wo 2015/196126 A1 | I JNF T 0O OO A

(43) International Publication Date
23 December 2015 (23.12.2015)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2015/196126 Al

(51) International Patent Classification: SOLE ROJALS, Joel; 5775 Morchouse Drive, San Diego,
HO4N 19/176 (2014.01) HO4N 19/186 (2014.01) California 92121-1714 (US). KARCZEWICZ, Marta;
HO4N 19/70 (2014.01) HO4N 19/157 (2014.01) 5775 Morehouse Drive, San Diego, California 92121-1714
HO4N 19/124 (2014.01) (US).

(21) International Application Number: (74) Agent: JOSEPH, Jeffrey R.; Shumaker & Sieffert, P.A.,

PCT/US2015/036769 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125

(22) International Filing Date: (US).

19 June 2015 (19.06.2015) (81) Designated States (unless otherwise indicated, for every

e) . kind of national protection available). AE, AG, AL, AM,

(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(26) Publication Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
L. DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(30) Priority Data: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
62/015,347 20 June 2014 (20.06.2014) us KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
62/062,797 10 October 2014 (10.10.2014) us MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
14/743,776 18 June 2015 (18.06.2015) us PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,

(71) Applicant: QUALCOMM INCORPORATED [US/US]; SD, SE, SG, SK, SL, SM, ST, SV, 8Y, TH, TJ, TM, TN,
ATTN: International IP Administration, 5775 Morehouse TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
Drive, San Diego, California 92121-1714 (US). (84) Designated States (unless otherwise indicated, for every

(72) Tnventors: ZHANG, Li; 5775 Morehouse Drive, San kind of regional protection available): ARIPO (BW, GH,

Diego, California 92121-1714 (US). CHEN, Jianle; 5775
Morehouse Drive, San Diego, California 92121-1714 (US).

GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Burasian (AM, AZ, BY, KG, KZ, RU,

[Continued on next page]

(54) Title: BLOCK ADAPTIVE COLOR-SPACE CONVERSION CODING

120

RECEIVE, FOR A FIRST BLOCK OF
VIDEQ DATA, INFORMATION TO
DETERMINE A QUANTIZATION
PARAMETER FOR THE FIRST
BLOCK

FIRST BLOCK
CODED USING COLOR-
SPACE TRANSFORM?

124

NO
128

DETERMINE A MODIFIED
QUANTIZATION PARAMETER
FOR THE FIRST BLOCK

PERFORM A DEQUANTIZATION
PROCESS FOR THE FIRST BLOCK
BASED ON THE UNMODIFIED
QUANTIZATION PARAMETER FOR
THE FIRST BLOCK

128

130

PERFORM A DEQUANTIZATION

PROCESS FOR THE FIRST

BLOCK BASED ON A MODIFIED

QUANTIZATION PARAMETER
FOR THE FIRST BLOCK

RECEIVE, FOR A SECOND BLOCK
OF VIDEO DATA, A DIFFERENCE
VALUE INDICATING A DIFFERENCE
BETWEEN A QUANTIZATION

PARAMETER FOR THE SECOND
BLOCK AND THE UNMODIFIED
QUANTIZATION PARAMETER FOR
THE FIRST BLOCK

FIG.9

(57) Abstract: A device for decoding video data includes a memory
configured to store video data and one or more processors configured
to: receive a first block of the video data; determine a quantization
parameter for the first block; in response to determining that the first
block is coded using a color-space transform mode for residual data of
the first block, modify the quantization parameter for the first block;
perform a dequantization process for the first block based on the mod-
ified quantization parameter for the first block; receive a second block
of the video data; receive a difference value indicating a ditference
between a quantization parameter for the second block and the quant-
ization parameter for the first block; determine the quantization para-
meter for the second block based on the received difference value and
the quantization parameter for the first block; and decode the second
block based on the determined quantization parameter.

WO 2015/196126 A1 |IIWAT 00T VT O OO

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Published:
DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT,
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SF,
SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM, GA,
GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))

WO 2015/196126 PCT/US2015/036769

BLOCK ADAPTIVE COLOR-SPACE CONVERSION CODING

[0001] This application claims the benefit of
U.S. Provisional Application No. 62/015,347 filed 20 June 2014
U.S. Provisional Application No. 62/062,797 filed 10 October 2014, the

entire content of which are incorporated herein by reference.

TECHNICAL FIELD

[0002] The disclosure relates to video encoding and decoding.

BACKGROUND
[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video coding techniques, such as
those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T
H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency Video
Coding (HEVC) standard and extensions of such standards presently under
development. The video devices may transmit, receive, encode, decode, and/or store
digital video information more efficiently by implementing such video coding
techniques.
[0004] Video coding techniques include spatial (intra-picture) prediction and/or
temporal (inter picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (e.g., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded ()
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

WO 2015/196126 PCT/US2015/036769

other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to as reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY
[0006] This disclosure describes techniques related to determining quantization
parameters when color-space conversion coding is used and, furthermore, describes
techniques for signaling, from an encoder to a decoder, quantization parameters when
color-space conversion coding is used.
[0007] In one example, a method of decoding video data includes receiving a first block
of the video data; receiving information to determine a quantization parameter for the
first block; in response to determining that the first block is coded using a color-space
transform mode for residual data of the first block, modifying the quantization
parameter for the first block; performing a dequantization process for the first block
based on the modified quantization parameter for the first block; receiving a second
block of the video data; receiving for the second block, a difference value indicating a
difference between a quantization parameter for the second block and the quantization
parameter for the first block; determining the quantization parameter for the second
block based on the received difference value and the quantization parameter for the first
block; and decoding the second block based on the determined quantization parameter
for the second block.
[0008] In another example, a method of encoding video data includes determining a

quantization parameter for a first block of video data; in response to determining that

WO 2015/196126 PCT/US2015/036769

the first block of video data is coded using a color-space transform mode for residual
data of the first block, modifying the quantization parameter for the first block;
performing a quantization process for the first block based on the modified quantization
parameter for the first block; determining a quantization parameter for a second block of
video data; and signaling a difference value between the quantization parameter for the
first block and the quantization parameter for the second block.

[0009] In another example, a device for decoding video data includes a memory
configured to store video data; and one or more processors configured to receive a first
block of the video data; receive information to determine a quantization parameter for
the first block; in response to determining that the first block is coded using a color-
space transform mode for residual data of the first block, modify the quantization
parameter for the first block; perform a dequantization process for the first block based
on the modified quantization parameter for the first block; receive a second block of the
video data; receive for the second block, a difference value indicating a difference
between a quantization parameter for the second block and the quantization parameter
for the first block; determine the quantization parameter for the second block based on
the received difference value and the quantization parameter for the first block; and
decode the second block based on the determined quantization parameter for the second
block.

[0010] In another example, a device for encoding video data includes a memory
configured to store video data; one or more processors configured to determine a
quantization parameter for a first block of video data; in response to determining that
the first block of video data is coded using a color-space transform mode for residual
data of the first block, modify the quantization parameter for the first block; perform a
quantization process for the first block based on the modified quantization parameter for
the first block; determine a quantization parameter for a second block of video data; and
signal a difference value between the quantization parameter for the first block and the

quantization parameter for the second block.

[0011] In another example, an apparatus for video decoding, the apparatus comprising
means for receiving a first block of the video data; means for receiving information to
determine a quantization parameter for the first block; means for modifying the
quantization parameter for the first block in response to determining that the first block

is coded using a color-space transform mode for residual data of the first block; means

WO 2015/196126 PCT/US2015/036769

for performing a dequantization process for the first block based on the modified
quantization parameter for the first block; means for receiving a second block of the
video data; means for receiving for the second block, a difference value indicating a
difference between a quantization parameter for the second block and the quantization
parameter for the first block; means for determining the quantization parameter for the
second block based on the received difference value and the quantization parameter for
the first block; and means for decoding the second block based on the determined
quantization parameter for the second block.

[0012] In another example, a computer-readable storage medium storing instructions
that when executed by one or more processors cause the one or more processors to
receive a first block of the video data; receive information to determine a quantization
parameter for the first block; in response to determining that the first block is coded
using a color-space transform mode for residual data of the first block, modify the
quantization parameter for the first block; perform a dequantization process for the first
block based on the modified quantization parameter for the first block; receive a second
block of the video data; receive for the second block, a difference value indicating a
difference between a quantization parameter for the second block and the quantization
parameter for the first block; determine the quantization parameter for the second block
based on the received difference value and the quantization parameter for the first block;
and decode the second block based on the determined quantization parameter for the
second block.

[0013] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent from the description, drawings, and

claims.

BRIEF DESCRIPTION OF DRAWINGS
[0014] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the techniques described in this disclosure.
[0015] FIG. 2 is a conceptual diagram illustrating High Efficiency Video Coding
(HEVC) intra prediction modes.
[0016] FIG. 3A and FIG. 3B are conceptual diagrams illustrating spatial neighboring
motion vector candidates for merge and advanced motion vector prediction (AMVP)

modes according to one or more techniques of the current disclosure.

WO 2015/196126 PCT/US2015/036769

[0017] FIG. 4 is a conceptual diagram illustrating an intra block copy (BC) example
according to one or more techniques of the current disclosure.

[0018] FIG. 5 is a conceptual diagram illustrating an example of a target block and
reference sample for an intra 8x8 block, according to one or more techniques of the
current disclosure.

[0019] FIG. 6 is block diagram illustrating an example video encoder that may
implement the techniques described in this disclosure.

[0020] FIG. 7 is a block diagram illustrating an example video decoder that may
implement the techniques described in this disclosure.

[0021] FIG. 8 is a flowchart illustrating an example video decoding method according
to the techniques of this disclosure.

[0022] FIG. 9 is a flowchart illustrating an example video decoding method according

to the techniques of this disclosure.

DETAILED DESCRIPTION
[0023] This disclosure describes video coding techniques, including techniques related
to emerging screen content coding (SCC) extensions and range extensions (RCEx) of
the recently finalized high efficiency video coding (HEVC) standard. The SCC and
range extensions are being designed to potentially support high bit depth (e.g. more than
8 bit) and/or high chroma sampling formats, and are therefore being designed to include
new coding tools not included in the base HEVC standard.
[0024] One such coding tool is color-space conversion coding. In color-space
conversion coding, a video encoder may convert residual data from a first color space
(e.g. YCbCr) to a second color space (e.g. RGB) in order to achieve better coding
quality (e.g. a better rate-distortion tradeoff). Regardless of the color space of the
residual data, a video encoder typically transforms the residual data into transform
coefficients and quantizes the transform coefficients. A video decoder performs the
reciprocal processes of dequantizing the transform coefficients and inverse transforming
the transform coefficients to reconstruct the residual data. The video encoder signals to
the video decoder a quantization parameter indicating an amount of scaling used in
quantizing the transform coefficients. The quantization parameter may also be used by
other video coding processes, such as deblock filtering.
[0025] This disclosure describes techniques related to determining quantization

parameters when color-space conversion coding is used and, furthermore, describes

WO 2015/196126 PCT/US2015/036769

techniques for signaling, from an encoder to a decoder, quantization parameters when
color-space conversion coding is used. For example, in color-space conversion coding,
a video coder (e.g., video encoder or video decoder) may modify a quantization
parameter for a first block. For the quantization parameter for a second block, the video
coder may code (e.g., encode or decode) information for a difference value. In the
techniques described in this disclosure, the difference value is the difference between
the quantization parameter for the first block (i.e., the non-modified quantization
parameter) and the quantization parameter for the second block.

[0026] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize techniques for screen content coding. As shown in FIG. 1,
system 10 includes a source device 12 that provides encoded video data to be decoded at
a later time by a destination device 14. In particular, source device 12 provides the
video data to destination device 14 via a computer-readable medium 16. Source device
12 and destination device 14 may comprise any of a wide range of devices, including
desktop computers, notebook (i.c., laptop) computers, tablet computers, set-top boxes,
telephone handsets such as so-called “smart” phones, so-called “smart” pads,
televisions, cameras, display devices, digital media players, video gaming consoles,
video streaming device, or the like. In some cases, source device 12 and destination
device 14 may be equipped for wireless communication.

[0027] Destination device 14 may receive the encoded video data to be decoded via
computer-readable medium 16. Computer-readable medium 16 may comprise any type
of medium or device capable of moving the encoded video data from source device 12
to destination device 14. In one example, computer-readable medium 16 may comprise
a communication medium to enable source device 12 to transmit encoded video data
directly to destination device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a wireless communication
protocol, and transmitted to destination device 14. The communication medium may
comprise any wireless or wired communication medium, such as a radio frequency (RF)
spectrum or one or more physical transmission lines. The communication medium may
form part of a packet-based network, such as a local area network, a wide-area network,
or a global network such as the Internet. The communication medium may include
routers, switches, base stations, or any other equipment that may be useful to facilitate

communication from source device 12 to destination device 14.

WO 2015/196126 PCT/US2015/036769

[0028] In some examples, source device 12 may output encoded data may be output to a
storage device. Similarly, an input interface may access encoded data from the storage
device. The storage device may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,
flash memory, volatile or non-volatile memory, or any other suitable digital storage
media for storing encoded video data. In a further example, the storage device may
correspond to a file server or another intermediate storage device that may store the
encoded video generated by source device 12. Destination device 14 may access stored
video data from the storage device via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from the storage device may be a
streaming transmission, a download transmission, or a combination thereof.

[0029] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, Internet streaming
video transmissions, such as dynamic adaptive streaming over HTTP (DASH), digital
video that is encoded onto a data storage medium, decoding of digital video stored on a
data storage medium, or other applications. In some examples, system 10 may be
configured to support one-way or two-way video transmission to support applications
such as video streaming, video playback, video broadcasting, and/or video telephony.
[0030] In the example of FIG. 1, source device 12 includes video source 18, video
encoder 20, and output interface 22. Destination device 14 includes input interface 28,
video decoder 30, and display device 32. In accordance with this disclosure, video
encoder 20 of source device 12 may be configured to apply the techniques for encoding
video blocks using a color-space conversion process. In other examples, a source
device and a destination device may include other components or arrangements. For

example, source device 12 may receive video data from an external video source 18,

WO 2015/196126 PCT/US2015/036769

such as an external camera. Likewise, destination device 14 may interface with an
external display device, rather than including an integrated display device.

[0031] The illustrated system 10 of FIG. 1 is merely one example. Techniques for
coding video blocks using a color-space conversion process may be performed by any
digital video encoding and/or decoding device. Although generally the techniques of
this disclosure are performed by a video coding device, the techniques may also be
performed by a video encoder/decoder, typically referred to as a “CODEC.” Source
device 12 and destination device 14 are merely examples of such coding devices in
which source device 12 generates coded video data for transmission to destination
device 14. In some examples, devices 12, 14 may operate in a substantially symmetrical
manner such that each of devices 12, 14 include video encoding and decoding
components. Hence, system 10 may support one-way or two-way video transmission
between video devices 12, 14, e.g., for video streaming, video playback, video
broadcasting, or video telephony.

[0032] Video source 18 of source device 12 may include a video capture device, such as
a video camera, a video archive containing previously captured video, and/or a video
feed interface to receive video from a video content provider. As a further alternative,
video source 18 may generate computer graphics-based data as the source video, or a
combination of live video, archived video, and computer-generated video. In some
cases, if video source 18 is a video camera, source device 12 and destination device 14
may form so-called camera phones or video phones. As mentioned above, however, the
techniques described in this disclosure may be applicable to video coding in general,
and may be applied to wireless and/or wired applications. In each case, the captured,
pre-captured, or computer-generated video may be encoded by video encoder 20. The
encoded video information may then be output by output interface 22 onto a computer-
readable medium 16.

[0033] Computer-readable medium 16 may include transient media, such as a wireless
broadcast or wired network transmission, or storage media (that is, non-transitory
storage media), such as a hard disk, flash drive, compact disc, digital video disc, Blu-ray
disc, or other computer-readable media. In some examples, a network server (not
shown) may receive encoded video data from source device 12 and provide the encoded
video data to destination device 14, e.g., via network transmission. Similarly, a
computing device of a medium production facility, such as a disc stamping facility, may

receive encoded video data from source device 12 and produce a disc containing the

WO 2015/196126 PCT/US2015/036769

encoded video data. Therefore, computer-readable medium 16 may be understood to
include one or more computer-readable media of various forms, in various examples.
[0034] Input interface 28 of destination device 14 receives information from computer-
readable medium 16. The information of computer-readable medium 16 may include
syntax information defined by video encoder 20, which is also used by video decoder
30, that includes syntax elements that describe characteristics and/or processing of
blocks and other coded units, ¢.g., GOPs. Display device 32 displays the decoded video
data to a user, and may comprise any of a variety of display devices such as a cathode
ray tube (CRT), a liquid crystal display (LCD), a plasma display, an organic light
emitting diode (OLED) display, or another type of display device.

[0035] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a device. A device including video
encoder 20 and/or video decoder 30 may comprise an integrated circuit, a
microprocessor, and/or a wireless communication device, such as a cellular telephone.
[0036] Video coding standards include ITU-T H.261, ISO/IEC MPEG-1 Visual, ITU-T
H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T
H.264 (also known as ISO/IEC MPEG-4 AVC), including its Scalable Video Coding
(SVC) and Multiview Video Coding (MVC) extensions. The design of a new video
coding standard, namely High-Efficiency Video Coding (HEVC), has been finalized by
the Joint Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding
Experts Group (VCEQG) and ISO/IEC Motion Picture Experts Group (MPEG). Video
encoder 20 and video decoder 30 may operate according to a video coding standard,
such as the HEVC, and may conform to the HEVC Test Model (HM). Alternatively,
video encoder 20 and video decoder 30 may operate according to other proprictary or
industry standards, such as the ITU-T H.264 standard, alternatively referred to as
MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such standards.

WO 2015/196126 PCT/US2015/036769
10

The techniques of this disclosure, however, are not limited to any particular coding
standard. Other examples of video coding standards include MPEG-2 and ITU-T
H.263.

[0037] The ITU-T H.264/MPEG-4 (AVC) standard was formulated by the ITU-T Video
Coding Experts Group (VCEGQG) together with the ISO/IEC Moving Picture Experts
Group (MPEG) as the product of a collective partnership known as the Joint Video
Team (JVT). In some aspects, the techniques described in this disclosure may be
applied to devices that generally conform to the H.264 standard. The H.264 standard is
described in ITU-T Recommendation H.264, Advanced Video Coding for generic
audiovisual services, by the ITU-T Study Group, and dated March, 2005, which may be
referred to herein as the H.264 standard or H.264 specification, or the H.264/AVC
standard or specification. The Joint Video Team (JVT) continues to work on extensions
to H.264/MPEG-4 AVC.

[0038] The JCT-VC developing the HEVC standard. The HEVC standardization efforts
are based on an evolving model of a video coder referred to as the HEVC Test Model
(HM). The HM presumes several additional capabilities of video coders relative to
existing devices according to, e.g., ITU-T H.264/AVC. For example, whereas H.264
provides nine intra prediction encoding modes, the HM may provide as many as thirty-
three intra prediction encoding modes.

[0039] In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of coding tree units (CTUs). CTUs may also be referred
to as treeblocks or largest coding units (LCU). Each of the CTUs may comprise a
coding tree block of luma samples, two corresponding coding tree blocks of chroma
samples, and syntax structures used to code the samples of the coding tree blocks. In
monochrome pictures or pictures having three separate color planes, a CTU may
comprise a single coding tree block and syntax structures used to code the samples of
the coding tree block. A coding tree block may be an NxN block of samples. Syntax
data within a bitstream may define a size for the LCU, which is a largest coding unit in
terms of the number of pixels.

[0040] In HEVC, the largest coding unit in a slice is called a coding tree block (CTB).
A CTB contains a quad-tree, the nodes of which are called coding units (CUs). The size
of a CTB can range from 16x16 to 64x64 in the HEVC main profile, although smaller

sizes, such as 8x8 CTB sizes, and larger sizes can also be supported.

WO 2015/196126 PCT/US2015/036769
11

[0041] This disclosure may use the term “video unit” or “video block” or “block™ to
refer to one or more sample blocks and syntax structures used to code samples of the
one or more blocks of samples. Example types of video units may include CTUs, CUS,
PUs, transform units (TUs), macroblocks, macroblock partitions, and so on. In some
contexts, discussion of PUs may be interchanged with discussion of macroblocks or
macroblock partitions.

[0042] A slice includes a number of consecutive treeblocks in coding order. A video
frame or picture may be partitioned into one or more slices. Each treeblock may be split
into coding units (CUs) according to a quadtree. In general, a quadtree data structure
includes one node per CU, with a root node corresponding to the treeblock. If a CU is
split into four sub-CUs, the node corresponding to the CU includes four leaf nodes, each
of which corresponds to one of the sub-CUs.

[0043] Each node of the quadtree data structure may provide syntax data for the
corresponding CU. For example, a node in the quadtree may include a split flag,
indicating whether the CU corresponding to the node is split into sub-CUs. Syntax
elements for a CU may be defined recursively, and may depend on whether the CU is
split into sub-CUs. If a CU is not split further, it is referred as a leaf-CU. In this
disclosure, four sub-CUs of a leaf-CU will also be referred to as leaf-CUs even if there
is no explicit splitting of the original leaf-CU. For example, if a CU at 16x16 size is not
split further, the four 8x8 sub-CUs will also be referred to as leaf-CUs although the
16x16 CU was never split.

[0044] A CU can be the same size of a CTB and can be as small as 8x8. Each CU is
coded with one prediction mode. When a CU is coded using an inter prediction mode
(i.e., when the CU is inter coded), the CU may be further partitioned into two or more
prediction units (PUs). In other examples, a CU may include just one PU when further
partitions do not apply. In examples where a CU is partitioned into two PUs, each PU
can be rectangles with a size equal to half of the CU, or two rectangles with 1/4 or 3/4
size of the CU. In HEVC, the smallest PU sizes are 8x4 and 4x8.

[0045] A CU has a similar purpose as a macroblock of the H.264 standard, except that a
CU does not have a size distinction. For example, a treeblock may be split into four
child nodes (also referred to as sub-CUs), and each child node may in turn be a parent
node and be split into another four child nodes. A final, unsplit child node, referred to
as a leaf node of the quadtree, comprises a coding node, also referred to as a leaf-CU.

Syntax data associated with a coded bitstream may define a maximum number of times

WO 2015/196126 PCT/US2015/036769
12

a treeblock may be split, referred to as a maximum CU depth, and may also define a
minimum size of the coding nodes. Accordingly, a bitstream may also define a smallest
coding unit (SCU). This disclosure uses the term “block™ to refer to any of a CU, PU,
or TU, in the context of HEVC, or similar data structures in the context of other
standards (e.g., macroblocks and sub-blocks thereof in H.264/AVC).

[0046] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and must be square in shape. The size of the CU may range from 8x8
pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each
CU may contain one or more PUs and one or more TUs. Syntax data associated with a
CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra prediction mode encoded, or inter prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square (¢.g., rectangular) in shape.

[0047] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transformed to produce transform coefficients, which may be quantized.
[0048] A leaf-CU may include one or more prediction units (PUs). In general, a PU
represents a spatial area corresponding to all or a portion of the corresponding CU, and
may include data for retrieving a reference sample for the PU. Moreover, a PU includes
data related to prediction. For example, when the PU is intra-mode encoded, data for
the PU may be included in a residual quadtree (RQT), which may include data
describing an intra prediction mode for a TU corresponding to the PU. As another
example, when the PU is inter mode encoded, the PU may include data defining one or
more motion vectors for the PU. The data defining the motion vector for a PU may
describe, for example, a horizontal component of the motion vector, a vertical

component of the motion vector, a resolution for the motion vector (e.g., one-quarter

WO 2015/196126 PCT/US2015/036769
13

pixel precision or one-cighth pixel precision), a reference picture to which the motion
vector points, and/or a reference picture list (e.g., List 0, List 1, or List C) for the motion
vector.

[0049] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra prediction in PU sizes of
2Nx2N or NxN, and inter prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0050] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0051] A leaf-CU having one or more PUs may also include one or more transform
units (TUs). The transform units may be specified using an RQT (also referred to as a
TU quadtree structure), as discussed above. For example, a split flag may indicate
whether a leaf-CU is split into four transform units. Then, each transform unit may be
split further into further sub-TUs. When a TU is not split further, it may be referred to
as a leaf-TU. Generally, for intra coding, all the leaf-TUs belonging to a leaf-CU share
the same intra prediction mode. That is, the same intra prediction mode is generally
applied to calculate predicted values for all TUs of a leaf-CU. For intra coding, a video
encoder may calculate a residual value for each leaf-TU using the intra prediction mode,
as a difference between the portion of the CU corresponding to the TU and the original
block. ATU is not necessarily limited to the size of a PU. Thus, TUs may be larger or

smaller than a PU. For intra coding, a PU may be collocated with a corresponding leaf-

WO 2015/196126 PCT/US2015/036769
14

TU for the same CU. In some examples, the maximum size of a leaf-TU may
correspond to the size of the corresponding leaf-CU.

