(54) Title: SERIAL MEMORY WITH FAST READ WITH LOOK-AHEAD

(57) Abstract: A serial memory may have memory arranged in a plurality of memory blocks, a serial interface for receiving a read instruction and associated memory address; and a controller configured to only store a plurality of most significant bits from each memory block which are accessed in parallel before an entire address has been received through the serial interface. The controller is further configured to stream out one of the plurality of most significant bits upon full reception of the memory address while retrieving the remaining bits from memory using the entire address and stream out the remaining bits after the most significant bits have been streamed out.

Figure 1(PRIOR ART)
Declarations under Rule 4.17:

- as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(H))
- as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(Hi))

Published:

- with international search report (Art. 21(3))
This application claims the benefit of U.S. Provisional Application No. 61/558,604 filed on November 11, 2011, entitled "SERIAL MEMORY WITH FAST READ WITH LOOK-AHEAD", which is incorporated herein in its entirety.

TECHNICAL FIELD

The present disclosure relates to serial memory devices.

BACKGROUND

Serial memory device comprise memory, associated memory controller, power supply and a serial interface in a housing. These devices are intended as stand alone external devices that can be coupled with a microcontroller or microprocessor in systems where additional memory is needed to store data or program instructions that need to be stored in a non-volatile fashion. The housing can be very small because external pins are only required for power supply, the serial interface and optionally one or more address pins. The serial interface can be a serial peripheral interface (SPI) which generally only requires four external pins for bi-directional communication. Other serial interfaces may apply, such as EC, single wire serial busses, etc. which require even less pins.

The respective protocol used depending on the serial interface defines how data is transmitted and received. To read a specific memory location, a master device must transmit a respective request to the serial memory which includes the address from which data is to be read. Once this command has been received the serial memory device retrieves the data and sends the data back to the master. In particular, in the SPI protocol, there is only a half clock between receiving the last address and streaming out the first data byte, while the read process within the serial memory device requires two full clocks at maximum frequency. Hence, the serial memory device requires substantial decoding circuitry, in particular a high number of sense amplifiers, to provide the data and meet the SPI transmission requirements. Other serial protocols may face similar timing problems.
SUMMARY

Hence, there exists a need for an improved serial memory device.

According to an embodiment, a serial memory may comprise memory arranged in a plurality of memory blocks, a serial interface for receiving a read instruction and associated memory address; and a controller configured to only store a plurality of most significant bits from each memory blocks which are accessed in parallel before an entire address has been received through said serial interface, wherein the controller is further configured to stream out one of the plurality of most significant bits upon full reception of the memory address while retrieving the remaining bits from memory using the entire address and stream out the remaining bits after the most significant bits have been streamed out.

According to a further embodiment, the serial memory may further comprise n sense amplifiers coupled with an n-bit register, and a switching unit operable during a first access, which uses a partial address, to couple at least two most significant data bit lines from each addressed memory block with said sense amplifiers and during a second access, which uses the entire address, to couple at least the remaining least significant data bit lines provided by said memory with the sense amplifiers. According to a further embodiment, the serial memory may further comprise a multiplexer controlled by the least significant address bits to select one set of the at least two significant data bits stored in said register. According to a further embodiment, the serial interface can be an SPI interface. According to a further embodiment, data bit lines representing the most significant bits of each memory block can be accessed individually and the memory blocks share the remaining data bit lines. According to a further embodiment, the memory can be arranged in four memory blocks and two most significant bits are retrieved from each memory block. According to a further embodiment, the serial memory may comprise eight sense amplifiers coupled with an 8-bit register, and a switching unit operable during a first access, which uses a partial address, to couple the two most significant data bit lines from each addressed memory block with said eight sense amplifiers and during a second access, which uses the entire address, to couple at least the remaining least significant data bit lines provided by said memory with respective sense amplifiers of said eight sense amplifiers. According to a further embodiment, the serial memory may further comprise a multiplexer controlled by the least significant address bits to select one set of two significant data bits stored in said register.
According to another embodiment, a method of reading a serial memory arranged in a plurality of memory blocks may comprise the steps of: transmitting a read instruction and associated memory address to the serial memory via a serial interface; and receiving a partial memory address and applying said partial memory address to only store a plurality of most significant bit sets from each memory block which are accessed in parallel by means of said partial address, upon receiving the entire address: - selecting one set of most significant bits of the previously stored most significant bits and streaming out the selected most significant bits, and - addressing the memory using the entire address to retrieve at least the remaining bits while said most significant bits are streamed out; and streaming out the remaining bits after said most significant bits have been streamed out.

