[54] 发明名称
金属被覆光纤

[57] 摘要
本发明公开了一种金属被覆光纤，在除去树脂涂层的光纤芯线 1 的表面形成由厚度为 0.01 ~ 0.5 μ m 的非电解 Ni 镀层 2 构成的底层，由厚度为 0.5 ~ 4.0 μ m 的电解 Ni 镀层 3 构成的中间层，和由厚度为 0.05 ~ 1 μ m 的电解 Au 镀层 4 构成的最外层。
权利要求书

1、一种金属被覆光纤，其特征为，在除去了树脂涂层的光纤芯线表面形成由厚度为 0.01～0.5 μm 的非电解 Ni 锕层构成的底层，由厚度为 0.5～4.0 μm 的电解 Ni 锕层构成的中间层，和由厚度为 0.05～1 μm 的电解 Au 锕层构成的最外层。

2、如权利要求 1 所述的金属被覆光纤，其特征为，剥离除去光纤的树脂涂层，对该光纤芯线的表面实施前处理：将金属被覆光纤芯线用氢氧化钾进行碱洗涤、用硫酸进行酸洗涤，接下来用过硫酸盐类进行化学研磨，然后将其浸渍在含有硅烷偶合剂的溶液中对金属被覆光纤芯线表面进行调整。
金属被覆光纤

技术领域
本发明涉及与用于光通信、光测量等的光学元件连接的光纤芯线的表面处理，特别是涉及一种光纤，所述光纤是在收纳光学元件的壳体的光纤贯通部为了利用纤料将壳体气密封而用金属被覆光纤芯线的表面而形成的。

背景技术
为了防止凝结水蒸气等对光学元件造成破坏，必须使收纳激光二极管等光学元件的壳体内部与外界隔绝。因此，在将光纤导入收纳光学元件的壳体内：将壳体的光纤贯通部气密封时，采用以金属被覆光纤芯线的表面、将该被覆部分直接或间接地焊接在壳体壁上的方法。

作为以金属被覆光纤芯线表面的方法，特开平7-244232号公报及特开平10-300997号公报中公开了一种方法，所述方法为：在除去了树脂涂层的光纤芯线表面利用非电解镀形成1μm左右的Ni层作为底层，然后，利用电解镀覆形成Au层。

另外，与上述方法不同，特开平5-249353号公报中也公开了一种方法，所述方法为：在光纤芯线表面形成碳层作为底层，在其上利用电解镀覆形成Ni层与Au层。

但是，在以非电解Ni镀层为底层时，由于非电解Ni镀层的内部应力及硬度高，因此存在损害光纤柔软性的问题。另外，还存在弯曲光纤时金属涂层容易剥离的问题。所以而言，非电解镀方法包括用电镀金属取代基础金属的取代型，和使用还原剂的还原型。但是，采用取代型会吸留溶解后的基础金属，另外采用还原型会吸留还原剂的一部分，无法得到高纯度的析出层。因此，采用非电解镀最终得到内部应力和硬度高、缺乏柔软性、容易剥离的电镀层。
另外，以碳层为底层时，由于碳层容易损伤，对光纤芯线表面石英的附着力弱，因此存在形成于其上的金属涂层发生剥离的问题。

作为用金属被覆光纤芯线表面的其他方法，一般而言，已知有蒸镀、溅镀等干式镀覆方法。但是，对于上述干式镀覆方法而言，由于被覆部位附近为高温，因此原料可能受到损伤；另外，还存在容易出现膜厚分布不均、无法进行均匀的镀覆，必需有具有大型真空容器的设备、成本增加等问题。