[0052] HEVC specifies four transform units (TUs) sizes of 4x4, 8x8, 16x16, and 32x32
to code the prediction residual. A CU may be recursively partitioned into 4 or more
TUs. TUs may use integer basis functions that are similar to the discrete cosine
transform (DCT). Further, in some examples, 4x4 luma transform blocks that belong to
an intra coded region may be transformed using an integer transform that is derived
from discrete sine transform (DST). Chroma transform blocks may use the same TU
sizes as luma transform blocks.

[0053] Moreover, TUs of leaf-CUs may also be associated with quadtree data structures,
referred to as residual quadtrees (RQTs). That is, a leaf~-CU may include a quadtree
indicating how the leaf-CU is partitioned into TUs. The root node of a TU quadtree
generally corresponds to a leaf-CU, while the root node of a CU quadtree generally
corresponds to a treeblock (or LCU). TUs of the RQT that are not split are referred to
as leaf-TUs. In general, this disclosure uses the terms CU and TU to refer to leaf-CU
and leaf-TU, respectively, unless noted otherwise.

[0054] When the CU is inter coded, one set of motion information may be present for
cach PU. In some examples, such as when the PU is located in a B-slice, two sets of
motion information may be present for each PU. Further, each PU may be coded with a
unique inter prediction mode to derive the set of motion information for each PU.
[0055] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the slice. Video encoder 20 typically operates on video blocks within
individual video slices in order to encode the video data. A video block may correspond
to a coding node within a CU. The video blocks may have fixed or varying sizes, and
may differ in size according to a specified coding standard.

[0056] FIG. 2 is a conceptual diagram 250 illustrating the HEVC intra prediction
modes. For the luma component of each PU, an intra prediction method is utilized with
33 angular intra prediction modes (indexed from 2 to 34), DC mode (indexed with 1)
and Planar mode (indexed with 0), as described with respect to FIG. 2.

WO 2015/196126 PCT/US2015/036769
15

[0057] In addition to the above 35 intra prediction modes, one more intra prediction
mode, named intra pulse code modulation (I-PCM), is also employed by HEVC. In
I-PCM mode, prediction, transform, quantization, and entropy coding are bypassed
while the prediction samples are coded by a predefined number of bits. The main
purpose of the [-PCM mode is to handle the situation when the signal cannot be
efficiently coded by other intra prediction modes.

[0058] Following intra predictive or inter predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise syntax data describing a method or mode of generating predictive pixel data in
the spatial domain (also referred to as the pixel domain) and the TUs may comprise
coefficients in the transform domain following application of a transform, e.g., a
discrete cosine transform (DCT), an integer transform, a wavelet transform, or a
conceptually similar transform to residual video data. The residual data may correspond
to pixel differences between pixels of the unencoded picture and prediction values
corresponding to the PUs. Video encoder 20 may form the TUs including the residual
data for the CU, and then transform the TUs to produce transform coefficients for the
CU.

[0059] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where # 1s greater than m.

[0060] Following quantization, video encoder 20 may scan the transform coefficients,
producing a one-dimensional vector from the two-dimensional matrix including the
quantized transform coefficients. The scan may be designed to place higher energy (and
therefore lower frequency) coefficients at the front of the array and to place lower
energy (and therefore higher frequency) coefficients at the back of the array. In some
examples, video encoder 20 may use a predefined scan order to scan the quantized
transform coefficients to produce a serialized vector that can be entropy encoded. In
other examples, video encoder 20 may perform an adaptive scan. After scanning the
quantized transform coefficients to form a one-dimensional vector, video encoder 20

may entropy encode syntax elements representing transform coefficients in the one-

WO 2015/196126 PCT/US2015/036769
16

dimensional vector, e.g., according to context-adaptive variable length coding
(CAVLC), context-adaptive binary arithmetic coding (CABAC), syntax-based context-
adaptive binary arithmetic coding (SBAC), Probability Interval Partitioning Entropy
(PIPE) coding or another entropy encoding methodology. Video encoder 20 may also
entropy encode syntax elements associated with the encoded video data for use by video
decoder 30 in decoding the video data.

[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that
forms a representation of coded pictures and associated data. Thus, the bitstream
comprises an encoded representation of video data. The bitstream may comprise a
sequence of network abstraction layer (NAL) units. A NAL unit is a syntax structure
containing an indication of the type of data in the NAL unit and bytes containing that
data in the form of a raw byte sequence payload (RBSP) interspersed as necessary with
emulation prevention bits. Each of the NAL units includes a NAL unit header and
encapsulates a RBSP. The NAL unit header may include a syntax element that indicates
a NAL unit type code. The NAL unit type code specified by the NAL unit header of a
NAL unit indicates the type of the NAL unit. A RBSP may be a syntax structure
containing an integer number of bytes that is encapsulated within a NAL unit. In some
instances, an RBSP includes zero bits.

[0062] Different types of NAL units may encapsulate different types of RBSPs. For
example, different types of NAL unit may encapsulate different RBSPs for video
parameter sets (VPSs), sequence parameter sets (SPSs), picture parameter sets (PPSs),
coded slices, supplemental enhancement information (SEI), and so on. NAL units that
encapsulate RBSPs for video coding data (as opposed to RBSPs for parameter sets and
SEI messages) may be referred to as video coding layer (VCL) NAL units. In HEVC
(i.e., non-multi-layer HEVC), an access unit may be a set of NAL units that are
consecutive in decoding order and contain exactly one coded picture. In addition to the
coded slice NAL units of the coded picture, the access unit may also contain other NAL
units not containing slices of the coded picture. In some examples, the decoding of an
access unit always results in a decoded picture. Supplemental Enhancement
Information (SEI) contains information that is not necessary to decode the samples of
coded pictures from VCL NAL units. An SEI RBSP contains one or more SEI
messages.

[0063] As briefly indicated above, NAL units may encapsulate RBSPs for VPSs, SPSs,

and PPSs. A VPS is a syntax structure comprising syntax elements that apply to zero or

WO 2015/196126 PCT/US2015/036769
17

more entire coded video sequences (CVSs). An SPS is also a syntax structure
comprising syntax elements that apply to zero or more entire CVSs. An SPS may
include a syntax element that identifies a VPS that is active when the SPS is active.
Thus, the syntax elements of a VPS may be more generally applicable than the syntax
elements of an SPS. A PPS is a syntax structure comprising syntax elements that apply
to zero or more coded pictures. A PPS may include a syntax element that identifies an
SPS that is active when the PPS is active. A slice header of a slice may include a syntax
clement that indicates a PPS that is active when the slice is being coded.

[0064] Video decoder 30 may receive a bitstream generated by video encoder 20. In
addition, video decoder 30 may parse the bitstream to obtain syntax elements from the
bitstream. Video decoder 30 may reconstruct the pictures of the video data based at
least in part on the syntax elements obtained from the bitstream. The process to
reconstruct the video data may be generally reciprocal to the process performed by
video encoder 20. For instance, video decoder 30 may use motion vectors of PUs to
determine predictive blocks for the PUs of a current CU. In addition, video decoder 30
may inverse quantize coefficient blocks of TUs of the current CU. Video decoder 30
may perform inverse transforms on the coefficient blocks to reconstruct transform
blocks of the TUs of the current CU. Video decoder 30 may reconstruct the coding
blocks of the current CU by adding the samples of the predictive blocks for PUs of the
current CU to corresponding samples of the transform blocks of the TUs of the current
CU. By reconstructing the coding blocks for each CU of a picture, video decoder 30
may reconstruct the picture.

[0065] In the HEVC standard, there are two inter prediction modes. These inter
prediction modes are merge mode (note that skip mode is considered as a special case of
merge mode) and advanced motion vector prediction (AMVP) mode, respectively, for a
prediction unit (PU). In either AMVP or merge mode, a motion vector (MV) candidate
list may be maintained for multiple motion vector predictors. The motion vector(s), as
well as reference indices in the merge mode, of the current PU may be generated by
taking one candidate from the MV candidate list.

[0066] In some instances, the MV candidate list may contain up to 5 candidates for the
merge mode and only two candidates for the AMVP mode. A merge candidate may
contain a set of motion information, ¢.g., motion vectors corresponding to both
reference picture lists (such as list 0 and list 1) and the reference indices. If a merge

candidate is identified by a merge index, the reference pictures are used for the

WO 2015/196126 PCT/US2015/036769
18

prediction of the current blocks, as well as the associated motion vectors are determined.
However, under AMVP mode for each potential prediction direction from either list 0 or
list 1, a reference index needs to be explicitly signaled, together with an MVP index to
the MV candidate list since the AMVP candidate may contain only a motion vector. In
AMVP mode, the predicted motion vectors can be further refined.

[0067] A merge candidate may correspond to a full set of motion information while an
AMVP candidate may contain just one motion vector for a specific prediction direction
and reference index. The candidates for both modes may be similarly derived from the
same spatial and temporal neighboring blocks.

[0068] FIG. 3A and FIG. 3B are conceptual diagrams illustrating spatial neighboring
motion vector candidates for merge and advanced motion vector prediction (AMVP)
modes according to one or more techniques of the current disclosure. As described with
respect to FIG. 3A and FIG. 3B, spatial MV candidates are derived from the
neighboring blocks shown in FIG. 3A and FIG. 3B, for a specific PU (PUQ), although
the methods generating the candidates from the blocks differ for merge and AMVP
modes.

[0069] In merge mode, up to four spatial MV candidates can be derived with the orders
shown in FIG. 3A with numbers, and the order is the following: left (0), above (1),
above right (2), below left (3), and above left (4), as shown in FIG. 3A.

[0070] In AMVP mode, the neighboring blocks are divided into two groups: left group
310 consisting of the block 0 and 1, and above group 320 consisting of the blocks 2, 3,
and 4 as shown in FIG. 3B. For each of left group 310 and above group 320, the
potential candidate in a neighboring block referring to the same reference picture as that
indicated by the signaled reference index has the highest priority to be chosen to form a
final candidate of the group. It is possible that all neighboring blocks do not contain a
motion vector pointing to the same reference picture. Therefore, if such a candidate
cannot be found, the first available candidate is scaled to form the final candidate, thus
the temporal distance differences can be compensated.

[0071] Many applications, such as remote desktop, remote gaming, wireless displays,
automotive infotainment, cloud computing, etc., are becoming routine in daily lives.
Video contents in these applications are usually combinations of natural content, text,
artificial graphics, etc. In text and artificial graphics region, repeated patterns (such as
characters, icons, symbols, etc.) often exist. Intra Block Copying (Intra BC) is a

technique which may enable a video coder to remove such redundancy and improve

WO 2015/196126 PCT/US2015/036769
19

intra-picture coding efficiency. In some instances, Intra BC alternatively may be
referred to as Intra motion compensation (MC).

[0072] According to some Intra BC techniques, video coders may use blocks of
previously coded video data, within the same picture as the current block of video data,
that are either directly above or directly in line horizontally with a current block (to be
coded) of video data in the same picture for prediction of the current block. In other
words, if a picture of video data is imposed on a 2-D grid, each block of video data
would occupy a unique range of x-values and y-values. Accordingly, some video
coders may predict a current block of video data based on blocks of previously coded
video data that share only the same set of x-values (i.c., vertically in-line with the
current block) or the same set of y-values (i.c., horizontally in-line with the current
block).

[0073] FIG. 4 is a conceptual diagram illustrating an intra block copy (BC) example
according to one or more techniques of the current disclosure. As described with
respect to FIG. 4, the Intra BC has been included in RExt. An example of Intra BC is
shown as in FIG. 4, wherein a current CU 402 is predicted from an already decoded
block 404 of the current picture/slice. The current Intra BC block size can be as large as
a CU size, which ranges from 8x8 to 64x64, although some applications, further
constrains may apply in addition.

[0074] In traditional video coding, images may be assumed to be continuous-tone and
spatially smooth. Based on these assumptions, various tools have been developed such
as block-based transform, filtering, etc., and they have shown good performance for
videos with natural content. However, in certain applications, such remote desktop,
collaborative work, and wireless display, computer generated screen content may be the
dominant content to be compressed. This type of content tends to be discrete-tone and
features sharp lines with high contrast object boundaries. However, the assumption of
continuous-tone and smoothness may no longer apply. As such, traditional video
coding techniques may not work efficiently.

[0075] To rectify this loss of efficiency, video coders may use palette mode coding.
U.S. Provisional Application Serial No. 61/810,649, filed April 10, 2013, describe
examples of the palette coding techniques. For each CU, a palette may be derived,
which includes the most dominant pixel values in the current CU. The size and the
clements of the palette are first transmitted. The pixels in the CUs are then encoded

according to a particular scanning order. For each location, video encoder 20 may first

WO 2015/196126 PCT/US2015/036769
20

transmit a syntax element, such as a flag, palette flag, to indicate if the pixel value is in
the palette (“run mode”) or not (“pixel mode™).

[0076] In “run mode”, video encoder 20 may signal the palette index followed by the
“run”. The run is a syntax element that indicates the number of consecutive pixels in a
scanning order that have the same palette index value as the pixel currently being coded.
If multiple pixels in immediate succession in the scanning order have the same palette
index value, then “run mode” may be indicated by the syntax element, such as
palette_flag. A counter value may be determined, which equals the number of pixels
succeeding the current pixel that have the same palette index value as the current pixel,
and the run is set equal to the counter value. Video encoder 20 does not need to
transmit either palette flag or the palette index for the following positions that are
covered by the “run,” as each of the pixels following the current pixel has the same
pixel value. On the decoder side, only the first palette index value for the current pixel
would be decoded, and the result would be duplicated for each pixel in the “run” of
pixels indicated in the “run” syntax element. In “pixel mode”, video encoder 20
transmits the pixel sample value for this position. If the syntax element, such as

palette flag, indicates “pixel mode”, then the palette index value is only determined for
the current pixel being decoded.

[0077] In accordance with the techniques described in this disclosure, an in-loop color-
space transform for residual signals (i.c., residual blocks) is proposed for sequences in
4:4:4 chroma format; however, the techniques are not limited to the 4:4:4 format. The
in-loop color-space transform process transforms prediction error signals (i.c., residual
signals) in RGB/YUV chroma format into those in a sub-optimal color-space. The in-
loop color-space transform can further reduce the correlation among the color
components. The transform matrix may be derived from pixel sample values for each
CU by a singular-value-decomposition (SVD). The color-space transform may be
applied to prediction error of both intra mode and inter mode.

[0078] When the color-space transform is applied to inter mode, the residual is firstly
converted to a different domain with the derived transform matrix. After the color-
space conversion, the coding steps, such as DCT/DST, quantization, and entropy coding
are performed, in order.

[0079] When the color-space transform is applied to a CU coded using an intra mode,
the prediction and current block are firstly converted to a different domain with the

derived transform matrix, respectively. After the color-space conversion, the residual

WO 2015/196126 PCT/US2015/036769
21

between current block and a predictor for the current block is further transformed with
DCT/DST, quantized, and entropy coded.

[0080] A video encoding device, such as video encoder 20, performs a forward
operation, where a color-space transform matrix comprising conversion values a, b, ¢, d,
e, f, g, h, and i is applied to three planes G, B, and R to derive values for color

components P, Q, and S as follows:

a b c1[G P
[d e f B:Q]
g h 1illR S

[0081] Resulting values may be clipped within the range of the HEVC specification,

since values may be enlarged up to v/3 times in the worst case. A video decoding
device, such as video decoder 30, performs an inverse operation, where a color-space
transform matrix comprising conversion values a', b', ¢', d', ¢', f', g, h', and i' is applied
to the three color components P’, Q’, and R’ to derive the three planes G’, B’ and R’ as

follows,

a b citrp G’
g h illg R’

[0082] FIG. 5 is a conceptual diagram illustrating an example of a target block and
reference sample for an intra 8x8 block, according to one or more techniques of the
current disclosure. A transform matrix may be derived using singular-value-
decomposition (SVD) from the reference sample values. A video coding device (e.g.,
video encoder 20 or video decoder 30) may use different reference samples for the intra
case and inter case. For the case of an intra coded block, the target blocks and reference
samples may be as shown in FIG. 5. In FIG. 5, the target block consists of 8x8
crosshatched samples, and reference samples are striped and dotted samples.

[0083] For the case of an inter coded block, reference samples for the matrix derivation
may be the same as the reference samples for motion compensation. Reference samples
in the advanced motion prediction (AMP) block may be sub-sampled such that the
number of reference samples is reduced. For example, the number of reference samples

in a 12x16 block is reduced by 2/3.

WO 2015/196126 PCT/US2015/036769
22

[0084] In some of the above examples, the color-space transform process may be
always applied. Therefore, there may be no need to signal whether the color-space
transform process is invoked or not. In addition, both video encoder 20 and video
decoder 30 may use the same method to derive the transform matrix in order to avoid
the overhead for signaling the transform matrix.

[0085] Video encoder 20 and video decoder 30 may use various color-space transform
matrices. For example, video encoder 20 and video decoder 30 may apply different
color-space transform matrices for different color spaces. For instance, video encoder
20 and video decoder 30 may use a pair of Y CbCr transform matrixes to convert sample
values from the RGB color space to the YCbCr color space and back. The following

equations show one example set of YCbCr transform matrixes:

[Y 0.2126 0.7152 0.0722 7[R
Forward: Cb| =1-0.1172 -0.3942 05114 ||G

[Cr 0.5114 —0.4645 —0.046911B

R 1 0 1.5397 1Y
Inverse : G|=11 -0.1831 -0.4577]||Cb

B 1 1.8142 0 Cr

[0086] In another example, video encoder 20 and video decoder 30 may use a pair of
Y CoCg transform matrixes to convert sample values from the RGB color space to the
YCoCg color space and back. The following equations show one example set of

Y CoCg transform matrixes:

Y 1/4 1/2 1/4 1R]

Forward: Col=|1/2 0 -=1/2]|G
cgl [-1/4 172 —1/4llBl

R 1 1 -111Y]

Inverse: Gl=1|1 o0 1 []Co
B 1 -1 -—-111Cgl

[0087] Another such matrix may be the YCoCg-R matrix, which is a revisable version
of the YCoCg matrix which scales the Co and Cg components by a factor of two. By
using a lifting technique, video encoder 20 and video decoder 30 may achieve the

forward and inverse transform by the following equations:

WO 2015/196126 PCT/US2015/036769
23

Co=R-B
‘ t=B+|Co/2|
Forward: Cg=G—t
Y=t+|Cg/2]

t=Y —|Cg/2]
G=Cg+t
B=t—|Co/2]
R=B+Co

Inverse :

[0088] In the above equations and matrices, the forward transformations may be
performed before the encoding process (e.g., by a video encoder). Conversely, the
inverse transformations may be performed after the decoding process (e.g., by a video
decoder).

[0089] A slice header for a slice contains information about the slice. For instance, a
slice header for a slice may contain syntax elements from which video decoder 30 can
derive quantification parameters for the slice. In HEVC, a slice segment header syntax
structure corresponds to a slice header. The following table shows a portion of a slice

segment header as defined in :

slice_segment_header() { Descriptor
slice_qp_delta se(v)
if(pps_slice chroma qp offsets present flag) {
slice_cb_qp_offset se(v)
slice_cr_qp_offset se(v)

}

if(chroma gp offset list enabled flag)

cu_chroma_qp_offset_enabled_flag u(l)

[0090] In the example above, and other syntax tables of this disclosure, syntax elements
having descriptors of the form u(n), where # is a non-negative integer, are unsigned
values of length #. Further, the descriptor se(v) indicates a signed integer 0-th order
Exp-Golomb-coded syntax element with the left bit first.

[0091] In the table above, the slice_qp_delta syntax element specifies an initial value of
Qpy to be used for the coding blocks in the slice until modified by the value of
CuQpDeltaVal in the CU layer. A Qpy for a slice is a QP for luma components of

WO 2015/196126 PCT/US2015/036769
24

blocks of the slice. The initial value of the Qpy quantization parameter for the slice,

SliceQpy, may be derived as follows:

SliceQpy = 26 + init_qp_minus26 + slice_qp_delta

[0092] In the equation above, init_qp _minus26 is a syntax clement signaled in a PPS.
The init_qp_minus26 syntax element specifies the initial value minus 26 of SliceQpy
for each slice. The value of SliceQpy may be in the range of —QpBdOffsety to +51,
inclusive. QpBdOffsety is a variable equal to a bit_depth luma minus8 syntax element
multiplied by 6. The bit_depth luma minus8 syntax element specifies the bit depth of
the samples of a luma array and the value of the luma quantization parameter range
offset QpBdOffsety. Video encoder 20 may signal the bit_depth luma minus8 syntax
clement in an SPS.

[0093] Another syntax element, slice cb_qp_offset, specifies a difference to be added
to the value of pps_cb_qp_offset (or the luma quantization parameter offset) when
determining the value of the Qp’cy quantization parameter. The value of

slice cb_qp_offset may be in the range of —12 to +12, inclusive. When

slice_ cb_qp_offset is not present, slice cb_qp_offset is inferred to be equal to 0. The
value of pps_cb_qp_offset + slice_cb_qp_offset may be in the range of —12 to +12,
inclusive.

[0094] The syntax element slice cr qp_offset specifies a difference to be added to the
value of pps_cr_qp_offset (or the luma quantization parameter offset) when determining
the value of the Qp’c; quantization parameter. The value of slice cr qp_offset may be
in the range of —12 to +12, inclusive. When slice cr _qp_offset is not present,
slice_cr_qp_offset may be inferred to be equal to 0. The value of pps_cr_qp_offset +
slice_cr_qp_offset may be in the range of —12 to +12, inclusive.

[0095] When the syntax element cu_chroma qp_offset enabled flag is equal to 1, the
cu_chroma qp offset flag may be present in the transform unit syntax. When
cu_chroma qp offset enabled flag is equal to 0, the cu_chroma qp offset flag may
not be present in the transform unit syntax. When not present, the value of
cu_chroma qp offset enabled flag is inferred to be equal to 0.

[0096] A transform unit may have syntax as follows:

WO 2015/196126
25

PCT/US2015/036769

transform_unit(x0, y0, xBase, yBase, log2TrafoSize, trafoDepth, blkldx) {

Descriptor

log2TrafoSizeC = Max(2, log2TrafoSize — (ChromaArrayType == 370
1))

cbfDepthC = trafoDepth — (ChromaArrayType '=3 && log2TrafoSize
== 271:0)[Ed. Check case with smaller max depth.]

xC = (ChromaArrayType =3 && log2TrafoSize == 2) ? xBase : x0

yC = (ChromaArrayType =3 && log2TrafoSize == 2) ? yBase : y0

cbfLuma = cbf lumal x0][y0][trafoDepth]

cbfChroma =
cbf cb[xC][yC][cbfDepthC] | |
cbf cr[xC][yC][cbfDepthC] ||
(ChromaArrayType == 2 &&
(cbf cb[xC][yC + (1 << log2TrafoSizeC)][cbfDepthC] | |
cbf cr[xC J[yC + (1 <<log2TrafoSizeC)][cbfDepthC]))

if(cbfLuma || cbfChroma) {

if(cu_qp_delta_enabled flag && !'IsCuQpDeltaCoded) {

cu_qp_delta_abs

ae(v)

if(cu_qp_delta_abs)

cu_qp_delta_sign_flag

ae(v)

}

if(cu_chroma qp_offset enabled flag && cbfChroma &&
'cu transquant bypass flag && !'IsCuChromaQpOffsetCoded) {

cu_chroma_qp_offset_flag

ae(v)

if(cu_chroma qp offset flag &&
chroma qp offset list len minusl >0)

cu_chroma_qp_offset_idx

ae(v)

}

if(cbfLuma)

residual coding(x0, y0, log2TrafoSize, 0)

[0097] The syntax element cu_qp_delta_abs specifies the absolute value of the

difference CuQpDeltaVal between the luma quantization parameter of the current

coding unit and its prediction. In the above table, the descriptor ae(v) indicates a

context-adaptive arithmetic entropy-coded syntax element.

[0098] The syntax element cu_qp_delta_sign flag specifies the sign of CuQpDeltaVal.

If cu_qp delta sign flag is equal to 0, the corresponding CuQpDeltaVal has a positive

value. Otherwise (cu_qp delta sign flag is equal to 1), the corresponding

WO 2015/196126 PCT/US2015/036769
26

CuQpDeltaVal has a negative value. When cu_qp_delta_sign_flag is not present,
cu_qp_delta sign flag is inferred to be equal to 0.
[0099] When cu_qp _delta abs is present, the variables IsCuQpDeltaCoded and
CuQpDeltaVal may be derived as follows.

