

(19) DANMARK

(10) DK/EP 3656259 T3

(12)

Oversættelse af
europæisk patentskrift

Patent- og
Varemærkestyrelsen

(51) Int.Cl.: **A 47 J 31/36 (2006.01)** **B 65 D 85/804 (2006.01)**

(45) Oversættelsen bekendtgjort den: **2022-12-19**

(80) Dato for Den Europæiske Patentmyndigheds
bekendtgørelse om meddelelse af patentet: **2022-11-09**

(86) Europæisk ansøgning nr.: **20151759.6**

(86) Europæisk indleveringsdag: **2014-05-16**

(87) Den europæiske ansøgnings publiceringsdag: **2020-05-27**

(30) Prioritet: **2013-05-17 GB 201308929** **2013-05-17 GB 201308925**

(62) Stamansøgningsnr: **18169985.1**

(84) Designerede stater: **AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR**

(73) Patenthaver: **Koninklijke Douwe Egberts B.V., Vleutensevaart 35, 3532 AD Utrecht, Holland**

(72) Opfinder: **CHAPMAN, Andrew, 1 The Ashes, Peterborough, Cambridgeshire PE7 0LA, Storbritannien**
BANISTER, Stuart, 59 Allan Avenue, Peterborough, Cambridgeshire PE2 8TN, Storbritannien
JELLEY, Simon, 4 Farringford Close, Cambridge, Cambridgeshire CB4 3LU, Storbritannien
SHABUDIN, Esak, C/o Jacobs Douwe Egberts, Ruscote Avenue, Banbury, Oxon OX16 2QU, Storbritannien
HALLIDAY, Andrew, C/o Jacobs Douwe Egberts, Ruscote Avenue, Banbury, Oxon OX16 2QU, Storbritannien

(74) Fuldmægtig i Danmark: **Holme Patent A/S, Valbygåardsvej 33, 2500 Valby, Danmark**

(54) Benævnelse: **Kapsel og fremgangsmåde til dannelse af en drikkevare**

(56) Fremdragne publikationer:
WO-A1-2012/118367
WO-A1-2012/120459
WO-A1-2013/136209
DE-A1-102008 014 758

DK/EP 3656259 T3

DESCRIPTION

[0001] The present disclosure relates to a beverage preparation system, a capsule and a method for forming a beverage. The beverage preparation system is of the type comprising a beverage preparation machine wherein the capsule is designed for insertion into the beverage preparation machine to permit a pressurised liquid to be flowed through the capsule in order to produce a beverage from interaction with beverage ingredients contained within the capsule.

Background

[0002] Beverage preparation systems which comprise a beverage preparation machine and a capsule containing beverage ingredients are known in the art. One such system is taught in EP 1700548, which discloses a capsule comprising a cup-like base body and a closing foil member. The capsule is designed for insertion in a beverage production device in which a liquid under pressure enters the capsule in order to interact with ingredients in the capsule to form a beverage which is output for consumption. The capsule of EP 1700548 is provided with a dedicated sealing member to prevent a bypass flow of water around the exterior of the capsule in use. The sealing member is in the form of a hollow sealing member on the outer surface of the capsule, for example in the form of a step which is contacted on closure of an enclosing member of the beverage preparation machine.

[0003] The present disclosure provides an alternative capsule which may be used as part of such a beverage preparation system. The capsule may be economical to produce and provide effective sealing in use.

[0004] WO2013136209 describes a system for making beverages comprises a capsule containing a powdered food substance which can be extracted to make a beverage, and a capsule holder comprising an infeed opening through which the capsule can be inserted, delimited by an annular edge at the top of which there is a projecting annular element and/or respectively an annular seat. The capsule comprises a body comprising a lower wall, a lateral wall and a perimetric edge on which there is an annular groove on whose surface there is a bottom zone and, laterally positioned on opposite sides of the bottom zone, two inner lateral faces, and/or respectively there is an annular tooth on whose surface there is a tip portion and, laterally positioned on opposite sides of the tip portion, two outer lateral faces. The capsule holder and the capsule can adopt a sealed configuration where the projecting annular element, inserted in the annular groove, is in sealed contact with at least one of the inner lateral faces, and/or respectively the annular seat receives inside it the annular tooth and is in sealed contact with at least one of the outer lateral faces.

Summary of the Disclosure

[0005] An aspect of the present disclosure provides a capsule according to claim 1.

[0006] The above aspects may further comprise one or more of the following features:
The annular trough may be dimensioned to partially or wholly receive a leading edge of the enclosing member therein on movement of the enclosing member into the closed position.

[0007] The second side wall section may define a ridge zone located radially outwards of the annular trough.

[0008] The side wall is adapted to undergo plastic deformation during closure of the enclosing member.

[0009] The side wall may be adapted such that, in use, closure of the enclosing member deforms the side wall to cause the second side wall section to be forced inwardly against an outer face of the enclosing member to form a sealing interface with the outer face of the enclosing member.

[0010] The annular trough is adapted to form a sealing interface with a leading edge of the enclosing member.

[0011] Advantageously, a sealing interface may be provided with both the leading edge and the outer face of the enclosing member. In addition, the deformation of the annular trough may also cause an outward pressure to be exerted by the side wall on the inner face of the enclosing member to form a further sealing interface.

[0012] The side wall may be adapted such that during closure of the enclosing member the side wall is plastically drawn over the leading edge of the enclosing member. Advantageously this may allow the side wall to be conformed to the shape of any grooves (or similar) provided in the leading edge.

[0013] Prior to insertion, the annular trough comprises an inner wall, an outer wall and a floor. On closure of the enclosing member a leading edge of the enclosing member may contact the outer wall of the annular trough and form a seal therewith.

[0014] The inner wall and outer wall may be substantially perpendicular to the floor. In an alternative arrangement the outer wall may be angled relative to the floor, such that an internal angle at a junction between the floor and the outer wall is from 90° to 120°, preferably 105°. Thus the seal with the enclosing member may be a tapered seal.

[0015] The ridge zone may comprise an apex, and a leading edge of the enclosing member may comprise an inner rim and an outer rim and a recess located between the inner rim and the outer rim, wherein on closure of the enclosing member the apex of the ridge zone may be received in the recess between the inner rim and the outer rim.

[0016] The annular trough may be adapted to be nipped against a capsule holder of the beverage preparation machine part.