According to a further embodiment of the method, the partial memory address can be used to access one individual data in each memory block to form a consecutive data sequence. According to a further embodiment of the method, sense amplifiers can be coupled with the most significant bit lines of each memory block when said partial memory address is applied to said memory and wherein the sense amplifiers are coupled with at least the remaining bit lines of said memory when said entire address is applied to said memory. According to a further embodiment of the method, a plurality of two most significant bits can be retrieved from four memory blocks. According to a further embodiment of the method, eight sense amplifiers can be provided and wherein each sense amplifier requires less time to generate a valid data signal than it takes to serially stream out two consecutive bits. According to a further embodiment of the method, the sets of most significant bit lines can be multiplexed with the remaining bit lines to be coupled with said sense amplifiers. According to a further embodiment of the method, the serial interface can be an SPI interface.

According to yet another embodiment, a serial memory may comprise a serial interface for receiving a read instruction and associated memory address; and a memory arranged in a plurality of memory blocks, n sense amplifiers operable to read n-bits from said memory, an n-bit data register coupled with said n sense amplifiers, a controller configured to couple the n sense amplifiers with most significant bit lines of each memory block before an entire address has been received through said serial interface to sense a plurality of respective most significant data bits while the remaining address bits are received and store the plurality of respective most significant data bits in said n-bit data register, wherein the controller is
further configured to stream out one of the plurality of most significant data bits upon full
reception of the memory address while coupling the sense amplifiers with at least the
remaining bit lines of said memory and applying the entire address to said memory to retrieve
and store the remaining data bits and stream out the remaining bits after the most significant
bits have been streamed out.

According to a further embodiment, the above serial memory may further comprise a
multiplexer controlled by the remaining address bits to select one set of the at least two
significant data bits stored in said n-bit register. According to a further embodiment, the
serial interface can be an SPI interface. According to a further embodiment, n=8 and wherein
four memory blocks are provided and wherein two most significant bits are retrieved from
each memory block. According to a further embodiment, each sense amplifier can be
configured to require less time to generate a valid data signal than it takes to serially stream
out two consecutive bits.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows a typical block diagram of a conventional serial memory device.

Fig. 2 shows the structure of the memory array according to various embodiments.

Fig. 3 shows an embodiment of the data acquisition in a serial memory device
according to various embodiments.

Fig. 4 shows the data latch following the sense amplifiers according to various
embodiments.

Fig. 5 shows a timing diagram according to various embodiments, and

Fig. 6 shows a flow chart according to various embodiments.

DETAILED DESCRIPTION

According to various embodiments, a method is proposed to perform a fast read using
only a minimum number of sense amplifiers, for example 8 sense amplifiers, and a look-

ahead read of the most significant x bits, for example 2 bits, of y consecutive bytes, for
example 4 bytes. Thus, silicon area can be saved by using only a minimum number of sense
amps.
A conventional serial non-volatile memory device 100 is shown in Fig. 1. the device comprises an internal I/O control logic 110 and associated memory control logic. This control logic may include a state machine to provide for the necessary control signals during the respective execution of various functions. The memory array 130 is conventionally arranged and comprises word and bit lines. Block 140 connected to the Y decoder comprises the sense amplifiers that will be connected to respective bit lines of the memory array during a read process.

As mentioned above, for performing a data read within the serial memory 100, the serial interface 120 receives first the address information associated with the respective data read request. Once this address is received, the device 100 can apply this address to the decoders and receive the associated data byte through the sense amplifiers and store them in a latch or register. Then, the I/O interface 110 can serially output the retrieved data to the requesting device.

During this process certain significant time delay takes place. This time delay would lasts from the end of the address transmission until the sense amplifiers retrieved the requested data. This time delay would be inserted in die timing diagram shown in Fig. 5 at time t1. To be able to output data immediately without an additional time delay as for example required by the SPI protocol and shown in Fig. 5, a significant number of sense amplifiers need to be added. For example, in a conventional serial memory device that outputs 8 data bits (= 1 byte) upon receipt of a read command to avoid the above mentioned time delay 32 sense amplifiers would be necessary to sense the data early enough during reception of the address and thus meet the speed requirements. This high number of sense amplifiers is necessary because the process of sensing the bit lines would have to be started at a time when not all address bits have been received. Once the remaining address bits have been received, this information is merely used to control a multiplexer to select the data provided by 8 of the 32 sense amplifiers which can be done with only a very short time delay that is within the SPI spec.

