Weltorganisation für geistiges Eigentum
Internationales Büro

Internationale Patenklassifikation:
- C08G 18/08 (2006.01)
- C08G 18/32 (2006.01)
- C08G 18/67 (2006.01)
- C08G 18/79 (2006.01)

Internationales Aktenzeichen: PCT/EP2005/008490

Internationales Anmeldedatum: 5. August 2005 (05.08.2005)

Einreichungssprache: Deutsch

Veröffentlichungssprache: Deutsch

Angaben zur Priorität:
102004040419.4 19. August 2004 (19.08.2004) DE

Erfinder; und

Veröffentlichung:
- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen enttreffen

Zur Erklärung der Zweckabschnitte-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Title: WATER-SOLUBLE, RADIATION-CURABLE PRODUCTS AND USE THEREOF

Bezeichnung: WASSERLÖSCHLICHE STRAHLENHÄRTBARE PRODUKTE UND IHRE VERWENDUNG

Abstract: The invention relates to the use of water-soluble, radiation-curable products (A), which are obtained by mixing and, optionally, reacting at least one hyper cross-linked polyurethane (a) with at least one photoinitiator (b) or by synthesising at least one hyper cross-linked polyurethane (a) in the presence of at least one photoinitiator (b), for producing aqueous tints for the Ink-Jet method.

Zusammenfassung: Verwendung von wasserlöslichen strahlenhärtingen Produkten (A), erzielt durch Vermischen und gegebenenfalls Umsetzung von mindestens einem hyperverzweigten Polyurethan (a) mit mindestens einem Photoinitiator (b) oder durch Synthese von mindestens einem hyperverzweigten Polyurethan (a) in Gegenwart von mindestens einem Photoinitiator (b), zur Herstellung von wässrigen Tinten für das Ink-Jet-Verfahren.
Wasserlösliche strahlungshärtbare Produkte und ihre Verwendung

Beschreibung

5 Die vorliegende Erfindung betrifft die Verwendung von wasserlöslichen strahlungshärtbaren Produkten (A), erhaltlich durch Vermischen und gegebenenfalls Umsetzung von mindestens einem hyperverzweigten Polyurethan (a) mit mindestens einem Photoinitiator (b)

10 oder durch Synthese von
mindestens einem hyperverzweigten Polyurethan (a)
in Gegenwart von mindestens einem Photoinitiator (b)

ezur Herstellung von wässrigen Tinten für das Ink-Jet-Verfahren.

15 Weiterhin betrifft die vorliegende Erfindung wässrige Tinten für das Ink-Jet-Verfahren mit einer dynamischen Viskosität im Bereich von 2 bis 80 mPa·s, gemessen bei 23°C, enthaltend (A) mindestens ein wasserlösliches strahlungshärtbares Produkt, erhältlich durch

20 Vermischen und gegebenenfalls Umsetzung von
mindestens einem hyperverzweigten Polyurethan (a) mit mindestens einem Photoinitiator (b)

25 oder durch Synthese von
mindestens einem hyperverzweigten Polyurethan (a)
in Gegenwart von mindestens einem Photoinitiator (b)

weiterhin

30 (B) mindestens ein Pigment.

35 An Aufzeichnungsflüssigkeiten und insbesondere Tinten, die beim Ink-Jet-Verfahren (Tintenstrahldruckverfahren wie Thermal Ink Jet, Piezo Ink Jet, Continuous Ink Jet, Valve Jet, Transferdruckverfahren) eingesetzt werden, werden eine Reihe von Anforderungen gestellt: Sie müssen zum Drucken geeignete Viskosität und Oberflächen-

40 spannung aufweisen, sie müssen lagerstabil sein, d.h., sie sollen nicht koagulieren oder fokulieren, und sie dürfen nicht zur Verstopfung der Druckerdüse führen, was insbesondere bei dispergierten, also nicht gelöste Farbbmittelteilchen enthaltenden Tinten problematisch sein kann. Die Anforderungen an die Lagerstabilität dieser Aufzeich-
nungsflüssigkeiten und insbesondere Tinten beinhaltet zusätzlich, dass sich dispergier-
te Farbbmittelteilchen nicht absetzen. Weiterhin müssen die Tinten im Falle des Conti-
uuous Ink Jet stabil gegen den Zusatz von Leitsalzen sein und bei Erhöhung des Io-
nengehaltes keine Tendenz zum Ausflocken zeigen. Außerdem müssen die erhaltenen
Drucke den koloristischen Anforderungen genügen, d.h. hohe Brillanz und Farbtiefe
zeigen, und gute Echtheiten, z.B. Reibechtheit, Lichtechtheit, Wasserechtheit und
Nassreibechtheit, gegebenenfalls nach Nachbehandlung wie beispielsweise Fixierung,
und gutes Trocknungsverhalten aufweisen.

Um besonders gute Echtheiten wie beispielsweise Reibechtheit, Nassreibechtheit und
Waschechtheit von bedruckten Substraten zu gewährleisten, kann man die Drucke
durch sogenannte Strahlungshärtung fixieren. Dazu kann man sogenannte strahlungs-
härtbare Tinten einsetzen, s. beispielsweise US 5,623,001 und EP 0 993 495. Strah-
lungshärtbare Ink-Jet-Tinten enthalten üblicherweise ein Material, dass durch Einstrah-
lung von aktinischer Strahlung gehärtet werden kann. Außerdem kann man strah-
lungshärtbaren Ink-Jet-Tinten einen Photoinitiator beifügen.

Problematisch ist jedoch, dass in einigen Fällen die Strahlungshärtung nicht gleichmä-
ßig über das bedruckte Substrat erfolgt. Man beobachtet eine sehr gute Aushärtung an
einigen Stellen, während an anderen Stellen schlechte Aushärtung festzustellen ist,
sogenannte „soft spots“. Durch eine ungleichmäßige Aushärtung werden an einigen
Stellen die Reibechtheiten verschlechtert, außerdem verschlechtert sich der Griff von
bedruckten Substraten, was insbesondere bei bedruckten textilen Substraten uner-
wünscht ist. Gesucht sind also Tinten für das Ink-Jet-Verfahren, die sich besonders
gleichmäßig aushärten lassen.

Es bestand die Aufgabe, Tinten für das Ink-Jet-Verfahren bereit zu stellen, die sich
besonders gut durch Einwirkung aktinischer Strahlung aushärten lassen. Weiterhin
bestand die Aufgabe, strahlungshärtbare Produkte bereit zu stellen, die sich besonders
gut zur Herstellung von Tinten für das Ink-Jet-Verfahren eignen. Weiterhin bestand die
Aufgabe, Verfahren zur Herstellung von Tinten für das Ink-Jet-Verfahren bereit zu stel-
en. Schließlich bestand die Aufgabe, bedruckte Substrate und insbesondere bedruckte
textile Substrate bereit zu stellen, die einen besonders guten Griff und gute Echtheiten
aufweisen.

Demgemäß wurde die eingangs definierte Verwendung von wasserlöslichen strah-
lungshärtbaren Produkten (A) und die eingangs definierten Tinten für das Ink-Jet-
Verfahren gefunden.

Im Rahmen der vorliegenden Erfindung werden die Ausdrücke „Tinten für das Ink-Jet-
Verfahren" und „Ink-Jet-Tinten" äquivalent verwendet.
Die erfindungsgemäße Verwendung geht von solchen wasserlöslichen strahlungshärtbaren Produkten (A) aus, die erhältlich sind

durch Vermischen und gegebenenfalls Umsetzung von
mindestens einem hypervерzweigten Polyurethan (a) mit
mindestens einem Photoinitiator (b)

oder durch Synthese von
mindestens einem hypervерzweigten Polyurethan (a)
in Gegenwart von mindestens einem Photoinitiator (b).

Dabei wird im Folgenden Vermischen und gegebenenfalls Umsetzung von
mindestens einem hypervерzweigten Polyurethan (a) mit
mindestens einem Photoinitiator (b)
auch als Weg 1 bezeichnet.

Synthese von
mindestens einem hypervерzweigten Polyurethan (a)
in Gegenwart von mindestens einem Photoinitiator (b)
wird im Folgenden auch als Weg 2 bezeichnet.

Hypervерzweigte Polyurethane (a) sind molekular und strukturell uneinheitlich. Sie unterscheiden sich durch ihre molekulare Uneinheitlichkeit von Dendrimeren und sind mit erheblich geringerem Aufwand herzustellen.

Hypervерzweigte Polyurethane (a) stellt man bevorzugt aus AB₂-Monomeren her, das sind Monomere, die z.B. sowohl Isocyanat-Gruppen sowie Gruppen, die mit Isocyanat-Gruppen unter Bildung einer Verknüpfung reagieren können, aufweisen und weiterhin natürlich einen Spacer, durch den Isocyanatgruppen und Gruppen, die mit Isocyanat-Gruppen unter Bildung einer Verknüpfung reagieren können, verknüpft sind. Bei x handelt es sich um eine natürliche Zahl von 2 bis 8. Bevorzugt beträgt x 2 oder 3. Entwe-
der handelt es sich bei A um Isocyanat-Gruppen und bei B um mit Isocyanat zur Reaktion fähige Gruppen oder es kann der umgekehrte Fall vorliegen.

Bei mit Isocyanat-Gruppen zur Reaktion fähigen Gruppen handelt es sich bevorzugt um OH-, NH₂-, NH-, SH- oder COOH-Gruppen.

Die Synthese der zur Ausführung der vorliegenden Erfindung eingesetzten hyperverzweigten Polyurethane (a) kann beispielsweise wie im Folgenden geschildert durchgeführt werden.

AB₂-Monomere sind in bekannter Art und Weise durch verschiedene Techniken herstellbar.

Bevorzugte Di- und/oder Polysisocyanate mit NCO-Gruppen unterschiedlicher Reaktivität sind insbesondere leicht und billig verfügbare Isocyanate, beispielsweise aromatische Isocyanate wie 2,4-Toluylendiisocyanat (2,4-TDI), 2,4′-Diphenylmethandiisocyanat (2,4′-MDI), Triisocyanatotoluol, oder aliphatische Isocyanate, wie Isophorondiisocyanat (IPDI), 2-Butyl-2-ethylpentamethyldiisocyanat, 2-Isocyanatopropylcyclohexylisocyanat, 2,4,4′- oder 2,2,4,4′-Trimethylhexa-

methylendiisocyanat, 2,4′-Methylenbis(cyclohexyl)diisocyanat und 4-Methyl-
cyclohexan-1,3-diisocyanat (H-TDI).
Weitere Beispiele von Isocyanaten mit Gruppen unterschiedlicher Reaktivität sind 1,3-Phenyldiisocyanat, 1,4-Phenyldiisocyanat, 1,5-Naphthyldiisocyanat, Diphényldiisocyanat, Tolidindiisocyanat und 2,6-Toluyldiisocyanat. Dabei wird durch Addition einer mit NCO reaktiven Gruppe an eine der beiden zunächst gleich reaktiven NCO-Gruppen die Reaktivität der 2. NCO-Gruppe durch elektronische Effekte verringert.

Natürlich kann man Mischungen der vorstehend genannten Isocyanate einsetzen.

Durch Erwärmen oder Katalysatorzugabe kann dieses AB₂-Monomer intermolekular zu einem hyperverzweigten Polyurethan reagieren. Als Katalysatoren für die Herstellung der hyperverzweigten Polyurethane werden beispielsweise organische Zinnverbindun-
gen wie Zinndiacetat, Zinndioctoat, Dibutylzinnidilaurat oder stark basische Amine wie Dizabicyclooctan, Dizabicyclononan, Dizabicycloundecan, Triethylamin, Pentamethyldiethylentramin, Tetramethyldiaminoethylether oder vorzugsweise Triethylendi-
amin oder Bis(N,N-dimethylaminoethyl)ether oder auch schwach basische Amine wie beispielsweise Imidazole eingesetzt. Es können auch Mischkatalysatoren aus einer mindestens einer organischen Zinnverbindung und mindestens einem stark basischen Amin eingesetzt werden. Die Katalysatoren werden vorzugsweise in einer Menge von 0,01 bis 10 Gew.-%, vorzugsweise 0,05 bis 5 Gew.-%, bezogen auf Isocyanat, einge-
setzt. Die Synthese von hypervorzweigtem Polyurethan (a) erfolgt vorteilhaft ohne vor-
erige Isolierung des AB₂-Monomers in einem weiteren Reaktionsschritt bei erhöhter Temperatur, vorzugsweise im Bereich zwischen 30 und 80°C. Bei Verwendung des geschilderten AB₂-Monomers mit zwei OH-Gruppen und einer NCO-Gruppe entsteht ein hypervorzweigtes Polymer, welches pro Molekül eine freie NCO-Gruppe sowie eine vom Polymerisationsgrad abhängige Zahl von OH-Gruppen aufweist. Die Reaktion kann bis zu hohen Umsätzen durchgeführt werden, wodurch sehr hochmolekulare Strukturen erhalten werden. Sie wird vorzugsweise durch Zugabe geeigneter mono-

In einer anderen Ausführungsform kann man beispielsweise auch ein AB₂-Monomer aus einem Mol Glycerin und 2 mol TDI herstellen. Bei tiefer Temperatur reagieren vorzugsweise primäre Alkoholgruppen sowie die Isocyanat-Gruppe in 4-Stellung, und es wird ein Addukt gebildet, welches eine OH-Gruppe und zwei Isocyanat-Gruppen auf-
weist und das wie geschildert bei höheren Temperaturen zu einem hypervorzweigten Polyurethan (a) umgesetzt werden kann. Es entsteht zunächst ein hypervorzweigtes Polyurethan (a), welches eine freie OH-Gruppe sowie eine vom Polymerisationsgrad abhängige mittlere Anzahl von NCO-Gruppen aufweist.

Die Anzahl der NCO-Gruppen pro Molekül ist von 2 bis 100, bevorzugt von 3 bis 20 und besonders bevorzugt bis 10.

Das Molekulargewicht Mₙ der für die vorliegende Erfindung zu verwendenden hypervorzweigten Polyurethane (a) kann beispielsweise 500 bis maximal 50.000 g/mol betragen, bevorzugt maximal 15.000 g/mol und besonders bevorzugt maximal 10.000 g/mol und ganz besonders bevorzugt bis 5.000 g/mol.

