項１０】
　前記目的プログラム生成手段は、
　前記コンピュータにおいて前記第一コード列の終了が前記第二コード列の終了よりも早
い場合には、前記第二コード列を実行している前記コンピュータのプロセッサエレメント
に第二コード列の実行を停止させるコードを前記第一コードの後に含んで編成されたプロ
グラムを生成する
　ことを特徴とする請求項９記載のプログラム変換実行装置。
【請求項１１】
　前記プログラム変換実行装置は更に、
　当該プログラム変換実行装置が並列実行可能な命令数ｍを取得する命令上限取得手段を
備え、
　前記実行経路取得手段は更に、
　前記区間における実行頻度が第２位以下の実行経路を取得し、
　前記実行経路指定手段は、
　前記実行経路を前記命令数ｍに基づき、前記実行経路取得手段によって取得された、第
一位から第ｎ（ｎ＝ｍ－１）位までの実行経路を指定し、
　前記第二コード生成手段は、前記実行経路指定手段によって指定された第一位から第ｎ

(4) JP 4783005 B2 2011.9.28

10

20

30

40

50

位までの実行経路を、実行経路ごとに合計ｎ個のコード列に変換し、
　前記目的プログラム生成手段は、
　前記第一コード列と前記第二コード列生成手段により生成された前記ｎ個のコード列を
並列実行させるようにコードを編成した目的プログラムを生成する
　ことを特徴とする請求項１０記載のプログラム変換実行装置。
【請求項１２】
　前記第二コード列生成手段は更に、
　前記第二コード列生成手段により生成された第一位から第ｎ位のｎ個のコード列のうち
、他の実行経路への条件分岐が発生しなかったコード列以外のコード列を停止させる停止
コードを含んで生成する
　ことを特徴とする請求項１１記載のプログラム変換実行装置。
【請求項１３】
　前記目的プログラム生成手段は、
　自機のメモリの形態が、全てのプロセッサエレメントが一つのメモリを共有するメモリ
共有型である場合に、前記第一コード列と前記第二コード列において利用される前記ソー
スプログラム中の元となる変数がそれぞれ独立した変数として扱うコードになっている目
的プログラムを生成する
　ことを特徴とする請求項９記載のプログラム変換実行装置。
【請求項１４】
　前記目的プログラム生成手段は、
　前記停止コードによって停止させられたスレッドをプロセッサエレメントが消去せずに
保持しておくコードを含んで目的プログラムを生成する
　ことを特徴とする請求項１２記載のプログラム変換実行装置。
【請求項１５】
　プログラム変換装置が実行する、条件分岐を含むソースプログラムを変換して２以上の
命令を並列して実行できるコンピュータを対象とする目的プログラムを生成するプログラ
ム変換方法であって、
　前記ソースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のう
ちの一つの実行経路を指定する実行経路指定ステップと、
　前記区間にある全ての命令群を基に、その命令群に相当する第一コード列を生成する第
一コード列生成ステップと、
　前記実行経路指定ステップにおいて指定される実行経路上の命令群だけに相当する第二
コード列を生成し、当該生成において条件分岐命令については、他の実行経路への分岐条
件が成立しない場合に前記区間における当該条件分岐命令以降の命令を続行し、他の実行
経路への分岐条件が成立する場合に前記区間における当該条件分岐以降の命令の実行を中
止するコードを当該条件分岐命令に相当するコードとして生成する第二コード列生成ステ
ップと、
　前記ソースプログラムの前記区間に後続する部分の命令群を基に、その命令群に相当す
る第三コード列を生成する第三コード列生成ステップと、
　前記第一コード列と、前記第二コード列とを、前記コンピュータに並列実行させるよう
に、かつ、前記第二コード列において他の実行経路への分岐条件が成立しない場合には前
記第二コード列に継続して前記第三コード列を実行させ、前記第二コード列において他の
実行経路への分岐条件が成立する場合には第一コード列に継続して第三コード列を実行さ
せるように編成した目的プログラムを生成する目的プログラム生成ステップとを備える
　ことを特徴とするプログラム変換方法。
【請求項１６】
　前記目的プログラム生成ステップでは、
　前記コンピュータにおいて前記第一コード列の終了が前記第二コード列の終了よりも早
い場合には、前記第二コード列を実行している前記コンピュータのプロセッサエレメント
に第二コード列の実行を停止させるコードを前記第一コード列の後に含んで編成された目

(5) JP 4783005 B2 2011.9.28

10

20

30

40

50

的プログラムを生成する
　ことを特徴とする請求項１５記載のプログラム変換方法。
【請求項１７】
　前記プログラム変換方法は更に、
　前記ソースプログラムを実行形式に変換した実行プログラムをコンピュータに実行させ
ることで、前記区間において実行された頻度が高い順に、当該頻度が第一位の実行経路を
当該コンピュータから取得する実行経路取得ステップを備え、
　前記実行経路指定ステップは、前記実行経路取得ステップにおいて取得された前記第一
位の実行経路を指定する
　ことを特徴とする請求項１５記載のプログラム変換方法。
【請求項１８】
　前記プログラム変換方法は更に、
　前記コンピュータが並列実行可能な命令数ｍを取得する命令上限取得ステップを備え、
　前記実行経路取得ステップは更に、
　前記区間における実行頻度が第２位以下の実行経路を取得し、
　前記実行経路指定ステップは、
　前記実行経路を前記命令数ｍに基づき、前記実行経路取得ステップにおいて取得された
、第一位から第ｎ（ｎ＝ｍ－１）位までの実行経路を指定し、
　前記第二コード列生成ステップは、前記実行経路指定ステップにおいて指定された第一
位から第ｎ位までの実行経路を、実行経路ごとに合計ｎ個のコード列に変換し、
　前記目的プログラム生成ステップは、
　前記第一コード列と前記第二コード列生成ステップにおいて生成された前記ｎ個のコー
ド列を並列実行させるようにコードを編成した目的プログラムを生成する
　ことを特徴とする請求項１７記載のプログラム変換方法。
【請求項１９】
　前記第二コード列生成ステップは更に、
　前記第二コード列生成ステップにより生成された第一位から第ｎ位のｎ個のコードのう
ち、他の実行経路への条件分岐が発生しなかったコード列以外のコード列を停止させる停
止コードを含んで生成する
　ことを特徴とする請求項１８記載のプログラム変換方法。
【請求項２０】
　前記プログラム変換方法は更に、
　前記コンピュータのメモリの形態が、前記コンピュータの全てのプロセッサエレメント
が一つのメモリを共有するメモリ共有型であるか、前記コンピュータの全てのプロセッサ
エレメントが固有のメモリを有するメモリ分散型かであるかのいずれの形態のメモリを使
用しているかの情報を取得するメモリ情報取得ステップを備え、
　前記目的プログラム生成ステップは、前記メモリ情報取得ステップにおいて取得された
メモリ情報に基づき、メモリ共有型である場合に、前記第一コード列と前記第二コード列
において利用される前記ソースプログラム中の元となる変数がそれぞれ独立した変数とし
て扱うコードになっている目的プログラムを生成する
　ことを特徴とする請求項１５記載のプログラム変換方法。
【請求項２１】
　前記目的プログラム生成ステップは、
　前記停止コードによって停止させられたスレッドをプロセッサエレメントが消去せずに
保持しておくコードを含んで目的プログラムを生成する
　ことを特徴とする請求項１９記載のプログラム変換方法。
【請求項２２】
　前記プログラム変換方法は更に、
　前記目的プログラムを前記コンピュータに適合するように機械語に変換する機械語変換
ステップを備える

(6) JP 4783005 B2 2011.9.28

10

20

30

40

50

　ことを特徴とする請求項１５記載のプログラム変換方法。
【請求項２３】
　プログラム変換実行装置が実行する、条件分岐を含むソースプログラムを実行形式であ
る実行形式プログラムに変換して、かつ、２以上の命令を並列して実行できるプログラム
変換実行方法であって、
　前記ソースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のう
ちの一つの実行経路を指定する実行経路指定ステップと、
　前記区間にある全ての条件分岐を含んだ命令群を基に、その命令群に相当する第一コー
ド列を生成する第一コード列生成ステップと、
　前記第一コード列を含む第一プログラムを実行する実行ステップと、
　前記実行ステップが前記第一プログラムを実行することにより得られた前記区間におけ
る実行経路のうち実行頻度が高い順に、当該実行頻度が第一位の実行経路を取得する取得
ステップと、
　前記取得ステップによって取得された実行経路を前記実行経路指定ステップによって指
定し、当該実行経路上の命令群に相当する第二コード列を生成し、当該生成において条件
分岐命令については、他の実行経路への分岐条件が成立しない場合に前記区間における当
該条件分岐命令以降の命令を続行し、他の実行経路への分岐条件が成立する場合に前記区
間における当該条件分岐以降の命令の実行を中止するコードを当該条件分岐命令に相当す
るコードとして生成する第二コード列生成ステップと、
　前記ソースプログラムの前記区間に後続する部分の命令群を基に、その命令群に相当す
る第三コード列を生成する第三コード列生成ステップと、
　前記第一コード列と、前記第二コード列とを、並列実行するように、かつ、前記第二コ
ード列において他の実行経路への条件分岐が発生しない場合には前記第二コード列に継続
して前記第三コード列を実行し、前記第二コード列において他の実行経路への条件分岐が
発生する場合には前記第一コード列に継続して前記第三コード列を実行するように編成し
た目的プログラムを生成する目的プログラム生成ステップとを備え、
　前記実行ステップは前記第一プログラムを実行する代わりに前記目的プログラムを実行
する
　ことを特徴とするプログラム変換実行方法。
【請求項２４】
　前記目的プログラム生成ステップは、
　前記コンピュータにおいて前記第一コード列の終了が前記第二コード列の終了よりも早
い場合には、前記第二コード列を実行している前記コンピュータのプロセッサエレメント
に第二コード列の実行を停止させるコードを前記第一コードの後に含んで編成されたプロ
グラムを生成する
　ことを特徴とする請求項２３記載のプログラム変換実行方法。
【請求項２５】
　前記プログラム変換実行方法は更に、
　当該プログラム変換実行方法が並列実行可能な命令数ｍを取得する命令上限取得ステッ
プを備え、
　前記実行経路取得ステップは更に、
　前記区間における実行頻度が第２位以下の実行経路を取得し、
　前記実行経路指定ステップは、
　前記実行経路を前記命令数ｍに基づき、前記実行経路取得ステップにおいて取得された
、第一位から第ｎ（ｎ＝ｍ－１）位までの実行経路を指定し、
　前記第二コード生成ステップは、前記実行経路指定ステップにおいて指定された第一位
から第ｎ位までの実行経路を、実行経路ごとに合計ｎ個のコード列に変換し、
　前記目的プログラム生成ステップは、
　前記第一コード列と前記第二コード列生成ステップにおいて生成された前記ｎ個のコー
ド列を並列実行させるようにコードを編成した目的プログラムを生成する

