

(43) **Pub. Date:**

(19) United States

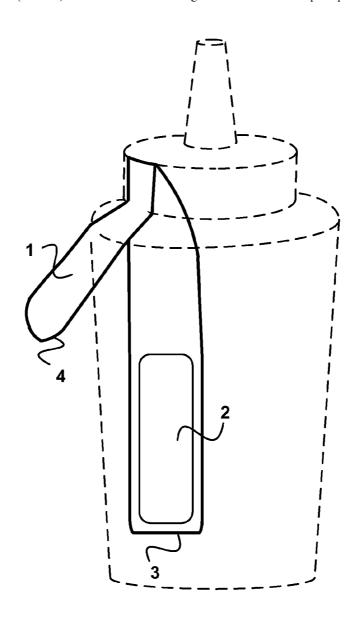
(12) Patent Application Publication (10) Pub. No.: US 2012/0199596 A1

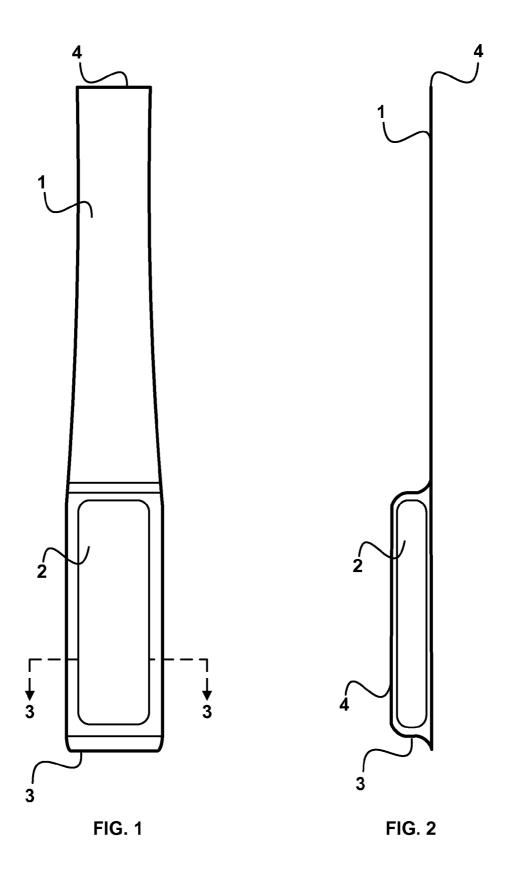
Aug. 9, 2012

(54) INCASED TETHERED MAGNET, METHOD AND SYSTEM FOR SECURING BOTTLES IN ARM'S REACH

Inventor: Marc Payne, Pasa Robles, CA (US)

(21) Appl. No.: 13/022,745


(22) Filed: Feb. 8, 2011


Publication Classification


(51) Int. Cl. (2006.01) B65D 25/22

ABSTRACT

An encased tethered magnet, system and method for securing a bottle in arm's reach are disclosed. A substantially oblong flux enhanced magnet may comprise a flux enhancing layer and a magnetic layer. A tether encases the magnet. The tether has a first end configured to suspend the magnet proximal an inside wall of the bottle and a second end configured to extend beyond a bottle opening. The method for securing the bottle includes tethering the magnet proximal a side wall, a bottom wall or a top wall of the receptacle and placing the magnet within an attracting distance to a magnetically attractive surface to secure it thereto. The system includes a retainer comprising at least one magnetically attractive device affixed thereon to attach to the tethered magnet through the bottle and an optional scratch-inhibiting material. The retainer is configured to attach to a user's pants pocket, clothing item or tool.