IsCuQpDeltaCoded = 1

CuQpDeltaVal = cu_qp_delta_abs * (1 —2 * cu_qp_delta_sign flag)
[0100] The value of CuQpDeltaVal may be in the range of —(26 + QpBdOffsetY /2)
to +(25 + QpBdOffsetY /2), inclusive.
[0101] The syntax element cu_chroma qp offset flag, when present and equal to 1,
specifies that an entry in the cb_qp_offset _list[] is used to determine the value of
CuQpOffsetCb and a corresponding entry in the cr_qp_offset list[] is used to determine
the value of CuQpOffsetCr. When the variable cu_chroma qp_offset flag is equal to 0,
these lists are not used to determine the values of CuQpOffsetCb and CuQpOffsetCr.
[0102] The syntax element cu_chroma qp_offset idx, when present, specifies the index
into the cb_qp_offset list[] and cr_qp_offset list[] that is used to determine the value
of CuQpOffsetCb and CuQpOffsetCr. When present, the value of
cu_chroma qp offset idx shall be in the range of 0 to
chroma qp offset list len minusl, inclusive. When not present, the value of
cu_chroma qp offset idx is inferred to be equal to 0.
[0103] The case in which the cu_chroma qp_offset flag is not present because the
cu_chroma qp offset flag was already present in some other CU of the same group and
the case where the flag is equal to 1 but the index is not present because the list contains
only one entry may be checked. When cu_chroma qp offset flag is present, the
variable IsCuChromaQpOffsetCoded is set equal to 1. The variables CuQpOffsetcy, and
CuQpOffsetc, are then derived. If cu chroma qp_offset flag is equal to 1, then
CuQpOffsetc, =cb_qp offset list[cu_chroma qp offset idx], and CuQpOffsetc, =
cr_qp_offset list] cu chroma qp offset idx]. Otherwise (cu _chroma qp offset flag
is equal to 0), CuQpOfifsetc, and CuQpOffsetc, are both set equal to 0.
[0104] In the decoding process, for the derivation process for quantization parameters,
input to this process is a luma location (xCb, yCb) specifying the top-left sample of the
current luma coding block relative to the top-left luma sample of the current picture. In
this process, the variable Qpy, the luma quantization parameter Qp’y, and the chroma

quantization parameters Qp’cy, and Qp'cy are derived.

WO 2015/196126 PCT/US2015/036769
27

[0105] In accordance with techniques of this disclosure, a quantization group is a set of
TUs of CU, where each of the TUs shares the same QP values. The luma location (
xQg, yQg), specifies the top-left luma sample of a current quantization group relative to
the top left luma sample of the current picture. The horizontal and vertical positions
xQg and yQg are set equal to xCb — (xCb & ((1 << Log2MinCuQpDeltaSize)— 1))
and yCb — (yCb & ((1 << Log2MinCuQpDeltaSize) — 1)), respectively. The luma
size of a quantization group, Log2MinCuQpDeltaSize, determines the luma size of the
smallest area inside a coding tree block that shares the same qPy prep.

[0106] A video coder may derive the predicted luma quantization parameter qPy prep
by the following ordered steps:

[0107] 1) The variable qPy prev may be derived. If one or more of the following
conditions are true, the video coder sets qPy prev €qual to SliceQpY: The current
quantization group is the first quantization group in a slice, the current quantization
group is the first quantization group in a tile, or the current quantization group is the
first quantization group in a coding tree block row and
entropy_coding_sync_enabled_flag is equal to 1. Otherwise, qPy prrv is set equal to
the luma quantization parameter QpY of the last coding unit in the previous quantization
group in decoding order.

[0108] 2) The availability derivation process for a block in z-scan order is invoked with
the location (xCurr, yCurr) set equal to (xCb, yCb) and the neighboring location (
xNDbY, yNbY) set equal to (xQg — 1, yQg) as inputs, and the output is assigned to
availableA. The variable qPY A is derived as follows: If one or more of the following
conditions are true, qPY A is set equal to qPy prev: availableA is equal to FALSE or
the coding tree block address ctbAddrA of the coding tree block containing the luma
coding block covering the luma location (xQg — 1, yQg) is not equal to CtbAddrInTs,
where ctbAddrA is derived as follows:

xTmp =(xQg—1) >> Log2MinTrafoSize
yTmp =yQg >> Log2MinTrafoSize
minTbAddrA = MinTbAddrZs[xTmp][yTmp]
ctbAddrA = (minTbAddrA >> 2) * (CtbLog2SizeY — Log2MinTrafoSize)

Otherwise, qPy 4 18 set equal to the luma quantization parameter Qpy of the coding unit

containing the luma coding block covering (xQg — 1, yQg).

WO 2015/196126 PCT/US2015/036769
28

[0109] 3) The availability derivation process for a block in z-scan order is invoked with
the location (xCurr, yCurr) set equal to (xCb, yCb) and the neighboring location (
xNDbY, yNbY) set equal to (xQg, yQg — 1) as inputs. The output is assigned to
availableB. The variable qPy g is derived. If one or more of the following conditions
are true, qPy pis set equal to qPy prey: availableB is equal to FALSE or the coding tree
block address ctbAddrB of the coding tree block containing the luma coding block
covering the luma location (xQg, yQg — 1) is not equal to CtbAddrInTs, where
ctbAddrB is derived as follows:
xTmp =xQg >> Log2MinTrafoSize
yImp = (yQg— 1) >> Log2MinTrafoSize
minTbAddrB = MinTbAddrZs[xTmp][yTmp]
ctbAddrB = (minTbAddrB >> 2) * (CtbLog2SizeY — Log2MinTrafoSize)
Otherwise, qPy g is set equal to the luma quantization parameter Qpy of the CU
containing the luma coding block covering (xQg, yQg — 1).
[0110] 4) The predicted luma quantization parameter qPy prep may be derived as
follows:
qPy prep=(qPy At qPys+1) > 1
[0111] The variable Qpy may be derived as follows:
Qpy = ((gPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety))
— QpBdOffsety
[0112] The luma quantization parameter Qp'y may be derived as follows:
Qp'y = Qpy + QpBdOffsety
[0113] When ChromaArrayType is not equal to 0, the variables qPicy, and qPic, are
derived as follows:
qPicy, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cb_qp_offset + slice cb _qp offset +
CuQpOftsetcy)
qPic; = Clip3(—QpBdOffsetc, 57, Qpy + pps_cr_qp_offset + slice cr qp offset +
CuQpOftsetc,)
[0114] If ChromaArrayType is equal to 1, the variables qPc, and qPc; are set equal to
the value of Qpc based on the index qPi equal to qPicp, and qPicy, respectively.
Otherwise, the variables qPcy, and qPc; are set equal to Min(qPi, 51), based on the
index qPi equal to qPi¢p, and qPicy, respectively.
[0115] The chroma quantization parameters for the Cb and Cr components, Qp’cy, and

Qp’cy, are derived as follows:

WO 2015/196126 PCT/US2015/036769
29

Qp’cy = qPcy + QpBdOffsetc
Qp'cr = qPcr + QpBdOffsetc
[0116] The specification of Qp, as a function of qPi for ChromaArrayType equal to 1 is

as follows:

gPi | <30 |30|31(32|33|34|35|36|37|38|39(40(41|42|43|>43

Qpc | =qPi|29|30(31|32|33 |33|34|34|35|35(36(36(37|37|=qPi-6

In the dequantization process, the quantization parameter qP for each component index
(cldx) is derived. If cldx is equal to 0, qP = Qp'y. Otherwise, if cldx is equalto 1, qP =
Qp’cv. Otherwise (cldx is equal to 2), qP = Qp’c. In the deblocking filter process, the
luma/chroma edges are firstly determined which are dependent on the Qpy. Sub-clause
8.7.2.5.3 and 8.7.2.5.5 of HEVC provide details of the deblocking filter process.

[0117] U.S. Provisional Patent Application 61/981,645, filed April 18, 2014, defines in-
loop color transform formulas, such as a normalized YCgCo transform and a YCgCo
transform with bit-depth increment. In addition, U.S. Provisional Patent Application
61/981,645 described that the color transform can be applied to the residual domain for
intra modes, that is, after prediction process before conventional transform/quantization
process. Moreover, U.S. Provisional Patent Application 61/981,645 pointed out that
different color components may use different delta QPs for blocks which are coded with
color transform based on the norm of the transform.

[0118] The video coding techniques of U.S. Provisional Patent Application 61/981,645
may be improved in several ways. For instance, the fixed delta QP settings for the three
color components may be not optimal for all cases, such as all intra/random access/low
delay. Further, when using the non-normalized YCgCo transform with bit-depth
increment, the transform results in the bit-width increase for the normal transform which
increases the cost for hardware implementation. Conversely, if the normal transform is
kept unchanged, it may result in overflow for some cases due to the increased precision
of the input residual data.

[0119] The techniques of this disclosure provide solutions to improve the coding
performance of in-loop color-space transform and reduce the decoder complexity
compared to the previous designs. A video coder, such as video encoder 20 or video
decoder 30, may perform any of the techniques as described with relation to FIGS. 1-

I1.

WO 2015/196126 PCT/US2015/036769
30

[0120] In some examples, the set of delta values of QPs for the three color components
decoded are denoted by (deltaQPco, deltaQP¢y, deltaQP¢;), which indicate the offset of
QPs for blocks with color transform enabled compared to qP determined with color
transform not enabled. For blocks coded with color transform enabled, the final QP
used in the dequantization process is set to qP + deltaQPco, qP + deltaQPc;, qP +
deltaQPc; for the three color components with component index cldx equal to 0, 1, 2,
respectively. qP is the output of the conventional QP derivation process. In some
examples, deltaQPcy is equal to deltaQPc, while both deltaQP¢ and deltaQP¢; are
smaller than deltaQPc;.

[0121] For instance, video encoder 20 may encode a CU of the video data. In encoding
the video data, video encoder 20 may determine to encode the CU using a color space
conversion. For a color component, video encoder 20 may determine an initial QP for
the color component and set a final QP for the color component based on the CU being
encoded using the color space conversion such that the final QP for the color component
is equal to a sum of the initial QP of the color component and a non-zero QP offset for
the color component. Video encoder 20 may quantize, based on the final QP for the
color component, a coefficient block for the CU, the coefficient block for the CU being
based on sample values of the color component. Once each coefficient has been
quantized, video encoder 20 may further output the encoded CU based on the quantized
coefficient blocks for the CU in an encoded bitstream.

[0122] In another example, video decoder 30 may decode a CU of the video data. In
decoding the video data, video decoder 30 may determine that the CU was encoded
using a color space conversion. For a color component, video decoder 30 may
determine an initial QP for the color component and determine a final QP for the color
component based on the CU being encoded using the color space conversion, such that
the final QP for the color component is equal to a sum of the initial QP of the color
component and a non-zero QP offset for the color component. Video decoder 30 may
inverse quantize, based on the final QP for the color component, a coefficient block for
the CU, the coefficient block for the CU being based on sample values of the color
component. Once each coefficient block has been inverse quantized, video decoder 30
may reconstruct the CU based on the inverse quantized coefficient blocks for the CU.
[0123] In some examples, for the color component of the one or more color
components, the QP offset for the color component may be signaled in one of a PPS, a

SPS, or a slice header. In some further examples, the plurality of color components may

WO 2015/196126 PCT/US2015/036769
31

comprise three color components. In such examples, a first QP offset for a first
quantization parameter for a first color component is equal to a second QP offset for a
second QP for a second color component, the first QP offset (and the second
quantization parameter offset) is less than a third QP offset for a third QP for a third
color component.

[0124] Accordingly, in some examples, the CU is a first CU. In such examples, video
encoder 20 may encode a second CU. In encoding the second CU, video encoder 20
may, for the color component, determine a QP for the color components, set a final QP
value for the color component based on the second CU not being encoded using the
color space conversion such that the final QP value for the color component is equal to
the initial QP value of the color component, and quantize, based on the final QP for the
color component, a coefficient block of the second CU, the coefficient block of the
second CU based on sample values of the color component. Video encoder 20 may
further output the video data bitstream comprising a second set of one or more entropy
encoded syntax elements representative of each of the quantized second coefficient
blocks.

[0125] In decoding this example, video decoder 30 may decode a second CU. In
decoding the second CU, video decoder 30 may, for a color component of the plurality
of color components, determine a QP for the color components, determine a final QP
value for the color component based on the second CU not being encoded using the
color space conversion such that the final QP value for the color component is equal to
the initial QP value of the color component, and inverse quantize, based on the final QP
for the color component, a coefficient block of the second CU, the coefficient block of
the second CU based on sample values of the color component. Video decoder 30 may
reconstruct the second CU based on each of the one or more inverse quantized
coefficient blocks of the second CU.

[0126] Instead of using one fixed set of delta QPs for all modes, the settings of delta
QPs for the three color component may be mode-dependent. In one example, intra and
Intra BC modes may share the same set of (deltaQPc, deltaQPc;, deltaQP¢,) while inter
modes may share another set of (deltaQPc, deltaQPc;, deltaQP¢,) which is not identical
to the one used by intra and Intra BC modes. In another example, intra modes may
share the same set of (deltaQPcy, deltaQPc;, deltaQP¢,) while Intra BC mode and inter
modes may share another set of (deltaQPc, deltaQPc;, deltaQP¢,) which is not identical

to the one used by intra modes. In some examples, the set of delta QPs (deltaQPcy,

WO 2015/196126 PCT/US2015/036769
32

deltaQPc;, deltaQPc,) could be (-4 + 6*Bitlnc, -4+ 6*Bitlnc, -3+ 6*Bitlnc), (-4+
6*Bitlnc, -4+ 6*Bitlnc, -2+ 6*BitInc), (-5+ 6*Bitlnc, -5+ 6*Bitlnc, -3+ 6*Bitlnc) or (-
5+ 6*Bitlnc, -5+ 6*Bitlnc, -2+ 6*Bitlnc) wherein Bitlnc may be 0, 1, 2.

[0127] In other words, in some examples, the plurality of color components comprises
three color components. In such examples, the quantization parameter offsets may be
equal to (-5 + 6*Bitlnc, -5+ 6*Bitlnc, -3+ 6*Bitlnc). In other such examples, the
quantization parameter offsets may be equal to other values, such as (-4 + 6*BitInc, -4+
6*Bitlnc, -3+ 6*Bitlnc), (-4+ 6*Bitlnc, -4+ 6*Bitlnc, -2+ 6*BitInc), or (-5+ 6*Bitlnc, -
5+ 6*Bitlnc, -2+ 6*BitInc). In any case, BitInc may be equal to 0, 1, or 2.

[0128] An I-slice is a slice that may contain only intra coded blocks or Intra BC coded
blocks. A P-slice is a slice that may contain only intra coded and uni-directionally inter
predicted blocks. A B-slice is a slice that may contain intra predicted blocks, uni-
directionally inter predicted blocks, and bi-directionally inter predicted blocks. In some
examples, instead of using one fixed set of delta QPs for all modes, the settings of delta
QPs for the three color component may be dependent on the slice types. In one
example, the I-slices may share the same set while P/B-slices share the same set. In
another example, different sets may be applied to I/P/B slices. Furthermore, in some
examples, the set of delta QPs may be signaled in an SPS, a PPS, or a slice header.
[0129] In other words, in some examples, for the color components of the plurality of
color components, the QP offset for the color component may be dependent on whether
a slice type of the CU an I-slice type, a P-slice type, or a B-slice type. In such
examples, for the color component, video encoder 20 may determine that the QP offset
for the color component is equal to a first value when the slice type of the CU is the I-
slice type and equal to a second value when the slice type of the CU is the P-slice type
or the B-slice type, the first value being different from the second value. In other such
examples, for the color component, video encoder 20 may determine that the QP offset
for the color component is equal to a first value when the slice type of the CU is the I-
slice type, equal to a second value when the slice type of the CU is the P-slice type, and
equal to a third value when the slice type of the CU is the B-slice type, the first value
being different from the second value, the second value being different from the third
value, and the first value being different from the third value.

[0130] In other examples, for the color components of the plurality of color
components, the QP offset for the color component may be dependent on whether a

slice type of the CU an I-slice type, a P-slice type, or a B-slice type. In such examples,

WO 2015/196126 PCT/US2015/036769
33

for the color component, video decoder 30 may determine that the QP offset for the
color component is equal to a first value when the slice type of the CU is the I-slice type
and equal to a second value when the slice type of the CU is the P-slice type or the B-
slice type, the first value being different from the second value. In other such examples,
for the color component, video decoder 30 may determine that the QP offset for the
color component is equal to a first value when the slice type of the CU is the I-slice
type, equal to a second value when the slice type of the CU is the P-slice type, and equal
to a third value when the slice type of the CU is the B-slice type, the first value being
different from the second value, the second value being different from the third value,
and the first value being different from the third value.

[0131] In some examples, when the data dynamic range is increased due to the color
transform, a video coder may clip the transformed residual into the same range as those
residuals before color transform. For example, if the input data is in N-bit precision, the
residual after intra/inter prediction may be in the range of [-2~, 2" - 1] (or more
precisely, in the range of [-2~ - 1, 2~ - 1]). After applying the color transform, the
transformed residual may also be clipped to the same range. In some examples, when
the coded block flag of three color components are all equal to 0, the inverse color
transform may be skipped.

[0132] In some examples, when the color transform is applied, the conventionally
derived Qpy may be further modified to (Qpy + deltaQP¢). Therefore, in the
deblocking filter process, the boundary strength of luma/chroma edges may be firstly
determined which are dependent on the modified Qpy. Alternatively, the unmodified
Qpy may be used in the boundary strength of luma/chroma edges of deblocking filter
process.

[0133] In other words, in some examples, the plurality of color components includes a
luma component and one or more chroma components. In such examples, video
encoder 20 may further determine, based at least in part on the final QP for the luma
component, a boundary strength of a luma edge. Video encoder 20 may further
determine, based at least in part on the final QP for the chroma component, a boundary
strength of a chroma edge. In response to determining that the boundary strength of the
luma edge does not meet a first threshold, video encoder 20 may perform a deblocking
filtering process on the luma edge. Further, in response to determining that the
boundary strength of the chroma edge does not meet a second threshold, video encoder

20 may perform the deblocking filtering process on the chroma edge.

WO 2015/196126 PCT/US2015/036769
34

[0134] In other examples, the plurality of color components includes a luma component
and one or more chroma components. In such examples, video decoder 30 may further
determine, based at least in part on the final QP for the luma component, a boundary
strength of a luma edge. Video decoder 30 may further determine, based at least in part
on the final QP for the chroma component, a boundary strength of a chroma edge. In
response to determining that the boundary strength of the luma edge does not meet a
first threshold, video decoder 30 may perform a deblocking filtering process on the
luma edge. Further, in response to determining that the boundary strength of the
chroma edge does not meet a second threshold, video decoder 30 may perform the
deblocking filtering process on the chroma edge.

[0135] In some examples, a constraint may be added in the specification that when
color transform is enabled for one CU and the CU is coded with intra mode, all the PUs
within the CU shall use the direct mode (DM). When a PU is encoded using direct
mode, video encoder 20 does not signal motion information syntax elements, but may
signal syntax elements representing residual data. In other words, the chroma prediction
mode may be the same as the luma prediction mode. Alternatively, furthermore, when
color transform is enabled for one CU, pcm_flag shall be equal to 0.

[0136] In other words, in some examples, input data of the color space conversion has
N-bit precision. In such examples, residual data for the CU after intra/inter prediction
may be in a range of [-2~, 2 - 1]. In some other examples, in response to determining
that the CU is coded with an intra coding mode, video encoder 20 may further predict
all chroma blocks of the CU using a same chroma prediction mode. In such examples,
video encoder 20 may further predict all luma blocks of the CU using a same luma
prediction mode. The same luma prediction mode may be the same as the same chroma
prediction mode. In another example, one CU may contain four luma blocks. In such
examples, each luma block may be coded with its own luma prediction mode, and the
luma prediction mode of the top-left luma block within the CU may be the same as the
same chroma prediction mode.

[0137] In other examples, input data of the color space conversion has N-bit precision.
In such examples, residual data for the CU after intra/inter prediction may be in a range
of [-2~, 2 - 1]. In some other examples, in response to determining that the CU is
coded with an intra coding mode, video decoder 30 may further predict all chroma
blocks of the CU using a same chroma prediction mode. In such examples, video

decoder 30 may further predict all luma blocks of the CU using a same luma prediction

WO 2015/196126 PCT/US2015/036769
35

mode. The same luma prediction mode may be the same as the same chroma prediction
mode. In another example, one CU may contain four luma blocks. In such examples,
cach luma block may be coded with its own luma prediction mode, and the luma
prediction mode of the top-left luma block within the CU may be the same as the same
chroma prediction mode.

[0138] Video encoder 20 may further send syntax data, such as block-based syntax data,
frame-based syntax data, and GOP-based syntax data, to video decoder 30, e.g., in a
frame header, a block header, a slice header, or a GOP header. The GOP syntax data
may describe a number of frames in the GOP, and the frame syntax data may indicate an
encoding/prediction mode used to encode the corresponding frame.

[0139] This disclosure also includes techniques to address additional issues related to
the signaling of quantization parameters and the use of quantization parameters in
deblock filtering processses in conjunction with adaptive color-space conversion. For
example, this disclosure includes techniques for configuring video encoder 20 and video
decoder 30 to operate in the coding scenarios where the color transform flag is not
present for a block, such as in the scenario where rqt_root cbf is equal to 0 and there are
no non-zero coefficients in a transform block. Additionally, this disclosure includes
techniques for signaling delta QP values, from video encoder 20 to video decoder 30, in
the coding scenario where color transform is enabled for one sequence, or picture, or
slice. Accordingly, this disclosure provides some potential solutions to improve the
coding performance associated with in-loop color-space transform.

[0140] For purposes of explanation, this disclosure will denote the set of delta values of
quantization parameters (QPs) for the three color components (i.e. R, G, and B) as
deltaQPcy, deltaQP¢q, and deltaQP¢,, which indicate the offset of QPs for blocks with
color transform enabled. For luma and chroma quantiazatio paramters, as determined in
the manner described above, the abbreviation qP will be used.

[0141] According to the techniques of this disclosure, for blocks coded with color
transform enabled, the final QP used in the dequantization process and/or deblocking
filter process is modified to be qPy + deltaQPco, qP; + deltaQP¢y, qP; + deltaQPc; for
the three color components. P4 18 the output of the conventional QP derivation
process, as defined in sub-clause 8.6.1 of HEVC range extension working draft 7 (RExt
WD7) with cldx equal to 0, 1, 2 as inputs.

[0142] According to one technique of this disclosure, if the color transform flag is not

present for a block, then video encoder 20 and/or video decoder 30 treat the block as if

WO 2015/196126 PCT/US2015/036769
36

color transform is disabled during the deblocking filter process. The color transform
flag may, for example, not be present when rqt_root cbf is equal to 0 for an inter or
intraBC mode or when the block is coded with conventional intra modes, but the
chroma mode is unequal to DM mode. When a chroma block is coded using the
dictionary mode, the chroma block has the same prediction modes as the luma
prediction unit when the partition size is equal to 2Nx2N, or as the top-left luma
prediction unit when the partition size is equal to NxN. It is noted that one intra-coded
CU can have one luma prediction mode (partition size is equal to 2Nx2N) or four luma
prediction modes (partition size is equal to NxN) while intra-coded CU can only have
one chroma prediction mode regardless partition size. In HEVC screen content coding,
the color transform flag is only signaled when the chroma mode is equal to dictionary
mode.

[0143] According to another technique of this disclosure, when the color transform flag
is not present for a block, video encoder 20 and video decoder 30 may be configured to
treat the block as if color transform is enabled during the deblocking filter process. In
such instances, video encoder 20 and video decoder 30 may be configured to use
modified QPs (including the delta QPs) during the determination of boundary strength
for a deblock filtering process. Video encoder 20 and/or video decoder 30 may first
determine the boundary strength of luma/chroma edges, which may be dependent on
modified QPs.

[0144] In one example, if video encoder 20 and/or video decoder 30 treat one block as
having color transform enabled, then video encoder 20 and/or video decoder 30 may use
(qP + deltaQPco, qP + deltaQPc;, qP + deltaQP¢;) in the determination of boundary
strength of luma/chroma edges which may be the same as what are used in the
dequantization process.

[0145] Alternatively, for the blocks coded with color transform enabled, video encoder
20 and/or video decoder 30 may use different quantization parameters in dequantization
and deblocking filter processes. For example, video encoder 20 and/or video decoder
30 may use (qPo + deltaQPco, qP; + deltaQPco, qP2 + deltaQPcyo) in the determination of
boundary strength of luma/chroma edges while using (qPy + deltaQPco, qP1 +
deltaQPci, qP, + deltaQPc,) in the dequantization process. Alternatively, video encoder
20 and/or video decoder 30 may use the modified quantization parameter for only one
component. For example, if one block is coded/treated as using color transform, then

video encoder 20 and/or video decoder 30 may use (qPo + deltaQPco, qP1, qP2).