[0017] Prior to insertion, a floor of the annular trough may be raised relative to the rim. The floor of the annular trough may be offset from a distal end of the side wall by a distance from 0.1 to 2.0 mm. In one example, the offset may be relatively large, for example it may be from 1.55 to 2.0 mm. In a specific example the offset may be 1.85 mm. Where the offset is relatively large, the floor of the annular trough may be from 0.75 to 1.2 mm below an apex of the ridge zone (where present). In one example, the distance may be 0.9 mm. In another example, prior to insertion, the floor of the annular trough may be substantially level with the rim. For example the offset may be 0.1 to 0.5 mm. In one example the offset may be 0.2 mm. In this alternative arrangement the floor of the annular trough may be from 2.0 to 2.5 mm below an apex of the ridge zone (where present). In one example, the distance is 2.2 mm.

[0018] The side wall may be adapted such that, in use, closure of the enclosing member deforms the side wall to cause the floor of the annular trough to be brought substantially into alignment with the rim.

[0019] The first side wall section, annular trough and second side wall section may be formed integrally.

[0020] The rim is formed integrally with the cup-shaped body.

[0021] The rim is formed by a rolled-over portion of the side wall.

[0022] Prior to insertion, the side wall may comprise a frustoconical section proximate the base.

[0023] Prior to insertion, the side wall may comprise a cylindrical section between the frustoconical section and the annular trough.

[0024] The annular trough may have an internal width of from 1.3 to 2.0 mm. In one example, the annular trough has an internal width of approximately 1.5 mm to 1.8 mm.

[0025] The annular trough may have an internal diameter of from 27.5 to 30.0 mm and an outer diameter of from 29.3 to 32.5 mm.

[0026] The lid may be sealed to the annular trough of the side wall. The lid may be sealed to an inner surface of a floor of the annular trough.

[0027] A leading edge of the enclosing member may comprise a plurality of grooves or indentations, and the side wall may be adapted such that the plastic deformation of the side wall conforms the annular trough of the side wall to the grooves or indentations to provide an effective seal. In one arrangement the plastic deformation of the side wall conforms the outer

wall of the annular trough to the grooves or indentations to provide an effective seal.

[0028] A whole of the cup-shaped body, is formed from aluminium or an aluminium alloy.

[0029] The aluminium alloy may, for example, be of grade 3005, 3105, 8011 or 8079. Preferably, the aluminium alloy will have an 'O' temper rating.

[0030] The lid may be formed from aluminium, an aluminium alloy or a laminate comprising at least one layer formed from aluminium or an aluminium alloy. Alternatively, another, suitably ductile material could be utilised. The lid may further comprise a heat seal lacquer or heat seal layer to enhance sealing of the lid to the cup-shaped body.

[0031] The cup-shaped body is formed from a single integral piece of material. The single piece of material may be cold drawn to form the shape of the cup-shaped body, including the annular trough. A deep-drawing technique may be used to cold form the cup-shaped body.

[0032] The cup-shaped body and rim are integral.

[0033] The cup-shaped body is formed solely from aluminium or an aluminium alloy (optionally with one or more lacquer layers) and has a thickness in the range of 80 to 120 microns.

[0034] The thickness of the material may be varied throughout the cup-shaped body.

[0035] The rim may have an outer diameter of approximately 37 mm.

[0036] Prior to insertion, the capsule may have a height of from 25 to 31 mm. In some aspects the height may be from 28.5 to 30 mm. Deformation of the capsule during use will tend to reduce the longitudinal height.

[0037] Preferably, the cup-shaped bodies may be shaped in a way that can be stacked and destacked easily prior to filling and assembly with the lids.

[0038] The capsule may form a single-use, disposable element.

[0039] The capsule may contain a beverage ingredient or mixture of beverage ingredients. As a non-limiting example, the beverage ingredient may comprise roasted ground coffee.

Brief Description of the Drawings

[0040] Examples of the present disclosure will now be described in more detail, for exemplary purposes only, with reference to the accompanying drawings, in which:

Figure 1 is a cross-sectional view of a first embodiment of capsule according to the present

disclosure;

Figure 2 is an enlarged view of a detail of Figure 1;

Figure 3 is a schematic illustration of the capsule of Figure 1 together with an enclosing member of a beverage preparation machine;

Figure 4 is an enlarged view of a detail of Figure 3;

Figure 5 is a schematic illustration of the arrangement of Figure 3 with the enclosing member in a closed position;

Figure 6 is an enlarged view of a detail of Figure 5;

Figure 7 is a cross-sectional view of a second embodiment of capsule according to the present disclosure;

Figure 8 is an enlarged view of a detail of Figure 7;

Figure 9 is a schematic illustration of the capsule of Figure 7 together with an enclosing member of a beverage preparation machine;

Figure 10 is an enlarged view of a detail of Figure 9;

Figure 11 is a schematic illustration of the arrangement of Figure 9 with the enclosing member in a closed position;

Figure 12 is an enlarged view of a detail of Figure 11;

Figure 13 is a cross-sectional view of a third embodiment of capsule according to the present disclosure;

Figure 14 is an enlarged view of a detail of Figure 13;

Figure 15 is a schematic illustration of the capsule of Figure 13 together with an enclosing member of a beverage preparation machine;

Figure 16 is an enlarged view of a detail of Figure 15;

Figure 17 is a schematic illustration of the arrangement of Figure 15 with the enclosing member in a closed position; and

Figure 18 is an enlarged view of a detail of Figure 17.

Detailed Description

[0041] Figure 3 shows schematically a part of a beverage preparation system according to the

present disclosure. The beverage preparation system comprises a beverage preparation machine and a capsule 1.

[0042] Figures 1 and 2 show a first embodiment of capsule 1. The capsule 1 will be described in more detail below but may have the general form of a cup-shaped body 40 having a base 42 at one end and a side wall 43 extending from the base 42 towards an opposed end which is closed-off by a lid 41.

[0043] As shown in Figure 3, the beverage preparation machine comprises an enclosing member 2 and a capsule holder 20. The enclosing member 2 is selectively movable relative to a capsule holder 20 between an open position, to permit insertion of the capsule 1 into the beverage preparation machine, and a closed position, in which the enclosing member 2 sealingly engages the capsule 1 against the capsule holder 20 in a manner that will be described below.

[0044] The enclosing member 2 may be moved between the open and closed positions by means of a conventional mechanism well known in the art. For example, the means may involve a mechanical mechanism activated by a manually-movable lever or an automatic or semi-automatic mechanism where movement is driven by a motor. The enclosing member 2 may be moved while the capsule holder 20 remains stationary. Alternatively, the enclosing member 2 may remain stationary and the capsule holder 20 be moved. In a further alternative arrangement, both the enclosing member 2 and the capsule holder 20 may move during the opening and closing operations.