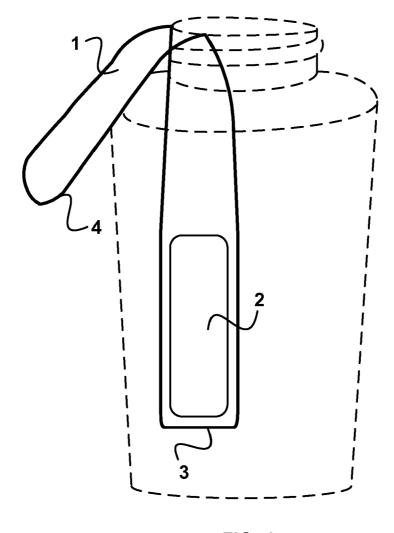


FIG. 4

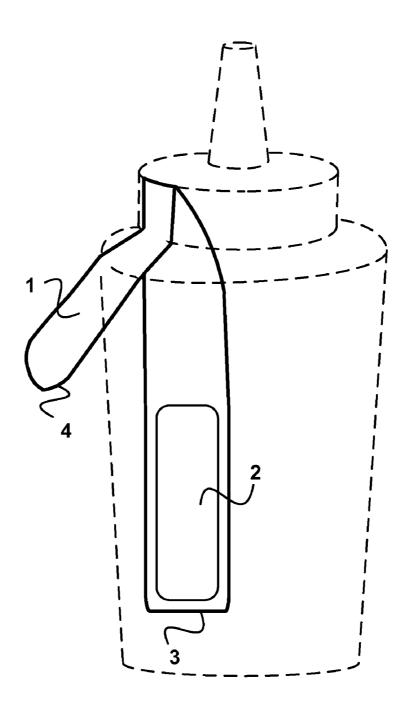


FIG. 5

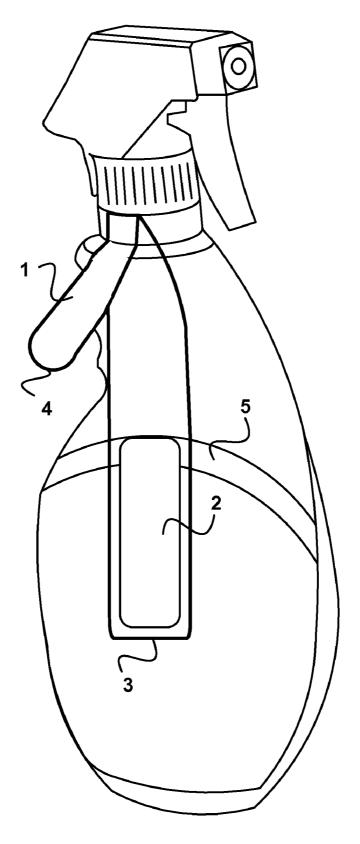


FIG. 6

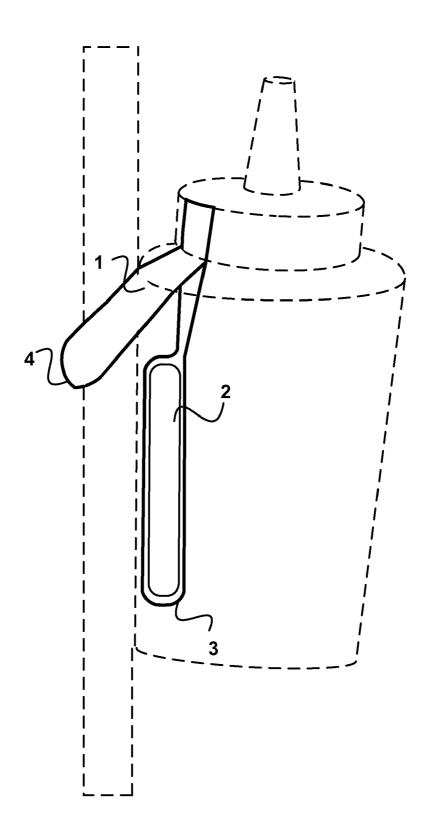


FIG. 7

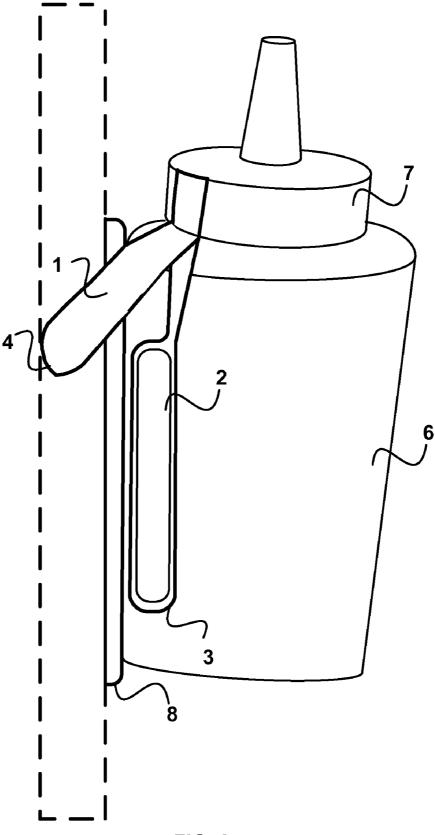


FIG. 8

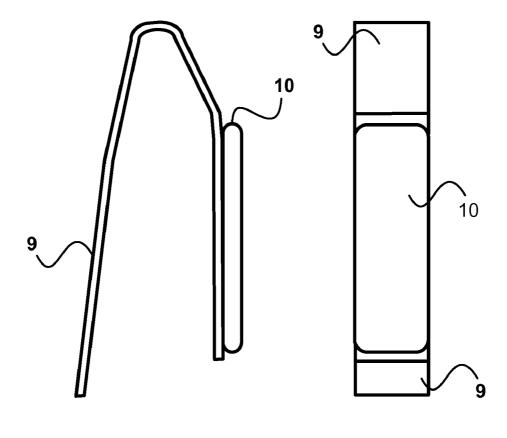


FIG. 9

FIG. 10

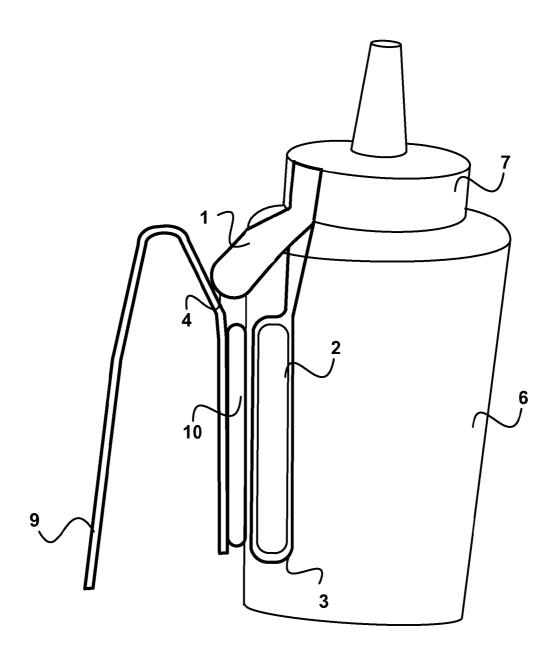


FIG. 11

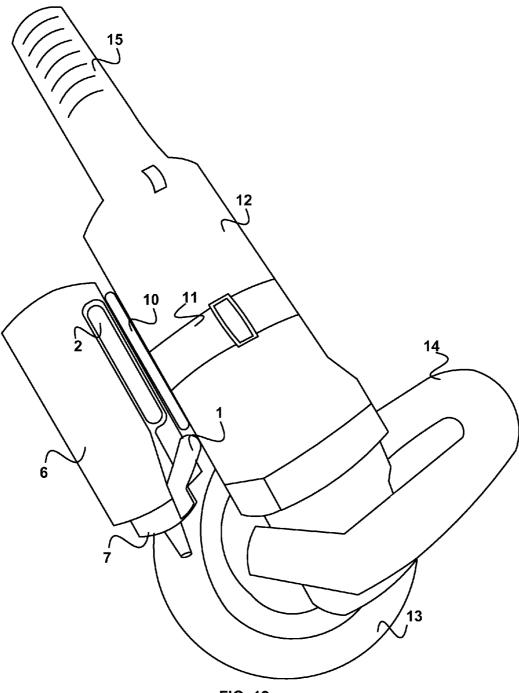


FIG. 12

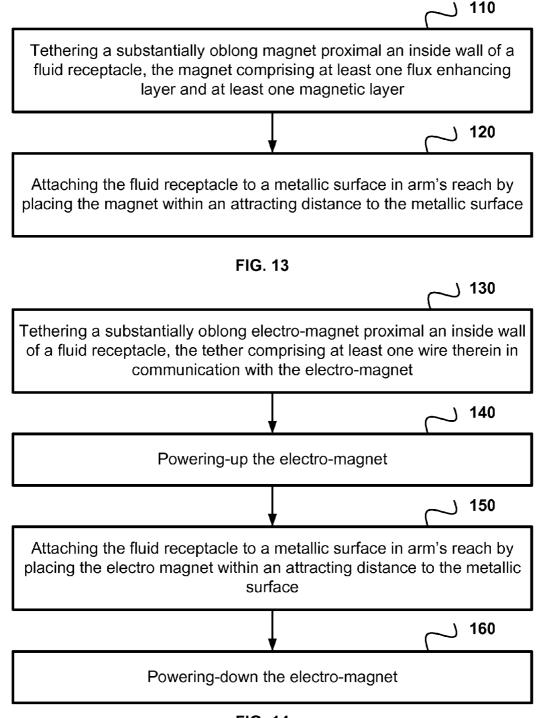


FIG. 14

INCASED TETHERED MAGNET, METHOD AND SYSTEM FOR SECURING BOTTLES IN ARM'S REACH

BACKGROUND OF THE INVENTION

[0001] There is a need for the ability to secure any shape of bottle or from tipping over and spilling. Window washers and car detailers to name a few, may especially appreciate having their cleaning liquids and chemicals secure when washing high rise office building windows or detailing SUVs, boats and campers and other large vehicles. Conventional bottle holders are typically designed to conform to the outside contour of cylindrical bottles but fall short of being able to secure rectangular drink boxes, oblong spray bottles and other odd shaped fluid receptacles.