WO 2015/196126 PCT/US2015/036769
37

[0146] In another example, when a block is coded using an intra mode not a DM mode,
video encoder 20 and/or video decoder 30 may treat the block is treated as using the
color transform during the deblocking process. That is, the modified QPs (i.e.,
including the delta QPs) are used during the determination of boundary strength. In
another example, whether to treat the block as using color transform or not in the
deblocking filter process may be sequence type dependent. For example, for RGB
coding, video encoder 20 and/or video decoder 30 may use code a block as using color
transform as it is preferred for more blocks to select color transform, while for YCbCr
coding, video encoder 20 and/or video decoder 30 treat the block as having color
transform.

[0147] According to another example of the techniques of this disclosure, when a color
transform flag is not present for one block, whether video encoder 20 and/or video
decoder 30 treats the block as using color transform or not in the deblocking filter
process may be mode dependent. In one example, for blocks coded with intraBC and
inter modes, when rqt_root_cbf is equal to 0 for inter or intraBC modes, i.c., there are
no non-zero coefficients, video encoder 20 and/or video decoder 30 treat the block as
using color transform. While for intra modes, if the color transform flag is not present,
video encoder 20 and/or video decoder 30 treat the block as having color transform
disabled.

[0148] In another example, when color transform flag is not present for one block,
video encoder 20 and/or video decoder 30 determine whether to treat the block as
having color transform enabled or disabled, for the deblocking filter process, as
dependent on the format of input sequences. In one example, for sequences in RGB
format, video encoder 20 and/or video decoder 30 treats the block as having color
transform enabled. In another example, for sequences in YUV/Y CbCr format, video
encoder 20 and/or video decoder 30 treats the block as having color transform disabled.
[0149] According to another technique of this disclosure, even when the modified QPs
are used in dequantization and/or deblocking filter processes, video encoder 20 and/or
video decoder 30 may still use the unmodified QPs as the predictor for the following
coded CUs. For example, regardless of whether a first block is encoded using a color-
space transform mode, and hence, regardless of whether transform coefficients of the
first block are dequantized using a modified quantization parameter, video encoder 20

signals, to video decoder 30, the quantization parameter for the second block as a

WO 2015/196126 PCT/US2015/036769
38

difference between the unmodified quantization parameter for the first block and the
unmodifed quantization parameter for the second block.

[0150] Alternatively, video encoder 20 and/or video decoder 30 may use the modified
QPs as the predictor for the following coded CUs.

[0151] FIG. 6 is a block diagram illustrating an example of video encoder 20 that may
implement techniques for encoding video blocks using a color-space conversion
process. Video encoder 20 may perform intra- and inter coding of video blocks within
video slices. Intra-coding relies on spatial prediction to reduce or remove spatial
redundancy in video within a given video frame or picture. Inter coding relies on
temporal prediction to reduce or remove temporal redundancy in video within adjacent
frames or pictures of a video sequence. Intra-mode (I mode) may refer to any of several
spatial based coding modes. Inter modes, such as uni-directional prediction (P mode) or
bi-prediction (B mode), may refer to any of several temporal-based coding modes.
[0152] As shown in FIG. 6, video encoder 20 receives a current video block within a
video frame to be encoded. In the example of FIG. 6, video encoder 20 includes mode
select unit 40, reference picture memory 64, summer 50, transform processing unit 52,
quantization unit 54, and entropy encoding unit 56. Mode select unit 40, in turn,
includes motion compensation unit 44, motion estimation unit 42, intra prediction unit
46, and partition unit 48. Mode select unit 40 may also include other units based on the
selected mode, such as an Intra BC mode module. For video block reconstruction,
video encoder 20 also includes inverse quantization unit 58, inverse transform unit 60,
and summer 62. A deblocking filter (not shown in FIG. 6) may also be included to filter
block boundaries to remove blockiness artifacts from reconstructed video. In typical
examples, summer 62 receives the output of the deblocking filter. Additional filters (in
loop or post loop) may also be used in addition to the deblocking filter. Such filters are
not shown for brevity, but if desired, may filter the output of summer 50 (as an in-loop
filter).

[0153] During the encoding process, video encoder 20 receives a video frame or slice to
be encoded. The frame or slice may be divided into multiple video blocks. Motion
estimation unit 42 and motion compensation unit 44 perform inter predictive coding of a
video block based on one or more blocks in one or more reference frames to provide
temporal prediction. Video encoder 20 may perform multiple coding passes, ¢.g., to

select an appropriate coding mode for each block of video data.

WO 2015/196126 PCT/US2015/036769
39

[0154] Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference frame (or other coded unit) relative to
the current block being coded within the current frame (or other coded unit). A
predictive block is a block that is found to closely match the block to be coded, in terms
of pixel difference, which may be determined by sum of absolute difference (SAD), sum
of square difference (SSD), or other difference metrics. In some examples, video
encoder 20 may calculate values for sub-integer pixel positions of reference pictures
stored in reference picture memory 64. For example, video encoder 20 may interpolate
values of one-quarter pixel positions, one-cighth pixel positions, or other fractional
pixel positions of the reference picture. Therefore, motion estimation unit 42 may
perform a motion search relative to the full pixel positions and fractional pixel positions
and output a motion vector with fractional pixel precision.

[0155] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0156] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation unit 42. Again, motion estimation unit 42 and motion compensation
unit 44 may be functionally integrated, in some examples. Upon receiving the motion
vector for the PU of the current video block, motion compensation unit 44 may locate
the predictive block to which the motion vector points in one of the reference picture
lists. Summer 50 may form a residual video block by subtracting pixel values of the
predictive block from the pixel values of the current video block being coded, forming
pixel difference values, as discussed below. In general, motion estimation unit 42
performs motion estimation relative to luma components, and motion compensation unit

44 uses motion vectors calculated based on the luma components for both chroma

WO 2015/196126 PCT/US2015/036769
40

components and luma components. Mode select unit 40 may also generate syntax
elements associated with the video blocks and the video slice for use by video decoder
30 in decoding the video blocks of the video slice.

[0157] Intra prediction unit 46 may intra predict a current block, as an alternative to the
inter prediction performed by motion estimation unit 42 and motion compensation unit
44, as described above. In particular, intra prediction unit 46 may determine an intra
prediction mode to use to encode a current block. In some examples, intra prediction
unit 46 may encode a current block using various intra prediction modes, e.g., during
separate encoding passes, and intra prediction unit 46 (or mode select unit 40, in some
examples) may select an appropriate intra prediction mode to use from the tested modes.
[0158] For example, intra prediction unit 46 may calculate rate-distortion values using a
rate-distortion analysis for the various tested intra prediction modes, and select the intra
prediction mode having the best rate-distortion characteristics among the tested modes.
Rate-distortion analysis generally determines an amount of distortion (or error) between
an encoded block and an original, unencoded block that was encoded to produce the
encoded block, as well as a bitrate (that is, a number of bits) used to produce the
encoded block. Intra prediction unit 46 may calculate ratios from the distortions and
rates for the various encoded blocks to determine which intra prediction mode exhibits
the best rate-distortion value for the block.

[0159] After selecting an intra prediction mode for a block, intra prediction unit 46 may
provide information indicative of the selected intra prediction mode for the block to
entropy encoding unit 56. Entropy encoding unit 56 may encode the information
indicating the selected intra prediction mode. Video encoder 20 may include in the
transmitted bitstream configuration data, which may include a plurality of intra
prediction mode index tables and a plurality of modified intra prediction mode index
tables (also referred to as codeword mapping tables), definitions of encoding contexts
for various blocks, and indications of a most probable intra prediction mode, an intra
prediction mode index table, and a modified intra prediction mode index table to use for
cach of the contexts.

[0160] Intra prediction unit 46 may perform intra predictive coding of the video block
based on one or more neighboring blocks in the same frame or slice as the block to be
coded to provide spatial prediction. Moreover, partition unit 48 may partition blocks of
video data into sub-blocks, based on evaluation of previous partitioning schemes in

previous coding passes. For example, partition unit 48 may initially partition a frame or

WO 2015/196126 PCT/US2015/036769
41

slice into LCUs, and partition each of the LCUs into sub-CUSs based on rate-distortion
analysis (e.g., rate-distortion optimization). Mode select unit 40 may further produce a
quadtree data structure indicative of partitioning of an LCU into sub-CUs. Leaf-node
CUs of the quadtree may include one or more PUs and one or more TUs.

[0161] Mode select unit 40 may select one of the coding modes, intra or inter, ¢.g.,
based on error results, and may provide the resulting intra- or inter coded block to
summer 50 to generate residual block data and to summer 62 to reconstruct the encoded
block for use as a reference frame. Mode select unit 40 also provides syntax elements,
such as intra-mode indicators, partition information, and other such syntax information,
to entropy encoding unit 56.

[0162] Video encoder 20 may form a residual video block by subtracting the prediction
data from mode select unit 40 from the original video block being coded. Summer 50
represents the component or components that perform this subtraction operation.
Transform processing unit 52 applies a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform, to the residual block, producing a video
block comprising residual transform coefficient values. Transform processing unit 52
may perform other transforms which are conceptually similar to DCT. Wavelet
transforms, integer transforms, sub-band transforms or other types of transforms could
also be used. In any case, transform processing unit 52 applies the transform to the
residual block, producing a block of residual transform coefficients. The transform may
convert the residual information from a pixel value domain to a transform domain, such
as a frequency domain. Transform processing unit 52 may send the resulting transform
coefficients to quantization unit 54. Quantization unit 54 quantizes the transform
coefficients to further reduce bit rate. The quantization process may reduce the bit
depth associated with some or all of the coefficients. The degree of quantization may be
modified by adjusting a quantization parameter. In some examples, quantization unit 54
may then perform a scan of the matrix including the quantized transform coefficients.
Alternatively, entropy encoding unit 56 may perform the scan.

[0163] Following quantization, entropy encoding unit 56 entropy codes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy coding technique. In the

case of context-based entropy coding, context may be based on neighboring blocks.

WO 2015/196126 PCT/US2015/036769
42

Following the entropy coding by entropy encoding unit 56, the encoded bitstream may
be transmitted to another device (e.g., video decoder 30) or archived for later
transmission or retrieval.

[0164] In accordance with techniques of this disclosure, entropy encoding unit 56 of
video encoder 20 may perform one or more techniques of the current disclosure. For
example, entropy encoding unit 56 of video encoder 20 may encode a CU of the video
data. In encoding the video data, color-space conversion unit 51 may determine
whether to encode the CU using a color space conversion. For a color component,
quantization unit 54 may determine an initial QP for the color component and set a final
QP for the color component based on the CU being encoded using the color space
conversion such that the final QP for the color component is equal to a sum of the initial
QP of the color component and a non-zero QP offset for the color component.
Quantization unit 54 may quantize, based on the final QP for the color component, a
coefficient block for the CU, the coefficient block for the CU being based on sample
values of the color component. Once each coefficient has been quantized, entropy
encoding unit 56 may further output a video data bitstream comprising one or more
entropy encoded syntax elements representative of each of the quantized coefficient
blocks.

[0165] Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain, ¢.g., for later use as a reference block. Motion compensation unit
44 may calculate a reference block by adding the residual block to a predictive block of
one of the frames of reference picture memory 64. Motion compensation unit 44 may
also apply one or more interpolation filters to the reconstructed residual block to
calculate sub-integer pixel values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated prediction block produced by
motion compensation unit 44 to produce a reconstructed video block for storage in
reference picture memory 64. The reconstructed video block may be used by motion
estimation unit 42 and motion compensation unit 44 as a reference block to inter code a
block in a subsequent video frame.

[0166] Video encoder 20 represents an example of a video encoder configured to
determine a quantization parameter for a first block of video data; in response to
determining that the first block of video data is coded using a color-space transform

mode for residual data of the first block, modify the quantization parameter for the first

WO 2015/196126 PCT/US2015/036769
43

block; perform a quantization process for the first block based on the modified
quantization parameter for the first block; determine a quantization parameter for a
second block of video data; and signal a difference value between the quantization
parameter for the first block and the quantization parameter for the second block.

[0167] FIG. 7 is a block diagram illustrating an example of video decoder 30 that may
implement techniques for decoding video blocks, some of which were encoded using a
color-space conversion process. In the example of FIG. 7, video decoder 30 includes an
entropy decoding unit 70, motion compensation unit 72, intra prediction unit 74, inverse
quantization unit 76, inverse transformation unit 78, reference picture memory 82 and
summer 80. Video decoder 30 may also include other units such as Intra BC unit.
Video decoder 30 may, in some examples, perform a decoding pass generally reciprocal
to the encoding pass described with respect to video encoder 20 (FIG. 6). Motion
compensation unit 72 may generate prediction data based on motion vectors determined
from syntax elements received from entropy decoding unit 70, while intra prediction
unit 74 may generate prediction data based on intra prediction mode indicators received
from entropy decoding unit 70. In some examples, intra prediction unit 74 may infer
some intra prediction mode indicators.

[0168] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements. Entropy decoding unit 70 of video decoder 30 entropy decodes the bitstream
to generate quantized coefficients, motion vectors or intra prediction mode indicators,
and other syntax elements. Entropy decoding unit 70 forwards the syntax elements to
motion compensation unit 72.

[0169] In accordance with techniques of this disclosure, video decoder 30 may perform
one or more techniques of the current disclosure. For example, entropy decoding unit
70 of video decoder 30 may decode a coding unit (CU) of the video data. In decoding
the video data, inverse color-space conversion unit 79 of video decoder 30 may
determine that the CU was encoded using a color space conversion. For a color
component, inverse quantization unit 76 of video decoder 30 may determine an initial
quantization parameter (QP) for the color component and determine a final QP for the
color component based on the CU being encoded using the color space conversion, such
that the final QP for the color component is equal to a sum of the initial QP of the color
component and a non-zero QP offset for the color component. Inverse quantization unit

76 of video decoder 30 may inverse quantize, based on the final QP for the color

WO 2015/196126 PCT/US2015/036769
44

component, a coefficient block for the CU, the coefficient block for the CU being based
on sample values of the color component. Once each coefficient block has been inverse
quantized, summer 80 of video decoder 30 may reconstruct the coding unit based on the
inverse quantized coefficient blocks for the CU.

[0170] Intra prediction unit 74 may use an intra prediction mode to generate a predictive
block when the slice is an I slice, a P slice, or a B slice. In other words, you can have an
intra predicted block in a slice that allows uni- or bi-directional inter prediction. When
the video frame is coded as an inter coded (i.c., B, P or GPB) slice, motion
compensation unit 72 produces predictive blocks for a video block of the current video
slice based on the motion vectors and other syntax elements received from entropy
decoding unit 70. The predictive blocks may be produced from one of the reference
pictures within one of the reference picture lists. Video decoder 30 may construct the
reference picture lists, List 0 and List 1, using default construction techniques based on
reference pictures stored in reference picture memory 82. Motion compensation unit 72
determines prediction information for a video block of the current video slice by parsing
the motion vectors and other syntax elements, and uses the prediction information to
produce the predictive blocks for the current video block being decoded. For example,
motion compensation unit 72 uses some of the received syntax elements to determine a
prediction mode (e.g., intra or inter prediction) used to code the video blocks of the
video slice, an inter prediction slice type (e.g., B slice, P slice, or GPB slice),
construction information for one or more of the reference picture lists for the slice,
motion vectors for each inter encoded video block of the slice, inter prediction status for
each inter coded video block of the slice, and other information to decode the video
blocks in the current video slice.

[0171] Inverse quantization unit 76 inverse quantizes, i.c., dequantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
70. The inverse quantization process may include use of a quantization parameter QPy
calculated by video decoder 30 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied.

[0172] Video decoder 30 represents an example of a video decoder that may be
configured to receive a first block of the video data; receive information to determine a
quantization parameter for the first block; in response to determining that the first block

is coded using a color-space transform mode for residual data of the first block, modify

WO 2015/196126 PCT/US2015/036769
45

the quantization parameter for the first block; perform a dequantization process for the
first block based on the modified quantization parameter for the first block; receiving a
second block of the video data; receive for the second block, a difference value
indicating a difference between a quantization parameter for the second block and the
quantization parameter for the first block; determine the quantization parameter for the
second block based on the received difference value and the quantization parameter for
the first block; and decode the second block based on the determined quantization
parameter for the second block. Video decoder 30 may also determine a boundary
strength parameter for a deblock filtering process based on the modified quantization
parameter for the first block and perform the deblock filtering process on the first block.
[0173] In response to determining that the color-space transform mode is enabled for
the second block of video data, video decoder 30 may modify the determined
quantization parameter for the second block, and decode the second block based on the
determined quantization parameter for the second block by performing a dequantization
process for the second block based on the modified quantization parameter for the
second block. Video decoder 30 may also decode the second block based on the
determined quantization parameter for the second block by, in response to determining
that the color-space transform mode is disabled for the second block, performing a
dequantization process for the second block based on the determined quantization
parameter for the second block.

[0174] Video decoder 30 may receive a flag for the first block to determine that the first
block of video data is coded using the color-space transform mode for residual data of
the first block. Video decoder 30 may receive information to determine the quantization
parameter for the first block by receiving an initial value for the quantization parameter
for the first block. Video decoder 30 may receive the initial value at a slice level.
Video decoder 30 may receive, at a coded unit level, the difference value indicating the
difference between the quantization parameter for the second block and the quantization
parameter for the first block. To receive the difference value indicating the difference
between the quantization parameter for the second block and the quantization parameter
for the first block, video decoder 30 may receive a syntax element indicating the
absolute value of the difference and receiving a syntax element indicating a sign of the
difference.

[0175] In some example implementations of the above techniques, requisite syntax

elements may be found in the sequence parameter set. In the following tables, italicized

WO 2015/196126
46

PCT/US2015/036769

text represents additions relative to the current draft of HEVC standards. Bold text

denotes syntax elements. In some examples, a sequence parameter set RBSP may have

the following syntax:

seq_parameter set rbsp() { Descriptor
sps_video_ parameter set id u(4)
sps_max_sub_layers minusl u(3)
sps_temporal_id_nesting_flag u(l)
profile tier level(sps_max_sub layers minusl)
vui_parameters_present_flag u(l)
if(vui_parameters_present flag)
vui_parameters()
sps_extension_present_flag u(l)
if(sps_extension_present flag) {
for(1=0;1<1;1++)
sps_extension_flag| i] u(l)
sps_extension_7bits u(7)
if(sps_extension_flag[0]) {
transform_skip_rotation_enabled_flag u(l)
transform_skip_context_enabled_flag u(l)
intra_block _copy_enabled_flag u(l)
implicit_rdpcm_enabled_flag u(l)
explicit_rdpcm_enabled_flag u(l)
extended_precision_processing_flag u(l)
intra_smoothing_disabled_flag u(l)
high_precision_offsets_enabled_flag u(l)
fast_rice_adaptation_enabled flag u(l)
cabac_bypass_alignment_enabled_flag u(l)
color_transform_enabled flag u(l)
lossless _enable flag u(l)
}
if(sps_extension_7bits)
while(more_rbsp_data())
sps_extension_data_flag u(l)
}
rbsp_trailing bits()
}

WO 2015/196126

PCT/US2015/036769
47

[0176] In this example, color transform enabled flag equal to 1 indicates that color

transform is enabled. When the syntax element color transform enabled flag is equal

to 0, color transform is not enabled. When the syntax element lossless enable flag is

equal to 1, lossless coding is applied. In addition, when color transform enabled flag

is equal to 1, the original YCoCg-R transform is used. When the syntax element

lossless enable flag is equal to 0, lossy coding is applied. In addition, when

color_transform_enabled flag is equal to 1, the original YCoCg transform is used.

[0177] Alternatively, the newly introduced flags may be signaled only when

chroma_ format idc is equal to 3.

seq_parameter set rbsp() { Descript
or
sps_video_ parameter set id u(4)
sps_max_sub_layers minusl u(3)
sps_temporal_id_nesting_flag u(l)
profile tier level(sps_max_sub layers minusl)
vui_parameters_present_flag u(l)
if(vui_parameters_present flag)
vui_parameters()
sps_extension_present flag u(l)
if(sps_extension_present flag) {
for(1=0;1<1;1++)
sps_extension_flag| i] u(l)
sps_extension_7bits u(7)
if(sps_extension_flag[0]) {
transform_skip _rotation_enabled_flag u(l)
transform_skip_context_enabled_flag u(l)
intra_block _copy_enabled_flag u(l)
implicit_rdpcm_enabled_flag u(l)
explicit_rdpcm_enabled_flag u(l)
extended_precision_processing_flag u(l)
intra_smoothing_disabled_flag u(l)
high_precision_offsets_enabled_flag u(l)
fast_rice_adaptation_enabled flag u(l)
cabac_bypass_alignment_enabled_flag u(l)
if(chroma_format idc == 3){
color_transform_enabled flag u(l)

WO 2015/196126 PCT/US2015/036769

48
lossless _enable flag u(l)
}
}
if(sps_extension_7bits)
while(more_rbsp_data())
sps_extension_data_flag u(l)
}
rbsp_trailing bits()
}

[0178] Alternatively, the newly introduced flags may be signaled only when
chroma_format idc is equal to 3 and the three colour components of the 4:4:4 chroma
format are not coded separately. Therefore, the above condition ‘if(chroma format idc
== 3)‘ may be replaced by ‘if(chroma format idc == 3 &&

!separate_colour plane flag)’.

[0179] Further, a constraint may be applied that when color transform enabled flag is
equal to 1, chroma format idc may be equal to 3. Alternatively, furthermore, when
color_transform_enabled flag is equal to 1, separate _colour plane flag may be equal to
0.

[0180] In some examples, a coding unit may have the following syntax:

coding_unit(x0, y0, log2CbSize) { Descript

or

if(transquant_bypass_enabled flag)

cu_transquant_bypass_flag ac(v)

if(slice type !'=1)

cu_skip flag[x0][yO0] ae(v)

nCbS = (1 << log2CbSize)

if(cu_skip flag[x0][y01])

prediction_unit(x0, y0, nCbS, nCbS)

else {

if(slice type !=1)

pred_mode flag ae(v)

if(CuPredMode[x0][yO] '= MODE INTRA ||
log2CbSize == MinCbLog2SizeY)

part_mode ac(v)

if(CuPredMode[x0][y0] == MODE INTRA) {

WO 2015/196126
49

PCT/US2015/036769

if(PartMode == PART 2Nx2N && pcm enabled flag &&
log2CbSize >= Log2MinlpecmCbSizeY &&
log2CbSize <= Log2MaxIpcmCbSizeY)

pem_flag[x0][yO]

ae(v)

if(pem_flag[x0][y0]) ¢

while('byte aligned())

pcm_alignment_zero_bit

f1)

pecm_sample(x0, y0, log2CbSize)

} else {

if(color_transform_enabled flag) {

color_transform_flag[x0][y0]

ae(v)

/

pbOffset = (PartMode == PART NxN)? (nCbS/2): nCbS

for(j=0;j <nCbS;j =]+ pbOffset)

for(1=0;1<nCbS; i=1+ pbOffset)

prev_intra_luma pred flag[x0+1][y0 +]]

ae(v)

for(j=0;j <nCbS;j =]+ pbOffset)

for(1=0;1<nCbS; i=1+ pbOffset)

if(prev_intra_luma pred flag[x0+i][y0+j])

mpm_idx[x0 +1][y0+j]

ae(v)

else

rem_intra luma_pred_mode[x0 +1][yO +j]

ae(v)

if(ChromaArrayType == 3 && !/ color_transform_flag[x0][yv0])

for(j=0;j <nCbS;j =]+ pbOffset)

for(1=0;1<nCbS; i=1+ pbOffset)

intra_chroma_pred _mode[x0+1i][y0 +]]

ae(v)

else if(ChromaArrayType !'= 0)

intra_chroma pred mode[x0][y0]

ae(v)

}

} else {

}

}

if(!pem flag[x0][y0]) {

if(CuPredMode[x0][yO] '= MODE INTRA &&
!(PartMode == PART 2Nx2N && merge flag[x0][y0]))

rqt_root cbf

ae(v)

if(rqt_root cbf) {

if(color_transform_enabled flag && CuPredMode[x0][y0] ! =
MODE INTRA) {

color_transform_flag[x0][y0]

ae(v)

WO 2015/196126 PCT/US2015/036769

50

/

(max_transform_hierarchy depth_intra +

IntraSplitFlag) :
max transform hierarchy depth inter)

MaxTrafoDepth = (CuPredMode[x0][y0] == MODE INTRA ?

transform tree(x0, y0, x0, y0, log2CbSize, 0, 0)

}

}

}

}

[0181] In the above example, for intra mode, the color transform flag is firstly signaled.

When this flag is equal to 1, the signaling of intra_chroma pred mode may be skipped,

wherein the chroma components share the same mode as luma.