(7) JP 4783005 B2 2011.9.28

10

20

30

40

50

　ことを特徴とする請求項２４記載のプログラム変換実行方法。
【請求項２６】
　前記第二コード列生成ステップは更に、
　前記第二コード列生成ステップにより生成された第一位から第ｎ位のｎ個のコード列の
うち、他の実行経路への条件分岐が発生しなかったコード列以外のコード列を停止させる
停止コードを含んで生成する
　ことを特徴とする請求項２５記載のプログラム変換実行方法。
【請求項２７】
　前記目的プログラム生成ステップは、
　自機のメモリの形態が、全てのプロセッサエレメントが一つのメモリを共有するメモリ
共有型である場合に、前記第一コード列と前記第二コード列において利用される前記ソー
スプログラム中の元となる変数がそれぞれ独立した変数として扱うコードになっている目
的プログラムを生成する
　ことを特徴とする請求項２３記載のプログラム変換実行方法。
【請求項２８】
　前記目的プログラム生成ステップは、
　前記停止コードによって停止させられたスレッドをプロセッサエレメントが消去せずに
保持しておくコードを含んで目的プログラムを生成する
　ことを特徴とする請求項２７記載のプログラム変換実行方法。
【発明の詳細な説明】
【技術分野】
【０００１】
　本発明は、コンパイラによるプログラムの最適化に関し、特に、プログラム内の実行経
路とその実行頻度に着目した最適化に関する。
【背景技術】
【０００２】
　ソースプログラムを実行形式に変換するコンパイラ装置において、コンパイラ装置によ
って生成された実行プログラムがターゲットのハードウェア上において実行されて、その
実行結果がより早く出るように種々の工夫がなされてきた。
　コンパイラ装置によって生成された実行プログラムの結果が速く出るようにコンパイラ
装置は命令のスケジューリングを行うが、そのスケジューリング方法の一つにプログラム
中の命令を並べ替えて命令の並列度を上げて実行速度を向上させる広域スケジューリング
法があり、その広域スケジューリング法の一つにトレーススケジューリング法というもの
がある。
【０００３】
　プログラムにおいて条件分岐を含まずに連続的に処理される命令郡を基本ブロックと呼
び、従来においてもこの基本ブロック内における命令の実行順序の変更を行って、命令の
並列度を上げて、実行プログラムの実行時間が短縮されてきた。なお、基本ブロックの最
後には条件分岐命令を含んでも良い。
　トレーススケジューリング法は、この基本ブロックを拡張するべく、条件分岐命令を跨
いで一つの基本ブロックから条件分岐命令によって派生する複数の基本ブロックの一つを
当該条件分岐命令が存在しないかのように結合、拡張し、拡張された基本ブロック内にお
いてその命令を並べ替えるスケジューリング方法である。元の基本ブロックを拡張した形
になるので命令のスケジューリングの自由度が上がり、更にプログラムの実行時間は短縮
されることになる。ただし、拡張した基本ブロックの実行経路がプログラムにおいて実際
に実行されない場合に備え、値の整合性を保つべく保証用のコードが必要となる。プログ
ラムにおいて、この基本ブロックによる拡張が行われ最適化が施された実行経路を通る場
合には実行結果はソースプログラムをそのままコーディングした実行プログラムよりも早
く実行結果を得ることができる。その技術を利用した技術が特許文献１に記されている。
なお、基本ブロックの拡張は、基本的にプログラムにおいて実行頻度の高い実行経路上の

(8) JP 4783005 B2 2011.9.28

10

20

30

40

50

基本ブロックに対して適用される。
【０００４】
　例えば図２０（ａ）にあるように、元のソースプログラムの一部分が同図のように分岐
するプログラムがあったとする。この図２０（ａ）のフローグラフにおいて、基本ブロッ
クＡ２００１、Ｂ２００２、Ｃ２００３を通る実行経路の実行頻度が高いものとする。そ
れに基づき、このプログラムにトレーススケジューリングを適用すると例えば図２０（ｂ
）のように、例えば、基本ブロックＡ２００１と基本ブロックＢ２００２を入れ替えるこ
とで実行速度が早くなり、基本ブロックＢ２０１２、Ａ２０１１、Ｃ２０１３を含む実行
経路２０１０をこのプログラムが通る場合にはプログラム全体の実行時間は短縮される。
【特許文献１】特開平１１－９６００５号公報
【発明の開示】
【発明が解決しようとする課題】
【０００５】
　ところで前述したようにトレーススケジューリング法においては基本ブロック内の命令
順序を入れ替えたりするので、このフローグラフにおいて他の実行経路を通った場合に実
行結果の整合をとる為に保証コードを生成しなければならなくなる。
　例えば、図２０（ｂ）においては、ブロックＡ’２０１８がそれに相当する。図２０（
ｂ）では、ブロックＢ２０１２から、図２０（ａ）と同じようにそのままブロックＤ２０
０４に分岐させるとブロックＡ２００１の演算がなされていないことになるので、ブロッ
クＡ２００１の命令に相当する保証コードとしてブロックＡ’２０１８をつけて、図２０
（ｂ）においてブロックＢ２０１２、Ａ’２０１８、Ｄ２０１４、Ｅ２０１５を通る経路
が実行経路である場合の値の整合性を保つ。
【０００６】
　本発明においては、上記のような保証コードを用いずに、特定の実行経路において基本
ブロックの拡張を行って最適化を施したプログラムを生成するプログラム変換装置である
ところのコンパイラ装置を提供することを目的とする。
【課題を解決するための手段】
【０００７】
　上記課題を解決するため、本発明に係るプログラム変換装置であるところのコンパイラ
装置は、条件分岐を含むソースプログラムを変換して、２以上の命令を並列して実行でき
るコンピュータを対象とする目的プログラムを生成するプログラム変換装置であって、前
記ソースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のうちの
一つの実行経路を指定する実行経路指定手段と、前記区間にある全ての命令群を基に、そ
の命令群に相当する第一コード列を生成する第一コード列生成手段と、前記実行経路指定
手段によって指定される実行経路上の命令群だけに相当する第二コード列を生成し、当該
生成において条件分岐命令については、他の実行経路への分岐条件が成立しない場合に前
記区間における当該条件分岐命令以降の命令を続行し、他の実行経路への分岐条件が成立
する場合に前記区間における当該条件分岐以降の命令の実行を中止するコードを当該条件
分岐命令に相当するコードとして生成する第二コード列生成手段と、前記ソースプログラ
ムの前記区間に後続する部分の命令群を基に、その命令群に相当する第三コード列を生成
する第三コード列生成手段と、前記第一コード列と、前記第二コード列とを、前記コンピ
ュータに並列実行させるように、かつ、前記第二コード列において他の実行経路への分岐
条件が成立しない場合には前記第二コード列に継続して前記第三コード列を実行させ、前
記第二コード列において他の実行経路への分岐条件が成立する場合には第一コード列に継
続して第三コード列を実行させるように編成した目的プログラムを生成する目的プログラ
ム生成手段とを備えることを特徴とする。
【０００８】
　ここで、相当するとは、ソースプログラムの命令の内容と略同一の内容であることを言
う。但し、前記コンピュータのメモリの形態などによって、アクセスするレジスタなどは
さまざまに変化する。また、実行経路とは、連続的に実行される命令群のことであり、プ

(9) JP 4783005 B2 2011.9.28

10

20

30

40

50

ログラム中で条件分岐命令の条件によって実行される命令が枝分かれして変化する場合に
は、その枝の一つのみを指す。また、生成される目的プログラムは、中間コードの場合も
あるし、前記コンピュータで実行できるような実行形式プログラムである場合もある。中
間コードとはソースプログラムから実行プログラムに変換する際に、コンパイラ装置が扱
いやすいように生成されるコードで、その内容はソースプログラムに相当する。
【発明の効果】
【０００９】
　これにより、本発明に係るコンパイラ装置によって生成される実行プログラムは、元の
ソースプログラムを前記コンピュータが実行できるようにそのまま最適化を施さずに変換
した前記第一コード列を含むプログラムを前記コンピュータが有する第一プロセッサエレ
メントに実行させ、特定の実行経路、即ち、実行経路指定手段によって指定された実行経
路に関しては最適化を施して前記コンピュータが有する第二プロセッサエレメントに実行
させるので、特定の実行経路以外の経路を通る際に値の整合性を保つために必要とされる
上記のような保証コードを用いずに、特定の実行経路に関して最適化を施したプログラム
を生成することができる。
【００１０】
　また、前記区間において実行経路が前記実行経路指定手段によって指定された実行経路
を通る場合に第二コードの終了が早くなり、それに合わせて第三コードの実行開始が早く
なり、結果、プログラム全体の実行時間は短縮される。
　また、第一プロセッサエレメントが元のソースプログラムに相当するプログラムを実行
するので値の整合性もとれる。
【００１１】
　また、前記プログラム変換装置において、前記目的プログラム生成手段は、前記コンピ
ュータにおいて前記第一コード列の終了が前記第二コード列の終了よりも早い場合には、
前記第二コード列を実行している前記コンピュータのプロセッサエレメントに第二コード
列の実行を停止させるコードを前記第一コード列の後に含んで編成された目的プログラム
を生成することとしてよい。
【００１２】
　これにより、第一コードの方が実行結果が早く出た場合に、第二コードを実行している
プロセッサエレメントに、第二コードを停止させ、その後、当該プロセッサエレメントに
別の処理を割り振るプログラム編成にすれば、資源の有効活用を行える。
　また、前記プログラム変換装置は更に、前記ソースプログラムを実行形式に変換した実
行プログラムをコンピュータに実行させることで、前記区間において実行された頻度が高
い順に、当該頻度が第一位の実行経路を当該コンピュータから取得する実行経路取得手段
を備え、前記実行経路指定手段は、前記取得手段により取得された前記第一位の実行経路
を指定することとしてよい。
【００１３】
　これにより、これによりコンパイラ装置は、実行頻度の高い実行経路を最適化すること
ができるので、この実行頻度の高い実行経路をプログラムが通る場合に、このコンパイラ
装置によって生成されるプログラムの結果が出るタイミングが早くなる。
　また、前記プログラム変換装置は更に、前記コンピュータが並列実行可能な命令数ｍを
取得する命令上限取得手段を備え、前記実行経路取得手段は更に、前記区間における実行
頻度が第２位以下の実行経路を取得し、前記実行経路指定手段は、前記実行経路を前記命
令数ｍに基づき、前記実行経路取得手段によって取得された、第一位から第ｎ（ｎ＝ｍ－
１）位までの実行経路を指定し、前記第二コード列生成手段は、前記実行経路指定手段に
よって指定された第一位から第ｎ位までの実行経路を、実行経路ごとに合計ｎ個のコード
列に変換し、前記目的プログラム生成手段は、前記第一コード列と前記第二コード列生成
手段により生成された前記ｎ個のコード列を並列実行させるようにコードを編成した目的
プログラムを生成することとしてよい。
【００１４】