According to various embodiments, the requirement of a high number of sense amplifiers and associated control logic is avoided by using a look-ahead read. For example in serial SPI memory that outputs 8 data bits, a look ahead of bits 7 and 6 is performed shortly before all address bits have been received. To this end the memory is organized in a
scrambled fashion to allow access to 4 consecutive bytes. Only the top address bits an..a2 are necessary to retrieve this entire data block consisting of four bytes. The requested data is within this block. However, not all data bits of these 4 consecutive bytes need to be sensed initially. Only 8 sense amplifiers are needed to perform the read function. To this end, the sense amplifiers are used twice. During a first read they are only used to retrieve the top two data bits of each of the four data bytes. Once the entire address is received, the previously missing two LSB of the address is now used to connect the sense amplifiers with the correct data byte and use the time necessary to serially transmit the previously retrieved top data bits to perform the sensing of the entire data byte. Once the top data bits have been transmitted, the sense amplifiers are finished and the correct entire data word is stored in the same latch or register. Now, the rest of the data d5..d0 can be serially transmitted. No additional time delay occurs while the circuitry is kept at a minimum.

Fig. 2 shows a possible embodiment in which the memory array is scrambled into four memory blocks 210, 220, 230, and 240 that allow access to four consecutive bytes. The data or bit lines are split. The LSB bit lines 250 [bits 5:0] are combined because these data will be retrieved only from a single selected memory block 210..240. However, each block comprises separate bit lines for the MSB bit lines 260, 270, 280, and 290 [bits 7:6; 9:8, 11:10, and 13:12] because these bits need to be available in parallel. The bytes are thus arranged in groups of 4. For the first read all bytes in the group are addressed and a look-ahead only on bits lines 260, 270, 280 and 290 of all the bytes is performed. The second byte read will be performed using the entire available address and thus will be performed only on one of the four address blocks. During the second read, all data lines of a single memory block are coupled with the sense amplifiers. The internal architecture of the serial memory device of this embodiment has 14 data lines as shown in Fig. 2. Other configurations may apply as will be more apparent from the following description.

Fig. 3 shows how a read can be performed in two read stages to avoid time delays. Data or bit lines 260..290 (data bits [7:6], [9:8], [11:10], and [13:12]) from memory blocks 210..240 are coupled with a first coupling device 310 and the combined data lines 250 (data bits [5:0]) are coupled with a second coupling device 320. The output of each coupling device 310, 320 are connected with the input of 8 sense amplifiers 330. The sensed data byte is available at data lines 340 connected to the output of the eight sense amplifiers 330.
Fig. 4 shows one embodiment of an associated data register or latch 410 coupled with the data lines 340. A multiplexer 420 is used to either coupled bits [17:6], [5:4], [3:2], or [1:0] of data register 410 with data lines d7 and d6. The lower data bits [5:0] of data register 410 can be directly accessed to form data bits d5..d0 of the entire byte. Other arrangements that perform the same function may be used.

A first read is started after addresses an..a2 have been received and while addresses a1 and a0 have not yet been received. To this end, coupling devices 310, 320 may be controlled to operate as a multiplexer. The eight data lines 260..290 (data bits [13:6]) as shown in Fig. 3 will now be coupled with the eight sense amplifiers 330 by means of coupling device 310 while address lines A15..A2 select the respective four consecutive bytes in the respective memory blocks 210..240. The read data are saved in data register or latch 410 so the sense amplifiers 330 become available for the next read. While the sense amplifiers operate, the remaining address bits a1 and a0 are received. The second read is then started while streaming out data bit d7 and data bit d6. At this point, the entire address is known and therefore the correct memory block can be selected and the associated data bits can be selected from the four previously stored bit pairs. As indicated in Fig. 3, data or bit lines 7:0 are connected with coupling device 320. as the top two bits d7 and d6 have already been relieved and transmitted, it does not matter which top data bit lines 260..290 are connected to the sense amplifiers. As shown in Fig. 2 the bottom data lines 250 are common for all memory blocks 210..240 because when these lines are coupled with the sense amplifiers 330 through coupling device 320, only one of the memory blocks 210..240 will be enabled due to the fact that the entire address is now available. For this second read, data lines 7 to 0 can be used however, only data lines 5 to 0 are of importance. Then, the respective data are again saved in the data register 410 at the corresponding locations and the bits 5:0 can be streamed out.