[0182] Alternatively, in some examples, the coding unit may have the following syntax:

coding_unit(x0, y0, log2CbSize) {

Descriptor

if(transquant_bypass_enabled flag)

cu_transquant_bypass_flag

ae(v)

if(slice type !=1)

cu_skip flag[x0][yO]

ae(v)

nCbS =(1 << log2CbSize)

if(cu_skip flag[x0][y01])

prediction_unit(x0, y0, nCbS, nCbS)

else {

if(slice type !=1)

pred _mode flag

ae(v)

if(CuPredMode[x0][yO] '= MODE _INTRA ||
log2CbSize == MinCbLog2SizeY)

part_mode

ae(v)

if(CuPredMode[x0][y0] == MODE INTRA) {

if(PartMode == PART 2Nx2N && pcm enabled flag &&
log2CbSize >= Log2MinlpcmCbSizeY &&
log2CbSize <= Log2MaxIpcmCbSizeY)

pem_flag[x0][yO]

ae(v)

if(pem_flag[x0][y0]) ¢

while(!byte aligned())

pcm_alignment_zero_bit

f1)

pecm_sample(x0, y0, log2CbSize)

} else {

pbOffset = (PartMode == PART NxN) ? (nCbS/2):nCbS

WO 2015/196126 PCT/US2015/036769

51

for(j=0;j <nCbS; j =]+ pbOffset)

for(1=0;1<nCbS; i =1+ pbOffset)

prev_intra_luma_pred flag[x0+1][y0 +j]

ae(v)

for(j=0;j <nCbS; j =]+ pbOffset)

for(1=0;1<nCbS; i =1+ pbOffset)

if(prev_intra luma pred flag[x0+i][y0+j])

mpm_idx[x0 +1i][y0+j]

ae(v)

else

rem_intra_luma_pred_mode[x0 +1][y0 +j]

ae(v)

if(ChromaArrayType == 3)

for(j=0;j <nCbS; j =]+ pbOffset)

for(1=0;1<nCbS; i =1+ pbOffset)

intra_chroma_pred _mode[x0 +i][y0 +]]

ae(v)

else if(ChromaArrayType != 0)

intra chroma_pred mode[x0][yO0 |

ae(v)

}

} else {

}

}

if('pem flag[x0][y01]) {

if(CuPredMode[x0][yO] '= MODE INTRA &&
!(PartMode == PART 2Nx2N && merge flag[x0][y0]))

rqt _root cbf

ae(v)

if(rqt_root cbf) {

if(color_transform_enabled flag
&& (CuPredMode[x0][y0] == MODE INTER
|| lintra chroma pred modef x0][v0]) {

color_transform_flag[x0][y0]

ae(v)

/

MaxTrafoDepth = (CuPredMode[x0][y0] == MODE _INTRA ?
(max_transform_hierarchy depth intra +
IntraSplitFlag) :
max transform hierarchy depth inter)

transform tree(x0, y0, x0, y0, log2CbSize, 0, 0)

}

}

}

}

[0183] Alternatively, when intra BC mode is considered as an intra mode, that is, the

corresponding CuPredMode[x0][yO] is equal to MODE INTRA, the above

highlighted condition ‘if(color_transform_enabled flag &&(CuPredMode[x0][yO]

WO 2015/196126 PCT/US2015/036769
52

== MODE INTER || lintra_chroma pred mode[x0][y0])’ could be replaced by ‘if(
color_transform_enabled flag &&(CuPredMode[x0][yO] == MODE INTER ||
intra_bc_flag[x0][yO]| !intra_chroma pred mode[x0][yO])’. Alternatively, in all
examples above, CuPredMode[x0][y0] == MODE _INTER may be replaced by
CuPredMode[x0][yO] '= MODE INTRA.

[0184] Alternatively, the above conditions ‘if(color transform enabled flag
&&(CuPredMode[x0][y0] == MODE _INTER || lintra_chroma pred mode[x0][y0
1)’ could be simply replaced by ‘if(color transform_enabled flag)’. In this case, the
constraint that chroma and luma modes are the same when
color_transform_enabled flag is equal to 1 and current CU is intra coded may be
satisfied.

[0185] The following changes may be invoked when the current CU/PU/TU is not
lossless coded (i.e., when cu_transquant bypass flag is equal to 0). In one example, the
QP used in the dequantization process may change when color transform is applied.
However, the Qpy used in the deblocking process may be unchanged, i.e., without the
delta QP (deltaQPc) taken into consideration.

[0186] In the decoding process, for the derivation process for quantization parameters,
input to this process is a luma location (Xcw, Yeb) Specifying the top-left sample of the
current luma coding block relative to the top-left luma sample of the current picture. In
this process, the variable Qpy, the luma quantization parameter Qp’y, and the chroma
quantization parameters Qp’cy, and Qp'cy are derived.

[0187] The luma location (Xqe, Yqg), Specifies the top-left luma sample of the current
quantization group relative to the top left luma sample of the current picture. The
horizontal and vertical positions xqg and yqg are set equal to xcp — (Xcp & ((1 <<
Log2MinCuQpDeltaSize) — 1)) and ycb — (yeb & ((1 << Log2MinCuQpDeltaSize)
— 1)), respectively. The luma size of a quantization group, Log2MinCuQpDeltaSize,
determines the luma size of the smallest area inside a coding tree block that shares the
same Py prep.

[0188] The predicted luma quantization parameter qPy prep may be derived by the
following ordered steps: 1) The variable qPy prev may be derived. If one or more of
the following conditions are true, qPy prey 1S set equal to SliceQpy: The current
quantization group is the first quantization group in a slice, the current quantization
group is the first quantization group in a tile, or the current quantization group is the

first quantization group in a coding tree block row and

WO 2015/196126 PCT/US2015/036769
53

entropy coding sync enabled flagis equal to 1. Otherwise, qPy prev 18 set equal to
the luma quantization parameter Qpy of the last coding unit in the previous quantization
group in decoding order.
[0189] 2) The availability derivation process for a block in z-scan order is invoked with
the location (Xcur, Ycur) S€t €qual to (Xcb, Yoo) and the neighboring location (Xnby,
ynby) set equal to (xge — 1, yo.) as inputs, and the output is assigned to availableA.
The variable qPy 4 1s derived as follows: If one or more of the following conditions are
true, qPy a is set equal to qPy prev: availableA is equal to FALSE or the coding tree
block address ctbAddrA of the coding tree block containing the luma coding block
covering the luma location (xqog — 1, yq.) 1s not equal to CtbAddrInTs, where
ctbAddrA is derived as follows:

xTmp = (xge — 1) >> Log2MinTrafoSize

yTmp =yq, >> Log2MinTrafoSize

minTbAddrA = MinTbAddrZs[xTmp][yTmp]

ctbAddrA = (minTbAddrA >> 2) * (CtbLog2SizeY — Log2MinTrafoSize)
Otherwise, qPy 4 is set equal to the luma quantization parameter Qpy of the coding unit
containing the luma coding block covering (xge — 1, yqg)-
[0190] 3) The availability derivation process for a block in z-scan order is invoked with
the location (Xcur, Ycur) S€t €qual to (Xcb, Yoo) and the neighboring location (Xnby,
ynby) set equal to (Xqg, Yoe — 1) as inputs. The output is assigned to availableB. The
variable qPy g 18 derived. If one or more of the following conditions are true, qPy g is
set equal to qPy prev: availableB is equal to FALSE or the coding tree block address
ctbAddrB of the coding tree block containing the luma coding block covering the luma
location (Xqg, yqg — 1) is not equal to CtbAddrInTs, where ctbAddrB is derived as
follows:

xTmp =xqg >> Log2MinTrafoSize

yImp = (yg. — 1) >> Log2MinTrafoSize

minTbAddrB = MinTbAddrZs[xTmp][yTmp]

ctbAddrB = (minTbAddrB >> 2) * (CtbLog2SizeY — Log2MinTrafoSize)
Otherwise, qPY_B is set equal to the luma quantization parameter QpY of the coding
unit containing the luma coding block covering (xQg, yQg —1).
[0191] The predicted luma quantization parameter qPy prep may be derived as follows:

qPy prep=(qPy At qPys+1) > 1

[0192] The variable Qpy may be derived as follows:

WO 2015/196126 PCT/US2015/036769
54

Qpy = ((gPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety))
— QpBdOffsety
[0193] The luma quantization parameter Qp'y may be derived as follows:
Qp'y = Qpy + QpBdOffsety
[0194] When ChromaArrayType is not equal to 0, the variables qPicy, and qPic, are
derived as follows:
qPicp, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cb_qp_offset + slice cb _qp offset +
CuQpOftsetcy)
qPicy = Clip3(—QpBdOftsetC, 57, Qpy + pps_cr_qp_offset + slice cr qp offset +
CuQpOftsetc,)
[0195] If ChromaArrayType is equal to 1, the variables qPc, and qPc; are set equal to
the value of Qpc based on the index qPi equal to qPi¢y, and qPig,, respectively.
Otherwise, the variables qPcy, and qPc; are set equal to Min(qPi, 51), based on the
index qPi equal to qPicy, and qPicy, respectively.
[0196] The chroma quantization parameters for the Cb and Cr components, Qp’cy, and
Qp’cy, are derived as follows:
Qp’cy = qPcy + QpBdOffsetc
Qp'cr = qPcr + QpBdOffsetc
[0197] The specification of Qp. as a function of qPi for ChromaArrayType equal to 1 is

as follows:

gPi | <30 |30|31(32|33|34|35|36|37|38|39(40(41|42|43|>43

Qpc | =qPi|29|30(31|32|33 |33|34|34|35|35(36(36(37|37|=qPi-6

[0198] In the dequantization process, the quantization parameter qP for each component
index (cldx) may be derived. Inputs to this process may be a luma location (xTbY,
yTbY) specifying the top-left sample of the current luma transform block relative to the
top left luma sample of the current picture, a variable trafoDepth specifying the
hierarchy depth of the current block relative to the coding block, a variable cldx
specifying the colour component of the current block, and a variable nTbS specifying
the size of the current transform block. The output of this process may be the
(nTbS)x(nTbS) array of residual samples r with elements 1 x][y].

[0199] The quantization parameter qP may be derived. If cldx is equal to 0,

WO 2015/196126 PCT/US2015/036769
55

qP =Qp'y + (color_transform_flag[xTby][yTby] ? deltaQPcy : 0)
Otherwise, if cldx is equal to 1,

qP = Qp’cy, + (color_transform_flag[xTby][yTby] ? deltaQP¢; : 0)
Otherwise (cldx is equal to 2)

qP = Qp’ct (color_transform_flag[xTby][yTby] ? deltaQPc; : 0)
[0200] In one example, deltaQP¢yg, deltaQP¢; and deltaQP¢, may be set to -5, -5 and -3,
respectively. In another example, the Qpy used in the deblocking process is unchanged,
i.c., with the delta QP (deltaQPc) taken into consideration. In the decoding process, for
the derivation process for quantization parameters, input to this process may be a luma
location (Xcw, Yeb) Specifying the top-left sample of the current luma coding block
relative to the top-left luma sample of the current picture. In this process, the variable
Qpy, the luma quantization parameter Qp’y, and the chroma quantization parameters
Qp’cy and Qp’cy may be derived.
[0201] The luma location (xQg, yQg), specifies the top-left luma sample of the current
quantization group relative to the top left luma sample of the current picture. The
horizontal and vertical positions xQg and yQg are set equal to xCb — (xCb & ((1 <<
Log2MinCuQpDeltaSize) = 1)) and yCb — (yCb & ((1 <<
Log2MinCuQpDeltaSize) — 1)), respectively. The luma size of a quantization group,
Log2MinCuQpDeltaSize, determines the luma size of the smallest area inside a coding
tree block that shares the same qPy prep.
[0202] The predicted luma quantization parameter qPy prep may be derived by the
following ordered steps: 1) The variable qPy prev may be derived. If one or more of
the following conditions are true, qPy prey 1S set equal to SliceQpy: The current
quantization group is the first quantization group in a slice, the current quantization
group is the first quantization group in a tile, or the current quantization group is the
first quantization group in a coding tree block row and
entropy coding sync enabled flagis equal to 1. Otherwise, qPy prev 18 set equal to
the luma quantization parameter Qpy of the last coding unit in the previous quantization
group in decoding order.
[0203] 2) The availability derivation process for a block in z-scan order is invoked with
the location (xCurr, yCurr) set equal to (xCb, yCb) and the neighboring location (
xNDbY, yNbY) set equal to (xQg — 1, yQg) as inputs, and the output is assigned to
availableA. The variable qPy A is derived as follows: If one or more of the following

conditions are true, qPy A is set equal to qPy prev: availableA is equal to FALSE or the

WO 2015/196126 PCT/US2015/036769
56

coding tree block address ctbAddrA of the coding tree block containing the luma coding
block covering the luma location (xQg — 1, yQg) is not equal to CtbAddrInTs, where
ctbAddrA is derived as follows:

xTmp =(xQg— 1) >> Log2MinTrafoSize

yTmp =yQg >> Log2MinTrafoSize

minTbAddrA = MinTbAddrZs[xTmp][yTmp]

ctbAddrA = (minTbAddrA >> 2) * (CtbLog2Sizey — Log2MinTrafoSize)
Otherwise, qPy 4 18 set equal to the luma quantization parameter Qpy of the coding unit
containing the luma coding block covering (xQg — 1, yQg).
[0204] 3) The availability derivation process for a block in z-scan order is invoked with
the location (xCurr, yCurr) set equal to (xCb, yCb) and the neighboring location (
xNDbY, yNbY) set equal to (xQg, yQg — 1) as inputs. The output is assigned to
availableB. The variable qPy g is derived. If one or more of the following conditions
are true, qPY B is set equal to qPy prev: availableB is equal to FALSE or the coding
tree block address ctbAddrB of the coding tree block containing the luma coding block
covering the luma location (xQg, yQg — 1) is not equal to CtbAddrInTs, where
ctbAddrB is derived as follows:

xTmp =xQg >> Log2MinTrafoSize

yImp = (yQg— 1) >> Log2MinTrafoSize

minTbAddrB = MinTbAddrZs[xTmp][yTmp]

ctbAddrB = (minTbAddrB >> 2) * (CtbLog2Sizey — Log2MinTrafoSize)
Otherwise, qPy 5 1s set equal to the luma quantization parameter Qpy of the coding unit
containing the luma coding block covering (xQg, yQg — 1).
[0205] The predicted luma quantization parameter qPy prep may be derived as follows:

qPy prep=(qPy At qPys+1) > 1
[0206] The variable Qpy may be derived as follows:
Qpy = ((gPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety))

— QpBdOffsety
Qpy = Qpy + (color_transform_flag[xCb][yCb] ? deltaQP¢o : 0)
[0207] The luma quantization parameter Qp'y may be derived as follows:
Qp'y = Qpy + QpBdOffsety

[0208] When ChromaArrayType is not equal to 0, the variables qPicy, and qPic, may be
derived as follows:

qPicy, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cb_qp_offset +

WO 2015/196126 PCT/US2015/036769
57

slice cb_qp_offset + CuQpOfisetcy)
qPic; = Clip3(—QpBdOffsetc, 57, QpY + pps_cr_qp_offset +
slice_cr_qp_offset + CuQpOffsetc,)
[0209] If ChromaArrayType is equal to 1, the variables qPcy, and qPc; may be set equal
to the value of Qpc based on the index qPi equal to qPicy, and qPicy, respectively.
Otherwise, the variables qPcy, and qPc; may be set equal to Min(qPi, 51), based on the
index qPi equal to qPi¢y, and qPicy, respectively. The chroma quantization parameters
for the Cb and Cr components, Qp’c, and Qp’cy, may be derived as follows:
Qp’cy = qPcy + QpBdOffsetc
Qp'cr = qPcr + QpBdOffsetc
The specification of Qp. as a function of qPi for ChromaArrayType equal to 1 may be

as follows:

gPi | <30 |30|31(32|33|34|35|36|37|38|39(40(41|42|43|>43

Qpc | =qPi|29|30(31|32|33 |33|34|34|35|35(36(36(37|37|=qPi-6

Qp'cv =Qp'coy + (color_transform_flag[xcp [yeb | ? deltaQPc; : 0)

Qp'cr =Qp’cr + (color_transform_flag[xcp |[yeb | ? deltaQPe; : 0)
[0210] In the dequantization process, the quantization parameter qP for each component
index (cldx) may be derived as follows. If cldx is equal to O,

qP =Qp'y + (color_transform flag[xTbY][yTbY] ? deltaQP¢o : 0)
Otherwise, if cldx is equal to 1,

qP = Qp’curt (color transform flag[xTbY][yTbY] ? deltaQP¢; : 0)
Otherwise (cldx is equal to 2),

qP = Qp’ct (color_transform flag[xTbY][yTbY] ? deltaQP¢; : 0)
[0211] In one example, deltaQP¢yg, deltaQP¢; and deltaQP¢, may be set to -5, -5 and -3,
respectively.
[0212] Some example implementation details will now be described. The following
describes the syntax element and semantics changes in comparison to corresponding
syntax elements and semantics in JCTVC-Q1005_v4, David Flynn et al., “High
Efficiency Video Coding (HEVC) Range Extensions text specification: Draft 7,
JCTVC-Q1005 v4, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG
16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11, 17th Meeting: Valencia, ES, 27 March — 4
April 2014, which is available from:

WO 2015/196126 PCT/US2015/036769
58

http://phenix.int-evry.fr/jct/doc_end user/documents/17 Valencia/wgl1/JCTVC-
Q1005-v4.zip

[0213] The newly added parts are highlighted in bold or italic, i.e., bold or italic, and
the deleted parts are marked as bold in brackets, e¢.g. [[deleted text]]. The italic parts

are related to proposed techniques in this disclosure.

Syntax elements and semantics
7.3.2.2 Sequence parameter set RBSP syntax

seq_parameter set rbsp() { Descripto
r
sps_video parameter set id u(4)
sps_max_sub layers minusl u(3)
sps_temporal id nesting flag u(l)

profile tier level(sps_max_sub layers minusl)

vui_parameters_present flag u(l)

if(vui_parameters_present flag)

vui_parameters()

sps_extension_present flag u(l)

if(sps_extension_present flag) {

for(1=0;1<1;1++)

sps_extension_flag[1] u(l)
sps_extension 7bits u(7)
if(sps_extension_flag[0]) {

transform_skip rotation enabled flag u(l)

transform_skip context enabled flag u(l)

intra_block copy enabled flag u(l)

implicit rdpcm_enabled flag u(l)

explicit_rdpcm_enabled flag u(l)

extended precision_processing flag u(1)

intra_smoothing_disabled flag u(l)

high precision_offsets enabled flag u(l)

fast rice adaptation_enabled flag u(l)

cabac_bypass alignment enabled flag u(l)

color_transform_enabled_flag u(l)

lossless enable flag u(1)
}

if(sps_extension_7bits)

while(more_rbsp_data())

sps_extension_data flag u(l)

WO 2015/196126 PCT/US2015/036769

59

}

rbsp_trailing bits()

}

color_transform_enabled flag equal to 1 indicates that color transform is enabled.

color_transform_enabled flag equal to 0 indicates that color transform is not enabled.

lossless enable flag equal to 1 indicates that lossless coding is applied. In addition,

when color_transform_enabled flag is equal to 1, the original YCoCg-R transform is

used.

lossless _enable flag equal to 0 indicates that lossy coding is applied. In addition, when

color_transform_enabled flag is equal to 1, the original YCoCg transform is used.

7.3.5.8 Coding unit syntax

coding_unit(x0, y0, log2CbSize) {

Descriptor

if(transquant_bypass_enabled flag)

cu_transquant bypass flag

ae(v)

if(slice type !=1)

cu_skip flag[x0][yO0]

ae(v)

nCbS =(1 << log2CbSize)

if(cu_skip flag[x0][y0])

prediction_unit(x0, y0, nCbS, nCbS)

else {

if(slice type !=1)

pred mode flag

ae(v)

if(CuPredMode[x0][yO] '= MODE _INTRA ||
log2CbSize == MinCbLog2SizeY)

part_mode

ae(v)

if(CuPredMode[x0][y0] == MODE INTRA) {

if(PartMode == PART 2Nx2N && pcm enabled flag &&
log2CbSize >= Log2MinlpcmCbSizeY &&
log2CbSize <= Log2MaxIpcmCbSizeY)

pem_flag[x0][y0]

ae(v)

if(pem_flag[x0][y0]) ¢

while(!byte aligned())

pcm_alignment zero_bit

f(1)

pecm_sample(x0, y0, log2CbSize)

} else {

pbOffset = (PartMode == PART NxN) ? (nCbS/2):nCbS

for(j=0;j <nCbS; j =]+ pbOffset)

WO 2015/196126 PCT/US2015/036769

60

for(1=0;1<nCbS; i =1+ pbOffset)

prev_intra luma pred flag[x0+1][yO+j]

ae(v)

for(j=0;j <nCbS; j =]+ pbOffset)

for(1=0;1<nCbS; i =1+ pbOffset)

if(prev_intra luma pred flag[x0+i][y0+j])

mpm_idx[x0+1][y0 +]]

ae(v)

else

rem_intra luma pred mode[x0+1][y0+j]

ae(v)

if(ChromaArrayType == 3)

for(j=0;j <nCbS; j =]+ pbOffset)

for(1=0;1<nCbS; i =1+ pbOffset)

intra_chroma pred mode[x0 +1][y0 +]]

ae(v)

else if(ChromaArrayType != 0)

intra_chroma pred mode[x0][y0]

ae(v)

}

} else {

}

}

if('pem flag[x0][y01]) {

if(CuPredMode[x0][yO] '= MODE INTRA &&
!(PartMode == PART 2Nx2N && merge flag[x0][y0]))

rqt_root cbf

ae(v)

if(rqt_root cbf) {

if(color_transform_enabled_flag
& &(CuPredMode[x0 |[y0 | == MODE _INTER
|| lintra chroma pred mode| x0][y0]) {

color_transform_flag[x0 |[y0]

ae(v)

}

else {

color_transform_flagf x0][y0] = defaultVal

/

MaxTrafoDepth = (CuPredMode[x0][y0] == MODE _INTRA ?
(max_transform_hierarchy depth intra +
IntraSplitFlag) :
max transform hierarchy depth inter)

transform tree(x0, y0, x0, y0, log2CbSize, 0, 0)

}

}

}

}

WO 2015/196126 PCT/US2015/036769
61

Note, only the chroma mode of the top-left PU within one intra-coded CU is used
(i.e., lintra_chroma_pred _mode[x0 |[y0 |) to determine whether the

color_transform_flag should be signaled or not.

In one example, the constant defaultVal is always set equal to 0.

In another example, the constant defaultVal is always set equal to the enabling of color

transform flag in SPS/PPS/slice header, e.g., color_transform_enabled flag.

[0214] A first example, referred to below as example # 1 will now be described. As
indicated above, newly added parts in this Example #1 are highlighted in bold or italic,
i.e., bold or italic, and the deleted parts are marked as bold inside brackets, e.g.,

[[deleted text]]. The italic parts are related to proposed techniques in this disclosure.

In this example, defaultVal is equal to 0.

8.4.1 General decoding process for coding units coded in intra prediction mode

Inputs to this process are:
Output of this process is a modified reconstructed picture before deblocking filtering.
The derivation process for quantization parameters as specified in subclause 8.6.1 is

invoked with the luma location (xCb, yCb) as input.

A variable nCDbS is set equal to 1 << log2CbSize.

Depending on the values of pcm_flag[xCb][yCb] and IntraSplitFlag, the decoding
process for luma samples is specified as follows:
— Ifpem_flag[xCb][yCb] is equal to 1, the reconstructed picture is modified as

follows:

— Otherwise (pcm_flag[xCb][yCb] is equal to 0), if IntraSplitFlag is equal to 0, the
following ordered steps apply:

WO 2015/196126 PCT/US2015/036769

62

When intra_be_flag[xCb][yCb] is equal to 0, the derivation process for the
intra prediction mode as specified in subclause 8.4.2 is invoked with the luma
location (xCb, yCb) as input.

When intra_be flag[xCb][yCb] is equal to 1, the derivation process for block
vector components in intra block copying prediction mode as specified in
subclause 8.4.4 is invoked with the luma location (xCb, yCb) and variable
log2CbSize as inputs, and the output being bvlIntra.

If color_transform_flag[xCb |[yCb] is equal to 1, the following applies:
- For the variable clIdx proceeding over the values 0..2, the

following ordered steps apply:

— Set variable comp equal to (!cldx ? L : (cIdx==1 ? Cb : Cr).

— The general decoding process for intra blocks as specified in
subclause 8.4.4.1 is invoked with the location (xCb,yCb), the
variable log2TrafoSize set equal to log2CbSize, the variable
trafoDepth set equal to 0, the variable predModelntra set equal to
IntraPredModeY|[xCb |[yCb], the variable predModelntraBc set
equal to intra bc flag] xCb |[yCb], the variable bvlntra, the
variable cldx, and variable controlPara equal to 1 as inputs, and the
output is the residual sample array resSamplescomp.