[0002] There is also a need to be able to conveniently store any shape of frequently used bottle or fluid receptacle not only to save shelf space but to save a user from the back ache of bending over to reach bottles stored in lower shelves in cabinets and closets. Furthermore, there is a need for a way of securing any type of beverage such as a drink box or water bottle to a hiker or sports enthusiast. Many conventional drink cup holders are not adaptable to secure a rectangular drink box, an oval type canteen or water bag to a hiker's gear or outfit. Therefore, there is a need for an aftermarket consumer and service device, method and system adaptable to any type of fluid receptacle.

SUMMARY OF THE INVENTION

[0003] An encased tethered magnet, system and method for securing a bottle in arm's reach are disclosed. A substantially oblong flux enhanced magnet comprises a flux enhancing layer and a magnetic layer. A tether encases the magnet. The tether has a first end configured to suspend the magnet from one end proximal an inside wall of the bottle and a second tether end is configured to extend beyond a bottle opening. The encased tethered magnet therefore enables securing any shape and size of bottle or fluid receptacle to a metallic or magnetically attractive surface.

[0004] A method for securing a fluid receptacle, including drink cups, drink boxes, cleaning bottles, squeeze bottles, spray bottles, buckets, cans, canisters, drums and all other fluid receptacles regardless of shape or size in arm's reach, is disclosed. The method includes tethering a substantially oblong magnet proximal an inside wall of a fluid receptacle where an inside wall may be a side wall, a bottom wall or an optional top wall of the receptacle. The method further includes securing the fluid receptacle to a magnetically attractive surface by placing the magnet within an attracting distance to the surface. An embodiment of the method includes securing a fluid receptacle to a metallic surface using an encased electro-magnet tethered by at least one wire in communication with the electro-magnet.

[0005] Additionally, a system for securing a fluid receptacle to a metallic surface in arm's reach and to a user's pocket or other clothing item or to any other pocketed, recessed and substantially vertical surface is disclosed. The system includes a substantially oblong flux enhanced magnet comprising a flux enhancing layer sandwiched between a plurality of magnetic layers. The system also includes a deformable tether encompassing the magnet, the tether configured to suspend the magnet from one end against an inside wall of the bottle and to deform between the bottle and a cap secured to

the bottle at an opening thereof. The system further includes a retainer comprising at least one magnetically attractive device or magnetically attractive surface affixed thereto. The magnetically attractive device or surface is configured to attach to the oblong magnet through the bottle. The retainer is configured to attach to a user's pants pocket or another clothing item or a tool. Embodiments of the disclosed system also comprise a scratch inhibiting material sandwiched between the bottle and the metallic surface.

[0006] Other aspects and advantages of embodiments of the disclosure will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrated by way of example of the principles of the disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 depicts a front elevation of an encased tethered magnet in accordance with an embodiment of the present disclosure.

[0008] FIG. 2 depicts a side elevation of the encased tethered magnet in accordance with an embodiment of the present disclosure.

[0009] FIG. 3 depicts a cross-section through 3-3 of the encased tethered magnet of FIG. 1 in accordance with an embodiment of the present disclosure.

[0010] FIG. 4 depicts a perspective view of an encased tethered magnet as disposed in a bottle opening in accordance with an embodiment of the present disclosure.

[0011] FIG. 5 depicts a perspective view of an encased tethered magnet as disposed inside a capped squeeze bottle in accordance with an embodiment of the present disclosure.

[0012] FIG. 6 depicts a perspective view of an encased tethered magnet as disposed inside a capped spray bottle in accordance with an embodiment of the present disclosure.

[0013] FIG. 7 depicts a perspective view of an encased tethered magnet disposed inside a capped bottle for securing the bottle to a metallic surface in accordance with an embodiment of the present disclosure.

[0014] FIG. 8 depicts a perspective view of a system for securing a bottle to a metallic surface through a scratch-inhibiting material in accordance with an embodiment of the present disclosure.

[0015] FIG. 9 depicts a retainer comprising a magnetically attractive device attached thereto in accordance with an embodiment of the present disclosure.

[0016] FIG. 10 depicts a side elevational view of the retainer as seen from the right side of FIG. 8 in accordance with an embodiment of the present disclosure.

[0017] FIG. 11 depicts the retainer attached to the encased tethered magnet through the bottle to secure the retainer to the bottle and enable a user to secure the bottle to a user's pocket in accordance with an embodiment of the present disclosure.

[0018] FIG. 12 depicts the encased tethered magnet securing a squeeze bottle onto an electric rotary buffer via a belt attached to a magnetically attractive device in accordance with an embodiment of the present disclosure.

[0019] FIG. 13 is a flow chart of a method of securing a fluid receptacle to a metallic surface in arm's reach via an encased tethered magnet therein in accordance with an embodiment of the present disclosure.