Die Herstellung von hypervorzweigten Polyurethänen (a) kann man prinzipiell ohne Lösungsmittel, bevorzugt aber in Lösung durchführen. Als Lösungsmittel prinzipiell geeignet sind alle bei der Umsetzungs-temperatur flüssigen und gegenüber den Mono-
meren und Polymeren inerten Verbindungen.

Zum Abbruch der Herstellung von hypervерzweigten Polyurethanen (a) kann man polyfunktionelle Verbindungen einsetzen, die mit den jeweiligen A-Gruppen reagieren können. Auf diese Art und Weise können mehrere kleine hypervерzweigte Moleküle zu einem großen hypervерzweigten Molekül verknüpft werden.

Hypervерzweigte Polyurethane (a) mit kettenverlängerten Ästen lassen sich beispielsweise erhalten, indem zur Polymerisationsreaktion neben AB₃-Monomeren zusätzlich im molaren Verhältnis 1:1 ein Disocyanat und eine Verbindung, die zwei mit Isocyanatgruppen zur Reaktion fähige Gruppen aufweist, eingesetzt werden. Diese zusätzlichen AA- bzw. BB-Verbindungen können auch noch über weitere funktionelle Gruppen verfügen, die bei den Reaktionsbedingungen aber nicht reaktiv gegenüber den A- oder B-Gruppen sein dürfen. Auf diese Art und Weise können weitere Funktionalitäten in hypervерzweigtes Polyurethan (a) eingebaut werden.

Weitere Synthesevarianten für hypervерzweigte Polyurethane finden sich in WO 02/36695, DE-A 100 13 187 und DE-A 100 30 869.

Zur Herstellung von hypervерzweigtem Polyurethan (a) kann man einen oder mehrere Katalysatoren einsetzen. Als Katalysatoren kommen prinzipiell alle in der Polyurethanchemie üblicherweise verwendeten Katalysatoren in Betracht.

Üblicherweise in der Polyurethanchemie verwendete Katalysatoren sind beispielsweise organische Amine, insbesondere tertiäre aliphatische, cycloaliphatische oder aromatische Amine, und Lewis-saure organische Metallverbindungen.

Bevorzugte Lewis-saure organische Metallverbindungen sind Dimethylzinn-diacetat, Dibutylzinn-dibutyрат, Dibutylzinn-bis(2-ethylhexanoat), Dibutylzinn-dilaurat, Diocytzinn-dilaurat, Zirkon-Acetylacetonat und Zirkon-2,2,6,6-tetramethyl-3,5-heptandionat.

Auch Wismut-und Cobaltkatalysatoren sowie Cäsiumsalze können als hydrophobe Katalysatoren eingesetzt werden. Als Cäsiumsalze kommen dabei solche Verbindungen in Betracht, in denen folgende Anionen eingesetzt werden: F^-, Cl^-, ClO_2^-, ClO_3^-, ClO_4^-, Br^-, J^-, JO_3^-, CN^-, OCN^-, NO_2^-, NO_3^-, HCO_3^-, CO_3^{2-}, S^{2-}, SH^-, HSO_3^-, SO_3^{2-}, HSO_4^-, SO_4^{2-}, $\text{S}_2\text{O}_5^{2-}$, $\text{S}_2\text{O}_6^{2-}$, $\text{S}_2\text{O}_7^{2-}$, $\text{S}_2\text{O}_8^{2-}$, H_2PO_3^-, H_3PO_4^-, HPO_4^{2-}, PO_4^{3-}, $\text{P}_2\text{O}_7^{4-}$, $(\text{OC}_n\text{H}_{2n+1})^-$, $(\text{C}_n\text{H}_{2n-1}\text{O})^-$, $(\text{C}_n\text{H}_{2n-3}\text{O}_2)^-$ sowie $(\text{C}_{n+1}\text{H}_{2n-2}\text{O}_4)^2-$, wobei n für ganze Zahlen 1 bis 20 steht.

Bevorzugt sind dabei Cäsiumcarboxylate, bei denen das Anion den Formeln $(\text{C}_n\text{H}_{2n-1}\text{O}_2)^-$ sowie $(\text{C}_{n+1}\text{H}_{2n-2}\text{O}_4)^2-$ mit n gleich 1 bis 20, gehorcht. Besonders bevorzugte Cäsiumsalze weisen als Anionen Monocarboxylate der allgemeinen Formel $(\text{C}_n\text{H}_{2n-1}\text{O}_2)^-$ auf, wobei n für ganze Zahlen 1 bis 20 steht. Hierbei sind insbesondere zu erwähnen Formiat, Acetat, Propionat, Hexanoat und 2-Ethylhexanoat.

Als übliche organische Amine seien beispielhaft genannt: Triethylamin, 1,4-Diazabicyclo[2,2,2]-octan, Tributylamin, Dimethylbenzylamin, N,N,N',N'-Tetramethyl-ethylendiamin, N,N,N',N'-Tetramethyl-butyl-1,4-diamin, N,N,N',N'-Tetramethylhexan-1,6-diamin, Dimethylcyclohexylamin, Dimethyldodecylamin, Pentamethylpropylendiamin, Pentamethyldiethylentriamin, 3-Methyl-6-dimethylamino-3-azapentol, Dimethylaminopropylamin, 1,3-Bis(dimethylaminobutanol, Bis-(2-dimethylaminoethyl)ether, N-Ethylmorpholin, N-Methylmorpholin, N-Cyclohexylmorpholin, 2-Dimethylaminooxyethanol, Dimethylaminoethanol, Tetramethylaminodiacetamid, Dimethylamino-N-methylethanamin, N-Methylimidazol, N-Formyl-N,N'-dimethylbutylendiamin, N-Dimethylaminothio-dermorpholin, 3,3'-Bis(dimethylamino-di-n-propylamin und/oder 2,2'-Dipropionamideisopropylether, Dimethylpiparazin, Tris-(N,N-dimethylaminopropyl)s-s-hexahydropirazin, Imidazole wie 1,2-Dimethylimidazol, 4-Chlor-2,5-dimethyl-1-(N-methylaminoethyl)imidazol, 2-Aminopropyl-4,5-dimethoxy-1-methylimidazol, 1-Aminopropyl-2,4,5-triethylimidazol, 1-Aminoethyl-4-hexylimidazol, 1-Aminobutyl-2,5-dimethylimidazol, 1-(3-Aminopropyl)-2-ethyl-4-methylimidazol, 1-(3-Aminopropyl)imidazol und/oder 1-(3-Aminopropyl)-2-methylimidazol.

Bevorzugte organische Amine sind Trialkyamine mit unabhängig voneinander zwei C_1-bis C_4-Alkyresten und einem Alkyl- oder Cyloalkylrest mit 4 bis 20 Kohlenstoffatomen, beispielsweise Dimethyl-C4-C15-Alkylamin wie Dimethyldodecylamin oder Dimethyl-C3-C8-Cycloalkylamin. Ebenfalls bevorzugte organische Amine sind bicyclische Amine, die gegebenenfalls ein weiteres Heteroatom wie Sauerstoff oder Stickstoff enthalten können, wie beispielsweise 1,4-Diazabicyclo[2,2,2]-octan.
Selbstverständlich können auch Gemische aus zwei oder mehreren der vorstehend genannten Verbindungen als Katalysatoren eingesetzt werden.

Besonders bevorzugt verwendet man hydrophobe Katalysatoren, gewählt aus den vorstehend genannten Verbindungen.

Katalysator setzt man vorzugsweise in einer Menge von 0,0001 bis 10 Gew.-%, besonders bevorzugt in einer Menge von 0,001 bis 5 Gew.-% ein, bezogen auf die Gesamtmenge an Isocyanat und Verbindung mit Isocyanat-reaktiven Gruppen.

Hyperverzweigte Polyurethane (a) im Sinne der vorliegenden Erfindung weisen vorteilhaft pro Molekül im Mittel mindestens eine Gruppe auf, die in wässriger Lösung ionisierbar ist, oder sie sind durch Einbau von nicht-ionischen hydrophil en Endgruppen oder Molekülbau steine gekennzeichnet. Als ionisierbare Gruppen seien beispielsweise COOH-Gruppen und SO₃H-Gruppen sowie deren Alkali- und Ammoniumsalze genannt, weiterhin quaternisierte Aminogruppen. Als nicht-IONISCHE hydrophile Endgruppen oder Molekülbau steine seien beispielhaft genannt:-(OCH₂CH₂)₂OR⁶, wobei z eine ganze Zahl im Bereich von 2 bis 100 ist, bevorzugt 5 bis 50, R⁶ steht für C₁-C₄-Alkyl, beispielsweise tert.-Butyl, sec.-Butyl, iso-Butyl, n-Butyl, iso-Propyl, n-Propyl, ethyl und insbesondere Methyl; oligomeres und polymeres Ethylenglykol der Formel HO-(CH₂CH₂O)₁₂H, wobei z wie vorstehend definiert ist.

Besonders vorteilhaft ist die Verwendung solcher hyperverzweigter Polyurethane (a), deren funktionellen Gruppen hydrophilisiert oder umfunktionalisiert worden sind. Auf diese Art und Weise werden der erfindungsgemäßen Anwendung der hyperverzweigten Polyurethane (a) zur Herstellung von wasserlöslichen strahlungshärtbaren Produkten (A) besonders gut geeignete hyperverzweigte Polyurethane (a) zugänglich, indem man pigmentaffine Gruppen einführt. Zur Umfunktionalisierung eignen sich aufgrund ihrer Reaktivität ganz besonders solche hyperverzweigten Polyurethane (a), die endständige NCO-Gruppen aufweisen. Selbstverständlich können auch OH- oder NH₂-termi nierte Polyurethane mittels geeigneter Reaktionspartner umfunktionalisiert werden.
Beispiele für pigmentaffine Gruppen, die mittels geeigneter Reaktionspartner eingeführt werden, sind -COOH, -COOR, -CONHR, -CONH₂, -OH, -SH, -NH₂, -NHR, -N(R)₂, -SO₃H, -SO₃R, -N(Phthalimid), -NHCOOR, -NHCONH₂, -NHCONHR oder -CN. Bei den Resten R der vorstehend genannten Gruppen handelt es sich um unverzweigte oder verzweigte Alkylreste, um Arylreste oder um Aralkylreste, die weiter substituiert sein können, beispielsweise um C₁–C₄₀-Alkylreste oder um C₅–C₁₄-Arylreste. Beispielshaft erwähnt seien die folgenden Reste:

C₇–C₈-Aralkyl, bevorzugt C₇ bis C₁₂-Phenylalkyl wie Benzyl, 1-Phenethyl, 2-Phenethyl, 1-Phenyl-propyl, 2-Phenyl-propyl, 3-Phenyl-propyl, Neophyl (1-Methyl-1-phenylethyl), 1-Phenyl-butyl, 2-Phenyl-butyl, 3-Phenyl-butyl und 4-Phenyl-butyl, besonders bevorzugt Benzyl.

Säuregruppen lassen sich beispielsweise durch Umsetzung mit Hydroxycarbonsäuren, Mercaptocarbonsäuren, Hydroxysulfonsäuren oder Aminosäuren in hyververzweigte Polyurethane (a) einführen. Als Beispiele geeigneter Reaktionspartner seien Hydroxyessigsäure, Hydroxypropionsäure, 4-Hydroxybenzosäure, 12-Hydroxydodecansäure, 2-Hydroxyethansulfonsäure, Mercaptopessigsäure, Dimethylpropionsäure, Dimethylolbuttersäure, Glycin, β-Alanin oder Taurin genannt.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei mindestens einem hypoverzweigten Polyurethan (a) um ein solches mit mindestens einer NCO-Gruppe pro Molekül (Zahlenmittel), bevorzugt mindestens mit 2 NCO-Gruppen pro Molekül (Zahlenmittel).

In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei wasserlöslichen strahlungshärtbaren Produkten (A) um wasserlösliche strahlungshärtbare Produkte (A) mit mindestens einer COOH-Gruppe pro Molekül (Zahlenmittel). Bevorzugt handelt es sich bei mindestens wasserlöslichen strahlungshärtbaren Produkten (A) um eines, bei dem man die COOH-Gruppe einführt, indem man gegen Ende oder nach der Synthese von hypoverzweigtem Polyurethan (a) Hydroxyessigsäure und besonders bevorzugt β-Alanin zusetzt, und zwar insbesondere nach Ablauf einer gewissen Zeit. Durch die Umsetzung der Hydroxygruppe der Hydroxyessigsäure bzw. insbesondere der Aminogruppe des β-Alanin mit einer NCO-Gruppe lassen sich COOH-Gruppen in besonders gut geeignete wasserlösliche strahlungshärtbare Produkte (A) einführen.

Bevorzugt sind solche wasserlösliche strahlungshärtbare Produkte (A) mit COOH-Gruppen, die sich am Ende eines Astes des betreffenden hypoverzweigten Polyurethans (a) befinden.

„Pro Molekül“ bedeutet im Zusammenhang mit der vorliegenden Erfindung bei nur unvollständig oder gar nicht ablaufender Reaktion von (a) mit (b): pro Molekül eingesetztes hypoverzweigtes Polyurethan (a).

Für die erfindungsgemäße Verwendung kann man gemäß Weg 1 mindestens ein hypoverzweigtes Polyurethan (a) mit mindestens einem Photoinitiator (b) vermischen und dabei gegebenenfalls ihre Umsetzung bewirken.

Dabei kann es zur Reaktion und somit Umsetzung von hypoverzweigtem Polyurethan (a) mit Photoinitiator (b) kommen, die quantitativ (bezogen auf Photoinitiator) oder auch unvollständig ablaufen kann.

Das Vermischen von (a) und (b) kann man in beliebigen Gefäßen durchführen. Man kann zum Zweck des Vermischens ein oder mehrere organische Lösungsmittel und/oder Wasser zugeben. Geeignete Methoden sind Verrühren, Schütteln, aber auch Dispergieren in Dispergierapparaten wie beispielsweise Kugelmühlen und insbesondere Rührwerkskugelmühlen oder Schüttelapparaturen, beispielsweise der Firma Skandex.
In einer Ausführungsform der vorliegenden Erfindung vermischt man (a) und (b) in einem Gewichtsverhältnis von 3 : 1 bis 10.000 : 1, bevorzugt von 5 : 1 bis 5.000 : 1, ganz besonders bevorzugt in einem Gewichtsverhältnis von 10 : 1 bis 1.000 : 1.