(10) JP 4783005 B2 2011.9.28

10

20

30

40

50

　これにより複数の実行頻度の高い実行経路をそれぞれ別のスレッドとして立ち上げて実
行することができ、プログラム全体のターゲットハードウェア上における実行時間を短縮
できるプログラムを生成できる。
　また、前記プログラム変換装置において前記第二コード列生成手段は更に、前記第二コ
ード列生成手段により生成された第一位から第ｎ位のｎ個のコードのうち、他の実行経路
への条件分岐が発生しなかったコード列以外のコード列を停止させる停止コードを含んで
生成することとしてよい。
【００１５】
 これにより、他のプロセッサエレメントで実行しているスレッドを停止することができ
、自スレッドが、処理を終えていて条件分岐が自スレッドの実行経路を通った場合に、そ
のことを他のプロセッサエレメントに知らせ、他のプロセッサエレメントで実行されてい
るスレッドを停止することができるプログラムを生成できる。
　また、前記プログラム変換装置は更に、前記コンピュータのメモリの形態が、前記コン
ピュータの全てのプロセッサエレメントが一つのメモリを共有するメモリ共有型であるか
、前記コンピュータの全てのプロセッサエレメントが固有のメモリを有するメモリ分散型
かであるかのいずれの形態のメモリを使用しているかの情報を取得するメモリ情報取得手
段を備え、前記目的プログラム生成手段は、前記メモリ情報取得手段により取得したメモ
リ情報に基づき、メモリ共有型である場合に、前記第一コード列と前記第二コード列にお
いて利用される前記ソースプログラム中の元となる変数がそれぞれ独立した変数として扱
うコードになっている目的プログラムを生成することとしてよい。
【００１６】
　ここで独立した変数として扱うとは、第一コード列と第二コード列でソースプログラム
中の同一の変数を参照する場合に、その値を異なるレジスタに格納して演算を行うことを
いう。
　これにより、メモリ共有型のコンピュータにおいてプログラムの演算結果を保証するこ
とができるようになる。
【００１７】
　また、前記プログラム変換装置において、前記目的プログラム生成手段は、前記停止コ
ードによって停止させられたスレッドをプロセッサエレメントが消去せずに保持しておく
コードを含んで目的プログラムを生成することとしてもよい。
　これにより、生成されるスレッドが扱う演算データのみが異なる場合に、スレッドを保
持し残しているので、演算に必要なデータのみをプロセッサエレメントに渡せばよく、逐
次プロセッサエレメントにスレッドの内容と扱うデータの両方を渡すという非効率性を省
け、また、目的プログラムの実行時間の短縮にもつながる。
【００１８】
　また、前記プログラム変換装置は更に、前記目的プログラムを前記コンピュータに適合
するように機械語に変換する機械語変換手段を備えることとしてよい。
　これにより、目的プログラムが中間コードであった場合に対象とするコンピュータの機
械語に合わせた実行プログラムを生成できる。
　また、条件分岐を含むソースプログラムを実行形式である実行形式プログラムに変換し
て、かつ、２以上の命令を並列して実行できるプログラム変換実行装置であって、前記ソ
ースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のうちの一つ
の実行経路を指定する実行経路指定手段と、前記区間にある全ての条件分岐を含んだ命令
群を基に、その命令群に相当する第一コード列を生成する第一コード列生成手段と、前記
第一コード列を含む第一プログラムを実行する実行手段と、前記実行手段が前記第一プロ
グラムを実行することにより得られた前記区間における実行経路のうち実行頻度が高い順
に、当該実行頻度が第一位の実行経路を取得する取得手段と、前記取得手段によって取得
された実行経路を前記実行経路指定手段によって指定し、当該実行経路上の命令群に相当
する第二コード列を生成し、当該生成において条件分岐命令については、他の実行経路へ
の分岐条件が成立しない場合に前記区間における当該条件分岐命令以降の命令を続行し、

(11) JP 4783005 B2 2011.9.28

10

20

30

40

50

他の実行経路への分岐条件が成立する場合に前記区間における当該条件分岐以降の命令の
実行を中止するコードを当該条件分岐命令に相当するコードとして生成する第二コード列
生成手段と、前記ソースプログラムの前記区間に後続する部分の命令群を基に、その命令
群に相当する第三コード列を生成する第三コード列生成手段と、前記第一コード列と、前
記第二コード列とを、並列実行するように、かつ、前記第二コード列において他の実行経
路への条件分岐が発生しない場合には前記第二コード列に継続して前記第三コード列を実
行し、前記第二コード列において他の実行経路への条件分岐が発生する場合には前記第一
コード列に継続して前記第三コード列を実行するように編成した目的プログラムを生成す
る目的プログラム生成手段とを備え、前記実行手段は前記第一プログラムを実行する代わ
りに前記目的プログラムを実行することとしてよい。
【００１９】
　これにより、プログラムを生成しながら実行できるプログラム変換実行装置において、
実行頻度の高い実行経路を通る場合に、プログラムの実行時間が短縮される。
　また、従来において、保証コードはフローグラフが複雑になるほどに、保証コードの内
容も複雑化する。プログラムを逐次解釈実行するインタプリタにおいて部分的なコードの
実行性能を上げるために所謂ジャストインタイムコンパイル、つまり動的コンパイル技術
が用いられるコンパイラ装置においては、この保証コードの生成は時間のロスになること
があるが、本発明においては保証コードを生成しないので、そういった問題もなくなる。
【００２０】
　また、前記プログラム変換実行装置において、前記目的プログラム生成手段は、前記コ
ンピュータにおいて前記第一コード列の終了が前記第二コード列の終了よりも早い場合に
は、前記第二コード列を実行している前記コンピュータのプロセッサエレメントに第二コ
ード列の実行を停止させるコードを前記第一コードの後に含んで編成されたプログラムを
生成することとしてよい。
【００２１】
　これにより、第一コードの方が実行結果が早く出た場合に、第二コードを実行している
プロセッサエレメントに、第二コードを停止させ、その後、別の処理を割り振ってやれば
、資源の有効活用になる。
　また、前記プログラム変換実行装置は更に、当該プログラム変換実行装置が並列実行可
能な命令数ｍを取得する命令上限取得手段を備え、前記実行経路取得手段は更に、前記区
間における実行頻度が第２位以下の実行経路を取得し、前記実行経路指定手段は、前記実
行経路を前記命令数ｍに基づき、前記実行経路取得手段によって取得された、第一位から
第ｎ（ｎ＝ｍ－１）位までの実行経路を指定し、前記第二コード生成手段は、前記実行経
路指定手段によって指定された第一位から第ｎ位までの実行経路を、実行経路ごとに合計
ｎ個のコード列に変換し、前記目的プログラム生成手段は、前記第一コード列と前記第二
コード列生成手段により生成された前記ｎ個のコード列を並列実行させるようにコードを
編成した目的プログラムを生成することとしてよい。
【００２２】
　これにより、複数の実行頻度の高い実行経路をそれぞれ別のスレッドとして立ち上げて
実行することができ、プログラム全体のターゲットハードウェア上における実行時間を短
縮できる。
　また、前記プログラム変換実行装置において、前記第二コード列生成手段は更に、前記
第二コード列生成手段により生成された第一位から第ｎ位のｎ個のコード列のうち、他の
実行経路への条件分岐が発生しなかったコード列以外のコード列を停止させる停止コード
を含んで生成することとしてよい。
【００２３】
　これにより、自スレッドが実行される条件が成立している場合に、他のプロセッサエレ
メントが実行している他スレッドを停止させ、その後のプログラム上の処理を行うことで
資源の有効活用が可能となる。
　また、前記プログラム変換実行装置において前記目的プログラム生成手段は、自機のメ

(12) JP 4783005 B2 2011.9.28

10

20

30

40

50

モリの形態が、全てのプロセッサエレメントが一つのメモリを共有するメモリ共有型であ
る場合に、前記第一コード列と前記第二コード列において利用される前記ソースプログラ
ム中の元となる変数がそれぞれ独立した変数として扱うコードになっている目的プログラ
ムを生成することとしてよい。
【００２４】
　これにより、このプログラム変換実行装置が、メモリ共有型であっても、メモリ分散型
であっても、それに対応してプログラム中の値を格納するレジスタ割り振りを考慮したプ
ログラムを生成できる。
　また、前記プログラム変換実行装置において、前記目的プログラム生成手段は、前記停
止コードによって停止させられたスレッドをプロセッサエレメントが消去せずに保持して
おくコードを含んで目的プログラムを生成することとしてもよい。
【００２５】
　これにより、生成されるスレッドが扱う演算データのみが異なる場合に、スレッドを保
持し残しているので、演算に必要なデータのみをプロセッサエレメントに渡せばよく、逐
次プロセッサエレメントにスレッドの内容と扱うデータの両方を渡すという非効率性を省
け、また、目的プログラムの実行時間の短縮にもつながる。
　また、条件分岐を含むソースプログラムを変換して、２以上の命令を並列して実行でき
るコンピュータを対象とする目的プログラムを生成するプログラム変換方法であって、前
記ソースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のうちの
一つの実行経路を指定する実行経路指定ステップと、前記区間にある全ての命令群を基に
、その命令群に相当する第一コード列を生成する第一コード列生成ステップと、前記実行
経路指定ステップにおいて指定される実行経路上の命令群だけに相当する第二コード列を
生成し、当該生成において条件分岐命令については、他の実行経路への分岐条件が成立し
ない場合に前記区間における当該条件分岐命令以降の命令を続行し、他の実行経路への分
岐条件が成立する場合に前記区間における当該条件分岐以降の命令の実行を中止するコー
ドを当該条件分岐命令に相当するコードとして生成する第二コード列生成ステップと、前
記ソースプログラムの前記区間に後続する部分の命令群を基に、その命令群に相当する第
三コード列を生成する第三コード列生成ステップと、前記第一コード列と、前記第二コー
ド列とを、前記コンピュータに並列実行させるように、かつ、前記第二コード列において
他の実行経路への分岐条件が成立しない場合には前記第二コード列に継続して前記第三コ
ード列を実行させ、前記第二コード列において他の実行経路への分岐条件が成立する場合
には第一コード列に継続して第三コード列を実行させるように編成した目的プログラムを
生成する目的プログラム生成ステップとを備えることとしてもよい。
【００２６】
　この方法により、前記第一コードと特定の実行経路に関して最適化が施された前記第二
コードを並列実行させることができる目的プログラムを生成することができる。
　また、前記プログラム生成方法において、前記目的プログラム生成ステップでは、前記
コンピュータにおいて前記第一コード列の終了が前記第二コード列の終了よりも早い場合
には、前記第二コード列を実行している前記コンピュータのプロセッサエレメントに第二
コード列の実行を停止させるコードを前記第一コード列の後に含んで編成された目的プロ
グラムを生成することとしてもよい。
【００２７】
　この方法より、第一コードの方の実行結果が早く出た場合に第二コードを実行している
プロセッサエレメントに、第二コードを停止させる目的プログラムを生成することができ
る。
　また、前記プログラム変換方法は更に、前記ソースプログラムを実行形式に変換した実
行プログラムをコンピュータに実行させることで、前記区間において実行された頻度が高
い順に、当該頻度が第一位の実行経路を当該コンピュータから取得する実行経路取得ステ
ップを備え、前記実行経路指定ステップは、前記取得手段により取得された前記第一位の
実行経路を指定することとしてもよい。