[0020] FIG. 14 is a flow chart of a method of securing a fluid receptacle to a metallic surface in arm's reach via an encased tethered electro-magnet therein in accordance with an embodiment of the present disclosure.

[0021] Throughout the description, similar reference numbers may be used to identify similar elements.

DETAILED DESCRIPTION

[0022] Reference will now be made to exemplary embodiments illustrated in the drawings and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Alterations and further modifications of the inventive features illustrated herein and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.

[0023] Applications and advantages of the disclosure may include securing window washing fluid bottles to scaffolding and other equipment and securing window washing fluid bottles directly to high rise buildings comprising metallic exteriors. Window washers therefore have their cleaning fluids conveniently within arms' length. Also, car detailers may be able to secure detailing fluid bottles within arms' reach secured on the vehicles being detailed and avoid setting the bottles on the ground between use. Detailers may also easily secure detailing fluids to their equipment such as rotary buffers as explained herein. Therefore, accidents tripping over and spilling bottles may be avoided or entirely eliminated. Additionally, metal walls at storage facilities suddenly become walls of depository for cleaning fluids saving shelf, cabinet and closet space for other vertically oriented tools such as shovels, rakes, brooms and the like. The disclosed retainer clip may also be used in conjunction with the disclosed encased and tethered magnet to provide means for securing camping gear to sports enthusiasts, securing drink bottles to hikers and securing medications to refrigerators and

[0024] FIG. 1 depicts a front elevation of an encased tethered magnet in accordance with an embodiment of the present disclosure. The encased tethered magnet includes a tether 1 and a magnet 2. A tether first end 3 is configured to encase the magnet and to suspend the magnet proximal an inside wall of the bottle. A second end 4 is configured to extend beyond a bottle opening.

[0025] In an embodiment of the disclosure, the tether 1 may fully encase the magnet 2. The tether 1 depicted is only representative of an embodiment and other tether shapes and configurations comprising all the functional characteristics of the tethers depicted and disclosed are therefore also implicitly claimed herein. The tether 1 may comprise a fluid-inhibiting or water-proof material. The tether may also comprise a washable material for insertion into drink bottles and drink cups. The tether 1 may be configured in a substantially thin ribbon-like shape having a length greater to an elongate length of the bottle. The tether 1 may also be configured to deform between the bottle and a cap secured to a bottle opening to enable a liquid tight seal there between. The tether 1 may comprise cloth, rubber, silicone and other low durometer plastics and materials which allow the magnet 2 to freely suspend within the bottle from the bottle mouth or opening. [0026] The encased magnet 2 may be a substantially oblong flux enhanced magnet comprising at least one flux enhancing layer and at least one magnetic layer as detailed below in FIG. 3. The encased magnet 2 may comprise single or multiple hybrid magnetic materials. The encased magnet 2 may be configured to pass through the mouth or opening of most bottles and therefore be oblong and elongate and may also be cylindrical. The encased magnet 2 may also comprise electromagnetic configurations and materials.

[0027] FIG. 2 depicts a side elevation of the encased tethered magnet in accordance with an embodiment of the present disclosure. The visual appearance of the magnet 2 may be determined by the contour of the tether material 1 encasing it. The tail end 4 of the tether may be very thin relative to its length and therefore enable it to deform between the threads of a bottle and a cap placed thereon. The encased magnet 2 is substantially elongate to maximize the surface area magnetically exposed to a metallic surface in proximity to the bottle and yet allow the encased magnet to be tethered inside bottles having small diameter openings.

[0028] FIG. 3 depicts a cross-section through 3-3 of the encased tethered magnet of FIG. 1 in accordance with an embodiment of the present disclosure. Layers 2a and 2c may be magnetic and layer 2b may be a flux enhancing layer. The flux enhancing layer 2b provides a conduit for the magnetic flux from the magnet 2 and thus enhances the magnetic properties of the magnet. The magnet 2 may comprise multiple magnetic layers and multiple flux enhancing layers where the flux enhancing layers may be sandwiched between the magnetic layers. The magnetic layers may comprise neodymium magnetic materials and any other permanent or semi-permanent magnetic materials. The flux enhancing layers may comprise iron and other metallic materials which are conductive to magnetic flux. Embodiments of the flux enhanced magnet 2 may be configured in an oblong and semi-cylindrical shape, a polygonal shape and any other shape having an elongate dimension to more easily slip through a narrow bottle mouth and maximize magnetic surface area.