5 In erfindungsgemäßem strahlungshärtbaren Produkt (A) kann Photoinitiator (b) unter hypervерzweigtes Polyurethan (a) untergemischt sein. Es kann sich bei Photoinitiator (b) auch um kovalent an hypervерzweigtes Polyurethan (a) angebundenen Photoinitiator handeln. Wünscht man Photoinitiator kovalent an hypervерzweigtes Polyurethan (a) zu verknüpfen, so beziehen sich die Mengenverhältnisse von hypervерzweigtem Polyurethan (a) und von Photoinitiator (b) jeweils auf Ausgangsmaterial, d.h. auf hypervерzweigtes Polyurethan (a) und Photoinitiator (b) vor der kovalenten Verknüpfung.

10 In einer bevorzugten Ausführungsform der vorliegenden Erfindung setzt man Photoinitiator (b) zu Beginn oder während der Synthese von hypervерzweigtem Polyurethan (a) zu (Weg 2) und synthetisiert so hypervерzweigtes Polyurethan (a) in Gegenwart von mindestens einem Photoinitiator (b).

Dazu kann man mindestens einen Photoinitiator (b) zu Beginn oder während der oben beschriebenen Synthese von hypervерzweigtem Polyurethan (a) zugeben.

20 Dabei kann es zu einer Reaktion und somit Umsetzung von sich bildendem hypervерzweigtem Polyurethan (a) mit Photoinitiator (b) kommen, die quantitativ (bezogen auf Photoinitiator) oder auch unvollständig ablaufen kann.

25 In einer Ausführungsform der vorliegenden Erfindung setzt man während der Synthese von (a) so viel (b) zu, dass sich das Gewichtsverhältnis von (a) zu (b) wie 3 : 1 bis 10.000 : 1 verhält, bevorzugt wie 5 : 1 bis 5.000 : 1, ganz besonders bevorzugt wie 10 : 1 bis 1.000 : 1, wobei man von der Annahme ausgeht, dass die Bildung von hypervерzweigtem Polyurethan (a) quantitativ verläuft.

30 Man kann (b) in einer oder in mehreren Portionen zusetzen.

Man kann in einer Ausführungsform der vorliegenden Erfindung Weg 1 und Weg 2 kombinieren, d.h. beispielsweise zunächst hypervерzweigtes Polyurethan (a) in Gegenwart eines Photoinitiators (b) synthetisieren und anschließend mit einem weiteren Photoinitiator (b), der gleich oder verschieden von dem bei der Synthese von (a) anwesenden Photoinitiator ist, vermischen.

35 Geeignete Photoinitiatoren (b) können beispielsweise dem Fachmann bekannte Photoinitiatoren sein, z.B. solche in "Advances in Polymer Science", Volume 14, Springer Berlin 1974 oder in K. K. Dietlik, Chemistry and Technology of UV- and EB-

Bevorzugte Photoinitiatoren (b) sind beispielsweise solche Photoinitiatoren, die bei Aktivierung zerfallen, sogenannte α-Zerfaller wie beispielsweise Photoinitiatoren vom Benzildialkylketal-Typ wie z.B. Benzildimethylketal. Weitere Beispiele für geeignete α-Zerfaller sind Derivate von Benzoin, Isobutylbenzoinether, Phosphinoxide, insbesondere Mono- und Bisacetyphosphinoxide, z.B. Benzoyldiphenylphosphinoxid, 2,4,6-
Trimeethylbenzoyldiphenylphosphinoxid, α-Hydroxyalkylacetophenone wie z.B. 2-Hydroxy-2-methylphenylpropan (b.1),

\[
\begin{align*}
\text{O} & \quad \text{OH} \\
\text{(b.1)}
\end{align*}
\]

5

2-Hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanon (b.2)

\[
\begin{align*}
\text{HO} & \quad \text{O} \\
\text{(b.2)}
\end{align*}
\]

10 Phosphinsulfide und Ethyl-4-dimethylaminobenoat sowie

\[
\begin{align*}
\text{(CH}_3\text{)}_2\text{N} & \quad \text{O} \\
\text{C}_2\text{H}_5 & \quad \text{N} & \quad \text{O} \\
\end{align*}
\]

Weitere Beispiele für bevorzugte Photoinitiatoren (b) sind Wasserstoff-abstrahlende Photoinitiatoren, beispielsweise vom Typ der gegebenenfalls substituierten Acetophenone, Anthrachinone, Thioxanthone, Benzoësaureester oder der gegebenenfalls substituierten Benzophenone. Besonders bevorzugte Beispiele sind Isopropylthioxanthon, Benzophenon, Phenylbenzylketon, 4-Methylbenzophenon, halogenmethylierte Benzophenone, Anthron, Michlers Keton (4,4'-bis-N,N-dimethylamino-benzophenon), 4-Chlorbenzophenon, 4,4'-Dichlorbenzophenon, Anthrachinon.

Wünscht man Photoinitiator (b) und hypervergliedertes Polyurethan (a) miteinander kovalent zu verknüpfen, so wählt man vorzugsweise solche Photoinitiatoren aus, die mindestens eine Gruppe mit acidem H-Atom aufweisen, beispielsweise Verbindungen, die mindestens eine freie OH-Gruppe oder mindestens eine freie NH₂-Gruppe aufweisen. Besonders geeignet ist beispielsweise 2-Hydroxy-2-methylphenylpropanon (b.1) und 2-Hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl-1-propanon (b.2).
Die Wirksamkeit von Photoinitiatoren (b) in erfindungsgemäßen strahlungshärtbaren Produkten (A) bzw. erfindungsgemäßen Tinten für das Ink-Jet-Verfahren kann man, wenn es gewünscht wird, durch die Zugabe von mindestens einem Synergisten, beispielsweise von mindestens einem Amin, insbesondere von mindestens einem tertiären Amin erhöhen. Geeignete Amine sind beispielsweise Triethylamin, N,N-Dimethylethanolamin, N-Methylethanolamin, Triethanolamin, Aminoacrylate wie beispielsweise aminmodifizierte Polyetheracrylate. Wenn man Amine wie beispielsweise tertiäre Amine als Katalysator bei der Synthese von hyperverzweigtem Polyurethan (a) eingesetzt und nach der Synthese nicht abgetrennt hat, so kann auch als Katalysator verwendetes tertiäres Amin als Synergist wirken. Weiterhin kann zur Neutralisation von sauren Gruppen wie beispielsweise COOH-Gruppen oder SO₃H-Gruppen eingesetztes tertiäres Amin als Synergist wirken. Man kann bis zur doppelten molaren Menge Synergist zusetzen, bezogen auf eingesetzten Photoinitiator (b).

Man kann erfindungsgemäßen wasserlöslichen strahlungshärtbaren Produkten (A) mindestens einen Radikalfänger zusetzen, beispielsweise stetisch gehinderte Amine wie beispielsweise sogenannte HALS oder stabilisierte Nitroxyradikale wie 4-Hydroxy-TEMPO (Formel III)

![Image]

Vorzugsweise kann man bis zu 1 Gew.-%, bezogen auf (a), an Radikalfänger zusetzen, besonders bevorzugt bis zu 0,5 Gew.-%.

Erfindungsgemäße wasserlösliche strahlungshärtbare Produkte (A) lassen sich durch aktinische Strahlung härten, beispielsweise ist aktinische Strahlung mit einem Wellenlängenbereich von 200 nm bis 450 nm geeignet. Geeignet ist beispielsweise aktinische Strahlung mit einer Energie im Bereich von 70 mJ/cm² bis 2000 mJ/cm². Aktinische Strahlung kann man zweckmäßig beispielsweise kontinuierlich oder in Form von Blitz einbringen.

Im Rahmen der vorliegenden Erfindung werden Tinten für das Ink-Jet-Verfahren auch als Ink-Jet-Tinten oder kurz als Tinten bezeichnet.

Ein weiterer Gegenstand der vorliegenden Erfindung sind Tinten für das Ink-Jet-Verfahren, insbesondere wässrige Tinten für das Ink-Jet-Verfahren, enthaltend

(A) mindestens ein wasserlösliches strahlungshärterbares Produkt, erhältlich durch Vermischen und gegebenenfalls Umsetzung von mindestens einem hyperverzweigten Polyurethan (a) mit mindestens einem Photoinitiator (b)

oder durch Synthese von mindestens einem hyperverzweigten Polyurethan (a) in Gegenwart von mindestens einem Photoinitiator (b),

(B) mindestens ein Pigment.

hyperverzweigte Polyurethane (a) und Photoinitiatoren (b) sind vorstehend beschrieben.

Erfindungsgemäße wässrige Tinten für das Ink-Jet-Verfahren enthalten weiterhin mindestens ein Pigment (B). Unter Pigmenten (B) sind im Rahmen der vorliegenden Erfindung praktisch nicht lösliche, dispergierte feinteilige, organische oder anorganische Farbmittel gemäß der Definition in DIN 55944 zu verstehen. Bevorzugsweise geht das erfindungsgemäße Verfahren von organischen Pigmenten aus, wobei Ruß mit umfasst ist. Im Folgenden sind Beispiele für besonders gut geeignete Pigmente genannt.

Organische Pigmente:

30 – Monoazopigmente: C.I. Pigment Brown 25; C.I. Pigment Orange 5, 13, 36 und 67; C.I. Pigment Red 1, 2, 3, 5, 8, 9, 12, 17, 22, 23, 31, 48:1, 48:2, 48:3, 48:4, 49, 49:1, 52:1, 52:2, 53, 53:1, 53:3, 57:1, 63, 112, 146, 170, 184, 210, 245 und 251; C.I. Pigment Yellow 1, 3, 73, 74, 65, 97, 151 und 183;

35 – Disazopigmente: C.I. Pigment Orange 16, 34 und 44; C.I. Pigment Red 144, 166, 214 und 242; C.I. Pigment Yellow 12, 13, 14, 16, 17, 81, 83, 106, 113, 126, 127, 155, 174, 176 und 188;

40 – Anthanthronpigmente: C.I. Pigment Red 168 (C.I. Vat Orange 3);

– Anthrachinonpigmente: C.I. Pigment Yellow 147 und 177; C.I. Pigment Violet 31;
Anthrachinonpigmente: C.I. Pigment Yellow 147 und 177; C.I. Pigment Violet 31;
Anthrpyrimidinpigmente: C.I. Pigment Yellow 108 (C.I. Vat Yellow 20);
Chinacridonpigmente: C.I. Pigment Red 122, 202 und 206; C.I. Pigment Violet 19;
Chinophthalonpigmente: C.I. Pigment Yellow 138;
Dioxaizinpigmente: C.I. Pigment Violet 23 und 37;
Flavanthronpigmente: C.I. Pigment Yellow 24 (C.I. Vat Yellow 1);
Indanthronpigmente: C.I. Pigment Blue 60 (C.I. Vat Blue 4) und 64 (C.I. Vat Blue 6);
Isoindolinpigmente: C.I. Pigment Orange 69; C.I. Pigment Red 260; C.I. Pigment Yellow 139 und 185;
Isoindolinonpigmente: C.I. Pigment Orange 61; C.I. Pigment Red 257 und 260;
C.I. Pigment Yellow 109, 110, 173 und 185;
Isobilanthronpigmente: C.I. Pigment Violet 31 (C.I. Vat Violet 1);
Metallkomplexpigmente: C.I. Pigment Yellow 117, 150 und 153; C.I. Pigment Green 8;
Perikonpigmente: C.I. Pigment Orange 43 (C.I. Vat Orange 7); C.I. Pigment Red 194 (C.I. Vat Red 15);
Perylenpigmente: C.I. Pigment Black 31 und 32; C.I. Pigment Red 123, 149, 178, 179 (C.I. Vat Red 23), 190 (C.I. Vat Red 29) und 224; C.I. Pigment Violet 29;
Phthalocyaninpigmente: C.I. Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6 und 16;
C.I. Pigment Green 7 und 36;
Pyranthronpigmente: C.I. Pigment Orange 51; C.I. Pigment Red 216 (C.I. Vat Orange 4);
Thioindigopigmente: C.I. Pigment Red 88 und 181 (C.I. Vat Red 1); C.I. Pigment Violet 38 (C.I. Vat Violet 3);
Triarylcarbonumpigmente: C.I. Pigment Blue 1, 61 und 62; C.I. Pigment Green 1; C.I. Pigment Red 81, 81:1 und 169; C.I. Pigment Violet 1, 2, 3 und 27; C.I. Pigment Black 1 (Anilinschwarz);
C.I. Pigment Yellow 101 (Aldazingelb);
C.I. Pigment Brown 22.

Anorganische Pigmente:

Weißpigmente: Titandioxid (C.I. Pigment White 6), Zinkweiß, Farbenzinkoxid;
Zinksulfid, Lithopone; Bleiweiß;

Schwarzpigmente: Eisenoxidischwarz (C.I. Pigment Black 11), Eisen-Mangan-Schwarz, Spinellischwarz (C.I. Pigment Black 27); Ruß (C.I. Pigment Black 7);
- Buntpigmente: Chromoxid, Chromoxidhydratgrün; Chromgrün (C.I. Pigment Green 48); Cobaltgrün (C.I. Pigment Green 50); Ultramaringrün; Kobaltblau (C.I. Pigment Blue 28 und 36); Ultramarinblau; Eisenblau (C.I. Pigment Blue 27); Manganblau; Ultramarinviolet; Kobalt- und Manganeus; Eisenoxidrot (C.I. Pigment Red 101); Cadmiumsulfoselenid (C.I. Pigment Red 108); Molybdæntrot (C.I. Pigment Red 104); Ultramarinrot;

Eisenoxidbraun, Mischbraun, Spinell- und Korundphasen (C.I. Pigment Brown 24, 29 und 31), Chromorange;

Eisenoxidgelb (C.I. Pigment Yellow 42); Nickeltitangelb (C.I. Pigment Yellow 53; C.I. Pigment Yellow 157 und 164); Chromtitangelb; Cadmiumsulfid und Cadmiumzinksulfid (C.I. Pigment Yellow 37 und 35); Chromgelb (C.I. Pigment Yellow 34), Zinkgelb, Erdalkalichromate; Neapelgelb; Bismutvanadat (C.I. Pigment Yellow 184);

- Interferenzpigmente: Metalleffektpigmente auf der Basis beschichteter Metallplättchen; Perlglanzpigmente auf der Basis metalloidbeschichteter Glimmerplättchen; Flüssigkristallpigmente.