(13) JP 4783005 B2 2011.9.28

10

20

30

40

50

【００２８】
　この方法により、実行頻度の最も高い実行経路を最適化して、この実行頻度の高い実行
経路の内容を並列実行させる目的プログラムを生成することができる。
　また、前記プログラム変換方法は更に、前記コンピュータが並列実行可能な命令数ｍを
取得する命令上限取得ステップを備え、前記実行経路取得ステップは更に、前記区間にお
ける実行頻度が第２位以下の実行経路を取得し、前記実行経路指定ステップは、前記実行
経路を前記命令数ｍに基づき、前記実行経路取得手段によって取得された、第一位から第
ｎ（ｎ＝ｍ－１）位までの実行経路を指定し、前記第二コード列生成ステップは、前記実
行経路指定手段によって指定された第一位から第ｎ位までの実行経路を、実行経路ごとに
合計ｎ個のコード列に変換し、前記目的プログラム生成ステップは、前記第一コード列と
前記第二コード列生成手段により生成された前記ｎ個のコード列を並列実行させるように
コードを編成した目的プログラムを生成することとしてもよい。
【００２９】
　この方法により、複数の実行頻度の高い実行経路に関して最適化し、この複数の実行頻
度の高い実行経路の内容を並列実行させる目的プログラムを生成することができる。
　また、前記プログラム変換方法において、前記第二コード列生成ステップは更に、前記
第二コード列生成ステップにより生成された第一位から第ｎ位のｎ個のコードのうち、他
の実行経路への条件分岐が発生しなかったコード列以外のコード列を停止させる停止コー
ドを含んで生成することとしてもよい。
【００３０】
　この方法により、自スレッドが、処理を終えていて条件分岐により自スレッドの実行経
路を通った場合に、他のプロセッサエレメントで実行されているスレッドを停止すること
ができるプログラムを生成することができる。
　また、前記プログラム変換方法は更に、前記コンピュータのメモリの形態が、前記コン
ピュータの全てのプロセッサエレメントが一つのメモリを共有するメモリ共有型であるか
、前記コンピュータの全てのプロセッサエレメントが固有のメモリを有するメモリ分散型
かであるかのいずれの形態のメモリを使用しているかの情報を取得するメモリ情報取得ス
テップを備え、前記目的プログラム生成手段は、前記メモリ情報取得手段により取得した
メモリ情報に基づき、メモリ共有型である場合に、前記第一コード列と前記第二コード列
において利用される前記ソースプログラム中の元となる変数がそれぞれ独立した変数とし
て扱うコードになっている目的プログラムを生成することとしてもよい。
【００３１】
　この方法により、メモリ共有型のコンピュータにおいて演算結果を保証できる目的プロ
グラムを生成できるようになる。
　また、前記プログラム変換方法において、前記目的プログラム生成ステップは、前記停
止コードによって停止させられたスレッドをプロセッサエレメントが消去せずに保持して
おくコードを含んで目的プログラムを生成することとしてもよい。
【００３２】
　この方法により、スレッドを消去せず、保持しておき再利用することが可能な目的プロ
グラムを生成することができる。
　また、前記プログラム変換方法は更に、前記目的プログラムを前記コンピュータに適合
するように機械語に変換する機械語変換ステップを備えることとしてもよい。
　この方法により、目的プログラムが中間コードであった場合に、対象とするコンピュー
タの機械語にあわせた実行プログラムを生成することができる。
【００３３】
　また、条件分岐を含むソースプログラムを実行形式である実行形式プログラムに変換し
て、かつ、２以上の命令を並列して実行できるプログラム変換実行方法であって、前記ソ
ースプログラムにおいて、条件分岐を跨ぐ一区間についての複数の実行経路のうちの一つ
の実行経路を指定する実行経路指定ステップと、前記区間にある全ての条件分岐を含んだ
命令群を基に、その命令群に相当する第一コード列を生成する第一コード列生成ステップ

(14) JP 4783005 B2 2011.9.28

10

20

30

40

50

と、前記第一コード列を含む第一プログラムを実行する実行ステップと、前記実行ステッ
プが前記第一プログラムを実行することにより得られた前記区間における実行経路のうち
実行頻度が高い順に、当該実行頻度が第一位の実行経路を取得する取得ステップと、前記
取得ステップによって取得された実行経路を前記実行経路指定ステップによって指定し、
当該実行経路上の命令群に相当する第二コード列を生成し、当該生成において条件分岐命
令については、他の実行経路への分岐条件が成立しない場合に前記区間における当該条件
分岐命令以降の命令を続行し、他の実行経路への分岐条件が成立する場合に前記区間にお
ける当該条件分岐以降の命令の実行を中止するコードを当該条件分岐命令に相当するコー
ドとして生成する第二コード列生成ステップと、前記ソースプログラムの前記区間に後続
する部分の命令群を基に、その命令群に相当する第三コード列を生成する第三コード列生
成ステップと、前記第一コード列と、前記第二コード列とを、並列実行するように、かつ
、前記第二コード列において他の実行経路への条件分岐が発生しない場合には前記第二コ
ード列に継続して前記第三コード列を実行し、前記第二コード列において他の実行経路へ
の条件分岐が発生する場合には前記第一コード列に継続して前記第三コード列を実行する
ように編成した目的プログラムを生成する目的プログラム生成ステップとを備え、前記実
行手段は前記第一プログラムを実行する代わりに前記目的プログラムを実行することとし
てもよい。
【００３４】
　この方法により、プログラムを生成しながら、実行頻度の高い実行経路の内容を並列実
行させながら実行できる目的プログラムを生成することができる。
　また、前記目的プログラム生成ステップは、前記コンピュータにおいて前記第一コード
列の終了が前記第二コード列の終了よりも早い場合には、前記第二コード列を実行してい
る前記コンピュータのプロセッサエレメントに第二コード列の実行を停止させるコードを
前記第一コードの後に含んで編成されたプログラムを生成することとしてもよい。
【００３５】
　この方法により、第一コードの実行結果が早く出た場合に、第二コードを実行している
プロセッサエレメントに第二コードを停止させるプログラムを生成できる。
　また、前記プログラム変換実行方法は更に、当該プログラム変換実行方法が並列実行可
能な命令数ｍを取得する命令上限取得ステップを備え、前記実行経路取得ステップは更に
、
　前記区間における実行頻度が第２位以下の実行経路を取得し、前記実行経路指定ステッ
プは、前記実行経路を前記命令数ｍに基づき、前記実行経路取得手段によって取得された
、第一位から第ｎ（ｎ＝ｍ－１）位までの実行経路を指定し、前記第二コード生成ステッ
プは、前記実行経路指定手段によって指定された第一位から第ｎ位までの実行経路を、実
行経路ごとに合計ｎ個のコード列に変換し、前記目的プログラム生成ステップは、前記第
一コード列と前記第二コード列生成手段により生成された前記ｎ個のコード列を並列実行
させるようにコードを編成した目的プログラムを生成することとしてもよい。
【００３６】
　この方法により、複数の実行頻度の高い実行経路をそれぞれ別のスレッドとして立ち上
げて実行する目的プログラムを生成することができる。
　また、前記プログラム実行変換方法において、前記第二コード列生成ステップは更に、
　前記第二コード列生成ステップにより生成された第一位から第ｎ位のｎ個のコード列の
うち、他の実行経路への条件分岐が発生しなかったコード列以外のコード列を停止させる
停止コードを含んで生成することとしてもよい。
【００３７】
　この方法により、一つのスレッドが実行される条件が成立している場合に、他のスレッ
ドを停止する目的プログラムを生成することができる。
　また、前記プログラム実行変換方法において、前記目的プログラム生成ステップは、自
機のメモリの形態が、全てのプロセッサエレメントが一つのメモリを共有するメモリ共有
型である場合に、前記第一コード列と前記第二コード列において利用される前記ソースプ

(15) JP 4783005 B2 2011.9.28

10

20

30

40

50

ログラム中の元となる変数がそれぞれ独立した変数として扱うコードになっている目的プ
ログラムを生成することとしてもよい。
【００３８】
　この方法により、メモリ共有型、メモリ分散型に対応した目的プログラムを生成するこ
とができる。
　また、前記プログラム変換実行変換方法であって、前記目的プログラム生成ステップは
、前記停止コードによって停止させられたスレッドをプロセッサエレメントが消去せずに
保持しておくコードを含んで目的プログラムを生成することとしてもよい。
【００３９】
　この方法により、スレッドを消去せず、保持しておき再利用することが可能な目的プロ
グラムを生成することができる。
【発明を実施するための最良の形態】
【００４０】
　以下、本発明に係るプログラム変換装置であるところのコンパイラ装置の実施の形態を
図面を用いながら説明していく。
＜第一の実施形態＞
　第一の実施形態におけるコンパイラ装置は、メモリ共有型のコンピュータを対象とする
実行プログラムを生成する。
＜概要＞
　本発明の概要を図２および図３を用いて説明する。
【００４１】
　本発明に係るコンパイラ装置において、ソースプログラムの一部分が図２におけるフロ
ーグラフのような分岐の形態を持つソースプログラムであったとし、これを本発明のコン
パイラ装置によって実行形式に変換するとする。
　なお、ブロックＩ２００、Ｊ２０２、Ｋ２０３、Ｌ２０６、Ｑ２０４、Ｓ２０５、Ｔ２
０８、Ｕ２０７、Ｘ２０１はそれぞれ基本ブロックである。基本ブロックはその途中に分
岐を含まない命令列のことである。但し、基本ブロックの最後には分岐があっても良い。
また、このコンパイラ装置によって生成される実行プログラムは、２以上の処理を同時に
実行できるコンピュータを対象としている。
【００４２】
　図２のフローグラフにおいて実行経路は、ブロックＩ２００→Ｊ２０２→Ｑ２０４を通
る実行経路、ブロックＩ２００→Ｊ２０２→Ｋ２０３→Ｓ２０５→Ｔ２０８を通る実行経
路、ブロックＩ２００→Ｘ２０１を通る実行経路、ブロックＩ２００→Ｊ２０２→Ｋ２０
３→Ｓ２０５→Ｕ２０７を通る実行経路、ブロックＩ２００→Ｊ２０２→Ｋ２０３→Ｌ２
０６を通る実行経路、の５つがあり、それぞれこの順で実行頻度が高いものとする。
【００４３】
　そこで、このうち実行頻度の高いものを連続的に実行される命令群にして、実行形式プ
ログラムを生成し、それぞれと、元のソースプログラムをそのまま実行形式に変換したも
のとを、別々のプロセッサエレメントに並列実行させるプログラムを作成する。つまり、
図３のように、まず、ソースプログラムをそのまま実行コードにしたスレッド３００の実
行を第一のプロセッサエレメントに実行させ、以下順に実行頻度一位の実行経路のスレッ
ド３０１を第二のプロセッサエレメントが、実行頻度第二位の実行経路のスレッド３０２
を第三のプロセッサエレメントが実行し、以下プロセッサエレメントの数の許す限り、ま
た生成可能なスレッドの数の許す限りスレッドを立ち上げ、各プロセッサに実行させるよ
うな編成のプログラムを生成する。また、各スレッドにおいて、そのスレッドが成立する
条件が整った場合には、自スレッド以外のスレッドを停止させ、自身のスレッドの演算結
果によって得られた値を反映させるコミット処理を行う。
【００４４】
　これにより保証コードを必要とせず、並列実行しているスレッドの中には元となるプロ
グラムをそのまま実行形式に移したスレッド３００も実行されるので値の整合性について