[0045] The enclosing member 2 and the capsule holder 20 in the closed position together define a receptacle 3 for holding the capsule 1 during a dispensing operation.

[0046] The beverage preparation machine may further comprise other conventional elements which are not illustrated in the accompanying drawings and are well known in the art of beverage preparation machines. For example, the beverage preparation machine may comprise either a facility for storing an aqueous medium, such as an internal reservoir, or a facility for connection to an external supply of aqueous medium, such as mains water. The aqueous medium will typically be water. A pump or equivalent may be provided for supplying the aqueous medium in a pressurised state to the capsule 1. The aqueous medium will typically be supplied at a pressure of up to 9 to 14 bar. A heater may be provided for heating the aqueous medium to a desired temperature. The heater may heat the aqueous medium in the reservoir (where present) or may heat the aqueous medium on-demand as it passes through a conduit or over a thermoblock to the receptacle 3. The beverage preparation machine may comprise base piercing means for piercing the base 42 of the capsule 1 to permit the aqueous medium to enter the capsule 1 and interact with the beverage ingredients therein. Alternatively, the capsule 1 may be provided with one or more pre-formed openings to allow entry of the aqueous medium from the receptacle 3 into the capsule 1.

[0047] The enclosing member 2 may be of the type described in EP 1700548 comprising an

annular element 22 having a leading edge 23 in the form of an annular rim, an inner face 25 facing the receptacle 3 and an outer face 24 facing an exterior. The leading edge 23 may be provided with a plurality of grooves as taught in EP 1700548. An upper end (not shown) of the enclosing member 2 may be coupled to a supply of the aqueous medium and may provide a mounting for one or more perforation elements intended to pierce the base 42 of the capsule 1 in use.

[0048] The capsule holder 20 may be of the type described in EP 1700548 comprising relief elements 21 which are designed to tear and perforate the lid 41 of the capsule 1. The tearing of the lid 41 may occur due to internal pressurisation of the capsule 1 caused by inflowing aqueous medium. The relief elements 21 may have any protruding shape able to cause a partial tearing of the foil member, e.g. pyramids, needles, bumps, cylinders, or elongated ribs.

[0049] As shown in Figure 1, the cup-shaped body 40 and the lid 41 of the capsule 1 together enclose a beverage ingredient chamber 50 which may be filled with a beverage ingredient or mixture of beverage ingredients. As a non-limiting example, the beverage ingredient may comprise roasted ground coffee.

[0050] In the illustrated example, the cup-shaped body 40 is made from aluminium or an aluminium alloy. The cup-shaped body 40 includes the base 42 and the side wall 43. There may be, as illustrated, a geometric discontinuity at the junction between the base 42 and the side wall 43, for example, in the form of a shoulder 57. Alternatively, the base 42 and the side wall 43 may have a smooth geometric transition.

[0051] The cup-shaped body 40 has a thickness in the range of 80 to 120 microns. The thickness of the material may be varied throughout the cup-shaped body 40. In the illustrated example the thickness is 100 microns.

[0052] The side wall 43 is provided with an annular trough 60 which is dimensioned to receive, partially or wholly, the leading edge 23 of the enclosing member 2 on movement of the enclosing member 2 into the closed position. A first side wall section 61 is provided extending between the base 42 and the annular trough 60 and a second side wall section 62 is provided extending between the annular trough 60 and a distal end of the side wall 43 of the capsule 1.

[0053] The annular trough 60 may be defined by an inner wall 65, an outer wall 66 and a floor 64 which extends there between. The inner wall 65 and outer wall 66 may, prior to insertion of the capsule 1 in the beverage preparation machine, extend perpendicularly to the floor 64. The inner wall 65 may be formed by a portion of the first side wall section 61.

[0054] A ridge zone 63 is located radially outwards of the annular trough 60. The ridge zone 63 may comprise an annular projection which extends back in the general direction of the base 42 such that an apex 67 of the ridge zone 63 is raised above the level of the floor 64 of the annular trough 60. The apex 67 may be raised above the floor 64 by a distance from 0.75 to 2.5 mm. As illustrated in this embodiment, the distance is 0.9 mm. The ridge zone 63 may be

formed to have an inner wall provided by the outer wall 66 of the annular trough 60 and an outer wall 68 formed by at least a portion of the second side wall section 62.

[0055] The side wall 43, including the annular trough 60 and the ridge zone 63 is formed integrally. Further, the cup-shaped body 40 including the side wall 43 and the base 42 are formed integrally.

[0056] The annular trough 60 may have an internal width of from 1.3 to 2.0 mm. Typically, the internal width of the annular trough 60 is chosen to be marginally greater than the breadth of the leading edge 23 of the annular element 22. In one example, the annular trough 60 has an internal width of approximately 1.5 mm to 1.8 mm.

[0057] The annular trough 60 may have an internal diameter of from 27.5 to 30.0 mm (that is the diameter of the surface of the inner wall 65 facing into the annular trough 60) and an outer diameter of from 29.3 to 32.5 mm (that is the diameter of the surface of the outer wall 66 facing into the annular trough 60). Optionally, the internal diameter may be chosen so there is a slight interference fit between the inner wall 65 and the outer face 24 of the enclosing member 2 on closure. This helps to ensure good alignment of the annular trough 60 with the enclosing member 2.

[0058] As illustrated, the lid 41 is sealed to the annular trough 60. In particular, the lid 41 is sealed to an inner surface of the floor 64 of the annular trough 60. The floor 64 of the annular trough 60 is raised relative to a distal end of the side wall 43. Consequently, the lid 41 is also raised relative to the distal end of the side wall 43. The floor 64 may be offset from the distal end of the side wall 43 by a distance from 0.1 to 2.0 mm as described previously. As illustrated, the offset is 1.85 mm. Sealing the lid 41 to the floor 64 helps to ensure that the enclosing member 2 does not bear down on a hollow part of the capsule 1 so as to trap beverage ingredients in between the leading edge 23 and the capsule holder 20 which could have a detrimental effect on the fluid-tightness of the seal.

[0059] The lid 41 may be formed from aluminium, an aluminium alloy or a laminate containing aluminium.

[0060] The first side wall section 61 may comprise a frustoconical section 44 proximate the base 42 and a cylindrical section 45 distal the base 42, wherein a portion of the cylindrical section 45 forms the inner wall 65 of the annular trough 60.