— The residual modification process for residual blocks using color

space conversion as specified in subclause 8.6.7 is invoked with the variable
blkSize set equal to nCbS, the (nCbS)x(nCbS) array ry set equal to
resSamples;, the (nCbS)x(nCbS) array r¢, set equal to resSamplescp, and
the (nCbS)x(nCbS) array rc, set equal to resSamplesc, as inputs, and the
output are modified versions of the (nCbS)x(nCbS) arrays resSamples;,

resSamplescy, and resSamplesc;.

The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the luma location (xCb, yCb), the variable log2TrafoSize set
equal to log2CbSize, the variable trafoDepth set equal to 0, the variable
predModelntra set equal to IntraPredModeY[xCb][yCb], the wvariable
predModelntraBe set equal to intra bc flag[xCb][yCb], the variable bvintra,
[[and]] the variable cldx set equal to O, and variable controlPara equal to
(color_transform_flag][xCb][yCb]? 2:3) as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

— Otherwise (pem_flag[xCb][yCb] is equal to 0 and IntraSplitFlag is equal to 1), for

the variable blkldx proceeding over the values 0..3, the following ordered steps

apply:

1.

The variable xPb is set equal to xCb + (nCbS >> 1) * (blkldx % 2).

2. The variable yPb is set equal to yCb + (nCbS >> 1) * (blkldx /2).

WO 2015/196126 PCT/US2015/036769
63

3. The derivation process for the intra prediction mode as specified in subclause
8.4.2 is invoked with the luma location (xPb, yPb) as input.

4. If color_transform_flag[xCb][yCb] is equal to 1, the following applies:

— For the variable cldx proceeding over the values 0..2, the following
ordered steps apply:

— Set variable comp equal to (!cldx ? L : (cIdx==1 ? Cb : Cr).

— The general decoding process for intra blocks as specified in
subclause 8.4.4.1 is invoked with the luma location (xPb, yPb), the
variable log2TrafoSize set equal to log2CbSize — 1, the variable
trafoDepth set equal to 1, the variable predModelntra set equal to
IntraPredModeY|[xPb |[yPb |, the variable predModelntraBe set
equal to 0, the variable cIdx, and variable controlPara set equal to 1
as inputs, and the output is the residual sample array
resSamplescomp.

— Set the variable nSubCbS equal to (nCbS >>1) and the residual
modification process for residual blocks using color space conversion as
specified in subclause 8.6.7 is invoked with the variable blkSize set
equal to nSubCbS, the (nSubCbS)x(nSubCbS) array ry set equal to
resSamples;, the (nSubCbS)x(nSubCbS) array rc, set equal to
resSamplesc,, and the (nSubCbS)x(nSubCbS) array r¢, set equal to
resSamplesc, as inputs, and the outputs are modified versions of the
(nSubCbS)x(nSubCbS) arrays resSamples;, resSamplesc, and
resSamplesc,.

5. The general decoding process for intra blocks as specified in subclause 8.4.4.1
is invoked with the luma location (xPb, yPb), the variable log2TrafoSize set
equal to log2CbSize — 1, the variable trafoDepth set equal to 1, the variable
predModelntra set equal to IntraPredModeY[xPb][yPb], the wvariable
predModelntraBe set equal to 0, and the variable cldx set equal to 0, and
variable controlPara set equal to
(color_transform_flag][xCb][yCb]? 2:3) as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

When ChromaArrayType is not equal to 0, the following applies.
The variable log2CbSizeC is set equal to
log2CbSize — (ChromaArrayType == 370:1).
Depending on the value of pcm_flag[xCb][yCb] and IntraSplitFlag, the decoding
process for chroma samples is specified as follows:
— Ifpem_flag[xCb][yCb] is equal to 1, the reconstructed picture is modified as

follows:

WO 2015/196126 PCT/US2015/036769

64

— Otherwise (pem_flag[xCb][yCb] is equal to 0), if IntraSplitFlag is equal to 0 or

ChromaArrayType is not equal to 3, the following ordered steps apply:

1.

When intra_be flag[xCb][yCb] is equal to 0, the derivation process for the
chroma intra prediction mode as specified in 8.4.3 is invoked with the luma
location (xCb, yCb) as input, and the output is the variable IntraPredModeC.

The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the chroma location (xCb / SubWidthC, yCb / SubHeightC), the
variable log2TrafoSize set equal to 1log2CbSizeC, the variable trafoDepth set
equal to 0, the variable predModelntra set equal to IntraPredModeC, the variable
predModelntraBe set equal to intra bc flag[xCb][yCb], the variable bvintra,
[[and]] the variable cldx set equal to 1, and variable controlPara set equal to
(color_transform_flag][xCb][yCb]? 2:3) as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the chroma location (xCb / SubWidthC, yCb / SubHeightC), the
variable log2TrafoSize set equal to 1log2CbSizeC, the variable trafoDepth set
equal to 0, the variable predModelntra set equal to IntraPredModeC, the variable
predModelntraBe set equal to intra bc flag[xCb][yCb], the variable bvintra,
[[and]] the variable cldx set equal to 2, and variable controlPara set equal to
(color_transform_flag][xCb][yCb]? 2:3) as inputs, and the output is a
modified reconstructed picture before deblocking filtering.

— Otherwise (pecm_flag[xCb][yCb] is equal to 0, IntraSplitFlag is equal to 1 and

ChromaArrayType is equal to 3), for the variable blkldx proceeding over the values

0..3, the following ordered steps apply:

1.
2.
3.

The variable xPb is set equal to xCb + (nCbS >> 1) * (blkldx % 2).
The variable yPb is set equal to yCb + (nCbS >> 1) * (blkldx/2).

The derivation process for the chroma intra prediction mode as specified in 8.4.3
is invoked with the luma location (xPb, yPb) as input, and the output is the
variable IntraPredModeC.

The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the chroma location (xPb, yPb), the variable log2TrafoSize set
equal to 1log2CbSizeC — 1, the variable trafoDepth set equal to 1, the variable
predModelntra set equal to IntraPredModeC, the variable predModelntraBce set
equal to 0, [[and]] the variable cldx set equal to 1, and variable controlPara set
equal to (color_transform_flag[xCb |[[yCb | ?2:3) as inputs, and the
output is a modified reconstructed picture before deblocking filtering.

The general decoding process for intra blocks as specified in subclause 8.4.4.1
is invoked with the chroma location (xPb, yPb), the variable log2TrafoSize set
equal to 1log2CbSizeC — 1, the variable trafoDepth set equal to 1, the variable
predModelntra set equal to IntraPredModeC, the variable predModelntraBe set
equal to 0, [[and]] the variable cldx set equal to 2, and variable controlPara set

WO 2015/196126 PCT/US2015/036769
65

equal to (color transform_ flag| xCb][yCb]?2:3) as inputs, and the
output is a modified reconstructed picture before deblocking filtering.

8.4.4.1 General decoding process for intra blocks

Inputs to this process are:
— a variable cldx specifying the colour component of the current block.

— avariable controlPara specifying the applicable processes.

Output of this process is a modified reconstructed picture before deblocking filtering
when controlPara is unequal to 1, or residual sample array when controlPara is

equal to 1.

The luma sample location (xXTbY, yTbY) specifying the top-left sample of the current
luma transform block relative to the top-left luma sample of the current picture is
derived as follows:

(xTbY, yTbY)= (cldx == 0)? (XTb0, yTb0) : (xTb0 * SubWidthC, yTb0 * SubHeightC)
(8-26)

The variable splitFlag is derived as follows:
— If cldx is equal to 0, splitFlag is set equal to
split_transform_flag[xTbY][yTbY][trafoDepth].

— Otherwise, if all of the following conditions are true, splitFlag is set equal to 1.

— cldx is greater than 0
— split_transform_flag[xTbY][yTbY][trafoDepth] is equal to 1

— log2TrafoSize is greater than 2
— Otherwise, splitFlag is set equal to 0.

Depending on the value of splitFlag, the following applies:
— If splitFlag is equal to 1, the following ordered steps apply:

— Otherwise (splitFlag is equal to 0), for the variable blkldx proceeding over the
values 0..(cldx > 0 && ChromaArrayType == 2?1 :0), the following ordered

steps apply:
1. The variable nTbS is set equal to 1 << log2TrafoSize.
2. The variable yTbOffset is set equal to blkldx * nTbS.

WO 2015/196126 PCT/US2015/036769
66

3. The variable yTbOffsetY is set equal to yTbOffset * SubHeightC.

4. When controlPara is unequal to 2,-Fthe variable residualDpcm is derived as
follows:

— If all of the following conditions are true, residualDpcm is set equal to 1.
—1implicit rdpcm_enabled flag is equal to 1.

— either
transform_skip flag[xTbY][yTbY + yTbOffsetY][cldx] is
equal to 1, or cu_transquant_bypass_flag is equal to 1.

— either predModelntra is equal to 10, or predModelntra is equal to
26.

— Otherwise, residualDpecm is set equal to
explicit_rdpem_flag[xXTbY][yTbY + yTbOffsetY][cldx .

5. When controlPara is unequal to 1, [[D]]depending upon the value of
predModeIntrch the following applies:
When predModelntraBce is equal to 0, the general intra sample prediction

process as specified in subclause 8.4.4.2.1 is invoked with the transform
block location (xTb0, yTb0 + yTbOffset), the intra prediction mode
predModelntra, the transform block size n'TbS, and the variable cldx as
inputs, and the output is an (nTbS)x(nTbS) array predSamples.

— Otherwise (predModelntraBc is equal to 1), the intra block copying process
as specified in subclause 8.4.4.2.7 is invoked with the transform block
location (xTb0, yTb0 + yTbOffset), the transform block size nTbS, the
variable trafoDepth, the variable bvIntra, and the variable cldx as inputs, and
the output is an (nTbS)x(nTbS) array predSamples.

6. When controlPara is unequal to 2, Fthe scaling and transformation process as
specified in subclause 8.6.2 is invoked with the Iuma location

(xTbY, yTbY + yTbOffsetY), the variable trafoDepth, the variable cldx, and

the transform size trafoSize set equal to nTbS as inputs, and the output is an
(nTbS)x(nTbS) array resSamples.

7. When controlPara is unequal to 2 and residualDpcm is equal to 1, depending
upon the value of predModelntraBc, the following applies:
— When predModelntraBc is equal to 0, the directional residual modification

process for blocks using a transform bypass as specified in subclause 8.6.5 is
invoked with the variable mDir set equal to predModelntra / 26, the variable
nTbS, and the (nTbS)x(nTbS) array r set equal to the array resSamples as
inputs, and the output is a modified (nTbS)x(nTbS) array resSamples.

— Otherwise, (predModelntraBc is equal to 1), the directional residual

modification process for blocks using a transform bypass as specified in

WO 2015/196126 PCT/US2015/036769

67

subclause 8.6.5 is invoked with the variable mDir set equal to
explicit_rdpem_dir_flag[xTbY][yTbY + yTbOffsetY][cldx], the variable
nTbS, and the (nTbS)x(nTbS) array r set equal to the array resSamples as
inputs, and the output is a modified (nTbS)x(nTbS) array resSamples.

When controlPara is unequal to 2 and
cross_component prediction_enabled flag is equal to 1, ChromaArrayType is
equal to 3, and cldx is not equal to 0, the residual modification process for
transform blocks using cross-component prediction as specified in subclause
8.6.6 is invoked with the current luma transform block location (xTbY, yTbY),
the variable nTbS, the variable cldx, the (nTbS)x(nTbS) array ry set equal to the
corresponding luma residual sample array resSamples of the current transform
block, and the (nTbS)x(nTbS) array r set equal to the array resSamples as inputs,
and the output is a modified (nTbS)x(nTbS) array resSamples.

When controlPara is unequal to 1, [[T]]the picture reconstruction process
prior to in-loop filtering for a colour component as specified in subclause 8.6.6 is
invoked with the transform block location (xTb0, yTb0 + yTbOffset), the
variables nCurrSw and nCurrSh both set equal to nTbS, the variable cldx, the
(nTbS)x(nTbS) array predSamples, and the (nTbS)x(nTbS) array resSamples as
inputs.

8.5.4 Decoding process for the residual signal of coding units
coded in inter prediction mode

8.5.4.1 General

Inputs to this process are:

Outputs of this process are:

Depending on the value of rqt_root_cbf, the following applies:

If rqt_root cbfis equal to 0 or skip_flag[xCb][yCb] is equal to 1, all samples of
the (nCbS)x(nCbS;) array resSamples;, and when ChromaArrayType is not equal to
0, all samples of the two (nCbSw)x(nCbShc) arrays resSamplescy, and resSamplesc
are set equal to 0.

Otherwise (rqt_root_cbf'is equal to 1), the following ordered steps apply:

3. When ChromaArrayType is not equal to 0, the decoding process for chroma

residual blocks as specified in subclause 8.5.4.3 below is invoked with the luma
location (xCb, yCb), the luma location (xB0, yB0) set equal to (0, 0), the

WO 2015/196126 PCT/US2015/036769
68

variable log2TrafoSize set equal to log2CbSize, the variable trafoDepth set equal
to 0, the variable cldx set equal to 2, the variable nCbSw set equal to nCbSwg,
the variable nCbSh set equal to nCbShe, and the (nCbSwc)x(nCbShc) array
resSamplesc, as inputs, and the output is a modified version of the
(nCbSw¢)x(nCbShc) array resSamplescy.

4. When color_transform_flag[xCb |[yCb | is equal to 1, the residual
modification process for residual blocks using color space conversion as
specified in subclause 8.6.7 is invoked with the variable blkSize set equal to
nCbSy, the (nCbSp)x(nCbSp) array ry set equal to resSamples;, the
(nCbSy)x(nCbS;) array rc, set equal to resSamplesc,, and the
(nCbSy)x(nCbSy) array rc¢, set equal to resSamplesc, as inputs, and the
modified arrays resSamples;, resSamplesc, and resSamplesc, as outputs.

8.6.1 Derivation process for quantization parameters

Input to this process is a luma location (xCb, yCb) specifying the top-left sample of the

current luma coding block relative to the top-left luma sample of the current picture.

In this process, the variable Qpy, the luma quantization parameter Qp’y, and the chroma

quantization parameters Qp’cy, and Qp'cy are derived.

The luma location (xQg, yQg), specifies the top-left luma sample of the current
quantization group relative to the top-left luma sample of the current picture. The
horizontal and vertical positions xQg and yQg are set equal to

xCb — (xCb & ((1 << Log2MinCuQpDeltaSize) — 1)) and

yCb — (yCb & ((1 << Log2MinCuQpDeltaSize) — 1)), respectively. The luma size
of a quantization group, Log2MinCuQpDeltaSize, determines the luma size of the

smallest area inside a coding tree block that shares the same qPy prep.

The predicted luma quantization parameter qPy prep 1s derived by the following ordered

steps:

The variable Qpy is derived as follows:

Qpy =
((gPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety)) — QpBd
Offsety (8-261)
Opy = Opy + (color_transform_flag[xCb][yCb] ? deltaQPcy : 0)
The luma quantization parameter Qp'y is derived as follows:

Qp’y = Qpy + QpBdOffsety (8-262)

WO 2015/196126 PCT/US2015/036769
69

When ChromaArrayType is not equal to 0, the following applies.

The variables qPicy, and qPic, are derived as follows:

qPic, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cb_qp_offset + slice_cb_qp_offset + CuQp
OffSGth) (8-263)
qPic; = Clip3(—QpBdOffsetc, 57, Qpy + pps_cr_qp_offset + slice_cr_qp_offset + CuQpO
ffsete,) (8-264)

— If ChromaArrayType is equal to 1, the variables qPcy, and qPc; are set equal to the
value of Qpc as specified in Table 8-10 based on the index qPi equal to qPi¢y, and
qPicy, respectively.

— Otherwise, the variables qPcp, and qPc; are set equal to Min(qPi, 51), based on the
index qPiequal to qPic, and qPicy, respectively.

— The chroma quantization parameters for the Cb and Cr components, Qp’c, and Qp’cy,
are derived as follows:

Qp’ce = qPey + QpBdOffsetc (8-265)
Qp’c: = qPe: + QpBdOfisetc (8-266)

Table 8-10 — Specification of Qpc as a function of qPi for ChromaArrayType equal to 1

gPi | <30 |30|31(32|33|34|35|36|37|38|39(40(41|42|43|>43

Qpc | =qPi|29|30(31|32|33 |33|34|34|35|35(36(36(37|37|=qPi-6

Op'c, =0p'cy, + (color_transform_flag{ xCb][yCb | ? deltaQP.; :)
Op'c, =0p'c, + (color_transform_flag{ xCb][yCb] ? deltaQPc; : 0)

In one example, deltaQPc, deltaQPc¢; and deltaQPc; are set to -5, -5 and -3,
respectively. In another example, deltaQPc, deltaQP¢; and deltaQP(; are set to -5, -5
and -5, respectively.

In the dequantization process, the quantization parameter qP for each component index

(cldx) is derived as follows:

8.6.2 Scaling and transformation process

Inputs to this process are:

— aluma location (XTbY, yTbY) specifying the top-left sample of the current luma
transform block relative to the top-left luma sample of the current picture,

— a variable trafoDepth specifying the hierarchy depth of the current block relative to
the coding block,

— a variable cldx specifying the colour component of the current block,

— avariable nTbS specifying the size of the current transform block.

WO 2015/196126 PCT/US2015/036769
70

Output of this process is the (nTbS)x(nTbS) array of residual samples r with elements
fx]lyl

The quantization parameter qP is derived as follows:

— If cldx is equal to O,

qP = Qp'y [[+ (color_transform_flag [xTbY |[yTbY] ? -5: 0)]] (8-267)

— Otherwise, if cldx is equal to 1,

qP =Qp'c [[+ (color_transform_flag [xTbY |[yTbY] ? -5: 0)]] (8-268)

— Otherwise (cldx is equal to 2),

qP =Qp'c [+ (color_transform_flag [xTbY][yTbY] ? -3 : 0)]] (8-269)
8.6.7 Residual modification process for transform blocks using color space
conversion

This process is only invoked when ChromaArrayType is equal to 3.

Inputs to this process are:

a variable blkSize specifying the block size,
— an (blkSize)x(blkSize) array of luma residual samples ry with elements

ry[x][yl,

— an (blkSize)x(blkSize) array of chroma residual samples rc, with elements

rool x][y 1,

— an (blkSize)x(blkSize) array of chroma residual samples rc, with elements
relx]lyl

Outputs of this process are:

— an modified (blkSize)x(blkSize) array ry of luma residual samples,

— an modified (blkSize)x(blkSize) array rc, of chroma residual samples,

— an modified (blkSize)x(blkSize) array rc, of chroma residual samples.

The (blkSize)x(blkSize) arrays of residual samples ry, rcp and r¢, are modified as

follows:

— If cu_transquant bypass flag is equal to 1, the (blkSize)x(blkSize) arrays of

residual samples ry, rcp and r¢, with x = 0..blkSize — 1, y = 0..blkSize — 1 are
modified as follows:

tmp=ry[x][y]-(re[x][y] >> 1)
ry[x][yl=tmp+re[x][y]

rop[X][yl =tmp—(re[x][y] >> 1)
red X[yl =rolx][y] +ralx]y]

WO 2015/196126 PCT/US2015/036769
71

— Otherwise (cu_transquant bypass flag is equal to 0), the (blkSize)x(blkSize)
arrays of residual samples ry, rcp, and r¢. with x=0.blkSize -1,
y = 0..blkSize — 1 are modified as follows:

tmp=rY[x][y]-rCb[x][y]
rY[x][y]=rY[x][y]+rCb[x][y]
rCb[x][y]=tmp-rCr[x][y]
rCr[x|[y]=tmp+rCr[x][y]

Table 9-4 — Association of ctxldx and syntax elements for each initializationType in the

initialization process

Syntax initType
Syntax element ctxTable

structure 0 1 2
cu_transquant_bypass_flag Table 98 0 1 2
cu_skip_flag Table 9-9 0.2 3.5
intra_bc_flag[][] Table 9-33 0 1 2
pred_mode_flag Table9-10 0 1

]] Table 9-11 0
coding_unit() | part_mode 1.4 5.8
9..11

prev_intra_luma_pred_flag[][] | Table 9-12 0 1 2
intra_chroma_pred_mode[][] | Table 9-13 0 1 2
rgt_root_chf Table 9-14 0 1
color_transform_flag Table 9-XX 0 1 2

Table 9-XX — Values of initValue for ctxIdx of color_transform_flag

ctxIdx of
Initialization | color_transform_flag
variable
0 1 2
initValue 154 154 154

Table 9-34 — Syntax elements and associated binarizations

WO 2015/196126 7 PCT/US2015/036769
Syntax Syntax element Binarization
structure
Process Input parameters
coding_unit() cu_transqlﬁzlét_bypass FL cMax = 1
cu_skip flag FL cMax =1
intra_bc_flag FL cMax =1
pred mode flag FL cMax =1
part_mode 9335 (xCb, yCb) = (x0, y0), log2CbSize
pem_flag[][] FL cMax =1
prev_intra luma pred FL cMax = 1
mpm_idx[][] TR cMax = 2, cRiceParam =0
rem_intra_luma pred FL —
—_moa-e[][]—p cMax = 31
intra_chroma pred m | 9.3.3.6)
“odel IIT -
rqt_root _cbf FL cMax =1
color_transform_flag FL cMax=1

[0215] A second example, referred to below as example # 2 will now be described. As

indicated above, newly added parts in this Example #2 are highlighted in bold or italic,

i.e., bold or italic, and the deleted parts are marked as bolded double brackets, ¢.g.

[[deleted text]]. The italic parts are related to proposed techniques in this disclosure.

Bold Underlined, i.c., “bold underlined,” parts highlight differences between Example
#2 and Example #1.

[0216] This Example #2 gives an example for the case in which defaultVal is equal to 1.

In one example, it could be treated in the same way as what is defined in the section

above for Example #1.

[0217] Alternatively, the following may apply to avoid the wrong usage of color

transform under the case that one block is intra-coded with the color transform_flag not

present, but the value of color_transform_flag is reset to 1:

8.4.1 General decoding process for coding units coded in intra prediction mode

Inputs to this process are:

Output of this process is a modified reconstructed picture before deblocking filtering.

WO 2015/196126 PCT/US2015/036769

73

The derivation process for quantization parameters as specified in subclause 8.6.1 is

invoked with the luma location (xCb, yCb) as input.

A variable nCbS is set equal to 1 << log2CbSize.

Depending on the values of pcm_flag[xCb][yCb] and IntraSplitFlag, the decoding

process for luma samples is specified as follows:

— Ifpem_flag[xCb][yCb] is equal to 1, the reconstructed picture is modified as

follows:

— Otherwise (pcm_flag[xCb][yCb] is equal to 0), if IntraSplitFlag is equal to 0, the

following ordered steps apply:

1.

Set a variable bModified equal to (intra chroma pred mode[x0][v0] ==

4 & & color transform flag] xCb][vCb D).

When intra_be_ flag[xCb][yCb] is equal to 0, the derivation process for the
intra prediction mode as specified in subclause 8.4.2 is invoked with the luma
location (xCb, yCb) as input.

When intra_be flag[xCb][yCb] is equal to 1, the derivation process for block
vector components in intra block copying prediction mode as specified in
subclause 8.4.4 is invoked with the luma location (xCb, yCb) and variable
log2CbSize as inputs, and the output being bvlIntra.

If [[color_transform_flag| xCb |[yCb]]] bModified is equal to 1, the
following applies:
- For the variable clIdx proceeding over the values 0..2, the

following ordered steps apply:

— Set variable comp equal to (!cldx ? L : (cIdx==1 ? Cb : Cr).

— The general decoding process for intra blocks as specified in
subclause 8.4.4.1 is invoked with the location (xCb,yCb), the
variable log2TrafoSize set equal to log2CbSize, the variable
trafoDepth set equal to 0, the variable predModelntra set equal to
IntraPredModeY|[xCb |[yCb], the variable predModelntraBc set
equal to intra bc flag] xCb |[yCb], the variable bvlntra, the
variable cldx, and variable controlPara equal to 1 as inputs, and the
output is the residual sample array resSamplescomp.

- The residual modification process for residual blocks using color

space conversion as specified in subclause 8.6.7 is invoked with the variable
blkSize set equal to nCbS, the (nCbS)x(nCbS) array ry set equal to
resSamples;,, the (nCbS)x(nCbS) array rc, set equal to resSamplescy, and

the (nCbS)x(nCbS) array rc, set equal to resSamplesc, as inputs, and the

WO 2015/196126 PCT/US2015/036769

74

output are modified versions of the (nCbS)x(nCbS) arrays resSamples;,

resSamplescy, and resSamplesc;.