Als bevorzugte Pigmente (B) sind dabei Monoazopigmente (insbesondere verlackte BONS-Pigmente, Naphthol AS-Pigmente), Disazopigmente (insbesondere Diarylgeelpigmente, Bisacetessigsäureacetanilidpigmente, Disazopyrazolopigmente), Chinacridonpigmente, Chinophthalonpigmente, Perinopigmente, Phthalocyaninpigmente, Triarylcyanumpigmente (Alkaliblaupigmente, verlackte Rhodamine, Farbstoffsalze mit komplexen Anionen), Isoindolinpigmente und Ruß zu nennen.

Zur Herstellung von erfindungsgemäßen Tinten für das Ink-Jet-Verfahren mischt man Pigment (B) zu erfindungsgemäßem strahlungshärtbarem Produkt zu.

Vorzugsweise weist erfindungsgemäßes strahlungshärtbares Produkt (A) zu dem Zeitpunkt, zu dem man Pigment (B) zusetzt, weniger als 0,1 Gew.-% endständige NCO-Gruppen mehr auf, besonders bevorzugt keine NCO-Gruppen, die durch beispielsweise Titration nachweisbar sind.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten erforderungs-gemäße Tinten für das Ink-Jet-Verfahren

(C) mindestens eine photopolymerisierbare Verbindung, gewählt aus Verbindungen mit
mindestens zwei vorzugsweise terminalen ethylenischen Doppelbindungen pro Molekül
und Verbindungen der allgemeinen Formel I

\[\text{R}_2 \text{=OCH} \text{=O} \text{R}_1 \]

in der die Variablen wie folgt definiert sind:

10. \(\text{R}_1, \text{R}_2 \) gleich oder verschieden und unabhängig voneinander gewählt aus
Wasserstoff und
C\(_1\)-C\(_{10}\)-Alkyl, verzweigt oder unverzweigt, wie beispielsweise Methyl, Ethyl, n-
Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl,
sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-
Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl; besonders bevorzugt C\(_1\)-C\(_4\)-Alkyl wie
Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl
und ganz besonders bevorzugt Methyl,

\(X^1 \) gewählt aus N-R\(_3\) und vorzugsweise Sauerstoff,

20. \(A^1 \) gewählt aus C\(_1\)-C\(_{20}\)-Alkylengruppen, unsubstituiert oder ein- oder mehrfach substituiert
mit C\(_1\)-C\(_4\)-Alkyl, Phenyl oder O-C\(_1\)-C\(_{4}\)-Alkyl, wobei in C\(_1\)-C\(_{20}\)-Alkylengruppen eine oder
mehrere nicht-benachbarte CH\(_2\)-Gruppen durch Sauerstoff ersetzt sein können;

25. So kann \(A^1 \) beispielsweise für folgende Gruppen stehen:
-CH\(_2\), -CH\(_3\)-CH\(_2\), -(CH\(_2\))\(_3\)-, -(CH\(_2\))\(_4\)-, -(CH\(_2\))\(_5\)-, -(CH\(_2\))\(_6\)-, -(CH\(_2\))\(_7\)-,
-(CH\(_2\))\(_8\)-, -(CH\(_2\))\(_9\)-, -(CH\(_2\))\(_{10}\)-, -(CH\(_2\))\(_{11}\)-, -(CH\(_2\))\(_{12}\)-, -(CH\(_2\))\(_{13}\)-,
-(CH\(_2\))\(_{14}\)-, -(CH\(_2\))\(_{15}\)-, -(CH\(_2\))\(_{16}\)-, -(CH\(_2\))\(_{17}\)-, -(CH\(_2\))\(_{18}\)-,
-(CH\(_2\))\(_{19}\)-, -(CH\(_2\))\(_{20}\)-, bevorzugt -(CH\(_2\))\(_2\)-;
-CH\(_2\)-CH\(_3\)-CH\(_2\)-, -CH\(_2\)-CH\(_2\)(C\(_2\)\(_H\)_5)-, -CH\(_2\)-CH\(_2\)(CH\(_3\))\(_2\)-, -CH\(_2\)-CH\(_2\)(C\(_4\)H\(_9\))-
-CH\(_2\)-CH\(_2\)(n-C\(_3\)H\(_7\))-
-[CH(CH\(_3\))]\(_2\)-, -CH(CH\(_3\))\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_3\)-,
-CH\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_2\)-CH\(_3\)-
-CH\(_2\)-C(CH\(_3\))\(_2\)-CH\(_2\)-, -CH\(_2\)-CH\(_2\)(n-C\(_4\)H\(_9\))-
-CH\(_2\)-CH\(_2\)(t-C\(_4\)H\(_9\))-
-CH\(_2\)-O-, -CH\(_2\)-O-CH\(_2\)-, -(CH\(_2\))\(_2\)-O-(CH\(_2\))\(_2\)-,
-[((CH\(_2\))\(_2\)-O)]\(_2\)-((CH\(_2\))\(_2\)-, [((CH\(_2\))\(_2\)-O)]\(_3\)-((CH\(_2\))\(_2\)-
,-COO-, -O-CO-, -CH\(_2\)-COO-, -CH\(_2\)-O-CO-, -(CH\(_2\))\(_3\)-COO-, -(CH\(_2\))\(_4\)-O-CO-, -COO-(CH\(_2\))\(_5\)-
-OCO(CH\(_2\))\(_6\)-,
-CH\(_2\)-COO-(CH\(_2\))\(_7\)-, -CH\(_2\)-O-CO-CH\(_2\)-, -CH(CH\(_3\))-COO-CH\(_2\)-, -(CH\(_2\))\(_8\)-O-CO-CH\(_2\)-,
-CH\(_2\)-O-CO-(CH\(_2\))\(_8\)-, -CH\(_2\)-COO-(CH\(_2\))\(_8\)-, -COO-CH\(_2\)-COO-, -CH\(_2\)-COO-CH\(_2\)-COO-
,-COO-(CH\(_2\))\(_9\)-O-CO-, O-CO-(CH\(_2\))\(_9\)-COO-, -COO-CH(CH\(_3\))-,}
-O-C(O)-O-, -(CH₂-O-C(O)-O-, -(CH₂)₃-O-C(O)-O-, -(CH₂)₄-O-(CH₂)₅-
-CH₂-O-C(O)-O-CH₂-, -(CH₂)₃-O-C(O)-CH₂-, -CH₂-O-C(O)-O-(CH₂)₅-

5 -CO-, -CH₂-CO-, -CO-CH₂-, -CH₂-CO-CH₂-, -CH(CH₃)-CO-CH₂-
-CON(R³)₂-, -N(R³)₃-CON(R³)₂-, -(CH₂)₃-CON(R³)₂-, -(CH₂)₄-N(R³)₃-CON(R³)₂-, -(CH₂)₅-N(R³)₃-CON(R³)₂-

10 -N(R³)₃-CO-N(R³)₂-, -(CH₂)₃-N(R³)₃-CON(R³)₂-, -(CH₂)₄-N(R³)₃-CON(R³)₂-(CH₂)₅-, -(CH₂)₆-N(R³)₃-CON(R³)₂-(CH₂)₇

y ist gleich oder verschieden und jeweils eine ganze Zahl im Bereich von 1 bis 10, bevorzugt von 2 bis 8 und besonders bevorzugt bis 6;
a ist eine ganze Zahl im Bereich von 2 bis 10 ist, bevorzugt 2 bis 6 und besonders bevorzugt bis 4.

Wenn eine Gruppe A¹ mehrere Reste R³ trägt, so können die Reste R³ gleich oder verschieden sein.

20 Besonders bevorzugte Gruppen A¹ sind
-CH₂-CH₂-O-, -(CH₂)₂-O-CO-O-, -(CH₂)₃-O-CO-O-, -(CH₂)₄-O-CO-O-, -(CH₂)₅-O-CO-O-
-NH-CH₂-NH-CO-, -NH-CH₂-NH-CO-(CH₂)₂-, -NH-CH₂-NH-CO-(CH₂)₃-, -NH-CH₂-NH-CO-(CH₂)₄-

25 und
-CH₂-CH₂-, -(CH₂)₃-, -(CH₂)₄-, -(CH₂)₅-, -(CH₂)₆-

X² gewählt aus Hydroxyl und NH-R³,

30 R³ gleich oder verschieden und gewählt aus Wasserstoff, Phenyl und C₁-C₁₀-Alkyl, verzweigt oder unverzweigt, wie beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl; besonders bevorzugt C₁-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl

35 und ganz besonders bevorzugt Methyl.

40 Ganz besonders bevorzugte Verbindungen der allgemeinen Formel I sind 2-Hydroxyethyl(meth)acrylat und 3-Hydroxypropyl(meth)acrylat.
Besonders geeignete Verbindungen mit mindestens zwei terminalen ethylenischen Doppelbindungen pro Molekül sind Verbindungen der allgemeinen Formel II

in denen die Variablen wie folgt definiert sind:

- R^1, R^2: verschieden oder vorzugsweise gleich und wie oben stehend definiert
- m: eine ganze Zahl von 0 bis 2, bevorzugt 1;
- A^2: CH_2 oder $\text{-CH}_2\text{-CH}_2\text{-}$ oder $R^5\text{-CH}$ oder para-C_6H_4 für den Fall, dass $m = 0$, CH, C-OH, C-O-C(O)-CH=CH$_2$, C-O-CO-C(CH_3)=CH$_2$, R5-C oder 1,3,5-C_6H_3 für den Fall, dass $m = 1$, und Kohlenstoff für den Fall, dass $m = 2$;
- R^5: gewählt aus C_1-C_2-Alkyl, wie beispielsweise $\text{n-C}_4\text{H}_9$, $\text{n-C}_3\text{H}_7$, iso-C_3H_7 und vorzugsweise C_2H_5 und CH_3, oder Phenyl,
- A^3, A^4, A^6: gleich oder verschieden und gewählt aus C_1-C_{20}-Alkyle, wie beispielsweise $\text{-CH}_2\text{-}$, $\text{-CH(CH}_3\text{-}$, $\text{-CH(}C_2\text{H}_5\text{-}$, $\text{-}(\text{CH}_2)\text{}_{10}\text{-}$, $\text{-CH(}CH_3\text{-})\text{-}(\text{CH}_2)\text{}_2\text{-CH(}CH_3\text{-)}$; cis- oder trans-C_4-C_{10}-Cycloalkyle, wie beispielsweise cis-1,3-Cyclopentyliden, trans-1,3-Cyclopentyliden cis-1,4-Cyclohexyliden, trans-1,4-Cyclohexyliden;
- C_1-C_{20}-Alkenen, in denen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch Sauerstoff ersetzt sind, wie beispielsweise $\text{-CH}_2\text{-O-CH}_2\text{-}$, $\text{-CH}_2\text{-O-CH}_2\text{-}$, $\text{-CH}_2\text{-O-CH}_2\text{-}$, $\text{-[(CH}_2\text{)_2\text{-O}]_2\text{-}(CH}_2\text{)_2\text{-}$, $\text{-[(CH}_2\text{)_2\text{-O}]_3\text{-}(CH}_2\text{)_2\text{-}$;
- C_1-C_{20}-Alkenen, substituiert mit bis zu 4 Hydroxygruppen, wobei in C_1-C_{20}-Alkenen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch
Sauerstoff ersetzt sind, wie beispielsweise -CH₂-O-CH₂-CH(OH)-CH₂⁻,
-CH₂-O-[CH₂-CH(OH)-CH₂]₂⁻, -CH₂-O-[CH₂-CH(OH)-CH₂]₃⁻;

C₆-C₁₄-Arylen, wie beispielsweise para-C₆H₄.

Besonders bevorzugte Beispiele für Verbindungen der allgemeinen Formel II sind Tri-
methylolpropantriacrylat, Triacrylat von dreifach ethoxyliertem Trimethylolpropan, Pen-
taerythrittrimethacrylat und Pentaerythrittetramethacrylat.

Ein weiterer sehr gut geeigneter Vertreter für Moleküle mit mindestens zwei terminalen
ethylenisch ungesättigten Doppelbindungen pro Molekül ist Ethyenglycoldiacrylat.

Weitere sehr gut geeignete Vertreter für Moleküle mit mindestens zwei terminalen ethy-
lenisch ungesättigten Doppelbindungen pro Molekül sind partiell oder erschöpfend

(meth)acylierte Polyole wie beispielsweise partiell oder erschöpfend (meth)acyliertes dimeres Trimethylolpropan, partiell oder erschöpfend (meth)acyliertes dimeres Tri-
methylololethan, partiell oder erschöpfend (meth)acyliertes dimerer Pentaerythrit.

Photopolymerisierbare Verbindung (C) kann frei in erfindungsgemäßer Tinte für das

Ink-Jet-Verfahren vorliegen und fungiert dann als Reaktivverdünner. Besonders bevor-
zugt ist es aber, wenn man photopolymerisierbare Verbindung (C) vollständig oder
unvollständig mit hyperverzweigtem Polyurethan (a) umsetzt. Das Umsetzen kann man
beispielsweise durch Erwärmen oder Zugabe mindestens eines Katalysators be-
schleunigen, wobei als Katalysatoren die oben beschriebenen aus der Polyurethan-
chemie bekannten Katalysatoren geeignet sind.

In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße Tinten
1 bis 20 Gew.-%, bevorzugt 1,5 bis 15 Gew.-% (A),
0,01 bis 20 Gew.-%, bevorzugt 1 bis 10 Gew.-% (B)
0 bis 10 Gew.-%, bevorzugt 0,01 bis 9 Gew.-% (C),

wobei Angaben in Gew.-% jeweils bezogen auf das Gesamtgewicht der betreffenden erfindungsgemäßen Tinte sind.

Erfindungsgemäße Tinten für das Ink-Jet-Verfahren können weiterhin mindestens ei-
nen Zuschlagstoff (D) enthalten.

Als Zuschlagstoff (D) können erfindungsgemäße Tinten für das Ink-Jet-Verfahren ein
oder mehrere organische Lösungsmittel enthalten. Niedermolekulares Polytetrahydro-
furan (Poly-THF) ist ein bevorzugter Zuschlagstoff (D), es kann allein oder vorzugswei-
se im Gemisch mit einem oder mehreren schwer verdampfbaren, in Wasser löslichen oder mit Wasser mischbaren organischen Lösungsmitteln eingesetzt werden.

Bevorzugt verwendetes niedermoleulares Polytetrahydrofuran hat üblicherweise ein mittleres Molekulargewicht M_n von 150 bis 500 g/mol, bevorzugt von 200 bis 300 g/mol und besonders bevorzugt von etwa 250 g/mol (entsprechend einer Molekulargewichtsverteilung).