[0061] The capsule 1 may be provided with a rim 47 formed at an end of the cup-shaped body 40 remote from the base 42, i.e. at the distal end of the side wall 43. The rim 47 is formed integrally with the cup-shaped body 40. In the illustrated example, the rim 47 is formed by a rolled-over portion 48 of the side wall 43.

[0062] In use of the beverage preparation system the enclosing member 2 is first moved into the open position and the capsule 1 is inserted into a location in between the capsule holder 20

and the enclosing member 2. Depending on the design of the beverage preparation machine, the capsule 1 may be inserted by gravity or by manual placement or a combination thereof. In addition, the initial insertion may place the capsule 1 in proximity to the enclosing member 2 such that subsequent movement of the enclosing member 2 carries the capsule 1 therewith into engagement with the capsule holder 20. Alternatively, initial insertion may place the capsule 1 in proximity to the capsule holder 20 such that the capsule 1 remains substantially stationary during closure of the enclosing member 2.

[0063] The enclosing member 2 is then closed so as to sealingly engage the enclosing member 2 with the capsule 1. During this step the base 42 of the capsule 1 may be pierced by the perforation elements of the enclosing member 2.

[0064] Pressurised aqueous medium (which may be heated, at ambient temperature or chilled) is then flowed into the capsule 1 to produce a beverage from interaction with the beverage ingredients. During this step internal pressurisation of the beverage ingredient chamber 50 causes the lid 41 to be deformed outwardly against the relief elements 21 of the capsule holder 20 resulting in at least partial tearing of the lid 41 which opens up an exit path from the capsule 1 for the beverage.

[0065] The beverage is then output for consumption.

[0066] As shown in Figures 5 and 6, during the step of closing the enclosing member 2 relative to the capsule holder 20 the side wall 43 of the capsule 1 is contacted by the enclosing member 2 to deform the side wall 43. In particular, the leading edge 23 enters the annular trough 60 and bears on the floor 64 and/or the inner wall 65 and/or the outer wall 66. The floor 64 is driven downwards by the action of the enclosing member 2 to nip the floor 64 (and the lid 41 sealed to the floor 64) against the capsule holder 20. The leading edge 23 may also act to pinch the material of the side wall 43 during this movement which consequently causes the ridge zone 63 to be pivoted inwards to bring the apex 67 of the ridge zone 63 and/or the outer wall 66 of the annular trough 60 into sealing engagement with the outer face 24 of the annular element 22 as shown in Figure 6. Importantly, the initial point of contact between the leading edge 23 and the floor 64 is axially spaced from the capsule holder 20 such that there is room for the side wall 43 to deform downwards towards the capsule holder 20 enough to allow for inward pivoting of the ridge zone 63 before the side wall 43 is nipped against the capsule holder 20.

[0067] The induced movement of the side wall 43 causes the side wall 43 to undergo plastic deformation. In particular, as the side wall 43 is deformed downwards, the side wall 43 (in particular portions of the annular trough 60) may be plastically drawn over the leading edge 23 of the enclosing member 2 which encourages the material of the side wall 43 to be closely conformed to the grooves of the leading edge 23. Thus, the annular trough 60 may form a sealing interface with the leading edge 23 of the enclosing member 2.

[0068] Further, deformation of the annular trough 60 may also cause an outward pressure to

be exerted by the side wall 43 on the inner face 25 of the enclosing member 2 to form a further sealing interface.

[0069] Figures 7 to 12 illustrate a second embodiment of capsule 1. Features corresponding to those of the first embodiment are denoted by corresponding reference signs. Features of the first embodiment and this embodiment may be interchanged and combined as desired. In addition, in the following description only differences between the embodiments will be described in detail. In other respects the reader is directed to the description of the prior embodiment.

[0070] The cup-shaped body 40 differs from that of the first embodiment in the configuration and geometry of the annular trough 60. As in the first embodiment, the annular trough 60 is dimensioned to receive, partially or wholly, the leading edge 23 of the enclosing member 2 on movement of the enclosing member 2 into the closed position. The inner wall 65 of the annular trough 60, as before, is substantially perpendicular to the floor 64. However, in contrast, the outer wall 66 is angled relative to the floor 64, such that an internal angle α at a junction between the floor 64 and the outer wall 66 is from 90° to 120° , preferably 105° .

[0071] The ridge zone 63 is again located radially outwards of the annular trough 60 and comprises an annular projection which extends back in the general direction of the base 42 such that an apex 67 of the ridge zone 63 is raised above the level of the floor 64 of the annular trough 60. The apex 67 may be raised above the floor 64 by a distance from 0.75 to 2.5 mm. As illustrated in this embodiment, the distance is 2.2 mm. The ridge zone 63 may be formed to have an inner wall provided by the angled outer wall 66 of the annular trough 60 and an outer wall 68 formed by at least a portion of the second side wall section 62. As shown most clearly in Figure 8, the second side wall section 62 may comprise between the outer wall 68 and the rolled-over portion 48 of the rim 47 an additional annular ridge 70 which may provide additional stiffness to the outer portion of the flange. The height of the additional annular ridge 70 may be 0.7 to 0.8 mm.

[0072] The side wall 43, including the annular trough 60 and the ridge zone 63 is formed integrally. Further, the cup-shaped body 40 including the side wall 43 and the base 42 is formed integrally.

[0073] The annular trough 60 may have an internal width of from 1.3 to 2.0 mm. As illustrated, the annular trough 60 has an internal width of approximately 1.5 mm to 1.8 mm.

[0074] As illustrated, the lid 41 is sealed to the annular trough 60. In particular, the lid 41 is sealed to an inner surface of the floor 64 of the annular trough 60. The floor 64 of the annular trough 60 is substantially level with a distal end of the side wall 43 prior to insertion. As illustrated the offset from the distal end of the side wall 43 and the lid is only 0.2 mm.

[0075] In use of the beverage preparation system, as shown in Figures 9 to 12, as before the enclosing member 2 is first moved into the open position and the capsule 1 is inserted into a

location in between the capsule holder 20 and the enclosing member 2. Figure 9 illustrates that the leading edge 23 of the enclosing member 2 may comprise an inner rim 23a and an outer rim 23b which are concentric and spaced apart from one another to define a recess 23c there between, which may be generally annular (although may have interruptions around its circumference).