(16) JP 4783005 B2 2011.9.28

10

20

30

40

50

の問題ない。また、生成された実行経路３０１～３０３のいずれかを通って本プログラム
が実行される場合には、実行結果のでるタイミングはスレッド３００だけを実行するより
も早くなりプログラム全体の実行時間も短縮できる。
＜構成＞
　本発明に係るコンパイラ装置１００の構成を図１のブロック図を用いて説明する。本発
明に係るコンパイラ装置１００は、解析部１０１、実行経路指定部１０２、最適化部１０
３、コード変換部１０４からなる。
【００４５】
　コンパイラ装置１００は、ＭＰＵ（Micro Processing Unit）、ＲＯＭ(Read Only Memo
ry)、ＲＡＭ（Random Access Memory）、ハードディスク装置を含んで実現されるコンピ
ュータシステムである。ハードディスク装置又は、ＲＯＭに搭載されるコンピュータプロ
グラムにより、本コンパイラ装置は目的とする実行プログラムを作成する。また、ＲＡＭ
を用いて各部間のデータの受け渡しなどが行われる。
【００４６】
　解析部１０１は、ソースプログラムの分岐や実行内容を解析し、ソースプログラムに記
入されている「分岐」や「繰り返し」などの情報を取得する機能を有し、解析によって得
られた情報である解析情報１０５を実行経路指定部１０２に渡す。
　実行経路指定部１０２は、解析部１０１からの実行経路の識別子等を含む解析情報１０
５と、実行プログラムに変換するソースプログラム上の実行経路の実行頻度に関する情報
１４０を取得し、その情報を基に、取得した実行経路のうち実行頻度の高い実行経路を指
定し、その内容を最適化部１０３に送信する機能を有する。
【００４７】
　最適化部１０３は、基本的に入力されたソースプログラム１１０の命令の実行順序や実
行プログラムの生成のための最適化を行う機能を有し、解析部１０１、及び実行経路指定
部１０２から取得した情報を基に、実行頻度の高い実行経路から他の実行経路への分岐が
発生しないようにして、命令の実行順序に関する最適化を施す機能を有する。
　コード変換部１０４は、最適化部１０３によって最適化が施されたコードをそれぞれの
プロセッサエレメントに割り振った実際に実行する実行プログラム１２０をターゲットハ
ードウェア１３０に適合するように生成する機能を有する。生成された実行プログラム１
２０は、ターゲットハードウェア１３０に渡される。
【００４８】
　ターゲットハードウェア１３０に渡された実行プログラム１２０は、ターゲットハード
ウェア１３０上において実行される。そして実行プログラム１２０を実行することによっ
て実行プログラム１２０の実行経路に関する情報が実行経路の実行頻度の情報１４０とし
て実行経路１０２に送信される。ここで実行経路に関する情報とは、分岐によって派生す
る複数の実行経路のうち実際にどの経路を通ったのかを示す情報である。なお、ターゲッ
トハードウェア１３０は、複数のプロセッサエレメントを有するので同時に２以上の処理
を実行できる。また、ターゲットハードウェア１３０のメモリ形態にはメモリ共有型とメ
モリ分散型の２通りが考えられ、第一の実施形態においてはメモリ共有型として説明する
。
【００４９】
　ここで簡単にメモリ共有型とメモリ分散型とについて説明しておく。
　メモリ共有型は、図４（ａ）にあるように、複数のプロセッサエレメント４００～４０
２が一つのメモリ４０３に接続されている。それぞれのプロセッサエレメント４００～４
０２は、メモリ４０３から必要なデータをロードし、それぞれのレジスタに格納して演算
を行い、演算後、その結果に基づきメモリ４０３に格納されているデータを更新する形態
をとっている。
【００５０】
　メモリ分散型は、図４（ｂ）にあるように、複数のプロセッサエレメントそれぞれにメ
モリが接続されている形態のことでプロセッサエレメント４１０はメモリ４１３に、プロ

(17) JP 4783005 B2 2011.9.28

10

20

30

40

50

セッサエレメント４１１はメモリ４１４に、プロセッサエレメント４１２はメモリ４１５
に接続されている。また、各プロセッサエレメントで行われた演算結果は実行されたプロ
グラムに基づき、その値が各メモリに反映されるように設定されている。例えばプロセッ
サエレメント４１０で演算結果が出たときにはメモリ４１３だけでなく、メモリ４１４及
びメモリ４１５に格納されているデータも更新される。
【００５１】
　なお、どちらの場合もプロセッサエレメントを３個として図示し説明したが、その数は
いくつであっても良い。
＜データ＞
　コンパイラ装置１００に入力されるデータには、実行経路の実行頻度の情報１４０と、
ターゲットハードウェア１３０のハードウェアの仕様と、ソースプログラム１１０とがあ
る。以下それらのデータに関する説明を行う。
【００５２】
　コンパイラ装置１００に入力される実行経路の実行頻度に関する情報１４０は、解析部
１０１によって解析され作成された実行経路の識別子と、その実行経路の識別子に対応し
て、実際にターゲットハードウェア１３０若しくはその他の実行プログラムを実行できる
ハードウェア上において実行されることでその実行経路が何回実行されたかの回数とで構
成された情報である。その回数が最も多いものを実行頻度一位としており、以下順に実行
頻度二位、三位・・・となっており、この情報はまずターゲットハードウェア１３０のＲ
ＡＭに記憶され、その後にコンパイラ装置１００に渡され、コンパイラ装置１００のＲＡ
Ｍに記憶される。
【００５３】
　また、ターゲットハードウェア１３０の仕様の情報に関しては、メモリの形態に関して
はメモリ共有型の場合は０、メモリ分散型の場合には１の２値で管理されており、それが
メモリ情報としてコンパイラ装置１００にターゲットハードウェア１３０から入力されコ
ンパイラ装置１００のＲＡＭに記憶される。また、同時実行可能な命令数の情報は、ター
ゲットハードウェア１３０の有するプロセッサエレメントの数に関する情報であり、その
情報もコンパイラ装置１００に入力され、ＲＡＭに記憶される。
【００５４】
　ソースプログラム１１０は、図５（ａ）に示すように記述されているプログラムである
。
　本実施形態においては、ソースプログラム１１０の一例として、図５（ａ）に示す部分
ソースプログラム５１０をコンパイラ装置が変換するものとして説明する。以下、入力さ
れる部分ソースプログラム５１０の内容、及びそれを元に本コンパイラ装置によって作成
されるコードの説明を行っていく。
【００５５】
　まず図５（ａ）のソースプログラムの内容について説明する。以降の図６～図１０のコ
ードはこのソースプログラムの内容、若しくは内容の一部を実行するために変換されたコ
ードである。
　図５（ａ）は、ソースプログラムのある部分の抜粋の一例であり、この区間におけるプ
ログラムはソースプログラムの全体の中において何度も使用されるものとする。この部分
ソースプログラム５１０を、フローグラフの形式に書き換えると図５（ｂ）のように表さ
れる。この部分ソースプログラム５１０の内容を図５（ｂ）のフローグラフを用いて説明
する。
【００５６】
　まず、命令ブロック５００においてｘにａとｂの値を加算した値を格納し、分岐ブロッ
ク５０５においてｘが０以上であるかどうかを判定する。
　命令ブロック５００において得られたｘが０以下（分岐ブロック５０５のｎｏ）ならば
、ブロック５０４に進み、ｘに命令ブロック５００において得られたｘの値をマイナス値
にして格納する。命令ブロック５００において得られたｘが０以上（分岐ブロック５０５

(18) JP 4783005 B2 2011.9.28

10

20

30

40

50

のｙｅｓ）ならば、命令ブロック５０１に進み、ｙに命令ブロック５００において得られ
たｘの値からｃを引いた値を格納する。
【００５７】
　命令ブロック５０１を実行した後、分岐ブロック５０６においてｙが１０以上であるか
どうかを判定する。ｙが１０以上（分岐ブロック５０６のｙｅｓ）ならば、命令ブロック
５０２に進み、ｘに命令ブロック５０１で得られたｙから１０引いた値を格納する。ｙが
１０以下（分岐ブロック５０６のｎｏ）ならば、命令ブロック５０３に進み、ｘに命令ブ
ロック５００において得られたｘの値に１０足した値を格納する。
【００５８】
　以上が部分ソースプログラム５１０の実行内容である。なお、ａ、ｂ、ｃの値は、この
部分ソースプログラム５１０の前部分において既に与えられているものとする。また、こ
の部分ソースプログラム５１０中の条件分岐によって派生する３つの実行経路のうち最も
実行頻度の高い実行経路が、実行経路５５１であり、その次に実行頻度の高い実行経路が
実行経路５５２であるとする。これは予めソースプログラムに最適化を施さずに変換した
実行プログラムをターゲットハードウェア１３０上で実行することによって、実行頻度の
情報を得ることができる。
【００５９】
　図６～図１０に記したコードは、コンパイラ装置１００から出力されるプログラムをア
センブラコードで表記したものであり、図５（ａ）のソースプログラムを元に生成される
。図１０のスレッド１０００がメインスレッドで、図７のスレッド７００、図８のスレッ
ド８００、図９のスレッド９００はメインスレッドの中で使用されていて、それぞれのス
レッドは、コードには記していないが、ターゲットハードウェア１３０上にて別のプロセ
ッサエレメントで実行される構成になっている。
【００６０】
　部分ソースプログラム５１０に最適化を施さずにそのままアセンブラコードに変換する
と図６のスレッド６００になる。なお、これらのコードは基本的に上から順に処理されて
いくものとする。また、各コードの命令の意味に関しては後述する。
　スレッド６００の内容を簡単に説明すると、コード６０１、６０９、６１７、６２２、
６２７、６３２はラベルコードで、プログラム中の分岐において命令が飛ぶ先の指定に用
いられる。
【００６１】
　コード６０２～６０８は、図５（ｂ）のフローグラフにおいて、ブロック５００、及び
ブロック５０５の命令の内容をコード化したものである。
　コード６１０～６１６は、図５（ｂ）のフローグラフにおいて、ブロック５０１、及び
ブロック５０６の命令の内容をコード化したものである。
　コード６１８～６２１は、図５（ｂ）のフローグラフにおいて、ブロック５０２の命令
の内容をコード化したものである。
【００６２】
　コード６２３～６２６は、図５（ｂ）のフローグラフにおいて、ブロック５０３の命令
の内容をコード化したものである。
　コード６２８～６３１は、図５（ｂ）のフローグラフにおいて、ブロック５０４の命令
の内容をコード化したものである。
　そして、コード６３３、６３４は、このスレッド６００が終了した際の処理を行うコー
ドである。
【００６３】
　本発明に係るコンパイラ装置はスレッド６００以外に、実行頻度の高い実行経路に関し
て、その実行経路上の命令を実行できるように変換、生成したスレッドが図７～図９に示
すコード列である。
　図７には、図５の実行頻度一位の実行経路５５１上の命令群をコード化したスレッド７
００を記してある。コード７０１、７１３、７１９はそれぞれラベルコードである。コー