The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the luma location (xCb, yCb), the variable log2TrafoSize set
equal to log2CbSize, the variable trafoDepth set equal to 0, the variable
predModelntra set equal to IntraPredModeY[xCb][yCb], the wvariable
predModelntraBe set equal to intra bc flag[xCb][yCb], the variable bvintra,
[[and]] the variable cldx set equal to O, and variable controlPara equal to
([[color_transform_flag[xCb][yCb |]] bModified ? 2 : 3) as inputs, and the
output is a modified reconstructed picture before deblocking filtering.

— Otherwise (pem_flag[xCb][yCb] is equal to 0 and IntraSplitFlag is equal to 1), for

the variable blkldx proceeding over the values 0..3, the following ordered steps

apply:

6. The variable xPb is set equal to xCb + (nCbS >> 1) * (blkldx % 2).

7. The variable yPb is set equal to yCb + (nCbS >> 1) * (blkldx /2).

8. The derivation process for the intra prediction mode as specified in subclause
8.4.2 is invoked with the luma location (xPb, yPb) as input.

9. If [[color_transform_ flag][xCb |[yCb |]] bModified is equal to 1, the

following applies:

— For the variable cldx proceeding over the values 0..2, the following
ordered steps apply:

— Set variable comp equal to (!cldx ? L : (cIdx==1 ? Cb : Cr).

— The general decoding process for intra blocks as specified in
subclause 8.4.4.1 is invoked with the luma location (xPb, yPb), the
variable log2TrafoSize set equal to log2CbSize — 1, the variable
trafoDepth set equal to 1, the variable predModelntra set equal to
IntraPredModeY|[xPb |[yPb |, the variable predModelntraBe set
equal to 0, the variable cIdx, and variable controlPara set equal to 1
as inputs, and the output is the residual sample array
resSamplescomp.

— Set the variable nSubCbS equal to (nCbS >>1) and the residual
modification process for residual blocks using color space conversion as
specified in subclause 8.6.7 is invoked with the variable blkSize set
equal to nSubCbS, the (nSubCbS)x(nSubCbS) array ry set equal to
resSamples;, the (nSubCbS)x(nSubCbS) array rc, set equal to
resSamplesc,, and the (nSubCbS)x(nSubCbS) array r¢, set equal to
resSamplesc, as inputs, and the outputs are modified versions of the
(nSubCbS)x(nSubCbS) arrays resSamples;, resSamplesc, and
resSamplesc;.

10. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is

invoked with the luma location (xPb, yPb), the variable log2TrafoSize set equal
to 1log2CbSize — 1, the wvariable trafoDepth set equal to 1, the variable
predModelntra set equal to IntraPredModeY[xPb][yPb], the wvariable

WO 2015/196126 PCT/US2015/036769
75

predModelntraBe set equal to 0, [[and]] the variable cldx set equal to 0 , and
variable controlPara set equal to ([[color_transform_flag[xCb |[yCb |]]
bModified ? 2 : 3) as inputs, and the output is a modified reconstructed picture
before deblocking filtering.

When ChromaArrayType is not equal to 0, the following applies.

The variable log2CbSizeC is set equal to
log2CbSize — (ChromaArrayType == 370:1).

Depending on the value of pcm_flag[xCb][yCb] and IntraSplitFlag, the
decoding process for chroma samples is specified as follows:
— Ifpem_flag[xCb][yCb] is equal to 1, the reconstructed picture is modified as

follows:

— Otherwise (pem_flag[xCb][yCb] is equal to 0), if IntraSplitFlag is equal to 0 or
ChromaArrayType is not equal to 3, the following ordered steps apply:

4. When intra_bc_flag[xCb][yCb] is equal to 0, the derivation process for the
chroma intra prediction mode as specified in 8.4.3 is invoked with the luma
location (xCb, yCb) as input, and the output is the variable IntraPredModeC.

5. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the chroma location (xCb / SubWidthC, yCb / SubHeightC), the
variable log2TrafoSize set equal to 1log2CbSizeC, the variable trafoDepth set
equal to 0, the variable predModelntra set equal to IntraPredModeC, the variable
predModelntraBe set equal to intra bc flag[xCb][yCb], the variable bvintra,
and the variable cldx set equal to 1, and variable controlPara set equal to
([[color_transform_flag[xCb][yCb]]] bModified? 2 : 3) as inputs, and the
output is a modified reconstructed picture before deblocking filtering.

6. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the chroma location (xCb / SubWidthC, yCb / SubHeightC), the
variable log2TrafoSize set equal to 1log2CbSizeC, the variable trafoDepth set
equal to 0, the variable predModelntra set equal to IntraPredModeC, the variable
predModelntraBe set equal to intra bc flag[xCb][yCb], the variable bvintra,
and the variable cldx set equal to 2 , and variable controlPara set equal to
([[color_transform_flag[xCb |[yCb |]] bModified ? 2 : 3) as inputs, and the
output is a modified reconstructed picture before deblocking filtering.

— Otherwise (pcm_flag[xCb][yCb] is equal to 0, IntraSplitFlag is equal to 1 and

ChromaArrayType is equal to 3), for the variable blkldx proceeding over the values
0..3, the following ordered steps apply:

6. The variable xPb is set equal to xCb + (nCbS >> 1) * (blkldx % 2).
7. The variable yPb is set equal to yCb + (nCbS >> 1) * (blkldx /2).

WO 2015/196126 PCT/US2015/036769
76

8. The derivation process for the chroma intra prediction mode as specified in 8.4.3
is invoked with the luma location (xPb, yPb) as input, and the output is the
variable IntraPredModeC.

9. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the chroma location (xPb, yPb), the variable log2TrafoSize set
equal to log2CbSizeC — 1, the variable trafoDepth set equal to 1, the variable
predModelntra set equal to IntraPredModeC, the variable predModelntraBce set
equal to 0, [[and]] the variable cldx set equal to 1, and variable controlPara
set equal to ([[color_transform_flag| xCb][yCb |]] bModified? 2 : 3) as
inputs, and the output is a modified reconstructed picture before deblocking
filtering.

10. The general decoding process for intra blocks as specified in subclause 8.4.4.1 is
invoked with the chroma location (xPb, yPb), the variable log2TrafoSize set
equal to log2CbSizeC — 1, the variable trafoDepth set equal to 1, the variable
predModelntra set equal to IntraPredModeC, the variable predModelntraBce set
equal to 0, [[and]] the variable cldx set equal to 2, and variable controlPara
set equal to ([[color_transform_flag[xCb |[yCb |]] bModified ? 2 : 3) as
inputs, and the output is a modified reconstructed picture before deblocking
filtering.

8.6.1 Derivation process for quantization parameters

Input to this process is a luma location (xCb, yCb) specifying the top-left sample of the

current luma coding block relative to the top-left luma sample of the current picture.

In this process, the variable Qpy, the luma quantization parameter Qp’y, and the chroma

quantization parameters Qp’cy, and Qp'cy are derived.

The luma location (xQg, yQg), specifies the top-left luma sample of the current
quantization group relative to the top-left luma sample of the current picture. The
horizontal and vertical positions xQg and yQg are set equal to

xCb — (xCb & ((1 << Log2MinCuQpDeltaSize) — 1)) and

yCb — (yCb & ((1 << Log2MinCuQpDeltaSize) — 1)), respectively. The luma size
of a quantization group, Log2MinCuQpDeltaSize, determines the luma size of the

smallest area inside a coding tree block that shares the same qPy prep.

The predicted luma quantization parameter qPy prep 18 derived by the following ordered

steps:

WO 2015/196126 PCT/US2015/036769
77

The variable bModified is defined as (color transform flag] xCb]| vCb |& &
(CuPredMode| xCb][vCb] == MODE INTER ||
intra chroma pred mode| XCb || vCb | = =4)).

The variable Qpy is derived as follows:

Qpy =

((gPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety)) — QpBd
Offsety (8-261)

Opy = Opy + ([[color_transform_flag] xCb J[yCb]]] bMadified ? deltaQPc : 0)

The luma quantization parameter Qp'y is derived as follows:

Qp'y = Qpy + QpBdOfsety (8-262)
When ChromaArrayType is not equal to 0, the following applies.

— The chroma quantization parameters for the Cb and Cr components, Qp’c, and Qp’cy,

are derived as follows:

Qp’ce = qPcw + QpBdOffsetc (8-265)
Qp’c: = qPc: + QpBdOffsetc (8-266)

Op'c = Op'cy + ([[color_transform_flag] xCb][yCb []] bModified ? deltaQPc; : 0)
Op'c, = Op'c, + ([[color_transform_flag| xCb][yCb []] bModified ? deltaQPc; : 0)

Alternatively, the following may apply:

The variable bModified is defined as (color transform flag] xCb]| vCb |& &
(CuPredMode| xCb]] vCb]! = MODE INTRA ||
intra chroma pred mode| XCb || vCb | = =4)).

Alternatively, the following may apply:

The variable bModified is defined as

(color transform flag| xCb][vCb |&&(CuPredMode[xCb || YCb]! =
MODE_INTRA | intra_bc flag] xCb][yCb] ||

intra chroma pred mode[xCb][vCb | ==4)).

[0218] A third example, referred to below as example # 3 will now be described. The
differences between this Example #3 and Example #2 as described above are
highlighted in bold, i.e., “bold.” In this Example 3, the Qp’y, Qp’cy and Qp’c, are kept
unchanged. However, the dequantization and deblocking filter process will check the

usage of color transform and modify the QP.

WO 2015/196126 PCT/US2015/036769
78

8.6.1 Derivation process for quantization parameters

Input to this process is a luma location (xCb, yCb) specifying the top-left sample of the

current luma coding block relative to the top-left luma sample of the current picture.

In this process, the variable Qpy, the luma quantization parameter Qp’y, and the chroma

quantization parameters Qp’cy, and Qp'cy are derived.

The luma location (xQg, yQg), specifies the top-left luma sample of the current
quantization group relative to the top-left luma sample of the current picture. The
horizontal and vertical positions xQg and yQg are set equal to

xCb — (xCb & ((1 << Log2MinCuQpDeltaSize) — 1)) and

yCb — (yCb & ((1 << Log2MinCuQpDeltaSize) — 1)), respectively. The luma size
of a quantization group, Log2MinCuQpDeltaSize, determines the luma size of the

smallest area inside a coding tree block that shares the same qPy prep.

The predicted luma quantization parameter qPy prep 1s derived by the following ordered

steps:

The variable Qpy is derived as follows:

Qpy =

((qPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety)) — QpBd
Offsety (8-261)

[1Qpy = Qpy + (color_transform_flag[xCb][yCb | bModified ? deltaQP¢, : 0)]]

The luma quantization parameter Qp'y is derived as follows:

Qp’y = Qpy + QpBdOffsety (8-262)

When ChromaArrayType is not equal to 0, the following applies.
— The chroma quantization parameters for the Cb and Cr components, Qp’c, and Qp’cy,

are derived as follows:
Qp’ce = qPcw + QpBdOffsetc (8-265)
Qp’c: = qPc: + QpBdOffsetc (8-266)

[IQp’Cb = Qp’Cb + (color_transform_flag| xCb |[yCb | bModified ? deltaQPC1 : 0)]]
[IQp’Cr = Qp’Cr + (color_transform_flag| xCb][yCb | bModified ? deltaQPC2 : 0)]]

WO 2015/196126 PCT/US2015/036769
79

Alternatively, the following may apply:

[[The variable bModified is defined as (color_transform_flag[xCb |[yCb |&&
(CuPredMode[xCb][yCb] ! = MODE_INTRA ||
intra_chroma_pred _mode[xCb |[yCb | == 4)).]]

Alternatively, the following may apply:

[[The variable bModified is defined as

(color_transform_flag| xCb][yCb |&&(CuPredMode|[xCb |[[yCb | ! =
MODE_INTRA || intra_bc_flag][xCb |[yCb] ||
intra_chroma_pred _mode[xCb |[yCb | == 4)).]]

8.6.2 Scaling and transformation process
Inputs to this process are:

— aluma location (XTbY, yTbY) specifying the top-left sample of the current luma
transform block relative to the top-left luma sample of the current picture,

— a variable trafoDepth specifying the hierarchy depth of the current block relative to
the coding block,

— a variable cldx specifying the colour component of the current block,

— avariable nTbS specifying the size of the current transform block.

Output of this process is the (nTbS)x(nTbS) array of residual samples r with elements
fx]lyl

Set the variable xCb and yCb to be the top-left position of the coding unit covering
the current luma transform block.

The quantization parameter qP is derived as follows:

— If cldx is equal to O,

qP =Qp'y + (color_transform_flag[xCb][yCb | ? deltaQP¢, : 0) (8-267)
— Otherwise, if cldx is equal to 1,

qP = Qp’cyt (color_transform_flag| xCb][yCb | ? deltaQP¢; : 0) (8-268)
— Otherwise (cldx is equal to 2),

qP = Qp’ct (color_transform_flag| xCb |[yCb | ? deltaQPc; : 0) (8-269)

WO 2015/196126 PCT/US2015/036769
80

8.7.2.5.3 Decision process for luma block edges
Inputs to this process are:

— a luma picture sample array recPicturer,

a luma location (xCb, yCb) specifying the top-left sample of the current luma

coding block relative to the top-left luma sample of the current picture,

— a luma location (xBl, yBl) specifying the top-left sample of the current luma block
relative to the top-left sample of the current luma coding block,

— avariable edgeType specifying whether a vertical (EDGE_VER) or a horizontal
(EDGE_HOR) edge is filtered,

— avariable bS specifying the boundary filtering strength.

Outputs of this process are:

— the variables dE, dEp, and dEq containing decisions,

— the variables f and tc.

If edgeType is equal to EDGE_VER, the sample values p;x and q;x withi=0..3

and k = 0 and 3 are derived as follows:

qix = recPicture. [xCb + xBl +1][yCb + yBl + k] (8-300)
pix = recPicture; [xCb + xBl —i— 1 [yCb +yBI + k] (8-301)
Otherwise (edgeType is equal to EDGE HOR), the sample values pix and q;x
with1=0..3 and k=0 and 3 are derived as follows:
qix = recPicture; [xCb + xBl + k][yCb + yBl +1] (8-302)
pix = recPicture; [xCb + xBl+ k][yCb + yBl—i—1](8-303)

The variables Qpg and Qpp are set equal to the Qpy values of the coding units which

include the coding blocks containing the sample qo o and po,, respectively.

when color_transform_flag[xCb |[yCb] of the coding unit containing the sample

qo, is equal to 1, Qpg is reset equal to (Qpo + deltaQP¢y).

when color_transform_flag[xCb |[yCb] of the coding unit containing the sample
Po, is equal to 1, Qpp is reset equal to (Qpp + deltaQPy).

A variable qPy, is derived as follows:

qPL=((Qpq+Qpe+1) >> 1) (8-304)

WO 2015/196126 PCT/US2015/036769
81

8.7.2.5.5 Filtering process for chroma block edges
This process is only invoked when ChromaArrayType is not equal to 0.

Inputs to this process are:

— a chroma picture sample array s’,

a chroma location (xCb, yCb) specifying the top-left sample of the current chroma

coding block relative to the top-left chroma sample of the current picture,

— achroma location (xBl, yBl) specifying the top-left sample of the current chroma
block relative to the top-left sample of the current chroma coding block,

— avariable edgeType specifying whether a vertical (EDGE_VER) or a horizontal
(EDGE_HOR) edge is filtered,

— avariable cQpPicOffset specifying the picture-level chroma quantization parameter
offset.

Output of this process is the modified chroma picture sample array s'.

If edgeType is equal to EDGE_VER, the values p;i and qi withi=0..1 and k =0..3 are

derived as follows:
qix =8 [xCb +xBl+1][yCb +yBl+ k] (8-335)
pix=s[xCb+xBl-i—1][yCb+yBl+k](8-336)
Otherwise (edgeType is equal to EDGE_HOR), the sample values p; and q; with
1=0..1 and k = 0..3 are derived as follows:
qix=8[xCb+xBl+k][yCb +yBl +1] (8-337)
pix=s[xCb+xBl+k][yCb+yBl—i—1](8-338)

The variables Qpg and Qpp are set equal to the Qpy values of the coding units which

include the coding blocks containing the sample qo o and po,, respectively.

when color_transform_flag[xCb |[yCb] of the coding unit containing the sample

qo, is equal to 1, Qpg is reset equal to (Qpo + deltaQP¢,).

when color_transform_flag[xCb |[yCb] of the coding unit containing the sample

Po, is equal to 1, Qpp is reset equal to (Qpp + deltaQPcy).

If ChromaArrayType is equal to 1, the variable Qpc is determined as specified in Table

8-10 based on the index qPi derived as follows:

WO 2015/196126 PCT/US2015/036769
82

qPi=((Qpq+ Qpr+1) >> 1)+ cQpPicOffset (8-339)

In one example, deltaQPc, deltaQPc¢; and deltaQPc; are set to -5, -5 and -3,
respectively.

In another example, deltaQPco, deltaQP¢; and deltaQP¢; are set to -5, -5 and -5,
respectively.

Alternatively, color transform flag[xCb][yCb] could be replaced by bModified as
used in sub-clause 8.6.1 of Example #2 above.

[0219] A fourth example, referred to below as example # 4 will now be described. In
Example #1, QPy, Qp’ce, Qp'cr are modified in section 8.6.1. In this case, the QPs used
in deblocking filter process and dequantization process are kept to be the same.
However, the QP predictor derivation process is not changed (i.e., qPy prep in sub-
clause 8.6.1). In this example, the derivation process of QP predictor is modified when
color transform is enabled for current slice. In addition to current conditions for deriving
QP predictor, the color transform flag of associated neighboring blocks/last coded
blocks are further included. This is corresponding to bullet 5 of section 4. Furthermore,
the derived QP values are restricted to be no smaller than 0. The changes compared to

example #1 are highlighted in bold.

8.6.1 Derivation process for quantization parameters

Input to this process is a luma location (xCb, yCb) specifying the top-left
sample of the current luma coding block relative to the top-left luma sample of the
current picture.

In this process, the variable Qpy, the luma quantization parameter Qp’y, and the
chroma quantization parameters Qp'cy and Qp’c; are derived.

The luma location (xQg, yQg), specifies the top-left luma sample of the current
quantization group relative to the top-left luma sample of the current picture. The
horizontal and vertical positions xQg and yQg are set equal to
xCb — (xCb & ((1 << Log2MinCuQpDeltaSize) — 1)) and
yCb — (yCb & ((1 << Log2MinCuQpDeltaSize) — 1)), respectively. The luma size
of a quantization group, Log2MinCuQpDeltaSize, determines the luma size of the
smallest area inside a coding tree block that shares the same qPy prep.

The predicted luma quantization parameter qPy prep 1s derived by the following

ordered steps:

WO 2015/196126 PCT/US2015/036769
83

1. Set variable by prev equal to false, and Fthe variable qPy prgy is derived as
follows:

— If one or more of the following conditions are true, qPy prev 18 set equal to
SliceQpy:

— The current quantization group is the first quantization group in a slice.

— The current quantization group is the first quantization group in a tile.

— The current quantization group is the first quantization group in a coding
tree block row and entropy coding sync_enabled flag is equal to 1.

— Otherwise, qPy prev and by prev are is set equal to the luma quantization
parameter Qpy and color_transform_flag of the last coding unit in the
previous quantization group in decoding order, repectively.

2. The availability derivation process for a block in z-scan order as specified in
subclause 6.4.1 is invoked with the location (xCurr, yCurr) set equal to

(xCb, yCb) and the neighbouring location (xXNbY, yNbY) set equal to

(xQg — 1, yQg) as inputs, and the output is assigned to availableA. The variable

qPy a and by 4 s are derived as follows:
— If one or more of the following conditions are true, qPy a 1s set equal to

qPYiPREV and by_A is set equal to by_PREvi

— availableA is equal to FALSE.

— the coding tree block address ctbAddrA of the coding tree block containing
the luma coding block covering the luma location (xQg — 1, yQg) is not
equal to CtbAddrInTs, where ctbAddrA is derived as follows:

xTmp =(xQg—1) >> MinTbLog2SizeY
yTmp =yQg >> MinTbLog2SizeY
minTbAddrA = MinTbAddrZs[xTmp |[yTmp]

ctbAddrA =
minTbAddrA >> (2 * (CtbLog2SizeY — MinTbLog2SizeY)) (8-252)

— Otherwise, qPy 4 and by 4 are is set equal to the luma quantization
parameter Qpy and color_transform_flag of the coding unit containing the

luma coding block covering (xQg — 1, yQg), repectively.

3. The availability derivation process for a block in z-scan order as specified in
subclause 6.4.1 is invoked with the location (xCurr, yCurr) set equal to
(xCb, yCb) and the neighbouring location (xXNbY, yNbY) set equal to
(xQg, yQg — 1) as inputs, and the output is assigned to availableB. The variable
qPy s and by gis are derived as follows:
— If one or more of the following conditions are true, qPy g is set equal to

qPYiPREV and by_B is set equal to bY_PREV:

— availableB is equal to FALSE.

WO 2015/196126 PCT/US2015/036769
84

— the coding tree block address ctbAddrB of the coding tree block containing
the luma coding block covering the luma location (xQg, yQg— 1) is not
equal to CtbAddrInTs, where ctbAddrB is derived as follows:

xTmp = xQg >> MinTbLog2SizeY
yTmp =(yQg—1) >> MinTbLog2SizeY
minTbAddrB = MinTbAddrZs[xTmp][yTmp]
ctbAddrB =
minTbAddrB >> (2 * (CtbLog2SizeY — MinTbLog2SizeY))
(8-253)
— Otherwise, qPy s and by g are is set equal to the luma quantization

parameter Qpy and color_transform_flag of the coding unit containing the

luma coding block covering (xQg, yQg — 1), respectively.

4. The predicted luma quantization parameter qPy prep 18 derived as follows:

If by a and by g are equal,

qPy prep = ((qPy A+ qPy g+ 1) >> 1)+
(color_transform_flag[xCb][yCb |==by 4 ? 0: (by 4 ? -deltaQP, :
deltaQP.) (8-254)

If by a and by p are different,

qPy prep = ((qPy A + qPy 5 - deltaQP+ 1) >> 1) +
(color_transform_flag[xCb][yCb | ? deltaQP,, :0) (8-254)

Alternatively, when by 4 and by g are equal, the formula (8-

254) could be replaced by the following:

Py prep = ((qPy A +qPy s+ 1) >> 1)+
(color_transform_flag[xCb][yCb |==by 4 ? 0:
(color_transform_flag| xCb |[yCb | ? deltaQP : -deltaQP) (8-254)

The variable Qpy is derived as follows:

Qpy =
((gPy prep + CuQpDeltaVal + 52 + 2 * QpBdOffsety)%(52 + QpBdOffsety))
— QpBdOffsety (8-261)

Qpy = max(-QpBdOffsety,
Qpy + (color_transform_flag[xCb][yCb] ? deltaQPcy : 0))

Alternatively, the above two equations could be replaced by one equation:
Qpy = ((gPy prep + CuQpDeltaVal + 52 +
(color_transform_flag[xCb |[yCb | ? deltaQP¢ : 0)
+ 2 * QpBdOffsety)% (52 + QpBdOffsety)) — QpBdOffsety (8-261)

The luma quantization parameter Qp'y is derived as follows:

WO 2015/196126 PCT/US2015/036769
85

Qp’y = Qpy + QpBdOffsety (8-262)

When ChromaArrayType is not equal to 0, the following applies.
— The variables qPicy, and qPig;, are derived as follows:

qPic, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cb_qp_offset + slice_cb_qp_offset + CuQp
OffSCth) (8-263)
qPic, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cr_qp_offset + slice_cr_qp_offset + CuQpO
ffsete,) (8-264)

— If ChromaArrayType is equal to 1, the variables qPcy, and qPc; are set equal to the
value of Qpc as specified in Table 8-10 based on the index qPi equal to qPicy, and
qPicy, respectively.

— Otherwise, the variables qP¢p, and qP¢; are set equal to Min(qPi1, 51), based on the
index qPiequal to qPicy, and qPicy, respectively.