[0076] As shown in Figures 11 and 12, on closing the enclosing member 2 relative to the capsule holder 20 the side wall 43 of the capsule 1 is contacted by the enclosing member 2 to deform the side wall 43. In particular, the inner rim 23a of the leading edge 23 is received in the annular trough 60 and bears on the outer wall 66 while at the same time (or shortly thereafter) the apex 67 of the ridge zone 63 is received in the recess 23c. The ridge zone 63 (and floor 64) is driven downwards by the action of the enclosing member 2 on the outer wall 66 and/or apex 67 causing the outer wall 66 of the annular trough 60 and the outer wall 68 of the ridge zone 63 to buckle and deform/crumple. During this movement the material of the outer wall 66 of the annular trough 60 may be plastically drawn over the leading edge 23 to conform the outer wall 66 of the annular trough 60 to the grooves or indentations to provide an effective seal.

[0077] The downward movement of the ridge zone 63 also nips the floor 64 (and the lid 41 sealed to the floor 64) against the capsule holder 20 as shown in Figure 12.

[0078] The geometry of the outer wall 68 of the ridge zone 63, with the additional annular ridge 70 helps to stiffen the distal end of the side wall 43 and prevent the rim 47 being deflected down into contact with the capsule holder 20.

[0079] Downward movement of the enclosing member 2 may continue beyond the point illustrated in Figure 12 until the inner rim 23a contacts and bears against the floor 64 of the annular trough 60.

[0080] Piercing and brewing of a beverage from the capsule 1 may be as described above in the first embodiment.

[0081] Figures 13 to 18 illustrate a third embodiment of capsule 1. Features corresponding to those of the first and/or second embodiment are denoted by corresponding reference signs. Features of the first and/or second embodiment and this embodiment may be interchanged and combined as desired. In addition, in the following description only differences between the embodiments will be described in detail. In other respects the reader is directed to the description of the prior embodiments.

[0082] The cup-shaped body 40 differs from that of the first and second embodiments in the configuration and geometry of the annular trough 60. As in the second embodiment, the annular trough 60 is dimensioned to receive, partially or wholly, the leading edge 23 of the enclosing member 2 on movement of the enclosing member 2 into the closed position. The inner wall 65 of the annular trough 60 is substantially perpendicular to the floor 64 and the

outer wall 66 is angled relative to the floor 64, such that an internal angle α at a junction between the floor 64 and the outer wall 66 is from 90° to 120° , preferably 105° .

[0083] The ridge zone 63 is again located radially outwards of the annular trough 60 and comprises an annular projection which extends back in the general direction of the base 42 such that an apex 67 of the ridge zone 63 is raised above the level of the floor 64 of the annular trough 60. The apex 67 is somewhat more rounded than in the second embodiment. The apex 67 may be raised above the floor 64 by a distance from 0.75 to 2.5 mm. As illustrated in this embodiment, the distance is 2.2 mm. The ridge zone 63 may be formed to have an inner wall provided by the angled outer wall 66 of the annular trough 60 and an outer wall 68 formed by at least a portion of the second side wall section 62. As shown most clearly in Figure 14, the outer wall 68 comprises three distinct sections - an upper section 73 which, prior to insertion, is perpendicular to the floor 64, a mid-section 71 that is angled at an angle β of from 20 to 80° , preferably 60° , to the vertical and a lower section 72 that includes a horizontal portion - parallel to the floor 64 - before merging into the rolled-over portion 48 of the rim 47.

[0084] The side wall 43, including the annular trough 60 and the ridge zone 63 is formed integrally. Further, the cup-shaped body 40 including the side wall 43 and the base 42 is formed integrally.

[0085] The annular trough 60 may have an internal width of from 1.3 to 2.0 mm. As illustrated, the annular trough 60 has an internal width of approximately 1.5 mm to 1.8 mm.

[0086] As illustrated, the lid 41 is sealed to the annular trough 60. In particular, the lid 41 is sealed to an inner surface of the floor 64 of the annular trough 60. The floor 64 of the annular trough 60 is substantially level with a distal end of the side wall 43 prior to insertion. As illustrated the offset from the distal end of the side wall 43 and the lid is only 0.2 mm.

[0087] In use of the beverage preparation system, as shown in Figures 15 to 18, as before the enclosing member 2 is first moved into the open position and the capsule 1 is inserted into a location in between the capsule holder 20 and the enclosing member 2.

[0088] As shown in Figures 17 and 18, on closing the enclosing member 2 relative to the capsule holder 20 the side wall 43 of the capsule 1 is contacted by the enclosing member 2 to deform the side wall 43. In particular, the inner rim 23a of the leading edge 23 is received in the annular trough 60 and bears on the outer wall 66 while at the same time (or shortly thereafter) the apex 67 of the ridge zone 63 is received in the recess 23c. The ridge zone 63 (and floor 64) is driven downwards by the action of the enclosing member 2 on the outer wall 66 and/or apex 67 causing the outer wall 66 of the annular trough 60 and the outer wall 68 of the ridge zone 63 to buckle and deform/crumple. During this movement the material of the outer wall 66 of the annular trough 60 may be plastically drawn over the leading edge 23 to conform the outer wall 66 of the annular trough 60 to the grooves or indentations to provide an effective seal.

[0089] The downward movement of the ridge zone 63 also nips the floor 64 (and the lid 41 sealed to the floor 64) against the capsule holder 20 as shown in Figure 12.

[0090] The geometry of the outer wall 68 of the ridge zone 63, with the upper section 73, mid-section 71 and lower section 72 helps to stiffen the distal end of the side wall 43 and prevent the rim 47 being deflected down into contact with the capsule holder 20.

[0091] Downward movement of the enclosing member 2 may continue beyond the point illustrated in Figure 12 until the inner rim 23a contacts and bears against the floor 64 of the annular trough 60.

[0092] Piercing and brewing of a beverage from the capsule 1 may be as described above in the first embodiment.

REFERENCES CITED IN THE DESCRIPTION

Cited references

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP1700548A [\[0002\]](#) [\[0002\]](#) [\[0047\]](#) [\[0047\]](#) [\[0048\]](#)
- WO2013136209A [\[0004\]](#)