Wenn Polytetrahydrofuran im Gemisch mit weiteren organischen Lösungsmitteln als Zuschlagstoff (D) verwendet wird, werden hierfür im Allgemeinen schwer verdampfbare (d.h. in der Regel bei Normaldruck einen Siedepunkt $>100^\circ\text{C}$ aufweisende) und damit eine wasserrückhaltende Wirkung besitzende organische Lösungsmittel eingesetzt, die in Wasser löslich oder mit Wasser mischbar sind.

Als Lösungsmittel eignen sich mehrwertige Alkohole, bevorzugt unverzweigte und ver-

zweigte mehrwertige Alkohole mit 2 bis 8, insbesondere 3 bis 6, Kohlenstoffatomen, wie Ethylenglykol, 1,2- und 1,3-Propylenlykol, Glycerin, Erythrit, Pentaerythrit, Pentite wie Arabit, Adonit und Xylit und Hexite wie Sorbit, Mannit und Dulcit.

Weitere geeignete Lösungsmittel sind Polyethylen- und Polypropylenlykole, worunter auch die niederen Polymere (Di-, Tri- und Tetramere) verstanden werden sollen, und deren Mono- (vor allem C_1-C_8-, insbesondere C_1-C_2-)alkylether. Bevorzugt sind Poly-

ethylen- und Polypropylenlykole mit mittleren Molekulargewichten von 100 bis 1500 g/mol, insbesondere von 200 bis 800 g/mol, vor allem von 300 bis 500 g/mol. Als Bei-

spiele seien Di-, Tri- und Triethylyenglykol, Diethylyglykolmonomethyl-,-ethyl-, -propyl- und -butylether, Triethylenglykolmonomethyl-, -ethyl-, -propyl- und -butylether, Di-, Tri- und Tetra-1,2- und -1,3-propylenlykol und Di-, Tri- und Tetra-1,2- und -1,3-

propylenlykolmonomethyl-, -ethyl-, -propyl- und -butylether genannt.

Weiterhin als Lösungsmittel geeignet sind Pyrrolidon und N-Alkylpyrrolidone, deren Alkylkette vorzugsweise 1 bis 4, vor allem 1 bis 2, Kohlenstoffatome enthält. Beispiele für geeignete Alkylpyrrolidone sind N-Methylpyrrolidon, N-Ethylpyrrolidon und N-(2-

Hydroxyethyl)pyrrolidon.

Beispiele für besonders bevorzugte Lösungsmittel sind 1,2- und 1,3-Propylenlykol, Glycerin, Sorbit, Diethylyenglykol, Polyethylenglykol (M_n 300 bis 500 g/mol), Diethy-

lyenglykolmonobutylether, Triethylenglykolmonobutylether, Pyrrolidon, N-

Methylpyrrolidon und N-(2-Hydroxyethyl)pyrrolidon.
Polytetrahydrofuran kann auch mit einem oder mehreren (z.B. zwei, drei oder vier) der oben aufgeführten Lösungsmitteln gemischt werden.

In einer Ausführungsform der vorliegenden Erfindung können erfindungsgemäße Tinten für das Ink-Jet-Verfahren 0,1 bis 80 Gew.-%, bevorzugt 5 bis 60 Gew.-%, besonders bevorzugt 10 bis 50 Gew.-%, und ganz besonders bevorzugt 10 bis 30 Gew.-%, nicht-wässrige Lösungsmittel enthalten.

Nicht-wässrige Lösungsmittel als Zuschlagstoffe (D), insbesondere auch die genannten besonders bevorzugten Lösungsmittelkombinationen, können vorteilhaft durch Harnstoff (in der Regel 0,5 bis 3 Gew.-%, bezogen auf das Gewicht der Farbmittelzubereitung) ergänzt werden, der die wasserrückhaltende Wirkung des Lösungsmittelgemisches noch verstärkt.

Weitere geeignete Zuschlagstoffe (D) sind gegebenenfalls alkoxylierte Acetylendiole, beispielsweise der allgemeinen Formel IV

\[
\begin{array}{c}
\text{R}^7 \\
\text{R}^8 \\
\text{O} \\
\text{H} \\
\hline
\text{O} \\
\text{(AO)}_b \\
\text{H}
\end{array}
\]

IV

in denen die Variablen wie folgt definiert sind:

- \(\text{AO} \) steht für gleiche oder verschiedene Alkylenoxideinheiten, beispielsweise Propylenoxideinheiten, Butylensoxideinheiten und insbesondere Ethylenoxideinheiten,

- \(\text{R}^7, \text{R}^8, \text{R}^9, \text{R}^{10} \) sind jeweils gleich oder verschieden und gewählt aus \(\text{C}_1-\text{C}_{10}\)-Alkyl, unverzweigt oder verzweigt, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, 2-Ethylhexyl, n-Nonyl, n-Decyl, besonders bevorzugt \(\text{C}_1-\text{C}_7\)-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl;

- \(b \) ist gleich oder verschieden und gewählt aus ganzen Zahlen im Bereich von 0 bis 50, bevorzugt 0 oder 1 bis 30 und besonders bevorzugt 3 bis 20;

- \(\text{AO} \) ist wie oben stehend definiert.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind \(\text{R}^9 \) oder \(\text{R}^7 \) gleich Methyl.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind \(\text{R}^8 \) und \(\text{R}^7 \) gleich Methyl, und \(\text{R}^8 \) und \(\text{R}^{10} \) gleich Isobutyl.

Andere bevorzugte Zuschlagstoffe sind gegebenenfalls alkoxylierte Siliziumverbindungen der Formel V

\[
[(\text{CH}_3)_3\text{Si-O}]_2\text{Si}(\text{CH}_3)\text{-O(\text{CH}_2\text{CH}_2\text{O})}_b\text{H} \qquad \text{V}
\]

in der die Variable \(b \) wie vorstehend definiert ist.
Erfundungsgemäße Tinten für das Ink-Jet-Verfahren können weiterhin einen weiteren Photoinitiator enthalten, der nicht gleich dem Photoinitiator (b) ist, der erfindungsgemäße bei der Herstellung von erfindungsgemäßem strahlungshärtbarem Produkt (A) eingesetzt wird, aber aus den oben genannten Photoinitiatoren gewählt wird.

Erfindungsgemäße Tinten für das Ink-Jet-Verfahren haben eine dynamische Viskosität im Bereich von 2 bis 80 mPa·s, bevorzugt 3 bis 40 mPa·s, besonders bevorzugt bis 25 mPa·s, gemessen bei 23°C nach DIN 53018.

Die Oberflächenspannung erfindungsgemäßer Tinten für das Ink-Jet-Verfahren beträgt in der Regel 24 bis 70 mN/m, insbesondere 25 bis 60 mN/m, gemessen bei 25°C nach DIN 53993.

Der pH-Wert erfindungsgemäßer Tinten für das Ink-Jet-Verfahren liegt im allgemeinen bei 5 bis 10, vorzugsweise bei 7 bis 9.

Erfindungsgemäße Tinten für das Ink-Jet-Verfahren zeigen insgesamt vorteilhafte Anwendungseigenschaften, vor allem gutes Anschreibverhalten und gutes Dauerschreibverhalten (Kogation) sowie, insbesondere bei Verwendung der besonders bevorzugten Lösungsmittellkombination, gutes Trocknungsverhalten, und ergeben Druckbilder hoher Qualität, d.h. hoher Brillanz und Farbtiefe sowie hoher Reib-, Licht-, Wasser- und Nassreibeichtheit. Besonders geeignet sind sie zum Drucken auf gestrichenes und untargestrichenes Papier sowie Textil.

Ein weiterer Aspekt der vorliegenden Erfindung ist ein Verfahren zur Herstellung von erfindungsgemäßen Tinten für das Ink-Jet-Verfahren. Das erfindungsgemäße Verfahren zur Herstellung von Tinten für das Ink-Jet-Verfahren ist dadurch gekennzeichnet, dass man (A), (B), Wasser und gegebenenfalls (C) miteinander vermischt, beispielsweise in einem oder in mehreren Schritten.

Als geeignete Vermischungstechniken sind beispielsweise Verrühren und intensives Schütteln zu nennen sowie das Dispergieren, beispielsweise in Kugelmühlen oder Rührwerkskugelmühlen.

In einer Ausführungsform der vorliegenden Erfindung geht man aus von einem oder mehreren Pigmenten (B), die in partieller Form vorliegen, d.h. in Form von Partikeln.

Bevorzugt geht man zur Durchführung der vorliegenden Erfindung von vordispergier tem Pigment (B) aus, das heißt, man dispergiert vor dem Vermischen mit u.a. (A) und gegebenenfalls (C) ein oder mehrere Pigmente in einer Apparatur mit mindestens einem Additiv, beispielsweise mindestens einem Lösungsmittel, beispielsweise Wasser, C1-C6-Alkanol, Polyetherol, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, n-
Butylacetat vor. Weiterhin kann man Dispergieradditive während des Dispergier- oder Vordispergierprozesses zugeben. Als Dispergieradditive sind beispielsweise Verbindungen geeignet, die unten näher beschrieben werden. Andere geeignete Additive sind Biozide, beispielsweise 1,2-Benzisothiazolin-3-on („BIT“) (kommerziell erhältlich als Proxel®-Marken der Fa. Avecia Lim.) oder dessen Alkalimetallsalze; andere geeignete Biozide sind 2-Methyl-2H-isothiazol-3 („MIT“) und 5-Chlor-2-methyl-2H-isothiazol-3-on („CIT“).

Geeignete Dispergieradditive sind weiterhin insbesondere mehrfach alkoxyierte Fettalkohole, beispielsweise 3 bis 50-fach ethoxylierte unverzweigte C_{10}-C_{20}-Alkanole.

Druck- und Temperaturbedingungen beim Vordispergieren sind im Allgemeinen unkritisch, so hat sich beispielsweise Normaldruck als geeignet erwiesen. Als Temperaturen haben sich beispielsweise Temperaturen im Bereich von 10°C bis 100°C als geeignet erwiesen.

Die Reihenfolge der Zugabe bei dem Vermischen von (A), (B), gegebenenfalls (C) und gegebenenfalls (D) ist an sich unkritisch. So ist es in einer Variante der vorliegenden Erfindung möglich, dass man zunächst ein hyperverzweigtes Polyurethan (a) in Gegenwart von Photoinitiator (b) synthetisiert und somit (A) herstellt, anschließend Pigment (B) mit (A) und (D) dispergiert und danach mit Lösungsmittel wie beispielsweise Wasser verdünnt.
In einer anderen Variante der vorliegenden Erfindung synthetisiert man (a) in Gegenwart von (b) und stellt somit (A) her, fügt man (C) hinzu, danach dispergiert man mit (B), verdünnt mit Wasser und vermischt optional mit weiterem (b), (C) und (D).

Das Gewichtsverhältnis von Pigment (B) zu Wasser kann man in weiten Bereichen wählen und kann beispielsweise im Bereich von 1:100 bis 1:2 liegen.

Der mittlere Durchmesser von Pigment (B) liegt nach dem Vordispergieren üblicherweise im Bereich von 20 nm bis 1,5 μm, bevorzugt im Bereich von 60 bis 200 nm, besonders bevorzugt im Bereich von 60 bis 150 nm und bezeichnet im Zusammenhang mit der vorliegenden Erfindung allgemein das Volumenmittel.

Wünscht man Ruß erfindungsgemäß als Pigment (B) einzusetzen, so bezieht sich der Partikeldurchmesser auf den mittleren Durchmesser der Primärpartikel.

Besonders geeignet sind die erfindungsgemäßen Tinten für das Bubble-Jet-Verfahren und für das Verfahren mittels eines piezoelektrischen Kristalls.
Als Substratmaterialien sind geeignet:

cellulosehaltige Materialien wie Papier, Pappe, Karton, Holz und Holzwerkstoffe, die auch lackiert oder anderweitig beschichtet sein können,

metallische Materialien wie Folien, Bleche oder Werkstücke aus Aluminium, Eisen, Kupfer, Silber, Gold, Zink oder Legierungen dieser Metalle, die lackiert oder anderweitig beschichtet sein können,

silikatische Materialien wie Glas, Porzellan und Keramik, die beschichtet sein können,

polymere Materialien jeder Art wie Polystyrol, Polyamide, Polyester, Polyethylen, Polypropylen, Melaminharze, Polyacrylate, Polyacrylnitril, Polyurethane, Polycarbonate, Polyvinylchlorid, Polyvinylalkohole, Polyvinylacetate, Polyvinylpyrrolidone und entsprechende Copolymere und Blockcopolymere, biologisch abbaubare Polymere und natürliche Polymere wie Gelatine,

Leder, sowohl Naturleder als auch Kunstleder, als Glatt-, Nappa- oder Velourleder,

Lebensmittel und Kosmetika,

und insbesondere
textile Substrate wie Fasern, Garne, Zwirne, Maschenware, Webware, Non-wovens und konfektionierte Ware aus Polyester, modifiziertem Polyester, Polyestermisschgewebe, cellulosehaltige Materialien wie Baumwolle, Baumwollmisschgewebe, Jute, Flachs, Hanf und Ramie, Viskose, Wolle, Seide, Polyamid, Polyamidmisschgewebe, Polyacrylnitril, Triacetat, Acetat, Polycarbonat, Polypropylen, Polyvinylchlorid, Polyes-
termikfasern und Glasfasergewebe.

Als aktinische Strahlung ist elektromagnetische Strahlung mit einem Wellenlängenbereich von 200 nm bis 450 nm geeignet. Geeignet ist beispielsweise aktinische Strahlung mit einer Energie im Bereich von 70 mJ/cm² bis 2000 mJ/cm². Aktinische Strahlung kann man zweckmäßig beispielsweise kontinuierlich oder in Form von Blitzcn einbringen.

In einer Ausführungsform der vorliegenden Erfindung kann man nach dem Bedrucken und vor dem Behandeln mit aktinischer Strahlung zwischentrocknen, beispielsweise thermisch oder mit IR-Strahlung. Geeignet sind beispielsweise Temperaturen im Bereich von 30 bis 120°C über einen Zeitraum im Bereich von 1 Minute bis 24 Stunden,
bevorzugt bis zu 30 min, besonders bevorzugt bis zu 5 min. Als IR-Strahlung ist beispielsweise IR-Strahlung in einem Wellenbereich über 800 nm geeignet. Geeignete Vorrichtungen zum Zwischentrocknen sind beispielsweise Trockenschränke oder Vakuumtrockenschränke für thermische Zwischentrocknung, weiterhin IR-Lampen.