(19) JP 4783005 B2 2011.9.28

10

20

30

40

50

ド７０２～７１２は、図５のブロック５００、５０１、５０２を他の実行経路に分岐しな
いようにコード化した内容になっており、ブロック５０５、５０６がこの実行経路を通る
かどうかの２択に変えたコードを含んでいる。
【００６４】
　コード７１４、７１５は実行経路５１１を通る場合に他のプロセッサエレメントで実行
されているスレッドを停止させるコードである。
　コード７１７、７１８は、実行経路５５１が実行されたときにコードを反映させる処理
になる。この反映処理は、実行経路５５１の出口で生存していて、かつ実行経路５５１で
変更されているデータが対象になる。
　コード７２０、７２１はこのスレッド７００の終了処理である。
　図８には、実行経路５５２上の命令をアセンブラコードに変換したスレッド８００を記
してある。
【００６５】
　コード８０１、８１４、８１７、８２０はそれぞれラベルコードである。
　またコード８０２～８１３は図５におけるブロック５００、５０１、５０３の命令をコ
ード化した内容になっている。コード８１５、８１６は実行経路５５２を通ることが確定
した場合に、他のプロセッサエレメントで実行されているスレッドを停止させ、コード８
２１、８２２はスレッド８００終了処理を行っている。また、コード８１８、８１９は、
実行経路５５２が実行されたときにコードを反映させる処理になる。
【００６６】
　図９には、図５におけるブロック５００、５０４を通る実行経路を通る場合の最適化さ
れたコードであるスレッド９００を記してある。
　コード９０１、９０９、９１２、９１４はそれぞれラベルコードである。
　またコード９０２～９０８は図５におけるブロック５００、５０４の命令をコード化し
た内容になっている。コード９１０、９１１はこの実行経路を通ることが確定した場合に
、他のプロセッサエレメントで実行されているスレッドを停止させ、コード９１５、９１
６はスレッド９００の終了処理を行っている。また、コード９１３は、ブロック５００、
５０４が実行されたときにコードを反映させる処理になる。
【００６７】
　図７のコード７０２～７１２、図８のコード８０２～８１３、図９の９０２～９０８に
おいて同じメモリへの格納処理が生じる場合、各スレッドでの値の保証ができなくなり、
プログラム作成者の望む結果が得られないことがあるため、メモリ共有型では別のメモリ
領域への格納処理に変えることがある。
【００６８】
　図１０には、図６～９のように生成される各スレッドをターゲットハードウェアに並列
実行させるための、スレッド制御のためのコード列を示している。このスレッド１０００
がメモリ共有型のコンピュータを対象とした場合のメインスレッドということになる。
　コード１００１～１００４においては、解析部１０１から得た解析情報と、実行経路の
実行頻度の情報を基に、実行頻度の高かった実行経路に関するスレッドを生成している。
ここでは、ターゲットハードウェアは、十分なプロセッサエレメントを有するものとして
、全ての実行経路のスレッドを立ち上げている。
【００６９】
　ラベルコード１００５から実行されるコード１００６～１００８はスレッドの開始を各
プロセッサエレメントに行わせるコードである。ラベルコード１００９から実行されるコ
ード１０１０～１０１２は、実行されているスレッドから終了したかどうかの返答を待つ
コードである。ラベルコード１０１３から実行されるコード１０１４～１０１６は、全ス
レッドの終了後、それぞれのスレッドを破棄し、プロセッサエレメントを自由にするコー
ドである。
【００７０】
　この図１０のメインコードとスレッド６００、スレッド７００、スレッド８００、スレ

(20) JP 4783005 B2 2011.9.28

10

20

30

40

50

ッド９００を含んだ実行プログラムをコンパイラ装置１００は生成する。なお、スレッド
６００、スレッド７００、スレッド８００、スレッド９００は並列実行される。
　ここから、生成されるプログラムに使用され、図６～図１４及び図２１に用いられてい
るコードの説明を行う。
【００７１】
　図６は、ソースプログラムをそのまま、特に最適化を施さずに変換したコード列を示し
た図であり、図７、図８、図９はそれぞれ順に、ターゲットハードウェア１３０のメモリ
形態がメモリ共有型である場合における、部分ソースプログラム５１０の実行経路５５１
、５５２、そしてブロック５０１、５０４を通る実行経路に関して最適化したコード列で
あり、図１２、図１３、図１４はメモリ分散型である場合のコード列である。また、図２
１は、ターゲットハードウェアのメモリ形態がメモリ分散型である場合のメインスレッド
である。
【００７２】
　図１０は、ターゲットハードウェア１３０の並列実行可能な命令数が既知である場合の
メモリ共有型のメインスレッドを示したコード列であり、図１１は、未知の場合のメイン
スレッドを示したコード列である。
　なお、以下において番地は、プロセッサ上の命令の番地であり、レジスタの番地であっ
たり、そのレジスタに格納されている値であったりする。
【００７３】
　「mov （番地１）,（番地２）」は、（番地１）の値を（番地２）のレジスタに格納す
るコードである。例えば図６のコード６０２においては、ａが示す番地の値がレジスタＤ
１に格納される。
　「add （番地１）,（番地２）」は、（番地１）の値と（番地２）の値とを加算し、そ
の結果で得られた値で（番地２）の値を更新するコードである。例えば図６のコード６０
４においては、レジスタＤ１に格納されている値と、レジスタＤ０に格納されている値を
加算し、計算結果の値でレジスタＤ０の値を更新する。
【００７４】
　「sub （番地１）,（番地２）」は、（番地２）の値から（番地１）の値を減算し、そ
の結果で得られた値で（番地２）の値を更新するコードである。例えば図６のコード６１
２においては、レジスタＤ０に格納されている値からレジスタＤ１に格納されている値を
減算し、その計算結果をレジスタＤ０に格納している。
　「cmp （番地１）,（番地２）」は、（番地１）の値と（番地２）とを比較するコード
である。例えば図６のコード６０６においては、０とレジスタＤ０に格納されている値と
を比較している。
【００７５】
　「bge （番地３）」は、直前の比較コード　cmp （番地１）,(番地２) の比較にお
いて、（番地２）の値が（番地１）の値以上であった場合に、（番地３）に指定されるコ
ードに命令を飛ばすコードである。それ以外の場合には次のコードを続行する。例えば、
図６のコード６０７においては、その前のコード６０６の比較を受けてレジスタＤ０に格
納されている値が０以上であった場合に、コード６０８を実行させずにコード６０９に飛
び、以降のコードを実行することになる。
【００７６】
　「blt （番地３）」は、直前の比較コード　cmp （番地１）,(番地２) の比較にお
いて、（番地２）の値が（番地１）の値よりも小さい場合に、（番地３）に指定されるコ
ードに命令を飛ばすコードである。それ以外の場合には以降のコードを続行する。例えば
、図７のコード７０６においては、その前のコード７０５の比較を受けて、レジスタＤ０
に格納されている値が０よりも小さい場合に、コード７０７からコード７１９までは実行
されずにコード７２０に飛び、以降のコードが実行されることになる。
【００７７】
　「jmp （番地１）」は、（番地１）で指定されるコードに命令を飛ばすコードである

(21) JP 4783005 B2 2011.9.28

10

20

30

40

50

。例えば、図６のコード６０８においては、コード６０９以下、コード６２６までを実行
させずにコード６２７に飛び、以降のコードを実行することになる。
　「not （番地１）」は、（番地１）の値をビット反転した（１の補数）値にして、そ
の値で（番地１）を更新するコードである。例えば、図６のコード６２９においては、レ
ジスタＤ０に格納されている値をビット反転した（１の補数）値にして、レジスタＤ０に
格納しなおしている。
【００７８】
　「inc （番地１）」は、（番地１）の値に１加算して、その値で（番地１）を更新す
るコードである。例えば図６のコード６３０においては、レジスタＤ０に格納されている
値に１足して、Ｄ０＋１の値をレジスタＤ０に格納しなおしている。
　「dec （番地１）」は、（番地１）の値から１減算して、その値で（番地１）を更新
するコードである。例えば、図１１のコード１１１３においてはレジスタＤ１に格納され
ている値から１引いた、Ｄ１－１の値をレジスタＤ１格納しなおしている。
【００７９】
　「clr （番地１）」は、（番地１）の値をクリアするコードでその値を０にするコー
ドである。例えば、図６のコード６３３においてはレジスタＤ０の値をクリアし、レジス
タＤ０の値を初期化している。
　「asl （番地１）,（番地２）」は、ターゲットハードウェアで使用されている命令語
長の違いによる番地のずれを防ぐためのコードであり、主にコード間の遷移を行う場合に
必要となる。プログラムにおいては各命令の番地は、命令語長の単位で管理されており、
例えば、命令語長が８bitであった場合には、命令１の番地が０であった場合に、その次
に続く命令２の番地は８になる。命令１の次の命令２に移行したい場合に、単純に命令１
の番地に１足しても命令２の番地にならないので命令２は実行されず、番地の整合性が取
れなくなる。このコードの実質的内容はというと、命令語長の値を（番地２）の値にかけ
て、（番地２）のレジスタに格納することがこのコードの内容である。
【００８０】
　「ret」は、スレッドからプログラムのメインへの復帰を実行する実行するコードであ
る。
　次に、スレッド制御のためのコードの内容について説明する。
　「＿createthread　（番地１）,（番地２）」は、スレッドを生成するコードであり、
（番地１）から始まるプロセスを生成する。その実行状態の情報は（番地２）に更新され
る。例えば、図１０のコード１００２においては、ＬＡＢＥＬ５００－５０１－５０２で
始まるスレッド、即ち図７のスレッド７００を生成し、その実行情報はＴＨＲＥＡＤ５０
０－５０１－５０２に格納される。
【００８１】
　「#beginthread　（番地）」は、スレッドの開始コードで、（番地）のスレッドの実行
開始を促がす。例えば、図１０のコード１００６においては、ＬＡＢＥＬ５００－５０１
－５０２で始まるスレッド、即ち図７のコード列で示されるスレッド７００を実行する。
　「#endthread」は、スレッドの終了コードで、現在実行しているスレッドを終了状態に
設定し、スレッドが終了したことを示す情報を返す。例えば、図７のコード７２０におい
てはスレッド７００を終了し、終了したことを示す情報をプログラムのメインに返す。
【００８２】
　「＿deletethread　（番地）」は、スレッドの破棄コードで、（番地）から始まるスレ
ッドを破棄する。例えば、図１０もコード１０１４においては、ＬＡＢＥＬ５００－５０
１－５０２のスレッド、つまりスレッド９００を破棄する。
　「＿killthread　（番地）」は、他のプロセッサエレメントで実行されているスレッド
の強制終了コードで、（番地）から始まるスレッドを停止させる。例えば、図７のコード
７１４においては、ＬＡＢＥＬ５００－５０１－５０３で始まるスレッド、即ち、図８の
スレッド８００の実行を、実行途中であっても中止させる。
【００８３】