PATENTKRAV

1. Kapsel (1) til tilberedning af en drikkevare, hvilken kapsel omfatter en kopformet krop (40) og et låg (41); idet den kopformede krop (40) har en basis (42) og en sidevæg (43), og låget (41) er forseglet til den kopformede krop (40);
5 idet kapslen (1) er udformet til indsættelse i en drikkevaretilberedningsmaskine for at tillade en væske under tryk at blive ført gennem kapslen (1) med henblik på at tilberede en drikkevare ud fra interaktion med drikkevareingredienserne;
- 10 idet drikkevaretilberedningsmaskinen er af den type, som har et indeslutningselement (2), der er tilpasset til selektivt at kunne bevæge sig mellem en åben position for at tillade indsættelse af kapslen (1) i drikkevaretilberedningsmaskinen og en lukket position, i hvilken indeslutningselementet (2) forsegrende går i indgreb med kapslen (1);
- 15 hvor sidevæggen (43) omfatter:
 - en ringformet rende (60), der er dimensioneret til at modtage indeslutningselementet (2);
 - et første sidevægsafsnit (61), der strækker sig mellem basen (42) og den ringformede rende (60); og
 - 20 – et andet sidevægsafsnit (62), der strækker sig mellem den ringformede rende (60) og en rand (47) af kapslen;
hvor sidevæggen (43) er tilpasset til at gennemgå plastisk deformation under lukning af indeslutningselementet (2);
hvor den ringformede rende (60) er tilpasset til at danne en forseglingsgrænseflade med en forkant (23) af indeslutningselementet (2);
25 hvor den ringformede rende (60), inden indsættelse, omfatter en indervæg (65), en ydervæg (66) og en bund (64);

hvor randen (47) er dannet integralt med den kopformede krop (40);

hvor randen (47) er dannet ved hjælp af en overvalset del af sidevæggen (43);

5 hvor den kopformede krop (40) er dannet ud fra aluminium eller en aluminiumslegering;

hvor den kopformede krop er dannet ud fra et enkelt integreret stykke materiale; og

hvor en tykkelse af den kopformede krop er i området 80 til 120 mikrometer.

2. Kapsel ifølge krav 1, det andet sidevægsafsnit definerer en randzone, der

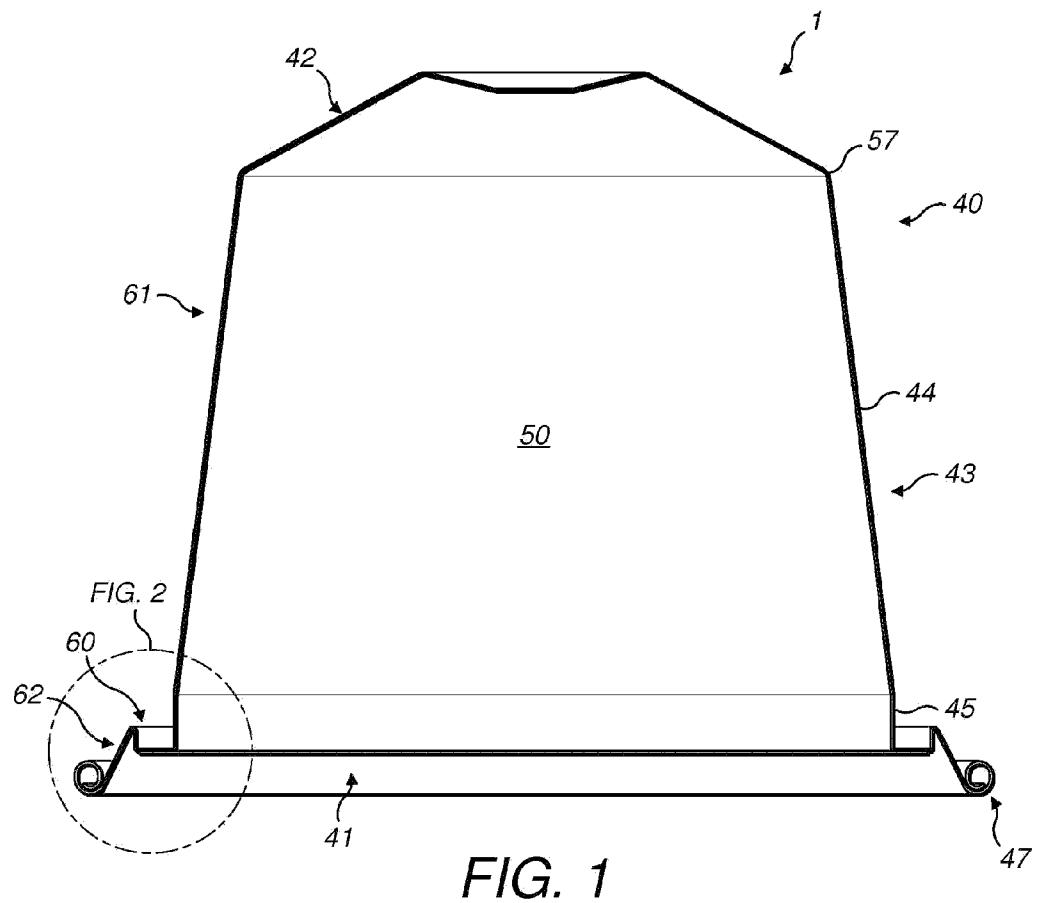
10 er lokaliseret radialt udefter i forhold til den ringformede rende.

3. Kapsel ifølge et hvilket som helst af kravene 1 til 2, hvor en bund i den ringformede rende er hævet i forhold til randen.

4. Kapsel ifølge et hvilket som helst af kravene 1 til 2, hvor en bund i den ringformede rende i det væsentlige er i vater med randen.

15 5. Kapsel ifølge et hvilket som helst af kravene 1 til 4, hvor:

låget (41) er dannet ud fra aluminium, en aluminiumslegering eller et laminat, der omfatter mindst ét lag dannet ud fra aluminium eller en aluminiumslegering.


6. Kapsel ifølge et hvilket som helst af kravene 1 til 5, hvor; indervæggen (65) og ydervæggen (66) i det væsentlige er vinkelret på bunden; eller

20 hvor ydervæggen (66) er vinklet i forhold til bunden (64), således at en indvendig vinkel på et forbindelsessted mellem bunden (64) og ydervæggen (66) er fra 90° til 120° , fortrinsvis 105° .

7. Kapsel ifølge et hvilket som helst af kravene 1 til 6, hvor den ringformede rende (60) har en indvendig bredde på fra 1,3 til 2,0 mm, fortrinsvis fra 1,5 til 1,8 mm

8. Kapsel ifølge et hvilket som helst af kravene 1 til 7, hvor den ringformede rende (60) har en indvendig diameter på fra 27,5 til 30,0 mm og en udvendig diameter på fra 29,3 til 32,5 mm.
9. Kapsel ifølge et hvilket som helst af kravene 1 til 8, hvor sidevæggen (43) 5 omfatter et keglestubsafsnit nærmest basen (42).
10. Kapsel ifølge krav 9, hvor sidevæggen (43) omfatter et cylindrisk afsnit mellem keglestubsafsnittet og den ringformede rende (60).
11. Kapsel ifølge et hvilket som helst af kravene 1 til 10, hvor det andet sidevægsafsnit (62) definerer en randzone (63), der er lokaliseret radialt udefter i 10 forhold til den ringformede rende (60), og hvor randzonen (60) omfatter et toppunkt (67), og en forkant (23) af indeslutningselementet (2) omfatter en inderrand (23a) og en yderrand (23b) og en recess (23c), der er lokaliseret mellem inderranden (23a) og yderranden (231), hvor randzonens (63) toppunkt (67), ved lukning af indeslutningselementet (2), modtages i recessen (23c) 15 mellem inderranden (23a) og yderranden (23b).