The sense amplifiers are used twice for a single byte read. This improved read architecture and method allows a reduced area for the sense block and still generates no additional delay and therefore meets the speed requirements of for example an SPI interface. All multiplexers may be preferably placed in the proximity of the sense amplifiers. No additional logic is needed in the X / Y decoders.
Fig. 5 shows an associated timing diagram with the typical four signal lines of an SPI interface. During clocks 0-7 the instruction is received followed by the memory address. Here a 16-bit address is received during clocks 8-23. Other embodiments may receive more or less address bits. Then, within half a clock the system switches from receiving to transmitting. Thus, output data line SO is switched from high impedance to carry the respective data bits. The first read of the memory is internally performed during clocks 22 and 23, thus starting at time t1. At this time t1, address bits 2-n, for example 2-15, are known. Thus, four data bytes are addressed at the same time and their values can be sensed by sense amplifiers in parallel. However as explained above only eight data or bit lines will be sensed wherein only the top two bits of each of the four bytes will be connected to the sense amplifiers. Thus, the temporary register 410 will store the two most significant bits of the four consecutive data bytes. After clock 23 at time t2, all address bits have been received and address bits a0 and a1 can be used to select the MSB bit pair from the temporary registers 410. To this end, multiplexer 420 can be controlled by address bits a0 and 1 to either select bits 6, 7 or bits 4, 5 or bits 3, 2 or bits 1, 0 of register 410 as the valid data bits d7 and d6. The I/O control logic can then immediately start streaming these bits back to the requesting device. The correct data bits 6 and 7 can thus be streamed out during clocks 24 and 25 while the system retrieves the remaining bits 0-5. The two cycles required for this are clock cycle 24 and 25 as shown in Fig. 5. Between times t2 and t3 the sense amplifiers are at least coupled with the remaining data bit lines 250 [data bits [5:0]]. At time t3 these data bits have been transferred into register 410. Thus, the remaining data bits 0-5 can now be streamed out during clocks 26-31. All timing requirements of the SPI protocol are thus met with a minimum of additional circuitry.

No additional logic is needed in the X / Y decoders or bit latches. This improved read architecture allows a reduced area for the sense block in comparison with conventional serial memory devices. The area used for sensing is 33% of the area needed using 32 sense amps.

Fig. 6 shows a more general flow chart of the method according to various embodiments. A memory is arranged in a plurality of x memory blocks wherein x>1. In step 610, a memory address starts being transmitted to the serial memory device. In step 620, address bits a_m to a_n have been received wherein m>1 and n is the highest address bit. As shown in the previous embodiments, m can be 2 and n can be 15 depending on the memory...
size. In step 630, address a_{m} is applied to the memory array and therefore the top data
lines of the x memory blocks are addressed in parallel and coupled with k sense amplifiers.
Then, m of the top bit lines of each memory block are coupled with mx sense amplifiers in
step 640 to retrieve the respective data from the x memory blocks and stored in an
intermediate register, wherein $k \geq mx$. In the meantime all address bits have been received
via the serial interface. Now the address bits $a_{m-1:a0}$ are used to select the respective top data
bits from the intermediate register in step 660. Then, in step 670 the selected upper bits can
be serially streamed out. Furthermore, in step 660 the entire address can be applied to the
memory to select the correct entire data under the requested address and couple it with the
sense amplifiers. In step 680, the entire data can now be decoded or at least the remaining
lower data bits of the data can be decoded by the sense amplifiers and the result can be stored
again in the intermediate register. The remaining lower data bits can then be streamed out in
step 690. The values for m and x should be selected to the timing requirements and the sense
amplifier section size. The method can thus be easily adapted to other memory organized
differently, for example, in nibbles, words or double words.
MiMJSCLAIMIfi:

1. A serial memory comprising:
 memory arranged in a plurality of memory blocks,
 a serial interface for receiving a read instruction and associated memory address; and
 a controller configured to only store a plurality of most significant bits from each memory blocks which are accessed in parallel before an entire address has been received through said serial interface, wherein the controller is further configured to stream out one of the plurality of most significant bits upon full reception of the memory address while retrieving the remaining bits from memory using the entire address and stream out the remaining bits after the most significant bits have been streamed out.

2. The serial memory according to claim 1, comprising n sense amplifiers coupled with an n-bit register, and a switching unit operable during a first access, which uses a partial address, to couple at least two most significant data bit lines from each addressed memory block with said sense amplifiers and during a second access, which uses the entire address, to couple at least the remaining least significant data bit lines provided by said memory with the sense amplifiers,

3. The serial memory according to claim 2, further comprising a multiplexer controlled by the least significant address bits to select one set of the at least two significant data bits stored in said register.

4. The serial memory according to claim 1, wherein the serial interface is an SP1 interface.

5. The serial memory according to claim 1, wherein data bit lines representing the most significant bits of each memory block can be accessed individually and the memory blocks share the remaining data bit lines.
6. The serial memory according to claim 1, wherein the memory is arranged in four memory blocks and two most significant bits are retrieved from each memory block.