Auch die bei der Einwirkung von aktinischer Strahlung entwickelte Hitze kann zwischentrocknend wirken.

Gemäß einer weiteren Ausführungsform der vorliegenden Erfindung kann man mindestens zwei, bevorzugt mindestens drei verschiedene erfindungsgemäße Tinten für das Ink-Jet-Verfahren zu Sets kombinieren, wobei verschiedene erfindungsgemäße Tinten jeweils unterschiedliche Pigmente mit jeweils unterschiedlicher Farbe enthalten.

Ein weiterer Gegenstand der vorliegenden Erfindung sind wasserlösliche strahlungshärtbare Produkte (A), erhältlich durch Vermischen und gegebenenfalls Umsetzung von

mindestens einem hypervorzweigten Polyurethan (a) mit 0,001 bis 10 Gew.-% mindestens eines Photoinitiators (b),

oder durch Synthese von mindestens einem hypervorzweigten Polyurethan (a) in Gegenwart von 0,001 bis 10 Gew.-%, bevorzugt 0,01 bis 5 Gew.-% mindestens einem Photoinitiator (b).

Dabei sind Angaben in Gew.-% auf (a) bezogen.

Hypervorzweigtes Polyurethan (a) und Photoinitiatoren (b) sind vorstehend beschrieben.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei mindestens einem hypervorzweigten Polyurethan (a) um ein hypervorzweigtes Poly-
urethan (a) mit mindestens einer NCO-Gruppe, bevorzugt mit mindestens zwei NCO-Gruppen pro Molekül (Zahlenmittel).

In einer anderen bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei wasserlöslichem strahlungshärtbarem Produkt (A) um ein wasserlösliches strahlungshärtbares Produkte (A) mit mindestens einer COOH-Gruppe pro Molekül (Zahlenmittel).

In einer Ausführungsform der vorliegenden Erfindung handelt es sich bei mindestens einem Photoinitiator um einen α-Zerfaller oder um einen Wasserstoff-abstrahierenden Photoinitiator.

In einer Ausführungsform der vorliegenden Erfindung enthalten erfindungsgemäße wasserlösliche strahlungshärtbare Produkte (A) als weitere Komponente (C) mindestens eine photopolymerisierbare Verbindung, gewählt aus Verbindungen mit mindestens zwei vorzugsweise terminalen ethylenischen Doppelbindungen pro Molekül und Verbindungen der allgemeinen Formel I

![Chemical Structure](image_url)

in der die Variablen wie folgt definiert sind:

\[R^1, R^2 \] gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff und C\(_{1-10}\)-Alkyl,

\[X^1 \] gewählt aus Sauerstoff und N-R\(^3\),

\[A^1 \] gewählt aus C\(_{1-20}\)-Alkenen, un unsubstituiert oder ein- oder mehrfach substituiert mit C\(_{1-4}\)-Alkyl, Phenyl oder O-C\(_{1-4}\)-Alkyl, wobei in C\(_{1-20}\)-Alkenen eine oder mehrere nicht-benachbarte CH\(_2\)-Gruppen durch Sauerstoff ersetzt sein können;

\[X^2 \] gewählt aus Hydroxyl und NH-R\(^3\),

\[R^3 \] gleich oder verschieden und gewählt aus Wasserstoff, C\(_{1-10}\)-Alkyl und Phenyl.

In einer Ausführungsform der vorliegenden Erfindung wählt man Verbindungen mit mindestens zwei vorzugsweise terminalen ethylenischen Doppelbindungen pro Molekül aus Verbindungen der allgemeinen Formel II
in denen die Variablen wie folgt definiert sind:

5 R^1, R^2 verschieden oder gleich und unabhängig voneinander gewählt aus Wasserstoff und C$_1$-C$_{10}$-Alkylen

m eine ganze Zahl von 0 bis 2,

A^2 CH$_2$ oder –CH$_2$-CH$_2$- oder R5-CH oder para-C$_6$H$_4$ für den Fall, dass $m = 0$,

10 CH, C-OH, C-O-C(O)-CH=CH$_2$, C-O-CO-C(CH$_3$)=CH$_2$, R5-C oder 1,3,5-C$_6$H$_8$ für den Fall, dass $m = 1$,

und Kohlenstoff für den Fall, dass $m = 2$;

R^5 gewählt aus C$_1$-C$_4$-Alkylen und Phenyl,

A^3, A^4, A^5 gleich oder verschieden und gewählt aus

15 C$_1$-C$_{20}$-Alkylen, cis- oder trans-C$_4$-C$_{10}$-Cycloalkylen, C$_1$-C$_{20}$-Alkylen, in denen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch Sauerstoff ersetzt sein können,

C$_1$-C$_{20}$-Alkylen, substituiert mit bis zu 4 Hydroxygruppen, wobei in C$_1$-C$_{20}$-Alkylen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch Sauerstoff ersetzt sein können, C$_6$-C$_{14}$-Arylen.

Erfindungsgemäße strahlungshärtbare Produkte (A) eignen sich besonders gut zur Herstellung von Tinten für das Ink-Jet-Verfahren.

25 Die Erfindung wird durch Arbeitsbeispiele erläutert.

Allgemeine Vorbemerkungen:
Der NCO-Gehalt wurde jeweils gemäß DIN 53185 titrimetrisch verfolgt.

30 Es wurde β-Alaninlösung Al-1 wie folgt hergestellt:
In einem Erlenmeyerkolben wurden 57,0 g β-Alanin in 300 g destilliertem Wasser gelöst, 65,0 g Triethylamin und 120,0 g Aceton zugegeben und die Mischung eine Stunde unter Rückfluss gekocht. Man ließ auf Zimmertemperatur abkühlen und erhielt β-Alaninlösung Al-1.

I. Herstellung von erfindungsgemäßen strahlungshärtbaren Produkten

I.1. Herstellung von erfindungsgemäßen strahlungshärtbarem Produkt A.1

In einem 2-l-Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, wurden unter Stickstoff 200 g (0,9 mol) Isophorondiisocyanat (IPDI) vorgelegt. Man gab unter Rühren innerhalb 1 min eine Lösung von 60 g (0,45 mol) Trimethylolpropan (TMP) und 16 g 2-Hydroxy-2-methylphenylpropanon (b.1)

\[
\text{OH} \quad \text{(b.1)}
\]

in 276 g 2-Butanon zu.

Danach dosierte man 0,1 g Di-n-butyldilaurat und erwärme die resultierende Reaktionsmischung unter Rühren auf 60°C. Man verfolgte die Abnahme des NCO-Gehalts titrimetrisch. Bei Erreichen eines NCO-Gehalts von 5,5 Gew.-% wurden 129 g (0,17 mol) eines Polyisocyanurate auf Basis Hexamethylendiisocyanat mit einem NCO-Gehalt von 22,5 Gew.-% und einer mittleren Funktionalität von 3,7 NCO-Gruppen pro Molekül, gelöst in 129 g 2-Butanon, zugesetzt und die resultierende Reaktionsmischung eine Stunde bei 60°C gerührt. Der NCO-Gehalt des resultierenden hydropolymerisierten Polyurethans (a.1) betrug danach 6,6 Gew.-%. Danach gab man 31,0 g 2-Hydroxyethylacrylat (C.1), stabilisiert mit 100 ppm 4-Hydroxy-TEMPO (Formel III), gelöst in 73 g Aceton, und danach 0,1 g Di-n-butyldilaurat zu und rührte die resultierende Reaktionsmischung drei Stunden bei 60°C. Danach setzte man der resultierenden Reaktionsmischung 742 g auf 60°C temperierte β-Alaninlösung Al-1 zu.

Danach wurde nochmals 30 min bei 60°C gerührt. Anschließend wurden Aceton und 2-Butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar) bei 60°C abdes-

I.2. Herstellung eines hyperverzweigten Polyurethans (a.2)

In einem 2-l-Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, wurden unter Stickstoff 200 g (0,9 mol) Isophoroniisocyanat (IPDI) vorgelegt. Man gab unter Rühren innerhalb 1 min eine Lösung von 60 g (0,45 mol) Trimethylolpropan (TMP) in 260 g 2-Butanon zu.

Danach dosierte man 0,02 g Di-n-butylzinn-dilaurat und erwärmte die resultierende Reaktionsmischung unter Rühren auf 60°C. Man verfolgte die Abnahme des NCO-Gehalts. Bei Erreichen eines NCO-Gehalts von 5,5 Gew.-% wurden 129 g (0,17 mol) eines Polyisocyanurat auf Basis Hexamethylendiisocyanat mit einem NCO-Gehalt von 22,5 Gew.-% und einer mittleren Funktionalität von 3,7 NCO-Gruppen pro Molekül, gelöst in 129 g 2-Butanon, zugesetzt und die resultierende Reaktionsmischung eine Stunde bei 60°C gerührt. Der NCO-Gehalt des resultierenden hyperverzweigten Polyurethans (a.2) betrug danach 6,3 Gew.-%. Man erhielt hyperverzweigtes Polyurethan (a.2), gelöst in 2-Butanon.

I.3. Herstellung von erfindungsgemäßem wasserlöslichem strahlungshärtbarem Produkt (A.2)

192 g Lösung von hyperverzweigtem Polyurethan (a.2) aus I.2 wurden in einem 2-l- Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, unter Stickstoff vorgelegt. Man dosierte unter Rühren eine Mischung aus 4 g 2-Hydroxy-2-methylphenylpropanon (b.1), 16 g 2-Hydroxyethylacrylat (C.1), stabilisiert mit 100 ppm 4-Hydroxy-TEMPO (Formel III), 0,02 g Di-n-butylzinn-dilaurat und 20 g 2-Butanon. Anschließend wurde auf 60°C erwärmt und drei Stunden bei 60°C gerührt.

Anschließend wurde der Reaktionsmischung 156,2 g auf 60°C temperierte β-Alaninlösung Al-1 zugesetzt.

Danach rührte man die Reaktionsmischung 30 min bei 60°C. Anschließend wurden Aceton und 2-Butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar) bei 60°C abdestilliert und der Rückstand mit destilliertem Wasser aufgenommen. Man erhielt eine 20 Gew.-% wässrige Lösung des erfindungsgemäßen wasserlöslichen strahlungshärtbaren Produkts (A.2).

I.4. Herstellung von erfindungsgemäßem wasserlöslichem strahlungshärtbarem Produkt (A.3)
192 g von hypovernzweigtem Polyurethan (a.2) aus I.2 wurden in einem 2-l-
Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropf-
trichter, unter Stickstoff vorgelegt. Man dosierte unter Rühren eine Mischung aus 8 g 2-
Hydroxy-2-methylphenylpropanon (b.1), 16 g 2-Hydroxyethylacrylat (C.1), stabilisiert
mit 100 ppm 4-Hydroxy-TEMPO (Formel III), 0,02 g Di-n-butylzinn-dilaurat und 24 g 2-
Butanon. Anschließend wurde auf 60°C erwärmt und drei Stunden bei 60°C gerührt.
Anschließend wurde der Reaktionsmischung 156,2 g auf 60°C temperierte β-
Alaninlösung Al-1 zugesetzt.

Danach rührte man die Reaktionsmischung 30 min bei 60°C. Anschließend wurden
Aceton und 2-Butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar)
bei 60°C abdestilliert und der Rückstand mit destilliertem Wasser aufgenommen. Man
erhielt eine 30 Gew.-% wässrige Lösung des erfindungsgemäßen wasserlöslichen
strahlungshärtbaren Produkts (A.3).

I.5. Herstellung von erfindungsgemäsem strahlungshärtbarem Produkt (A.4)

192 g von hypovernzweigtem Polyurethan (a.2) aus I.2 wurden in einem 2-l-
Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropf-
trichter, unter Stickstoff vorgelegt. Man dosierte unter Rühren eine Mischung aus 4 g 2-
Hydroxy-2-methylphenylpropanon (b.1), 4 g 4-(N,N-Dimethylamino)-
benzosäureethylester (b.3), 16 g 2-Hydroxyethylacrylat (C.1), stabilisiert mit 100 ppm
4-Hydroxy-TEMPO (Formel III), 0,02 g Di-n-butylzinn-dilaurat und 24 g 2-Butanon. An-
schließend wurde auf 60°C erwärmt und drei Stunden bei 60°C gerührt. Anschließend
wurde der Reaktionsmischung 156,2 g auf 60°C temperierte β-Alaninlösung Al-1 zuge-
setzt.

Danach rührte man die Reaktionsmischung 30 min bei 60°C. Anschließend wurden
Aceton und 2-Butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar)
bei 60°C abdestilliert und der Rückstand mit destilliertem Wasser aufgenommen. Man
erhielt eine 30 Gew.-% wässrige Lösung des erfindungsgemäßen wasserlöslichen
strahlungshärtbaren Produktes (A.4).

I.6. Herstellung von erfindungsgemäsem strahlungshärtbarem Produkt (A.5)

192 g von hypovernzweigtem Polyurethan (a.2) aus I.2 wurden in einem 2-l-
Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropf-
trichter, unter Stickstoff vorgelegt. Man dosierte unter Rühren eine Mischung aus 4 g 2-
Hydroxy-2-methylphenylpropanon (b.1), 4 g Benzoylphosphinoxid (b.4), 16 g 2-
Hydroxyethylacrylat (C.1), stabilisiert mit 100 ppm 4-Hydroxy-TEMPO (Formel III), 0,02
g Di-n-butylzinn-dilaurat und 24 g 2-Butanon. Anschließend wurde auf 60°C erwärmt
und drei Stunden bei 60°C gerührt. Anschließend wurde der Reaktionsmischung 156,2 g auf 60°C temperierte β-Alaninlösung Al-1 zugesetzt.

Danach rührte man die Reaktionsmischung 30 min bei 60°C. Anschließend wurden Aceton und 2-Butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar) bei 60°C abdestilliert und der Rückstand mit destilliertem Wasser aufgenommen. Man erhielt eine 30 Gew.-% wässrige Lösung des erfindungsgemäßen strahlungshärtbaren Produktes (A.5).