DRAWINGS

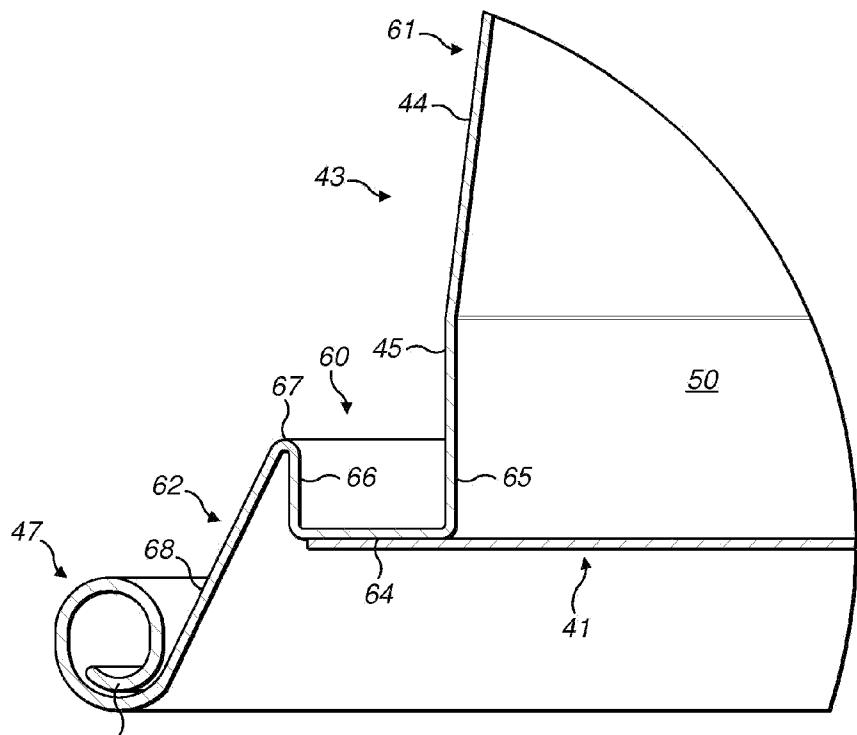


FIG. 2

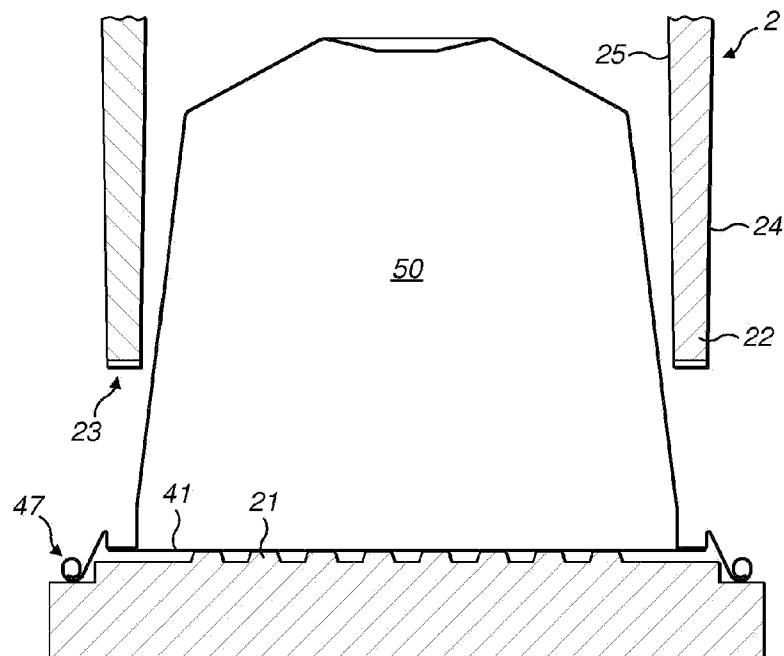


FIG. 3

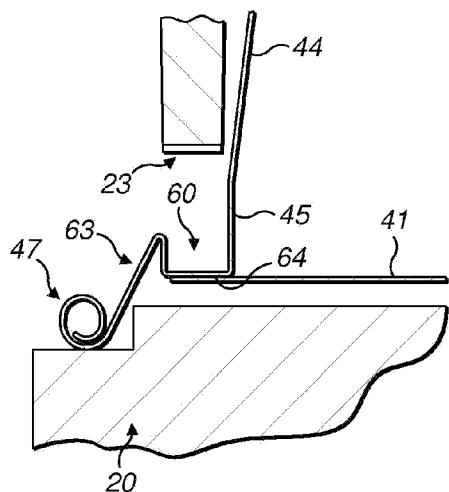


FIG. 4