— The chroma quantization parameters for the Cb and Cr components, Qp’cy, and Qp’cy,
are derived as follows:

Qp’cy = P, + QpBdOffsetc (8-265)
Qp'cr = qPc: + QpBdOffsetc (8-266)

Table 8-10 — Specification of Qpc as a function of qPi for ChromaArrayType equal to 1

Pt |30 (0 |1 [2 |3 |4 |5 |6 |7 |8 |9 |0 |1 |2 |3 |43

pe | qPi |9 [0 |1 |2 |3 |3 |4 |4 |5]|5]|6 |6 |7 |7]| qpi-6

Qp'co = max(0, Qp’cy + (color_transform_flag[xCb][yCb] ? deltaQP¢; : 0))
Qp'c: = max(0, Qp'c; + (color_transform flag[xCb][yCb] ? deltaQP¢; : 0))

Alternatively, the following apply to avoid the max function for chroma QP derivation:

When ChromaArrayType is not equal to 0, the following applies.
— The variables qPicy, and qPig;, are derived as follows:

[[qPicpy = Clip3(—QpBdOffsetc, 57, Qpy + pps_cb_qp_offset + slice cb_qp_offset +

CuQpOffsetcy) (8-263)
qPic, = Clip3(—QpBdOffsetc, 57, Qpy + pps_cr_qp_offset + slice_cr_qp_offset + C
uQpOffsetc,) (8-264)]]

qPicpy = Clip3(—QpBdOftsetc, 57, Qpy + pps_cb_qp_offset + slice cb_qp_offs
et + (color_transform_flag[xCb][yCb | ? (deltaQPc; - deltaQPcy): 0)
+ CuQpOffsetcy) (8-263)

WO 2015/196126 PCT/US2015/036769
86

qPic, = Clip3(“QpBdOffsetc, 57, Qpy + pps_cr_qp_offset + slice cr_qp_offse
t + (color_transform_flag| xCb |[yCb | ? deltaQP¢; - deltaQPcy: 0)
+ CuQpOffsetc,) (8-264)

— If ChromaArrayType is equal to 1, the variables qPcy, and qPc; are set equal to the
value of Qpc as specified in Table 8-10 based on the index qPi equal to qPi¢y, and
qPic,, respectively.

— Otherwise, the variables qPcp, and qPc; are set equal to Min(qPi, 51), based on the
index qPiequal to qPic, and qPicy, respectively.

— The chroma quantization parameters for the Cb and Cr components, Qp’cy, and Qp’cy,
are derived as follows:

Qp’cy = qPcy + QpBdOffsetc (8-265)
Qp’c: = qPe: + QpBdOfisetc (8-266)

Table 8-10 — Specification of Qpc as a function of qPi for ChromaArrayType equal to 1

Pt |30 (0 |1 [2 |3 |4 |5 |6 |7 |8 |9 |0 |1 |2 |3 |43

pc | qP1 |9 [0 |1 |2 |3 |3 |4 |4 |5 |5 |6 |6 |7 |7 |qPi—6

[[Qp'cy = max(0, Qp’cy + (color_transform_flag| xCb |[yCb | ? deltaQPc¢; : 0))
Qp’cr = max(0, Qp’c, + (color_transform_flag| xCb |[yCb | ? deltaQPc; : 0))]]

In one example, deltaQPcy, deltaQP¢; and deltaQP(; are set to -5, -5 and -3,
respectively. In another example, deltaQPcy, deltaQPc; and deltaQPc; are set to -5,
-5 and -5, respectively.

A constraint may be added in the specification that qPy prep shall be no less than
0.

In the dequantization process, the quantization parameter qP for each component

index (cldx) is derived as follows:

8.6.2 Scaling and transformation process

Inputs to this process are:
— aluma location (XTbY, yTbY) specifying the top-left sample of the current luma
transform block relative to the top-left luma sample of the current picture,
— a variable trafoDepth specifying the hierarchy depth of the current block relative to
the coding block,

— a variable cldx specifying the colour component of the current block,

WO 2015/196126 PCT/US2015/036769
&7

— avariable nTbS specifying the size of the current transform block.

Output of this process is the (nTbS)x(nTbS) array of residual samples r with elements
fx]lyl

The quantization parameter qP is derived as follows:

— If cldx is equal to O,

qP = Qp'y [[+ (color_transform_flag [xTbY |[yTbY | ? -5: 0)]] (8-267)

— Otherwise, if cldx is equal to 1,

qP = Qp’cvl[+ (color_transform_flag [xTbY][yTbY | 7 -5: 0)]] (8-268)

— Otherwise (cldx is equal to 2),

qP = Qp’c:|[+ (color_transform_flag [xTbY][yTbY] ? -3 : 0)]] (8-269)

[0220] FIG. 8 is a flowchart illustrating an example video decoding method according
to the techniques of this disclosure. The techniques of FIG. 8 will be described with
respect to video encoder 20, but it should be understood that the techniques of FIG. 8
are not limited to any particular types of video encoder. Video encoder 20 determines a
quantization parameter for the first block (100). In response to determining the first
block of video data is coded using a color-space transform mode for residual data of the
first block (102, YES), video encoder 20 performs a quantization process for the first
block based on a modified quantization parameter for the first block (104). In response
to determining the first block of video data is not coded using a color-space transform
mode for residual data of the first block (102, NO), video encoder 20 performs a
quantization process for the first block based on the unmodified quantization parameter
for the first block (106). Video encoder 20 signals for the second block of video data, a
difference value indicating a difference between a quantization parameter for the second
block and the unmodified quantization parameter for the first block (108).

[0221] FIG. 9 is a flowchart illustrating an example video decoding method according
to the techniques of this disclosure. The techniques of FIG. 9 will be described with
respect to video decoder 30, but it should be understood that the techniques of FIG. 9
are not limited to any particular types of video decoder. Video decoder 30 receives for a
first block of video data information to determine a quantization parameter for the first
block (120). In response to determining the first block of video data is coded using a

color-space transform mode for residual data of the first block (122, YES), video

WO 2015/196126 PCT/US2015/036769
88

decoder 30 determines a modified quantiazatino parameter (124) and performs a
dequantization process for the first block based on a modified quantization parameter
for the first block (126). In response to determining the first block of video data is not
coded using a color-space transform mode for residual data of the first block (122, NO),
video decoder 30 performs a dequantization process for the first block based on the
unmodified quantization parameter for the first block (128). Video decoder 30 receives
for the second block of video data, a difference value indicating a difference between a
quantization parameter for the second block and the unmodified quantization parameter
for the first block (130).

[0222] It is to be recognized that depending on the example, certain acts or events of
any of the techniques described herein can be performed in a different sequence, may be
added, merged, or left out altogether (e.g., not all described acts or events are necessary
for the practice of the techniques). Moreover, in certain examples, acts or events may
be performed concurrently, e.g., through multi-threaded processing, interrupt
processing, or multiple processors, rather than sequentially.

[0223] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over as one or more instructions or code
on a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to
another, ¢.g., according to a communication protocol. In this manner, computer-
readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0224] By way of example, and not limitation, such computer-readable storage media
can comprisc RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures

and that can be accessed by a computer. Also, any connection is properly termed a

WO 2015/196126 PCT/US2015/036769
&9

computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transitory
media, but are instead directed to non-transitory, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0225] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic
elements.

[0226] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware
[0227] Various examples of the disclosure have been described. Any combination of
the described systems, operations, or functions is contemplated. These and other

examples are within the scope of the following claims.

WO 2015/196126 PCT/US2015/036769
90

CLAIMS:

1. A method of decoding video data, the method comprising:

receiving a first block of the video data;

receiving information to determine a quantization parameter for the first block;

in response to determining that the first block is coded using a color-space
transform mode for residual data of the first block, modifying the
quantization parameter for the first block;

performing a dequantization process for the first block based on the modified
quantization parameter for the first block;

receiving a second block of the video data;

receiving for the second block, a difference value indicating a difference
between a quantization parameter for the second block and the
quantization parameter for the first block;

determining the quantization parameter for the second block based on the
received difference value and the quantization parameter for the first
block; and

decoding the second block based on the determined quantization parameter for

the second block.

2. The method of claim 1, further comprising:
in response to determining that the color-space transform mode is enabled for
the second block of video data, modifying the determined quantization
parameter for the second block,
wherein decoding the second block based on the determined quantization
parameter for the second block comprises:
performing a dequantization process for the second block based on the modified

quantization parameter for the second block.

WO 2015/196126 PCT/US2015/036769
91

3. The method of claim 1, wherein decoding the second block based on the
determined quantization parameter for the second block comprises:
in response to determining that the color-space transform mode is disabled for
the second block, performing a dequantization process for the second
block based on the determined quantization parameter for the second

block.

4. The method of claim 1, further comprising:
receiving a flag for the first block to determine that the first block of video data
is coded using the color-space transform mode for residual data of the

first block.

5. The method of claim 1, wherein receiving information to determine the
quantization parameter for the first block comprises receiving an initial value for the

quantization parameter for the first block.

6. The method of claim 5, wherein receiving the initial value comprisesreceiving,

at a slice level, the initial value for the quantization parameter.

7. The method of claim 1, further comprising:
receiving, at a coded unit level, the difference value indicating the difference
between the quantization parameter for the second block and the

quantization parameter for the first block.

8. The method of claim 1, wherein receiving the difference value indicating the
difference between the quantization parameter for the second block and the quantization
parameter for the first block comprises receiving a syntax element indicating the
absolute value of the difference and receiving a syntax element indicating a sign of the

difference.

9. The method of claim 1, further comprising:
determining a boundary strength parameter for a deblock filtering process based
on the modified quantization parameter for the first block; and

performing the deblock filtering process on the first block.

WO 2015/196126 PCT/US2015/036769

10.

11.

12.

13.

14.

92

A method of encoding video data, the method comprising;:

determining a quantization parameter for a first block of video data;

in response to determining that the first block of video data is coded using a
color-space transform mode for residual data of the first block,
modifying the quantization parameter for the first block;

performing a quantization process for the first block based on the modified
quantization parameter for the first block;

determining a quantization parameter for a second block of video data; and

signaling a difference value between the quantization parameter for the first

block and the quantization parameter for the second block.

The method of claim 10, further comprising:

in response to determining a color-space transform mode is enabled for the
second block of video data, modifying the quantization parameter for the
second block;

performing a quantization process for the second block based on the modified

quantization parameter for the second block.

The method of claim 10, further comprising:
in response to determining a color-space transform mode is disabled for the
second block of video data, performing a quantization process for the

second block based on the quantization parameter for the second block.

The method of claim 10, further comprising:
generating a flag for the first block to indicate if the first block of video data is
coded using the color-space transform mode for residual data of the first

block.

The method of claim 10, wherein determining the quantization parameter for the

first block of video data comprises determining an initial value for the quantization

parameter for the first block, the method further comprising:

signaling the initial value in a slice header for a slice comprising the first block.

WO 2015/196126 PCT/US2015/036769
93

15. The method of claim 10, further comprising:
signaling, at a coded unit level, the difference value indicating the difference
between the quantization parameter for the second block and the

quantization parameter for the first block.

16. The method of claim 10, wherein signaling the difference value indicating the
difference between the quantization parameter for the second block and the quantization
parameter for the first block comprises generating a syntax element indicating the
absolute value of the difference and generating a syntax element indicating a sign of the

difference.

17. The method of claim 10, further comprising:
determining a boundary strength parameter for a deblock filtering process based
on the modified quantization parameter for the first block; and

performing the deblock filtering process on the first block.

18. A device for decoding video data, the device comprising:
a memory configured to store video data;
one or more processors configured to:
receive a first block of the video data;
receive information to determine a quantization parameter for the first
block;
in response to determining that the first block is coded using a color-
space transform mode for residual data of the first block, modify
the quantization parameter for the first block;
perform a dequantization process for the first block based on the
modified quantization parameter for the first block;
receive a second block of the video data;
receive for the second block, a difference value indicating a difference
between a quantization parameter for the second block and the
quantization parameter for the first block;
determine the quantization parameter for the second block based on the
received difference value and the quantization parameter for the

first block; and

WO 2015/196126 PCT/US2015/036769
94

decode the second block based on the determined quantization parameter

for the second block.

19. The device of claim 18, wherein the one or more processors are further
configured to:
in response to determining that the color-space transform mode is enabled for
the second block of video data, modify the determined quantization
parameter for the second block,
wherein to decode the second block based on the determined quantization
parameter for the second block, the one or more processors perform a
dequantization process for the second block based on the modified

quantization parameter for the second block.

20. The device of claim 18, wherein to decode the second block based on the
determined quantization parameter for the second block, the one or more processors are
configured to:
in response to determining that the color-space transform mode is disabled for
the second block, perform a dequantization process for the second block

based on the determined quantization parameter for the second block.

21. The device of claim 18, wherein the one or more processors are further
configured to:
receive a flag for the first block to determine that the first block of video data is
coded using the color-space transform mode for residual data of the first

block.

22. The device of claim 18, wherein to receive information to determine the
quantization parameter for the first block, the one or more processors receive an initial

value for the quantization parameter for the first block.

23, The device of claim 22, wherein to receive the initial value, the one or more

processors receive, at a slice level, the initial value for the quantization parameter.

WO 2015/196126 PCT/US2015/036769
95

24. The device of claim 18, wherein the one or more processors are further
configured to:
receive, at a coded unit level, the difference value indicating the difference
between the quantization parameter for the second block and the

quantization parameter for the first block.

25. The device of claim 18, wherein to receive the difference value indicating the
difference between the quantization parameter for the second block and the quantization
parameter for the first block, the one or more processors receive a syntax element
indicating the absolute value of the difference and receiving a syntax element indicating

a sign of the difference.

26. The device of claim 18, wherein the one or more processors are further
configured to:
determine a boundary strength parameter for a deblock filtering process based on
the modified quantization parameter for the first block; and

perform the deblock filtering process on the first block.

27. The device of claim 18, wherein the device comprises one of:
a MiCroprocessor;
an integrated circuit (IC); and

a wireless communication device comprising the video decoder.

28. A device for encoding video data, the device comprising:
a memory configured to store video data;
one or more processors configured to:
determine a quantization parameter for a first block of video data,
in response to determining that the first block of video data is coded
using a color-space transform mode for residual data of the first
block, modify the quantization parameter for the first block;
perform a quantization process for the first block based on the modified
quantization parameter for the first block;

determine a quantization parameter for a second block of video data; and

WO 2015/196126 PCT/US2015/036769
96

signal a difference value between the quantization parameter for the first

block and the quantization parameter for the second block.

29. The device of claim 28, wherein the one or more processors are further
configured to:
in response to determining a color-space transform mode is enabled for the
second block of video data, modify the quantization parameter for the
second block;
perform a quantization process for the second block based on the modified

quantization parameter for the second block.

30. The device of claim 28, wherein the one or more processors are further
configured to
in response to determining a color-space transform mode is disabled for the
second block of video data, perform a quantization process for the

second block based on the quantization parameter for the second block.

31. The device of claim 28, wherein the one or more processors are further
configured to:
generate a flag for the first block to indicate if the first block of video data is
coded using the color-space transform mode for residual data of the first

block.

32. The device of claim 28, wherein to determine the quantization parameter for the
first block of video data comprises determining an initial value for the quantization
parameter for the first block, , wherein the one or more processors are further
configured to

signal the initial value in a slice header for a slice comprising the first block.

33. The device of claim 28, wherein the one or more processors are further
configured to
signal, at a coded unit level, the difference value indicating the difference
between the quantization parameter for the second block and the

quantization parameter for the first block.

WO 2015/196126 PCT/US2015/036769
97

34. The device of claim 28, wherein to signal the difference value indicating the
difference between the quantization parameter for the second block and the quantization
parameter for the first block, the one or more processors are further configured to
generate a syntax element indicating the absolute value of the difference and generating

a syntax element indicating a sign of the difference.

35. The device of claim 28, wherein the one or more processors are further
configured to:
determine a boundary strength parameter for a deblock filtering process based on
the modified quantization parameter for the first block; and

perform the deblock filtering process on the first block.

36. The device of claim 28, wherein the device comprises at least one of:
a MiCroprocessor;
an integrated circuit (IC); or

a wireless communication device comprising the video encoder.

37. An apparatus for video decoding, the apparatus comprising:

means for receiving a first block of the video data;

means for receiving information to determine a quantization parameter for the
first block;

means for modifying the quantization parameter for the first block in response to
determining that the first block is coded using a color-space transform
mode for residual data of the first block;

means for performing a dequantization process for the first block based on the
modified quantization parameter for the first block;

means for receiving a second block of the video data;

means for receiving for the second block, a difference value indicating a
difference between a quantization parameter for the second block and the
quantization parameter for the first block;

means for determining the quantization parameter for the second block based on

the received difference value and the quantization parameter for the first

block; and

WO 2015/196126 PCT/US2015/036769
98

means for decoding the second block based on the determined quantization

parameter for the second block.

38. A computer-readable storage medium storing instructions that when executed by
one or more processors cause the one or more processors to:
receive a first block of the video data;
receive information to determine a quantization parameter for the first block;
in response to determining that the first block is coded using a color-space
transform mode for residual data of the first block, modify the
quantization parameter for the first block;
perform a dequantization process for the first block based on the modified
quantization parameter for the first block;
receive a second block of the video data;
receive for the second block, a difference value indicating a difference between a
quantization parameter for the second block and the quantization
parameter for the first block;
determine the quantization parameter for the second block based on the received
difference value and the quantization parameter for the first block; and
decode the second block based on the determined quantization parameter for the

second block.

WO 2015/196126 PCT/US2015/036769

Page1/9
/10
SOURCE DEVICE DESTINATION DEVICE
12 14
VIDEO SOURCE DISPLAY DEVICE
18 32
VIDEO VIDEO
ENCODER DECODER
20 30
OUTPUT 16 INPUT
INTERFACE 1~], INTERFACE
22 28

FIG. 1

WO 2015/196126 PCT/US2015/036769

Page 2/9

/250

18

Ll

L 71 T ¥ T 4 S <] * 9l

ol

19 20

21

22

23

24

25

26

27

28 29 30

31

32 33

0 : Intra_Planar
1:Intra_DC

FIG. 2

34

PCT/US2015/036769

WO 2015/196126

Page 3/9

a¢ 'Old

nd

ond

/crn

Ve 'Old

7

Nnd

ccm\‘

o1 O\

t Fm————————————=3O|m

PCT/US2015/036769

WO 2015/196126

Page 4/9

ND WalN)

uoibay yoieas

leubis uonolpald

J0J08 A 18SHO

¥ 'Old

WO 2015/196126 PCT/US2015/036769

Page 5/9

FIG. 5

PCT/US2015/036769

WO 2015/196126

Page 6/9

_
09 SM2071d O3dIA e _
1INN a31oNYLSNOOIY = _
"SNVYL "ANI ANOWIN _
FHNLOId _
9¢ 5 19 22N "_ﬂm_ |
1INN 1INN "ANOD _ _
oNIgooNa [YE . hz@r_“u:. ANI 30VdS v@ _
AdOY1NT 40709 "ANI o7 _
7y 1INN _
S)20749 TvnaIs3y NOILOIa3¥d _
a31LoNYLSNODIY VYLNI _
|__'S44300 WHO4SNVYL — _
1vNAIS3y a3IZILNVND Au i _
1INN _
NOILOW 1INN _
55 A NOILILYVd "
1INN 47 |
NOILVZILNVNO 1INN & |
NOILVIILST LINA |
» 0S NOLLOW 19313 300N _

= s | oadin
LINA . LINN "ANOD | n A _
‘00¥d "'SNVAL 3ovdS |
NOT09 SY001d _ |
"aIs3y 0¢c |

J3dOON3 O3dIA

PCT/US2015/036769

WO 2015/196126

L 'Old

d33d093d O3dIA

SY0019
Ivnais3y
; o o o
AHOWIN LINN 1INN
== < <
O3dIA RNLOId zo_mw_w_ﬂ_,woo WHO4SNVY.L NOILVZILNVNO
d3aod3d| | 3oN3I¥34TY 08 400D ISHIANI ASYUIANI ISYUIANI
. f
N~
Qo re ﬁ et | .
> _ — _ 44309
o | v _ "ZILNVNO
' 1INN
|| Nowoiaud | L
_ VHLNI " 0Z
1INN
— > <
| LNA | XVLNAS AdO¥LIN3T
| | NOILVSN3IdWOD | |
_ NOILOW _
S _
0¢

Wvadislig
o3aiA
d3qooN3

WO 2015/196126
Page 8/9

100
Y

DETERMINE A QUANTIZATION
PARAMETER FOR THE FIRST
BLOCK

102

FIRST BLOCK

PCT/US2015/036769

CODED USING COLOR- YES
SPACE TRANSFORM?
106 104
ya 4 ya
PERFORM A QUANTIZATION PERFORM A QUANTIZATION
PROCESS FOR THE FIRST BLOCK PROCESS FOR THE FIRST
BASED ON THE UNMODIFIED BLOCK BASED ON A MODIFIED
QUANTIZATION PARAMETER FOR QUANTIZATION PARAMETER
THE FIRST BLOCK FOR THE FIRST BLOCK
108

Y
SIGNAL, FOR A SECOND BLOCK OF
VIDEO DATA, A DIFFERENCE
VALUE INDICATING A DIFFERENCE
BETWEEN A QUANTIZATION

PARAMETER FOR THE SECOND
BLOCK AND THE UNMODIFIED
QUANTIZATION PARAMETER FOR
THE FIRST BLOCK

FIG. 8

WO 2015/196126

Page 9/9

/-

RECEIVE, FOR A FIRST BLOCK OF
VIDEO DATA, INFORMATION TO
DETERMINE A QUANTIZATION
PARAMETER FOR THE FIRST
BLOCK

FIRST BLOCK
CODED USING COLOR-

120

122

PCT/US2015/036769

YES

SPACE TRANSFORM?

/‘

PERFORM A DEQUANTIZATION
PROCESS FOR THE FIRST BLOCK
BASED ON THE UNMODIFIED
QUANTIZATION PARAMETER FOR
THE FIRST BLOCK

128

130

/‘

RECEIVE, FOR A SECOND BLOCK
OF VIDEO DATA, A DIFFERENCE
VALUE INDICATING A DIFFERENCE
BETWEEN A QUANTIZATION
PARAMETER FOR THE SECOND
BLOCK AND THE UNMODIFIED
QUANTIZATION PARAMETER FOR
THE FIRST BLOCK

FIG.9

l /_124

DETERMINE A MODIFIED
QUANTIZATION PARAMETER
FOR THE FIRST BLOCK

126
/‘

PERFORM A DEQUANTIZATION
PROCESS FOR THE FIRST
BLOCK BASED ON A MODIFIED
QUANTIZATION PARAMETER
FOR THE FIRST BLOCK

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/036769

A. CLASSIFICATION OF SUBJECT MATTER
I

NV. HO4N19/176 HO4N19/70
ADD.

HO4N19/124

HO4N19/186 HO4N19/157

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

HO4N

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, COMPENDEX, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

transform",

ITU-T SG.16); URL:
no. JCTVC-Q0112-v2,

abstract
section 2 "Proposed Method"

17. JCT-VC MEETING; 27-3-2014 - 4-4-2014;
VALENCIA; (JOINT COLLABORATIVE TEAM ON
VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,

20 March 2014 (2014-03-20), XP030116031,

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2005/259730 Al (SUN SHIJUN [US]) 1-38

24 November 2005 (2005-11-24)

figures 5, 12

paragraph [0035] - paragraphs [0040],

[0042], [0043]
Y ZHANG L ET AL: "AhG8: In-loop color-space 1-38

_/__

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

25 September 2015

Date of mailing of the international search report

05/10/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Stoufs, Maryse

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/036769

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y HENRIQUE S. MALVAR ET AL: "Lifting-based
reversible color transformations for image
compression",

PROCEEDINGS OF SPIE,

vol. 7073, 28 August 2008 (2008-08-28),
page 707307, XP055201760,

ISSN: 0277-786X, DOI: 10.1117/12.797091
abstract

section 2 "The YCoCg Color Space"

A LIST P ET AL: "Adaptive deblocking
filter",

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS
FOR VIDEO TECHNOLOGY, IEEE SERVICE CENTER,
PISCATAWAY, NJ, US,

vol. 13, no. 7, 1 July 2003 (2003-07-01),
pages 614-619, XP011221094,

ISSN: 1051-8215, DOI:
10.1109/TCSVT.2003.815175

section II.C "Sample-Level Adaptivity of
the Filter"

A BUDAGAVI M ET AL: "Delta QP signaling at
sub-LCU level",

4, JCT-VC MEETING; 95. MPEG MEETING;
20-1-2011 - 28-1-2011; DAEGU; (JOINT
COLLABORATIVE TEAM ON VIDEO CODING OF
ISO/IEC JTC1/SC29/WG11AND ITU-T SG.16);
URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-DO38,

15 January 2011 (2011-01-15), XP030008079,
ISSN: 0000-0015

the whole document

X,P ZHANG L ET AL: "SCCE5 Test 3.2.1: In-Toop
color-space transform",

18. JCT-VC MEETING; 30-6-2014 - 9-7-2014;
SAPPORO; (JOINT COLLABORATIVE TEAM ON
VIDEO CODING OF ISO/IEC JTC1/SC29/WG11 AND
ITU-T SG.16); URL:
HTTP://WFTP3.ITU.INT/AV-ARCH/JCTVC-SITE/,,
no. JCTVC-RO147, 20 June 2014 (2014-06-20)
, XP030116426,

the whole document

1-38

1-38

1-38

1-9

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2015/036769
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2005259730 Al 24-11-2005 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - claims
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - claims
	Page 98 - claims
	Page 99 - claims
	Page 100 - claims
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - wo-search-report
	Page 111 - wo-search-report
	Page 112 - wo-search-report