I.7. Herstellung von erfindungsgemäsem strahlungshärtbarem Produkt (A.6)

192 g von hyperverzweigtem Polyurethan (a.2) aus I.2 wurden in einem 2-l-Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, unter Stickstoff vorgelegt. Man dosierte unter Rühren eine Mischung aus 2 g 2-Hydroxy-2-methylphenylpropanon (b.1), 2 g Benzoylphosphinoxid (b.4), 16 g 2-Hydroxyethylacrylat (C.1), stabilisiert mit 100 ppm 4-Hydroxy-TEMPO (Formel III), 0,02 g Di-n-butylzinn-dilaurat und 20 g 2-Butanon. Anschließend wurde auf 60°C erwärmt und drei Stunden bei 60°C gerührt. Anschließend wurde der Reaktionsmischung 156,2 g auf 60°C temperierte β-Alaninlösung Al-1 zugesetzt.

Danach rührte man die Reaktionsmischung 30 min bei 60°C. Anschließend wurden die Lösemittel Aceton und 2-Butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar) bei 60°C abdestilliert und der Rückstand mit destilliertem Wasser aufgenommen. Man erhielt eine 30 Gew.-% wässrige Lösung des erfindungsgemäßen wasserlöslichen strahlungshärtbaren Produktes (A.6).

I.8 Herstellung von erfindungsgemäsem wasserlöslichem strahlungshärtbarem Produkt (A.7)

192 g von hyperverzweigtem Polyurethan (a.2) aus I.2 wurden in einem 2-l-Dreihalskolben, ausgestattet mit Rührer, Rückflusskühler, Gaseinleitrohr und Tropftrichter, unter Stickstoff vorgelegt. Man dosierte unter Rühren eine Mischung aus 10,3 g 2-Hydroxy-2-methylphenylpropanon (b.1), 5,3 g 2-Hydroxyethylacrylat (C.1), stabilisiert mit 100 ppm 4-Hydroxy-TEMPO (Formel III), 0,02 g Di-n-butylzinn-dilaurat und 15,6 g Aceton. Anschließend wurde auf 60°C erwärmt und drei Stunden bei 60°C gerührt. Anschließend wurde der Reaktionsmischung 156,2 g auf 60°C temperierte β-Alaninlösung Al-1 zugesetzt.

Danach rührte man die Reaktionsmischung 30 min bei 60°C. Anschließend wurden die Lösemittel Aceton und 2-Butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar) bei 60°C entfernt und der Rückstand mit destilliertem Wasser aufgenommen.
Man erhielt eine 30 Gew.-% wässrige Lösung des erfindungsgemäßen wasserlöslichen strahlungshärtbaren Produkts (A.7).

I.9 Herstellung von erfindungsgemäßem wasserlöslichem strahlungshärtbarem Produkt (A.8)

192 g von hyperverzweigtem Polyurethan (a.2) aus I.2 wurden in einem 2-L-Dreihielskolben, ausgestattet mit Rührer, Rückflusskühler, Gasinleitrohr und Tropftrichter, unter Stickstoff vorgelegt. Man dosierte unter Rühren eine Mischung aus 4 g Phenylbenzylketon (b.5), 16 g 2-Hydroxyethylacrylat (C.1), stabilisiert mit 100 ppm 4-Hydroxy-TEMPO (Formel III), 0,02 g Di-n-butylzinn-dilaurat und 20 g 2-Butanon. Anschließend wurde auf 60°C erwärmt und drei Stunden bei 60°C gerührt. Anschließend wurde der Reaktionsmischung 156,2 g auf 60°C temperierte β-Alaninlösung Al-1 zugesetzt.

Danach rührte man die Reaktionsmischung 30 min bei 60°C. Anschließend wurde das Lösemittel 2-butanon am Rotationsverdampfer unter vermindertem Druck (2 mbar) bei 60°C entfernt und der Rückstand mit destilliertem Wasser aufgenommen. Man erhielt eine 30 Gew.-% wässrige Lösung des erfindungsgemäßen wasserlöslichen strahlungshärtbaren Produkts (A.8).

II. Anwendungsbeispiele
II.1. Herstellung von Pigmentanreibungen, allgemeine Vorschrift

25 Pigmentanreibungen für organische Pigmente wurden auf einem Skandex mit 60 g Glaskugeln (Durchmesser 0,25 – 0,5 mm) hergestellt. Die Rezepturen sind in Tabelle 1 zusammengefasst. Nach Einwichen der Ingredienzien und der Glaskugeln im Skandex wurde die resultierende Mischung für eine Zeit nach Tabelle 1 geschüttelt. Danach wurde eine Probe entnommen und der mittlere Durchmesser an dispergiertem Pigment bestimmt (Coulter Counter). Der pH-Wert wurde gemessen und – falls erforderlich – mit Triethanolamin auf 7,5 eingestellt. Man erhielt die Pigmentanreibungen PA.1.1 bis PA.1.3.
Tabelle 1: Ingredienzien und Rezeptparameter für Pigmentanreibungen PA.1.1 bis PA.1.3

<table>
<thead>
<tr>
<th>Ingredienz</th>
<th>PA.1.1</th>
<th>PA.1.2</th>
<th>PA.1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B) gemäß C.I., [g]</td>
<td>P.R. 122, 6</td>
<td>P.BK. 7, 6</td>
<td>P.Y. 138, 6</td>
</tr>
<tr>
<td>(A.1) [g]</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Propylen glykol [g]</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Biozid 1 [g]</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>Phosphorsäure tri-n-Butylester [g]</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Destilliertes Wasser [g]</td>
<td>30,65</td>
<td>30,65</td>
<td>30,65</td>
</tr>
<tr>
<td>Dispergierzeit [h]</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Mittlerer Durchmesser Pigment [nm]</td>
<td>67</td>
<td>120</td>
<td>145</td>
</tr>
</tbody>
</table>

Mengen von Ingredienzien sind stets in g angegeben, wenn nicht ausdrücklich anders angegeben.

Es bedeutet:
Biozid 1: 20 Gew.-% Lösung von 1,2-Benziso-thiazolin-3-on in Propylen glykol

Weitere Pigmentanreibungen wurden erhalten, indem man wie oben beschrieben vorging, jedoch jeweils (A.1) durch (A.2), (A.3) usw. ersetzte. Man erhielt folgende Pigmentanreibungen:

PA.2.1 (magenta, unter Verwendung von (A.2)),
PA.2.2 (schwarz, unter Verwendung von (A.2)),
PA.2.3 (gelb, unter Verwendung von (A.2)),
PA.3.1 (magenta, unter Verwendung von (A.3)),
PA.3.2 (schwarz, unter Verwendung von (A.3)),
PA.3.3 (gelb, unter Verwendung von (A.3)),
PA.4.1 (magenta, unter Verwendung von (A.4)),
PA.4.2 (schwarz, unter Verwendung von (A.4)),
PA.4.3 (gelb, unter Verwendung von (A.4)),
PA.5.1 (magenta, unter Verwendung von (A.5)),
PA.5.2 (schwarz, unter Verwendung von (A.5)),
PA.5.3 (gelb, unter Verwendung von (A.5)),
PA.6.1 (magenta, unter Verwendung von (A.6)),
PA.6.2 (schwarz, unter Verwendung von (A.6)),
PA.6.3 (gelb, unter Verwendung von (A.6)),
PA.7.1 (magenta, unter Verwendung von (A.7)),
PA.7.2 (schwarz, unter Verwendung von (A.7)),
PA.7.3 (gelb, unter Verwendung von (A.7)).
PA.6.3 (gelb, unter Verwendung von (A.6)),

PA.7.1 (magenta, unter Verwendung von (A.7)),
PA.7.2 (schwarz, unter Verwendung von (A.7)),
PA.7.3 (gelb, unter Verwendung von (A.7)),

PA.8.1 (magenta, unter Verwendung von (A.8)),
PA.8.2 (schwarz, unter Verwendung von (A.8)),
PA.8.3 (gelb, unter Verwendung von (A.8)).

II.2 Formulierung von erfindungsgemäßen Tinten für das Ink-Jet-Verfahren

II.2.1 Formulierung der erfindungsgemäßen magenta-farbenen Tinte T1.1 für das Ink-Jet-Verfahren

In einem Becherglas wurden durch Verrühren miteinander vermischt:
25 g PA.1.1,
1 g Harnstoff,
3 g Triethylenglykolmono-n-butylether,
6 g Poly-THF mit einem mittleren Molekulargewicht M_n von 250 g/mol
5 g Polyethylenglykol mit $M_n = 400$ g/mol,
6 g Glycerin,
0,5 g einer 20 Gew.-% Lösung von Benzisothiazolin-3-on in Propylen glykol,
0,5 g ethoxyliertes Trisiloxan der Formel $[(CH_3)_3Si-O]_x$-$Si(CH_3)$-$O(CH_2CH_2O)_y$-H
53 g destilliertes Wasser.

Man filtrierte über ein Glasfaserfilter (Ausschlussgröße 1 μm) und erhielt die erfindungsgemäße Tinte T1.1. Die erfindungsgemäße Tinte T1.1 hatte einen pH-Wert von 7,0 und eine dynamische Viskosität von 2,8 mPa·s.

II.2.2 Formulierung der erfindungsgemäßen schwarzen Tinte T1.2 für das Ink-Jet-Verfahren

In einem Becherglas wurden durch Verrühren miteinander vermischt:
35 g PA.1.2,
1 g Harnstoff,
3 g Triethylenglykolmono-n-butylether,
6 g Poly-THF mit einem mittleren Molekulargewicht M_n von 250 g/mol
5 g Polyethylenglykol mit $M_n = 400$ g/mol,
6 g Glycerin,
0,5 g einer 20 Gew.-% Lösung von Benzisothiazolin-3-on in Propylen glykol,
0,5 g ethoxyliertes Trisiloxan der Formel \([(CH_3)_3Si-O]_2-Si(CH_3)-O(CH_2CH_2O)_n-H\)
43 g destilliertes Wasser.

Man erhielt die erfindungsgemäße Tinte T1.2. Die erfindungsgemäße Tinte T1.2 hatte einen pH-Wert von 7,86 und eine dynamische Viskosität von 3,6 mPa·s.

II.2.3 Formulierung der erfindungsgemäßen gelben Tinte T1.3 für das Ink-Jet-Verfahren

In einem Becherglas wurden durch Verrühren miteinander vermischt:
40 g PA.1.3,
1 g Harnstoff,
3 g Triethylenglykolmono-n-butylether,
6 g Poly-THF mit einem mittleren Molekulargewicht \(M_n\) von 250 g/mol
5 g Polyethylenglykol mit \(M_n = 400\) g/mol,
6 g Glycerin,
0,5 g einer 20 Gew.-% Lösung von Benzisothiazolin-3-on in Propylenglykol,
0,5 g ethoxyliertes Trisiloxan der Formel \([(CH_3)_3Si-O]_2-Si(CH_3)-O(CH_2CH_2O)_n-H\)
38 g destilliertes Wasser.

Man erhielt die erfindungsgemäße Tinte T1.3. Die erfindungsgemäße Tinte T1.3 hatte einen pH-Wert von 6,53 und eine dynamische Viskosität von 3,2 mPa·s.

II.2.4 Herstellung weiterer erfindungsgemäßer Tinten

Man ging vor wie oben beschrieben, ersetzte jedoch PA.1.1, PA.1.2 bzw. PA1.3 durch je eine der Anreibungen PA.2.1 bis PA.8.3. Dabei wählte man stets 25 g magenta-farbene Pigmentanreibung zur Herstellung von magentafarbenen Tinten, 35 g schwarze Pigmentanreibungen zur Herstellung von schwarzen Tinten bzw. 40 g gelbe Pigmentanreibung zur Herstellung von gelben Tinten und dazu jeweils die entsprechende Menge an destilliertem Wasser. Man erhielt die erfindungsgemäßen Tinten T2.1 bis T8.3. Die dynamischen Viskositäten der erfindungsgemäßen Tinten T2.1 bis T8.3 lagen im Bereich von 2,5 bis 4,0 mPa·s.

III. Druckversuche mit erfindungsgemäßen Tinten für das Ink-Jet-Verfahren

Weiterhin wurden die erfindungsgemäßen Tinten T1.1 bis T1.3 mit einem Drucker Epson 3000 720 dpi auf Baumwolle verdruckt. Im Anschluss an den Druck trocknete man

Man erhielt die erfindungsgemäß bedruckten Substrate S1.1 bis S1.3 gemäß Tabelle 3 und bestimmt die Reibechtheit nach ISO-105-D02:1993 und die Waschechtheit nach ISO 105-C06:1994.

Tabelle 3: Echtheiten von erfindungsgemäß bedruckter Baumwolle

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Reibechtheit (trocken)</th>
<th>Waschechtheit</th>
<th>Reibechtheit (nass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1.1</td>
<td>3</td>
<td>3-4</td>
<td>2-3</td>
</tr>
<tr>
<td>S1.2</td>
<td>3</td>
<td>3</td>
<td>2-3</td>
</tr>
<tr>
<td>S1.3</td>
<td>3-4</td>
<td>4</td>
<td>2-3</td>
</tr>
</tbody>
</table>
Patentansprüche

1. Verwendung von wasserlöslichen strahlungshärtbaren Produkten (A), erhältlich durch

5

Vermischen und gegebenenfalls Umsetzung von mindestens einem hypervorverzweigten Polyurethan (a) mit mindestens einem Photoinitiator (b)

oder durch Synthese von mindestens einem hypervorverzweigten Polyurethan (a) in Gegenwart von mindestens einem Photoinitiator (b)

zur Herstellung von wässrigen Tinten für das Ink-Jet-Verfahren.

15

2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei mindestens einem hypervorverzweigten Polyurethan (a) um ein hypervorverzweigtes Polyurethan (a) mit mindestens einer NCO-Gruppe pro Molekül handelt.

20

3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei wasserlöslichen strahlungshärtbaren Produkten (A) um wasserlösliche strahlungshärtbare Produkte (A) mit mindestens einer COOH-Gruppe pro Molekül handelt.

25

4. Verwendung nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass es sich bei mindestens einem Photoinitiator (b) um einen α-Zerfaller oder um einen Wasserstoff-abstrahierenden Photoinitiator handelt.