[0029] FIG. 4 depicts a perspective view of an encased tethered magnet as disposed in a bottle opening in accordance with an embodiment of the present disclosure. FIG. 4 illustrates the flexible and deformable nature of the tether which enables the encased magnet 2 to be freely suspended from the bottle opening. The encased magnet 2 is therefore able to freely move to any inside wall of the bottle according to magnetic attraction forces to a metallic surface in proximity to the bottle and the magnet. The elongate tether 1 may also allow the encased magnet 2 to touch any inside wall of the bottle, including the top and bottom walls. Though the bottle depicted includes a top wall adjacent the bottle opening, bottles having no top wall (not depicted) such as drink cups and glasses are also securable to metallic surfaces via the encased tethered magnet, method and system as disclosed.

[0030] Though the bottle depicted in FIG. 4 is cylindrical, the disclosed encased tethered magnet, method and system therefore perform equally well in relation to drink cups, drink boxes, cleaning bottles, squeeze bottles, spray bottles, buckets, cans, canisters, drums and any other fluid receptacles regardless of shape or size and material of the respective receptacle. Also, the disclosure is not limited to open fluid receptacles or to closed receptacles.

[0031] FIG. 5 depicts a perspective view of an encased tethered magnet as disposed inside a capped squeeze bottle in accordance with an embodiment of the present disclosure. Embodiments of the disclosure include capped and uncapped bottles, drink cups and fluid receptacles. The tether 1 is configured to deform and conform between the threads of the bottle opening and the cap so that a liquid tight seal may be formed there between. The tether 1 may therefore be freely

tethered from a capped bottle or from an uncapped bottle as depicted in FIG. 4 and explained above.

[0032] FIG. 6 depicts a perspective view of an encased tethered magnet as disposed inside a capped spray bottle in accordance with an embodiment of the present disclosure. Embodiments of the disclosure claim the bottle as part of the disclosed system for securing a fluid receptacle as discussed below with respect to FIG. 8. The tether 1 encasing the magnet 2 may be adjusted at the mouth of the bottle to hang anywhere up and down or from side to side in the bottle to enable the bottle to be flat and adjacent a metal surface. The placement of the magnet 2 in FIG. 6 disposes the magnet 2 just below a constricting ridge 5 in the spray bottle and thus provides a mechanical advantage against gravity pulling the bottle downward and away from the metallic surface. Spray bottles of counter top cleaning and sterilizing fluid may thus be stored in arm's reach on the side of a refrigerator or freezer using the encased and tethered magnet.

[0033] FIG. 7 depicts a perspective view of an encased tethered magnet disposed inside a capped bottle for securing the bottle to a metallic surface in accordance with an embodiment of the present disclosure. It is to be understood that throughout the present disclosure that the term 'metallic surface' is synonymous with 'magnetically attractive surface.' This lexicography is necessary because not all metallic surfaces are necessarily magnetically attractive. Aluminum and copper for instance are weakly magnetically attractive where iron and steel are strongly attractive. The encased magnet 2 is depicted in a side view elevation to illustrate the attraction of the magnet 2 to the metallic surface vertically disposed. In other words, the magnet 2 is naturally attracted along its broadest surface area in relation to the metallic surface. The magnet 2 may still secure the bottle to the metallic surface along any of its sides but may secure the bottle with maximum magnetic attraction at its broadest surface area.

[0034] FIG. 8 depicts a perspective view of a system for securing a bottle to a metallic surface through a scratchinhibiting material in accordance with an embodiment of the present disclosure. The system includes a bottle 6 with a cap 7 secured thereon, a substantially oblong flux enhanced magnet 2 comprising at least one flux enhancing layer sandwiched between a plurality of magnetic layers and a deformable tether 1 encompassing the magnet. The tether 1 may be configured to suspend the magnet 2 from one end against an inside wall of the bottle 6 and to deform between the bottle 6 and the cap 7 secured to the bottle at an opening thereof. The disclosed bottle securing system may further comprise a scratch inhibiting material 8 sandwiched between the bottle and the metallic surface. The scratch inhibiting material protects the metallic surface from scratches incident to moving the bottle after it has been secured to the metallic surface via the encased and tethered magnet. The scratch inhibiting material 8 may therefore comprise non-abrasive materials such as leather, cotton, silk, and the like also comprising synthetic materials and blends.

[0035] FIG. 9 depicts a retainer comprising a magnetically attractive device attached thereto in accordance with an embodiment of the present disclosure. The disclosed system may include a retainer 9 configured as a bracket or clip comprising at least one magnetically attractive device or surface 10 affixed thereto. Where the retainer inherently or otherwise comprises a magnetically attractive surface, a separate magnetically attractive device may not be necessary. The clip 9 may comprise metallic materials or any other rigid and semi-

rigid materials. The clip 9 may be configured in an upsidedown 'J' or 'U' or 'V' configurations and like configurations to enable hanging the clip from a user's pocket or other clothing item. The magnetic device 10 is configured to attach to the oblong magnet 2 through the bottle 6 and may therefore comprise magnetic and metallic materials.