(22) JP 4783005 B2 2011.9.28

10

20

30

40

50

　「#waitthread （番地）」は、スレッドの終了を待つコードで、（番地）から始まる
スレッドの実行結果の終了を待つ。この終了は上記#endthreadからの情報によって知るこ
とができる。例えば、図１０のコード１０１０においては、ＴＨＲＥＡＤ５００－５０４
の終了を待っている。
　「#commit （番地１）」は、メインプログラム、若しくはスレッドプロセスで生成し
た情報（番地１）を、メインプログラムと全てのスレッドプロセスに反映させるコードで
ある。
【００８４】
　「＿broadcast （番地１）,（番地２）」は、ターゲットハードウェアのメモリ管理方
式が分散型である場合に、各プロセッサエレメントに接続されているメモリに実行結果を
反映させるコードである。スレッドの実行結果の値（番地１）で、全てのスレッドの（番
地２）の値を更新する。
　「＿getparallelnum　（番地）」は、ターゲットハードウェアが同時実行可能なスレッ
ドの数を（番地）に返すコードで、ターゲットハードウェアの並列実行可能なプロセッサ
エレメントの数を取得するために必要なコードで、特にコンパイル時にターゲットハード
ウェアの並列実行可能なプロセッサエレメントの数が分からない場合に必要となる。
＜動作＞
　本コンパイラ装置によって生成される実行プログラムの生成における本コンパイラ装置
の動作を実行プログラムの生成手順に沿ってフローチャートを用いながら説明する。
【００８５】
　まず、コンパイラ装置１００に入力された、ソースプログラム１１０は、解析部１０１
によって、その中の分岐や繰り返しに関する情報を取得し、それを元にどのような実行経
路があるかを検出し、後に実行経路を特定できるように実行経路を識別子化する。
　一度ソースプログラム１１０は、最適化部１０３、コード変換部１０４を通じて、特別
な最適化を施さずに実行プログラムに変換されて、ターゲットハードウェア１３０上にお
いて実際に実行されて実行経路の実行頻度に関する情報を得る。この実行経路の実行頻度
の取得方法に関して、図１５のフローチャートを用いて説明する。
【００８６】
　部分ソースプログラム５１０の中の実行経路の実行頻度を計測するために、最適化部１
０３は、ソースプログラムをそのまま最適化処理などを施さずに、プロファイリング用コ
ードを組み込んで実行コードを作成し、作成された実行コードはコード変換部１０４によ
ってターゲットハードウェア１３０上において実行できるような実行プログラムに変換、
生成される（ステップＳ１５００）。ここでプロファイリング用コードはソースプログラ
ム上で条件分岐があった場合にその分岐においてどちらの分岐に進んだかを検出するため
のコードであり、識別子化した実行経路に関して、その実行経路を一回通るたびに１カウ
ント加算するコードである。このプロファイリングコードを挿入すると実行速度は遅くな
るので、最終的に生成される実行プログラムには当然このプロファイリングコードは組み
込まれない。
【００８７】
　その後に作成された当該実行プログラムをターゲットハードウェア１３０上で実行し、
実行経路の実行頻度を計測する（ステップＳ１５０２）。解析部１０１によって作成され
ている実行経路の識別子に、その実行経路が実行された回数を加算していき、その情報を
ターゲットハードウェアのメモリに記憶させ、これを実行経路の実行頻度の情報１４０と
する。そして取得した実行経路の実行頻度の情報１４０はコンパイラ装置１００の実行経
路指定部１０２に渡され、それを基に、実際の目的とする実行プログラムは作成される。
【００８８】
　ここで、実行経路の実行頻度に関する情報１４０をコンパイラ装置１４０に渡す際に、
ターゲットハードウェア１３０のハードウェアの仕様に関する情報も渡す。このターゲッ
トハードウェア１３０のハードウェアの仕様には、ターゲットハードウェア１３０の並列
実行可能なプロセッサエレメントの数と、ターゲットハードウェア１３０のメモリ形態に

(23) JP 4783005 B2 2011.9.28

10

20

30

40

50

関する情報がある。これらの情報は元からターゲットハードウェア１３０のＲＯＭに記憶
されており、それがコンパイラ装置１００に送信される。
【００８９】
　その後に、実際の目的とする実行プログラムの生成を行う。その生成手順に関して図１
９のフローチャートを用いて説明する。
　まずコンパイラ装置１００は、大本のソースプログラムをそのまま実行形式に出来るコ
ードに変換した第一コードを作成する（ステップＳ１９０１）。そして、実行経路指定部
１０２は、ターゲットハードウェア１３０から取得した実行経路の実行頻度に関する情報
１４０に基づき、その実行頻度の高かった、即ち実行回数の多かった優先実行経路を実行
頻度の高い順に抽出し（Ｓ１９０５）、それとターゲットハードウェア１３０の並列実行
可能なプロセッサエレメントの数により、優先実行経路上の命令を最適化した第二コード
を生成する（Ｓ１９０７）。この第二コードはターゲットハードウェア１３０の並列実行
可能なプロセッサエレメントの数より１少ない数まで生成されて良く、実行経路によって
内容を変えて生成されて良く、実行頻度の回数の多かった実行経路の順に、それぞれの実
行経路上の命令に対応するスレッドを生成して、その実行経路上の命令が最適化される。
例えば、ターゲットハードウェア１３０の並列実行可能なプロセッサエレメントの数が４
であった場合には、実行頻度第一位から第三位までの実行経路のスレッドを生成する。第
一コードには複数の第二コードを制御するコードも含まれている。
【００９０】
　そして、生成された第一コードと第二コードを並列実行させる編成にしたコードをコー
ド変換部１０４がターゲットハードウェア１３０上において実行できるように実行プログ
ラムを生成する（Ｓ１９０９）。
　この動作を具体的に図５（ａ）の部分ソースプログラム５１０を実行プログラムに変換
するとして、その過程において生成されるコード等を用い説明する。
【００９１】
　まず、コンパイラ装置１００には、図５（ａ）にある部分ソースプログラム５１０を含
むソースプログラムが入力される。解析部１０１は、部分ソースプログラム５１０を解析
し、その実行経路が、図５（ｂ）のフローグラフにおけるブロック５００、５０１、５０
２を通る経路、ブロック５００、５０１、５０３を通る経路、ブロック５００、５０４を
通る経路の３つの経路があることを解析し、それぞれの実行経路を識別子化する。最適化
部１０３は、最適化を施さずに、コード変換部１０４は、部分ソースプログラム５５１を
そのままアセンブラコードにしたスレッド６００のコード列を生成し、これにプロファイ
リングコードを挿入した実行プログラムを生成する。当該実行プログラムをターゲットハ
ードウェア１３０が実行し、その実行によってカウンティングされた実行経路の実行頻度
の情報を、例えば、実行経路５００－５０１－５０２：２４回、実行経路５００－５０１
－５０３：１５回、実行経路５００－５０４：３回という情報として、コンパイラ装置１
００に渡される。また、ターゲットハードウェア１３０のハードウェアの仕様に関する情
報も渡す。ここではターゲットハードウェアのプロセッサエレメントの数は例えば４とし
たら並列実行可能なプロセッサエレメントの数として４を、そしてメモリの形態がメモリ
共有型であるのでメモリ情報として０をコンパイラ装置１００に渡す。
【００９２】
　コンパイラ装置１００の実行経路指定部１０２は、実行経路の実行頻度の情報１４０を
受け取り、最適化部１０３、コード変換部１０４はこれに基づき、メインスレッド１００
０を生成する。ターゲットハードウェア１３０の並列実行可能なプロセッサエレメントの
数が４であるので、並列実行できるスレッドはメインスレッドを含めて４になり、メイン
スレッド内において、４つのスレッド６００、７００、８００、９００が生成される。そ
れぞれのスレッド６００、７００、８００、９００はターゲットハードウェア１３０上の
別のプロセッサエレメントで実行されるように編成されたコードを最終的に生成し、コー
ド変換部１０４は、ターゲットハードウェア１３０が実行できるように実行プログラム１
２０を生成する。

(24) JP 4783005 B2 2011.9.28

10

20

30

40

50

＜第二の実施形態＞
　第二の実施形態においては、ターゲットハードウェアのメモリ形態がメモリ分散型であ
った場合について、主に、第一の実施形態と異なる点を説明する。
【００９３】
　その主な違いは、プロセッサエレメントそれぞれにメモリが接続され、プロセッサエレ
メントはそれぞれのメモリの値を使用するため、メモリ共有型のような値のメモリアクセ
ス競合による性能の低下の恐れがなくなることにある。
　その違いを示すために図１２～図１４及び図２１のコード列を用意した。図１２のスレ
ッド１２００の実行内容は、図７のスレッド７００に、図１３のスレッド１３００の実行
内容は、図８のスレッド８００に、図１４のスレッド１４００の実行内容は、図９のスレ
ッド９００に、相当する。図２１は、メモリ分散型の場合のメインスレッドである。
【００９４】
　ターゲットハードウェア１３０のメモリの形態がメモリ共有型であった場合には、図７
～図９におけるコード７０２、８０２、９０２のように逐一ａの値をレジスタに格納しな
おさなければならなかったが、メモリ分散型ではそのようにする必要はなく、例えば、図
２１にあるメモリ分散型の場合のメインスレッドのように、メインスレッドにおいて各プ
ロセッサエレメントの各レジスタにブロードキャストすることで、処理を省略することが
できる。そのためのコードが図２１におけるコード２１０４～２１０７である。
【００９５】
　コード２１０５では、コード２１０１～２１０３で生成されたスレッドにａの値を各プ
ロセッサエレメントのメモリのレジスタＤ０に格納するように各スレッドを実行している
プロセッサエレメントに通達する。
　コード２１０６では、コード２１０１～２１０３で生成されたスレッドにｂの値を各プ
ロセッサエレメントのメモリのレジスタＤ１に格納するように各スレッドを実行している
プロセッサエレメントに通達する。
　コード２１０７では、コード２１０１～２１０３で生成されたスレッドにｃの値を各プ
ロセッサエレメントのメモリのレジスタＤ２に格納するように各スレッドを実行している
プロセッサエレメントに通達する。
【００９６】
　また、各スレッドで実行された実行結果が、そのスレッドの実行条件が成立した場合に
、メインスレッドが走っているプロセッサエレメントに接続されているメモリに、その実
行結果を反映させる必要があり、それが「＿commit」ではじまるコードになる。例えば図
１２においては、コード１２１５やコード１２１６がそれにあたる。これにより、スレッ
ドの実行結果が反映されるようになる。
【００９７】
　ターゲットハードウェアのメモリ形態がメモリ分散型である場合、スレッド２１００、
１２００、１３００、１４００を含んで編成された実行プログラムが生成される。これに
より、ターゲットハードウェア１３０のメモリ形態がメモリ分散型であっても実行プログ
ラムは、値の整合がとれ、正常に実行される。
　メモリ分散型のハードウェアを対象とした場合の実行プログラムの実行手順について、
主にスレッドの制御に関する部分を、図１７のフローチャートを用いて説明する。
【００９８】
　まず、他のプロセッサエレメントにおいて実行されるスレッドを生成する（ステップＳ
１７００）。つまり、スレッド１２００、１３００、１４００を生成する。それぞれにお
けるこの前部分において得られたデータを各スレッドを実行するプロセッサエレメントの
メモリに送信し、記憶させる（ステップＳ１７０１）。その後に、各スレッドを実行し（
ステップＳ１７０２）、スレッドが終了した後（ステップＳ１７０３）に、そのスレッド
の成立条件が成立している場合（ステップＳ１７０４）に、プログラムのメインへの値の
反映を行う（ステップＳ１７０５）。そして、その後に自スレッドの破棄を行う（ステッ
プＳ１７０５）。