5. Wässrige Tinten für das Ink-Jet-Verfahren mit einer dynamischen Viskosität im Bereich von 2 bis 80 mPa·s, gemessen bei 23°C, enthaltend

(A) mindestens ein wasserlösliches strahlungshärtbares Produkt, erhältlich durch

Vermischen und gegebenenfalls Umsetzung von mindestens einem hypervorverzweigten Polyurethan (a) mit mindestens einem Photoinitiator (b)
oder durch Synthese von mindestens einem hyperverzweigten Polyurethan (a) in Gegenwart von mindestens einem Photoinitiator (b),

(B) mindestens ein Pigment.

6. Tinten nach Anspruch 5, dadurch gekennzeichnet, dass es sich bei mindestens einem hyperverzweigten Polyurethan (a) um ein hyperverzweigtes Polyurethan (a) mit mindestens einer NCO-Gruppe pro Molekül handelt.

7. Tinten nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass es sich bei wasserlöslichen strahlungshärtbaren Produkten (A) um wasserlösliche strahlungshärtbare Produkte (A) mit mindestens einer COOH-Gruppe pro Molekül handelt.

8. Tinten nach Anspruch 7, dadurch gekennzeichnet, dass man wasserlösliche strahlungshärtbare Produkte (A) mit mindestens einer COOH-Gruppe pro Molekül dadurch herstellt, dass man während der Herstellung von wasserlöslichen strahlungshärtbaren Produkten (A) β-Alanin zusetzt.

9. Tinten nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass es sich bei mindestens einem Photoinitiator um einen α-Zerfaller oder um einen Wasserstoff-abstrahierenden Photoinitiator handelt.

10. Tinten nach einem der Ansprüche 5 bis 9, enthaltend (C) mindestens eine photopolymerisierbare Verbindung, gewählt aus Verbindungen mit mindestens zwei ethylenischen Doppelbindungen pro Molekül und Verbindungen der allgemeinen Formel I

![Formula Image]

wobei die Variablen wie folgt definiert sind:

R¹, R² gleich oder verschieden und unabhängig voneinander gewählt aus Wasserstoff und C₁-C₁₀-Alkyl,

X¹ gewählt aus Sauerstoff und N-R³,

A¹ gewählt aus C₁-C₂₀-Alkyle, unsubstituiert oder ein- oder mehrfach substituiert mit C₁-C₄-Alkyl, Phenyl oder O-C₁-C₄-Alkyl, wobei in C₁-C₂₀-Alkyle eine oder mehrere nicht-benachbarte CH₂-Gruppen durch Sauerstoff ersetzt sein können;
gewählt aus Hydroxyl und NH-R³,

gleich oder verschieden und gewählt aus Wasserstoff, C₁-C₁₀-Alkyl und Phenyl.

5 11. Tinten nach Anspruch 10, dadurch gekennzeichnet, dass man (C) mindestens eine photopolymerisierbare Verbindung wählt aus Verbindungen der allgemeinen Formel II

\[
\begin{align*}
R^1 & \quad \text{verschieden oder gleich und unabhängig voneinander gewählt aus} \\
R^2 & \quad \text{Wasserstoff und C₁-C₁₀-Alkyl} \\
m & \quad \text{eine ganze Zahl von 0 bis 2,} \\
A^2 & \quad \text{CH₂ oder -CH₂-CH₂- oder R^5-CH oder para-C₆H₄ für den Fall, dass m} \\
 & \quad \text{= 0,} \\
 & \quad \text{CH, C-OH, C-O-C(O)-CH=CH₂, C-O-CO-C(CH₃)=CH₂, R^5-C oder} \\
 & \quad \text{1,3,5-C₆H₃ für den Fall, dass m = 1,} \\
 & \quad \text{und Kohlenstoff für den Fall, dass m = 2;} \\
R^5 & \quad \text{gewählt aus C₁-C₃-Alkyl und Phenyl,} \\
A^3, A^4, A^5 & \quad \text{gleich oder verschieden und gewählt aus} \\
 & \quad \text{C₁-C₂₀-Alkylen, cis- oder trans-C₄-C₁₀-Cycloalkyle, C₁-C₂₀-Alkylen, in} \\
 & \quad \text{dienen von einem bis zu sieben jeweils nicht benachbarte C-Atome} \\
 & \quad \text{durch Sauerstoff ersetzt sein können,} \\
 & \quad \text{C₁-C₂₀-Alkylen, substituiert mit bis zu 4 Hydroxylgruppen, wobei in C₁-} \\
 & \quad \text{C₂₀-Alkylen von einem bis zu sieben jeweils nicht benachbarte C-} \\
 & \quad \text{Atome durch Sauerstoff ersetzt sein können, C₆-C₁₄-Arylen.}
\end{align*}
\]

12. Tinten nach einem der Ansprüche 5 bis 11, enthaltend 1 bis 20 Gew.-% (A),
0,01 bis 20 Gew.-% (B)
0 bis 10 Gew.-% (C),
jeweils bezogen auf das Gesamtgewicht der Tinte.

5 13. Tinten nach einem der Ansprüche 5 bis 12, enthaltend
1,5 bis 15 Gew.-% (A),
1 bis 10 Gew.-% (B),
0, 1 bis 9 Gew.-% (C),
jeweils bezogen auf das Gesamtgewicht der Tinte.

10 14. Verfahren zur Herstellung von Tinten nach einem der Ansprüche 5 bis 13, da-
durch gekennzeichnet, dass man (A), (B), Wasser und gegebenenfalls (C) miteinander vermischt.

16. Verfahren zum Bedrucken von flächigen Substraten unter Verwendung von Tinten nach einem der Ansprüche 5 bis 13 und anschließendes Behandeln mit akti-
nischer Strahlung.

17. Wasserlösliche strahlungshärtbare Produkte (A), erhältlich durch

 Vermischen und gegebenenfalls Umsetzung von

25 mindestens einem hypervorzweigten Polyurethan (a) mit
 0,001 bis 10 Gew.-%, bezogen auf (a), mindestens einem Photoinitiator (b),

 oder durch Synthese von

 mindestens einem hypervorzweigten Polyurethan (a)

30 in Gegenwart von 0,001 bis 10 Gew.-%, bezogen auf (a), mindestens einem Pho-
toinitiator

18. Wasserlösliche strahlungshärtbare Produkte nach Anspruch 17, dadurch ge-
denkzeichnet, dass es sich bei mindestens einem hypervorzweigten Polyurethan

35 (a) um ein hypervorzweigtes Polyurethan (a) mit mindestens einer NCO-Gruppe pro Molekül handelt.
19. Wasserlösliche strahlungshärtbare Produkte nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass sie mindestens eine COOH-Gruppe pro Molekül aufweisen.

20. Wasserlösliche strahlungshärtbare Produkte nach einem der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass es sich bei mindestens einem Photoinitiator um einen α-Zerfall oder um einen Wasserstoff-abstrahierenden Photoinitiator handelt.

21. Wasserlösliche strahlungshärtbare Produkte nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass sie zusätzlich (C) mindestens eine photopolymerisierbare Verbindung, gewählt aus Verbindungen mit mindestens zwei ethylenischen Doppelbindungen pro Molekül und Verbindungen der allgemeinen Formel I

\[
\begin{align*}
R^1 & \quad \text{gleich oder verschieden und unabhängig voneinander gewählt aus} \\
R^2 & \quad \text{Wasserstoff und C}_1\text{-C}_{10}\text{-Alkyl,} \\
X^1 & \quad \text{gewählt aus Sauerstoff und N-}\text{R}^3, \\
A^1 & \quad \text{gewählt aus C}_{1}\text{-C}_{20}\text{-Alkylen, unsubstituiert oder ein- oder mehrfach} \\
& \quad \text{substituiert mit C}_1\text{-C}_4\text{-Alkyl, Phenyl oder O-}\text{C}_1\text{-C}_4\text{-Alkyl, wobei in C}_1\text{-C}_{20}\text{-Alkylen eine oder mehrere nicht-benachbarte CH}_2\text{-Gruppen durch} \\
& \quad \text{Sauerstoff ersetzt sein können;} \\
X^2 & \quad \text{gewählt aus Hydroxyl und NH-}\text{R}^3, \\
R^3 & \quad \text{gleich oder verschieden und gewählt aus Wasserstoff, C}_1\text{-C}_{10}\text{-Alkyl} \\
& \quad \text{und Phenyl.}
\end{align*}
\]

22. Wasserlösliche strahlungshärtbare Produkte nach Anspruch 21, dadurch gekennzeichnet, dass (C) mindestens eine photopolymerisierbare Verbindung wählt aus Verbindungen der allgemeinen Formel II
in denen die Variablen wie folgt definiert sind:

- \(R^1, R^2 \): verschieden oder gleich und unabhängig voneinander gewählt aus Wasserstoff und C\textsubscript{1}-C\textsubscript{10}-Alkyl
- \(m \): eine ganze Zahl von 0 bis 2,
- \(A^2 \): CH\textsubscript{2} oder -CH\textsubscript{2}-CH\textsubscript{2}- oder R5-CH oder para-C\textsubscript{6}H\textsubscript{4} für den Fall, dass \(m = 0 \),
 CH, C-OH, C-O-C(O)-CH=CH\textsubscript{2}, C-O-C(O)=C(\text{CH}_3)=CH\textsubscript{2}, R5-C oder 1,3,5-C\textsubscript{6}H\textsubscript{3} für den Fall, dass \(m = 1 \),
 und Kohlenstoff für den Fall, dass \(m = 2 \);
- \(R^5 \): gewählt aus C\textsubscript{1}-C\textsubscript{4}-Alkyl und Phenyl,
- \(A^3, A^4, A^5 \): gleich oder verschieden und gewählt aus C\textsubscript{1}-C\textsubscript{20}-Alkenen, cis- oder trans-C\textsubscript{4}-C\textsubscript{10}-Cycloalkylen, C\textsubscript{1}-C\textsubscript{20}-Alkenen, in denen von einem bis zu sieben jeweils nicht benachbarte C-Atome durch Sauerstoff ersetzt sein können,
- C\textsubscript{1}-C\textsubscript{20}-Alkenen, substituiert mit bis zu 4 Hydroxylgruppen, wobei in C\textsubscript{1}-
 C\textsubscript{20}-Alkenen von einem bis zu sieben jeweils nicht benachbarte C-
 Atome durch Sauerstoff ersetzt sein können, C\textsubscript{6}-C\textsubscript{14}-Arylen.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
C08G18/08 C08G18/32 C08G18/67 C08G18/79 C09D11/00
C08G18/67 C09D11/10 C08G83/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
C08G C09D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 03/091347 A (BASF) 6 November 2003 (2003-11-06) page 7, line 4 - page 10, line 26 page 17, line 21 - page 18, line 3 page 25, line 39 - page 26, line 3 page 27, line 31 - page 30, line 15 page 33, line 30 - page 34, line 2; claims 1-4,6,7,13-17</td>
<td>1-12,14</td>
</tr>
<tr>
<td>X</td>
<td>WO 02/36695 A (BASF DRUCKSYSTEME) 10 May 2002 (2002-05-10) cited in the application page 4, line 20 - page 8, line 44 page 12, line 14 - line 18 page 13, line 20 - page 15, line 9; claims 1-11</td>
<td>17-22</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

* Special categories of cited documents:
 A document defining the general state of the art which is not considered to be of particular relevance
 E earlier document but published on or after the international filing date
 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 O document referring to an oral disclosure, use, exhibition or other means
 P document published prior to the international filing date but later than the priority date claimed
 T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 S document member of the same patent family

Date of the actual completion of the international search 6 December 2005
Date of mailing of the international search report 27/12/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-2016

Authorized officer
Bourgonje, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 94/00505 A (HENKEL) 6 January 1994 (1994-01-06) page 4, line 7 - page 7, line 35; claims 1-19; examples</td>
<td>1-4</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10218163 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1501901 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005528481 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005172853 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0114932 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2427156 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20030952 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1334159 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0301550 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004513207 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 362470 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 5132003 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004097684 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 9303907 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5254611 A</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. KLASSEFIZIERUNG DES ANMELDUNGSGEGENSTANDES

<table>
<thead>
<tr>
<th>Klassifikation der Anmeldung</th>
<th>Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPK</th>
</tr>
</thead>
<tbody>
<tr>
<td>C08G18/08</td>
<td></td>
</tr>
<tr>
<td>C08G18/32</td>
<td></td>
</tr>
<tr>
<td>C08G18/67</td>
<td></td>
</tr>
<tr>
<td>C09D11/10</td>
<td></td>
</tr>
<tr>
<td>C08G83/00</td>
<td></td>
</tr>
</tbody>
</table>

Nach der internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Rechercherter Mindestprätest (Klassifikationsystem und Klassifikationssymbole)

| C08G | C09D |

Recherchierte aber nicht zum Mindestprätest gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Seite 17, Zeile 21 - Seite 18, Zeile 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 25, Zeile 39 - Seite 26, Zeile 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 27, Zeile 31 - Seite 30, Zeile 15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 33, Zeile 30 - Seite 34, Zeile 2; Ansprüche 1-4,6,7,13-17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 4, Zeile 20 - Seite 8, Zeile 44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 12, Zeile 14 - Zeile 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seite 13, Zeile 20 - Seite 15, Zeile 9; Ansprüche 1-11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen:
 "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
 "E" Altes Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
 "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung bezweckt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
 "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
 "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

*" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

*" Veröffentlichung von besonderer Bedeutung: die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden

*" Veröffentlichung von besonderer Bedeutung: die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

*" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

6. Dezember 2005

Aussendatum des internationalen Recherchenberichts

27/12/2005

Name und Postanschrift der internationalen Rechenbehörde

Europäisches Patentamt, P.B. 5818 Patentbaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-3040. Fax: 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Bourgonje, A

Formblatt PCT/ISA/210 (Blatt 2) (Januar 2004)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>
| A | WO 94/00505 A (HENKEL)
Seite 4, Zeile 7 – Seite 7, Zeile 35;
Ansprüche 1-19; Beispiele | 1-4 |
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE 10218163 A1</td>
<td>13-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1501901 A1</td>
<td>02-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005528481 T</td>
<td>22-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005172853 A1</td>
<td>11-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0114932 A</td>
<td>06-01-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2427156 A1</td>
<td>28-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20030952 A3</td>
<td>12-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1334159 A1</td>
<td>13-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0301550 A2</td>
<td>29-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004513207 T</td>
<td>30-04-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 362470 A1</td>
<td>02-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK 5132003 A3</td>
<td>11-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004097684 A</td>
<td>20-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 9303907 A1</td>
<td>31-01-1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5254611 A</td>
<td>19-10-1993</td>
</tr>
</tbody>
</table>