[0036] FIG. 10 depicts a side elevational view of the retainer as seen from the right side of FIG. 9 in accordance with an embodiment of the present disclosure. The width and thickness of the magnetically attractive device 10 may be similar or the same as the width and thickness of the encased and tethered magnet 2 in order to maximize the attraction there between. The magnetically attractive 10 device may be disposed mechanically on the retainer clip or bracket 9 or it may be magnetically disposed thereon.

[0037] FIG. 11 depicts the retainer attached to the encased tethered magnet through the bottle to secure the retainer to the bottle and enable a user to secure the bottle to a user's pocket in accordance with an embodiment of the present disclosure. The retainer bracket or clip 9 may be configured to either mechanically attach to a user's clothing item or to hang from a user's pocket. The scratch inhibiting material 8 may not be necessary when the clip 9 is secured to the bottle 6 via the magnet 2.

[0038] FIG. 12 depicts the encased tethered magnet securing a squeeze bottle onto an electric rotary buffer via a belt attached to a magnetically attractive device in accordance with an embodiment of the present disclosure. The belt or strap 11 is secured tightly around the electric rotary buffer and the magnetically attractive device or surface 10 is attached thereto mechanically or by a hook and loop arrangement or the like. The fluid from the bottle 6 may therefore drip out under the force of gravity or be otherwise forced out of the cap 7 and onto a work surface at the control of the user while the squeeze bottle is secured to the buffer in an upside-down position. The rotary pads of the buffer 13 may therefore buffer a surface lubricated by the fluid from the bottle 6. The user may hold the buffer at the handles 14 and 15 and not have to hold the squeeze bottle while operating the rotary buffer. This embodiment also allows a user to quickly release the buffer fluid bottle from the buffer for refilling without removing the retainer belt or strap. This embodiment also has the advantage over hook and loop type attachments which wear out over time because the magnetic bond between the encased tethered magnet and a magnetically attractive surface will not wear out nor diminish over time and use.

[0039] Embodiments of FIG. 12 may include systems and methods for securing a fluid receptacle onto other tools and equipment requiring constant or periodic fluid or lubricant. The disclosed encased and tethered magnet, method and system for securing a bottle in arm's reach is therefore particularly advantageous for aftermarket applications to cutting tools requiring water lubrication onto a cutting surface and constant oil lubrication onto moving parts.

[0040] A further embodiment of the disclosure includes a fluid receptacle securing electro-magnet and system further comprising at least one electrical wire in communication with the electro-magnet. The deformable tether encompassing the electro-magnet may therefore also encompass the at least one wire. The tether may be configured to suspend the magnet from one end proximal an inside wall of the receptacle and to deform between the receptacle and a cap secured to the receptacle at an opening thereof and yet allow the at least one wire access outside the receptacle.

[0041] FIG. 13 is a flow chart of a method of securing a fluid receptacle to a metallic surface in arm's reach via an encased tethered magnet therein in accordance with an embodiment of the present disclosure. The method includes tethering 110 a substantially oblong magnet proximal an inside wall of a fluid receptacle, the magnet comprising at least one flux enhancing layer and at least one magnetic layer. The method also includes attaching 120 the fluid receptacle to a metallic surface in arm's reach by placing the magnet within an attracting distance to the metallic surface.

[0042] An embodiment of the disclosed method may comprise tethering an oblong magnet at one end proximal an inside wall of the receptacle to a cap secured to the receptacle and attaching the receptacle to the metallic surface by placing the magnet within an attracting distance to the surface.

[0043] Another embodiment of the disclosed method may further comprise sandwiching a scratch-inhibiting material between the receptacle and the metallic surface. The embodiment may also comprise leaving a portion of the tether outside the capped receptacle for retrieving the magnet from the bottle in order to remove the secured bottle from the metallic surface.

[0044] FIG. 14 is a flow chart of a method of securing a fluid receptacle to a metallic surface in arm's reach via an encased and tethered electro-magnet therein in accordance with an embodiment of the present disclosure. The method includes tethering 130 a substantially oblong electro-magnet proximal an inside wall of a fluid receptacle, the tether comprising at least one wire therein in communication with the electro-magnet. The method also includes powering-up 140 the electro-magnet. The method additionally includes attaching 150 the fluid receptacle to a metallic surface in arm's reach by placing the electro-magnet within an attracting distance to the metallic surface. The method further includes powering-down 160 the electro-magnet in order to move the receptacle or to remove the receptacle.

[0045] An embodiment of the disclosed method may include tethering an oblong electro-magnet at one end proximal an inside wall of the receptacle to a cap secured to the receptacle, powering-up the electro-magnet and attaching the receptacle to the metallic surface by placing the electro-magnet within an attracting distance to the metallic surface.