(25) JP 4783005 B2 2011.9.28

10

20

30

40

50

＜第三の実施形態＞
　第一、及び第二の実施形態においては、ターゲットハードウェアの並列実行可能な処理
の数がコンパイラ装置には既知の物として説明してきたが、ターゲットハードウェアが並
列実行可能なプロセッサエレメントの数が分からない場合もある。つまり、実行経路の実
行頻度に関する情報、及びターゲットハードウェアのメモリ形態が予めコンパイラ装置に
与えられており、いきなり実行プログラムをターゲットハードウェアに実行させたい場合
などである。この場合メインプログラムの中に、当該プロセッサエレメントの数を取得す
るコードを組み込み、それと生成されるスレッドの数との整合を採るためのコードも組み
込む必要が出てくる。そのために必要なコード列を図１１に示してあり、その実行内容を
説明する。なお、ここでは、ソースプログラムは図６にあるものであり、生成されるスレ
ッドは図７～９の３つであるものとして説明する。
【００９９】
　ターゲットハードウェアのプロセッサエレメントの数を取得し、コンパイラによって生
成されるスレッドの数との整合をとるコードがラベル１１０５から始まるコード１１０６
～１１１８に記されている。
　まず、コンパイラによって生成されるスレッドの数ｍを取得し、その数ｍをレジスタＤ
０に格納する（コード１１０６）。次にターゲットハードウェアの並列実行可能なプロセ
ッサエレメントの数ｎを取得し、その値をレジスタＤ１に格納する（コード１１０７）。
そしてレジスタＤ０に格納されたｍとレジスタＤ１に格納されたｎの値を比較し（コード
１１０８）、ｎ≧ｍならばラベルコード１１１１に飛び（コード１１０９）、ｎ＜ｍなら
ばラベルコード１１１３に飛ぶ（コード１１１０）。
【０１００】
　ｎ≧ｍの場合には、特に問題はなく、ｍの値をレジスタＤ１に格納する（コード１１１
２）。
　ｎ＜ｍの場合には、生成されたスレッドの数ｍの方が並列実行可能な命令数ｎを上回っ
ているため、すべてのスレッドを実行できない。
　そこで、まず、レジスタＤ１に格納されている値ｎから１引いた数をＤ１に格納しなお
す（コード１１１４）。このｎ－１の数が必要とする実行可能なスレッドの数である。一
つ余るプロセッサエレメントは、元のプログラムをそのままコードにした図６のコードを
実行する。
【０１０１】
　次に命令の番地計算を行うために、ｎ－１の値に命令語長、例えば８bitなら８をかけ
（コード１１１５）、Ｐ＿ＰＯＩＮＴＥＲの番地をレジスタＤ２に格納する（コード１１
１６）。レジスタＤ２に格納された値からレジスタＤ１に格納された値を引いて、算出さ
れた値でレジスタＤ２を更新する（コード１１１７）。そして、レジスタＤ２に格納され
ている番地の値に命令を飛ばす（コード１１１８）。このＤ２に格納されている値によっ
て以下のどのスレッドから開始するのかを決定する。例えば、ターゲットハードウェアの
並列実行可能数が２であった場合には、コード１１２２から開始する。並列実行可能数が
３の場合には、コード１１２１から開始する。コード１１２０～コード１１２２に関して
は下から順に実行頻度の高かった実行経路を実行するスレッド開始のコードになっている
。
【０１０２】
　このスレッド１１００をメインスレッドにすることにより、ターゲットハードウェアの
並列実行可能数を得ていない場合であってもこのコンパイラ装置は、実行プログラムを生
成できる。なお、コード１１２４以降のコードは、全てを図示していないが、図１０にお
けるコード１０１２以降のコードと同様の構成とする。
　ターゲットハードウェアの性能が分からない場合に、その性能を取得する必要があり、
その流れを図１６のフローチャートに簡単に示しておいた。
【０１０３】
　まず、コンパイラ装置１００の最適化部１０３がターゲットハードウェア１３０に関し

(26) JP 4783005 B2 2011.9.28

10

20

30

40

50

て、同時並列実行可能な処理数が未知であるか、既知であるかを判定する（ステップＳ１
６０１）。これは、ターゲットハードウェア１３０、その仕様に関する情報を得ているか
、いないかで判断する。未知である場合には、この第三の実施形態において説明した図１
１のコードを実行プログラムの中に組み込む。そしてターゲットハードウェア１３０のメ
モリ形態がメモリ共有型か、メモリ分散型であるかの情報を得て（ステップＳ１６０３）
それを元に実行プログラムを作成する。
＜第四の実施形態＞
　第四の実施形態においては、上記実施の形態と異なり、図１８にある機能ブロック図に
あるように、上記実施の形態におけるコンパイラ装置にプログラムを実行できる実行部１
８０７を組み込んだプログラム変換実行装置１８００の実施の形態を示す。
【０１０４】
　その主な差は、図１８において、プログラム変換実行装置１８００はその内部に、実行
プログラム格納部１８０６と実行部１８０７を組み込んだことにあり、これにより、ター
ゲットハードウェアに予め一度プログラムを実行して実行頻度情報を得るためにハードウ
ェアと接続して実行させる手間をはぶけ、自機によって実行頻度情報を取得でき、かつプ
ログラム実行結果を得ることも可能となる。
【０１０５】
　実行プログラム格納部１８０６は、コード変換部１８０５によって生成された実行プロ
グラムを記憶しておく機能を有し、ＲＡＭを含んで構成される。
　実行部１８０７は、実行プログラム格納部１８０６から実行プログラムを読み出し、当
該実行プログラムを実行する機能を有し、ＭＰＵ、ＲＯＭ、ＲＡＭを含んで構成され、図
１におけるターゲットハードウェア１３０と同等の働きをする。なお、このＣＰＵは複数
のプロセッサエレメントで構成されている。
【０１０６】
　生成されるコードに関しては第一～第三の実施形態におけるものと変わらない。また、
第四の実施形態においては、プログラムを変換しながら実行するインタプリタとしても使
用できるようになる。
＜補足＞
　なお、上記第一の実施形態及び第二の実施形態においては、ターゲットハードウェアは
生成されるスレッド全てを実行できるだけの十分な数のプロセッサエレメントを有するも
のとして説明したが、例えばプロセッサエレメントの数が少なく２個とかの場合には、ス
レッド６００とスレッド７００だけが並列実行されるようにメインスレッドは構成される
。この場合、図１０においてはコード１００３、１００４、１００７、１００８、１０１
１、１０１２、１０１５、１０１６は不要になる。
【０１０７】
　また、上記実施の形態においては第一コード、つまり概要の図３のスレッド３００の実
行速度は、通常、他のスレッドよりも遅いことを想定して、実行プログラムは作成されて
いるが、速い場合も考慮にいれて、スレッド３００の最後に、他のスレッドを停止させる
コードを含んでも良い。
　また、上記実施の形態においてはターゲットハードウェアが複数のプロセッサエレメン
トを内包するように記述したが、例えば、一台のパソコンを一つのプロセッサエレメント
と見立てて、複数のパソコンをネットワークを介して接続して並列実行する形をとっても
良い。
【０１０８】
　また、上記実施の形態において一つのスレッドが成立した場合に、他のプロセッサエレ
メントは実行していたスレッドを停止し、普通はスレッドと演算データを消去し、次に割
り振られるスレッドを実行するが、同一のスレッドが何度も実行される場合には、逐次ス
レッドを割り振ることは非効率的であり、生成される目的プログラムの実行速度の低下を
招くこともある。そこで、次に実行するスレッドが割り振られたスレッドと同内容であり
、与えられる演算用データ値だけが異なる場合には、当該スレッドは破棄せずに保持して

(27) JP 4783005 B2 2011.9.28

10

20

30

40

50

おき、スレッドを実行するのに必要な演算データだけがメインスレッドからブロードキャ
ストされるようなコードを生成を含んだ目的プログラムを生成することとしても良い。
【産業上の利用可能性】
【０１０９】
　本発明に係るコンパイラ装置は、大容量計算を要するプログラムが必要とされる分野に
おいてその計算結果がより早く出るようなプログラムの生成に活用できる。
【図面の簡単な説明】
【０１１０】
【図１】本発明のコンパイラ装置の構成を示したブロック図である。
【図２】本発明の概念を説明するためのフローグラフを示した説明図である。
【図３】本発明の概要を説明するための概要図である。
【図４】プロセッサエレメントとメモリの関係を示した関係図である。
【図５】本発明の内容を説明するために用意したソースプログラムとそのフローグラフで
ある。
【図６】図５のソースプログラムをそのままアセンブラコードに変換したコード列である
。
【図７】ターゲットハードウェアがメモリ共有型の場合の実行経路５００－５０１－５０
２のコード列である。
【図８】ターゲットハードウェアがメモリ共有型の場合の実行経路５００－５０１－５０
３のコード列である。
【図９】ターゲットハードウェアがメモリ共有型の場合の実行経路５００－５０４のコー
ド列である。
【図１０】ターゲットハードウェアがメモリ共有型の場合のスレッド制御コードである。
【図１１】ターゲットハードウェアの並列実行可能なプロセッサエレメントの数が未知の
場合の制御コードである。
【図１２】ターゲットハードウェアがメモリ分散型の場合の実行経路５００－５０１－５
０２のコード列である。
【図１３】ターゲットハードウェアがメモリ分散型の場合の実行経路５００－５０１－５
０３のコード列である。
【図１４】ターゲットハードウェアがメモリ分散型の場合の実行経路５００－５０４のコ
ード列である。
【図１５】実行頻度を検出するための手順を示したフローチャートである。
【図１６】ターゲットハードウェアの性能の違いによるコードの変化を示すフローチャー
トである。
【図１７】メモリ分散型におけるスレッド生成から値の反映までを示したフローチャート
である。
【図１８】プログラム変換実行装置１８００の機能ブロック図である。
【図１９】本発明のプログラム変換装置の動作を示したフローチャートである。
【図２０】従来技術におけるトレーススケジューリングの説明に用いる説明図である。
【図２１】ターゲットハードウェアがメモリ分散型の場合のスレッド制御コードである。
【符号の説明】
【０１１１】
１００　コンパイラ装置
１０１　解析部
１０２　実行経路指定部
１０３　最適化部
１０４　コード変換部
１０５　解析情報
１２０　実行プログラム
１３０　ターゲットハードウェア

(28) JP 4783005 B2 2011.9.28

10

１４０　実行経路の実行頻度の情報
４００、４０１、４０２、４１０、４１１、４１２　プロセッサエレメント
４０３、４１３、４１４、４１５　メモリ
５００、５０１、５０２、５０３、５０４　命令ブロック
５０５、５０６　分岐ブロック
５１０　部分ソースプログラム
５１１　実行頻度一位の実行経路
５１２　実行頻度二位の実行経路
１８０６　実行プログラム格納部
１８０７　実行部

【図１】 【図２】

(29) JP 4783005 B2 2011.9.28

【図３】 【図４】

【図５】 【図６】

(30) JP 4783005 B2 2011.9.28

【図７】 【図８】

【図９】 【図１０】

(31) JP 4783005 B2 2011.9.28

【図１１】 【図１２】

【図１３】 【図１４】

(32) JP 4783005 B2 2011.9.28

【図１５】 【図１６】

【図１７】 【図１８】

(33) JP 4783005 B2 2011.9.28

【図１９】 【図２０】

【図２１】

(34) JP 4783005 B2 2011.9.28

10

フロントページの続き

(56)参考文献 特開２００１－２８２５４９（ＪＰ，Ａ）　　　
 特開平１１－０９６００５（ＪＰ，Ａ）　　　
 特開２００３－３２３３０４（ＪＰ，Ａ）　　　
 特開平０５－０３５７７２（ＪＰ，Ａ）　　　
 特開２０００－１６３２６６（ＪＰ，Ａ）　　　
 特開平０７－０３６６８０（ＪＰ，Ａ）　　　
 特開平０６－０６００４７（ＪＰ，Ａ）　　　

(58)調査した分野(Int.Cl.，ＤＢ名)
 Ｇ０６Ｆ　　　９／４５　　　　

	biblio-graphic-data
	claims
	description
	drawings
	overflow