发明内容

本发明的目的为提供一种在光纤芯线表面被覆了金属的金属被覆光纤，所述光纤的柔软性未被损伤，金属对光纤的附着力强，且钎焊性良好。

本发明人发现，通过在除去了树脂涂层的光纤芯线表面形成必要的最低限度厚度的非电解 Ni 镀层以便实施中间层以后的电解镀覆处理，然后在其上形成因为是纯度高所以内部应力低、富有柔软性、难以剥离的电解 Ni 镀层构成的中间层和由电解 Au 镀层构成的最外层，可以得到在光纤芯线表面被覆了金属的金属被覆光纤，所述光纤的柔软性未被损伤，金属对光纤的附着力也强，而且钎焊性也良好。

本发明的金属被覆光纤在除去了树脂涂层的光纤芯线表面形成由厚度为 0.01 ~ 0.5 μm 的非电解 Ni 镀层构成的底层，由电解 Ni 镀层构成的中间层，和由电解 Au 镀层构成的最外层。

根据本发明，金属被覆光纤中上述电解 Ni 镀层的厚度为 0.5 ~ 4.0 μm。

另外，根据本发明，金属被覆光纤中上述电解 Au 镀层的厚度为 0.05 ~ 1 μm。

附图说明

图 1 为概念性地表示本发明的金属被覆光纤构成的剖面图。
具体实施方案

下面，使用附图并基于实施例说明本发明的实施方案。图 1 为概念性地表示本发明的金属被覆光纤构成的剖面图。在该图中，为了方便，夸张地示出形成在光纤芯线表面的金属层的厚度。

如图 1 所示，在去除了树脂涂层的光纤芯线 1 的表面上形成由厚度为 0.01～0.5 μm 的非电解 Ni 镀层 2 构成的底层、由电解 Ni 镀层 3 构成的中间层、由电解 Au 镀层 4 构成的最外层。

在本发明中，在光纤芯线 1 的表面施 Ni 层、Au 层的顺序设置金属层的原因在于 Ni/Au 膜具有优良的钎料湿润性，因此能够实现良好的钎焊。另外，将非电解 Ni 镀层 2 的厚度设定为 0.01～0.5 μm 的原因在于厚度不足 0.01 μm 时，厚度过薄，以至于影响随后的电解镀覆。另外，如果厚度超过 0.5 μm，则电镀时间变长，从经济方面考虑是不利的，并且，如果非电解 Ni 镀层过厚，则如上所述，由于非电解 Ni 镀层 2 的内部应力及硬度高，因此损伤光纤的柔软性，同时容易发生膜剥落。另外，在非电解 Ni 镀层 2 上形成电解 Ni 镀层 3 的原因在于电解镀覆的成膜速度比非电解镀快，因此如果电镀成相同的膜厚，则电解镀覆所需时间短。另外，由于电解镀覆纯度高，因此内部应力低，富有柔软性，难以发生剥离。

如果在本发明的 Ni/Au 膜上例如进行 AuSn 钎焊，则 Au、Ni 溶解在熔融钎料中，发生称为“钎料吞食”（solder C）的现象。如果发生该钎料吞食现象，石英露出在光纤芯线表面，则对光纤的湿润性恶化。因此，本发明的金属被覆光纤的中间层电解 Ni 镀层 3 的厚度优选为 0.5 或 0.5 μm 以上。如果超过 4.0 μm，则弯曲光纤时产生维持弯曲状态的所谓非可逆性，因此优选为 4.0 μm 或 4.0 μm 以下。

最外层 Au 层 4 是为了防止 Ni 层被氧化及提高钎料湿润性而设置的层。如果 Ni 被氧化，则最终导致对钎料的湿润性恶化，因此为了防止 Ni 层被氧化，Au 层 4 的厚度优选为 0.05 或 0.05 μm 以上。由于 Au 膜在钎料中的溶解速度快，因此大幅度提高了润湿性。但是，由于即使设置厚度超过 1 μm 的 Au 层 4 也不能更进一步提高抗氧化及
纤维润湿性效果，因此从经济方面考虑，厚度优选为 1 μm或1 μm以下。