[0046] Although the operations of the method(s) herein are shown and described in a particular order, the order of the operations of each method may be altered so that certain operations may be performed in an inverse order or so that certain operations may be performed, at least in part, concurrently with other operations. In another embodiment, instructions or sub-operations of distinct operations may be implemented in an intermittent and/or alternating manner.

[0047] And though specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The scope of the invention is to be defined by the claims and their equivalents to be included by reference in a non-provisional utility application.

What is claimed is:

- 1. A fluid receptacle securing magnet, comprising:
- a substantially oblong magnet; and
- a tether encompassing the magnet, a tether first end configured to suspend the magnet from one end proximal an inside wall of a bottle and a second end configured to extend beyond a bottle opening.

- 2. The fluid receptacle securing magnet of claim 1, wherein the oblong magnet comprises at least one flux enhancing layer adjacent at least one magnetic layer and may therefore comprise one flux enhancing layer sandwiched between multiple magnetic layers.
- 3. The fluid receptacle securing magnet of claim 2, wherein the magnetic layers may comprise neodymium magnetic materials and any other permanent and semi-permanent magnetic materials.
- **4**. The fluid receptacle securing magnet of claim **2**, wherein the flux enhancing layer comprises iron and other metallic materials conductive to magnetic flux.
- 5. The fluid receptacle securing magnet of claim 1, wherein the oblong magnet is further configured in a semi-cylindrical shape, a polygonal shape and any other shape having an elongate dimension.
- 6. The fluid receptacle securing magnet of claim 1, wherein the tether comprises a fluid-inhibiting and water-proof material
- 7. The fluid receptacle securing magnet of claim 1, wherein the tether is configured in a substantially thin ribbon-like shape having a length greater to an elongate length of the bottle.
- **8**. The fluid receptacle securing magnet of claim **1**, wherein the tether comprises a low durometer material and is configured to deform between the bottle and a cap secured to a bottle opening to enable a liquid tight seal therebetween.
- 9. The fluid receptacle securing magnet of claim 1, wherein the magnet is an electro-magnet and the tether comprises at least one wire in communication with the electro-magnet, the at least one wire configured to supply power and control to the electro-magnet.
- 10. A method for securing a fluid receptacle, the method comprising:
 - tethering a substantially oblong magnet at one end proximal an inside wall of the receptacle to a cap secured to the receptacle; and
 - attaching the receptacle to a metallically attractive surface in arm's reach by placing the magnet within an attracting distance to the surface.
- 11. The method for securing a fluid receptacle of claim 10, further comprising sandwiching a scratch-inhibiting material between the receptacle and the metallically attractive surface.
- 12. The method for securing a fluid receptacle of claim 10, further comprising leaving a portion of the tether outside the capped receptacle for retrieving the magnet from the bottle.
- 13. The method of securing a fluid receptacle of claim 10, wherein the magnetically attractive surface is attached to a belt and the like and the belt is attached to a work tool.
- 14. The method of securing a fluid receptacle of claim 13, further comprising forcing and otherwise allowing fluid from the bottle onto a working surface while operating the tool, the bottle being secured to the work tool via the magnetically attractive surface and the encased tethered magnet.
- 15. The method for securing a fluid receptacle of claim 10, further comprising:
 - tethering a substantially oblong electro-magnet at one end proximal an inside wall of the receptacle to a cap secured to the receptacle;

powering-up the electro-magnet;

attaching the receptacle to the magnetically attractive surface by placing the electro-magnet within an attracting distance to the surface; and

- powering-down the electro-magnet in order to move the receptacle.
- 16. A bottle securing system, comprising:
- a substantially oblong flux enhanced magnet comprising a flux enhancing layer and a magnetic layer; and
- a deformable tether encompassing the magnet, the tether configured to suspend the magnet from one end against an inside wall of the bottle and to deform between the bottle and a cap secured to the bottle at an opening thereof; and
- a retainer comprising at least one magnetically attractive device affixed thereto, the magnetically attractive device configured to attract to the oblong magnet through the bottle, the retainer configured to attach to an item.
- 17. The bottle securing system of claim 16, further comprising a scratch inhibiting material sandwiched between the bottle and a magnetically attractive surface.
- 18. The bottle securing system of claim 16, wherein the retainer is configured in an upside-down 'J' configuration and the like to enable hanging the bottle from a user's pocket.
- 19. The bottle securing system of claim 16, wherein the retainer is configured in a clip to mechanically attach to a user's clothing item.
- 20. The bottle securing system of claim 16, wherein the retainer is configured as a belt and the like, the belt configured to tightly encircle a tool and secure the bottle to the tool via the magnet and the magnetically attractive device.

* * * * *