7. The serial memory according to claim 6, comprising eight sense amplifiers coupled with an 8-bit register, and a switching unit operable during a first access, which uses a partial address, to couple the two most significant data bit lines from each addressed memory block with said eight sense amplifiers and during a second access, which uses the entire address, to couple at least the remaining least significant data bit lines provided by said memory with respective sense amplifiers of said eight sense amplifiers.

8. The serial memory according to claim 7, further comprising a multiplexer controlled by the least significant address bits to select one set of two significant data bits stored in said register.

9. A method of reading a serial memory arranged in a plurality of memory blocks, comprising the steps of:

 transmitting a read instruction and associated memory address to the serial memory via a serial interface; and

 receiving a partial memory address and applying said partial memory address to only store a plurality of most significant bit sets from each memory block which are accessed in parallel by means of said partial address,

 upon receiving the entire address:

 - selecting one set of most significant bits of the previously stored most significant bits and streaming out the selected most significant bits, and

 - addressing the memory using the entire address to retrieve at least the remaining bits while said most significant bits are streamed out; and

 streaming out the remaining bits after said most significant bits have been streamed out.

10. The method according to claim 9, wherein the partial memory address is used to access one individual data in each memory block to form a consecutive data sequence.
11. The method according to claim 10, wherein sense amplifiers are coupled with the most significant bit lines of each memory block when said partial memory address is applied to said memory and wherein the sense amplifiers are coupled with at least the remaining bit lines of said memory when said entire address is applied to said memory.

12. The method according to claim 9, wherein a plurality of two most significant bits are retrieved from four memory blocks.

13. The method according to claim 12, wherein eight sense amplifiers are provided and wherein each sense amplifier requires less time to generate a valid data signal than it takes to serially stream out two consecutive bits.

14. The method according to claim 13, wherein the sets of most significant bit lines are multiplexed with the remaining bit lines to be coupled with said sense amplifiers.

15. The method according to claim 9, wherein the serial interface is an SPI interface.

16. A serial memory comprising:

 a serial interface for receiving a read instruction and associated memory address; and

 a memory arranged in a plurality of memory blocks,
 n sense amplifiers operable to read n-bits from said memory,
 an n-bit data register coupled with said n sense amplifiers,
 a controller configured to couple the n sense amplifiers with most significant bit lines of each memory block before an entire address has been received through said serial interface to sense a plurality of respective most significant data bits while the remaining address bits are received and store the plurality of respective most significant data bits in said n-bit data register, wherein the controller is further configured to stream out one of the plurality of most significant data bits upon full reception of the memory address while coupling the sense amplifiers with at least the remaining bit lines of said memory and applying the entire address to said memory to retrieve and store the remaining data bits and stream out the remaining bits after the most significant bits have been streamed out.
17. The serial memory according to claim 16, further comprising a multiplexer controlled by the remaining address bits to select one set of the at least two significant data bits stored in said \textbf{n-bit} register.

18. The serial memory according to claim 16, wherein the serial interface is an SPI interface.

19. The serial memory according to claim 16, wherein \(n = 8 \) and wherein four memory blocks are provided and wherein two most significant bits are retrieved from each memory block.

20. The serial memory according to claim 16, wherein each sense amplifier is configured to require less time to generate a valid data signal than it takes to serially stream out two consecutive bits.
Figure 1 (PRIOR ART)

Figure 2
Figure 3

Figure 4
Figure 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. G11C5/06 G11C7/22 G11C16/32

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G11C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Wo 99/59154 AI (ATMEL CORP [US]) 18 November 1999 (1999-11-18) pages 4-13; figures 1-6D</td>
<td>1, 9, 16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) one which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

- **X** document of particular relevance; the claimed invention cannot be considered novel or it cannot be considered to involve an inventive step when the document is taken alone

- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search: 23 January 2013

Date of mailing of the international search report: 31/01/2013

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer:

Czari k, Dami en
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EP 1172820 Al 16-01-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FR 2805653 Al 31-08-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 2001021117 Al 13-09-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 9959154 Al 18-11-1999</td>
<td>CA 2322317 Al 18-11-1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CN 1300431 A 20-06-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DE 69936524 T2 13-03-2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EP 1086465 Al 28-03-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HK 1035255 Al 18-03-2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JP 2002515628 A 28-05-2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NO 20005675 A 13-11-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TW 464875 B 21-11-2001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6038185 A 14-03-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>US 6097657 A 01-08-2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WO 9959154 Al 18-11-1999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>