需要说明的是中间层电解 Ni 镀层 3、最外层电解 Au 镀层 4 优选为具有 99.9％或 99.9％以上纯度的 Ni 或 Au 镀层。

下面，更详细地说明实施例 1～5。

剥离除去光纤的树脂涂层，使线材直径为 125 μm、长度为 20mm 的光纤芯线裸露出来后，对该光纤芯线的表面实施前处理，所述前处理包括用氢氧化钾进行碱洗涤、用硫酸进行酸洗涤、用过硫酸盐类进行化学研磨等。

然后，将其浸渍在含有 Sn 盐或硅烷偶合剂等的溶液中，对光纤芯线进行表面调整。

然后，用 Pd 盐溶液进行催化剂化，采用还原型的非电解 Ni 镀覆浴（N.E.CHEMCA T制 NIC100），进行非电解镀 Ni，形成 Ni 底层。

然后，在氯化镍或 Ni 镀覆液中电解镀覆高纯度的 Ni，形成 Ni中间层。然后，用市售的纯 Au 镀覆液（N.E.CHEMCA T制 N44）电解镀覆高纯度的 Au，形成 Au 镀层。

利用上述制造方法，制造具有下述表 1 所示的实施例 1～5 的膜厚的金属被覆光纤。另外，下述表 1 也给出比较例 1、2 的结果。

采用与实施例 1 相同的镀覆条件，制造具有比较例 1、2 的膜厚的金属被覆光纤。非电解 Ni 镀层为 0.008 μm 的比较例 1 的底层非电解 Ni 镀层膜厚过薄，无法由随后的电解镀覆形成 Ni 层和 Au 层。另外，非电解 Ni 镀层为 1.0 μm 的较厚的比较例 2 在反复弯曲经金属被覆的光纤芯线部时，确认有一部分发生金属被覆的剥离。

将实施例 1～5 与比较例 2 的光纤插入设置在不锈钢圆锥孔内的内径为 135 μm 的贯通孔内，用 AuSn 纤料焊接光纤与铜珠。需要说明的是为了提高钢球与 AuSn 的润湿性，对钢珠实施了 Ni/Au 镀覆。

利用 He 漏气试验研究纤焊部的气密状态时，实施例 1～5 的光纤未发生泄漏，全部得到良好的纤焊；确认在比较例 2 的光纤中经弯曲试验发生金属涂层剥离的部分纤料不湿润，出现漏气。
表 1

<table>
<thead>
<tr>
<th></th>
<th>非电解 Ni 镀层膜厚 (μm)</th>
<th>电解 Ni 镀层膜厚 (μm)</th>
<th>电解 Au 镀层膜厚 (μm)</th>
<th>金属被覆光纤的柔软性</th>
<th>轻焊性</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施例 1</td>
<td>0.01</td>
<td>0.5</td>
<td>0.05</td>
<td>优良</td>
<td>优良</td>
</tr>
<tr>
<td>实施例 2</td>
<td>0.01</td>
<td>0.4</td>
<td>0.05</td>
<td>优良</td>
<td>良</td>
</tr>
<tr>
<td>实施例 3</td>
<td>0.2</td>
<td>1.0</td>
<td>0.2</td>
<td>优良</td>
<td>优良</td>
</tr>
<tr>
<td>实施例 4</td>
<td>0.2</td>
<td>4.0</td>
<td>0.2</td>
<td>优良</td>
<td>优良</td>
</tr>
<tr>
<td>实施例 5</td>
<td>0.5</td>
<td>6.0</td>
<td>0.2</td>
<td>良</td>
<td>优良</td>
</tr>
<tr>
<td>比较例 1</td>
<td>0.008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>比较例 2</td>
<td>1.0</td>
<td>2.0</td>
<td>0.2</td>
<td>不良</td>
<td>不良</td>
</tr>
</tbody>
</table>

如上所述，根据本发明，能够得到不损伤光纤的柔软性、在光纤上的附着力强、且轻焊性良好的金属被覆光纤。
图 1