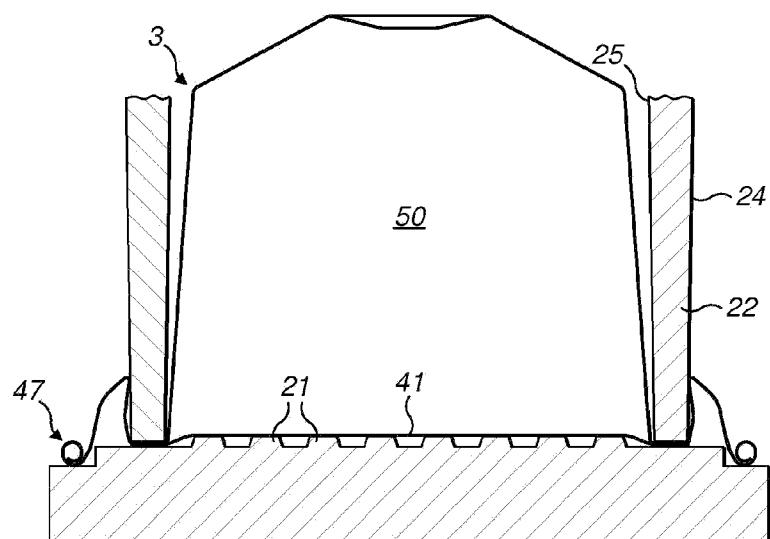


FIG. 5

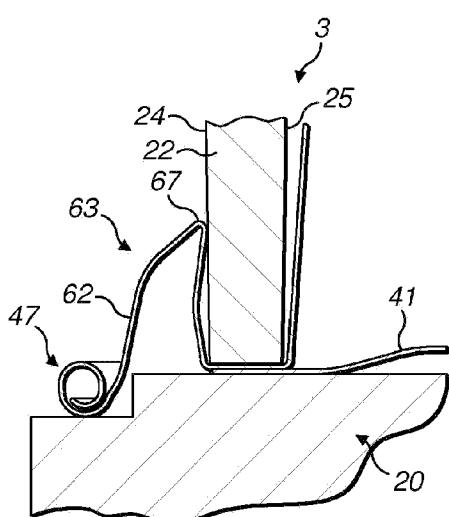


FIG. 6

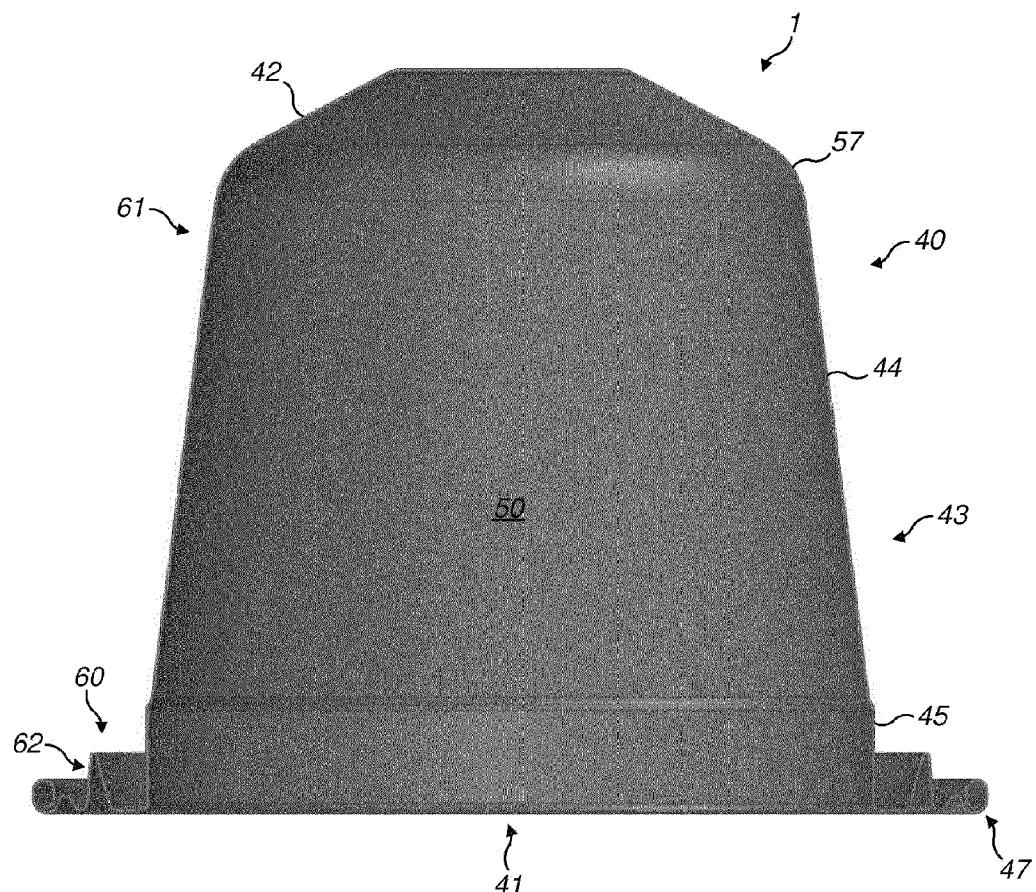


FIG. 7

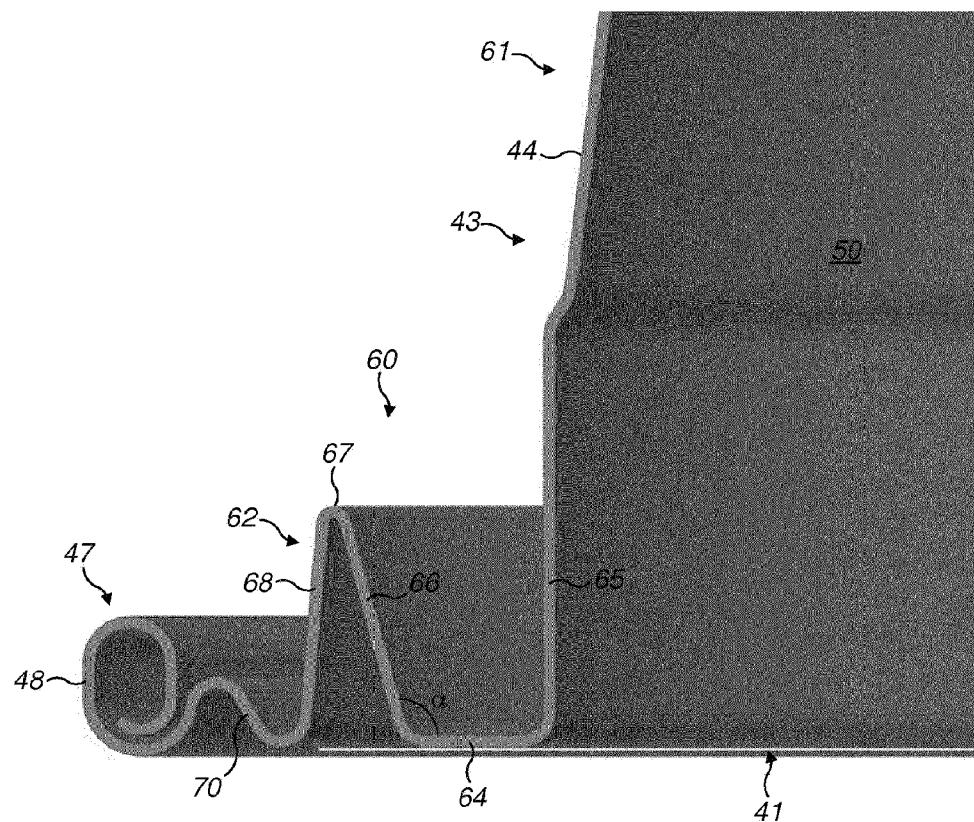
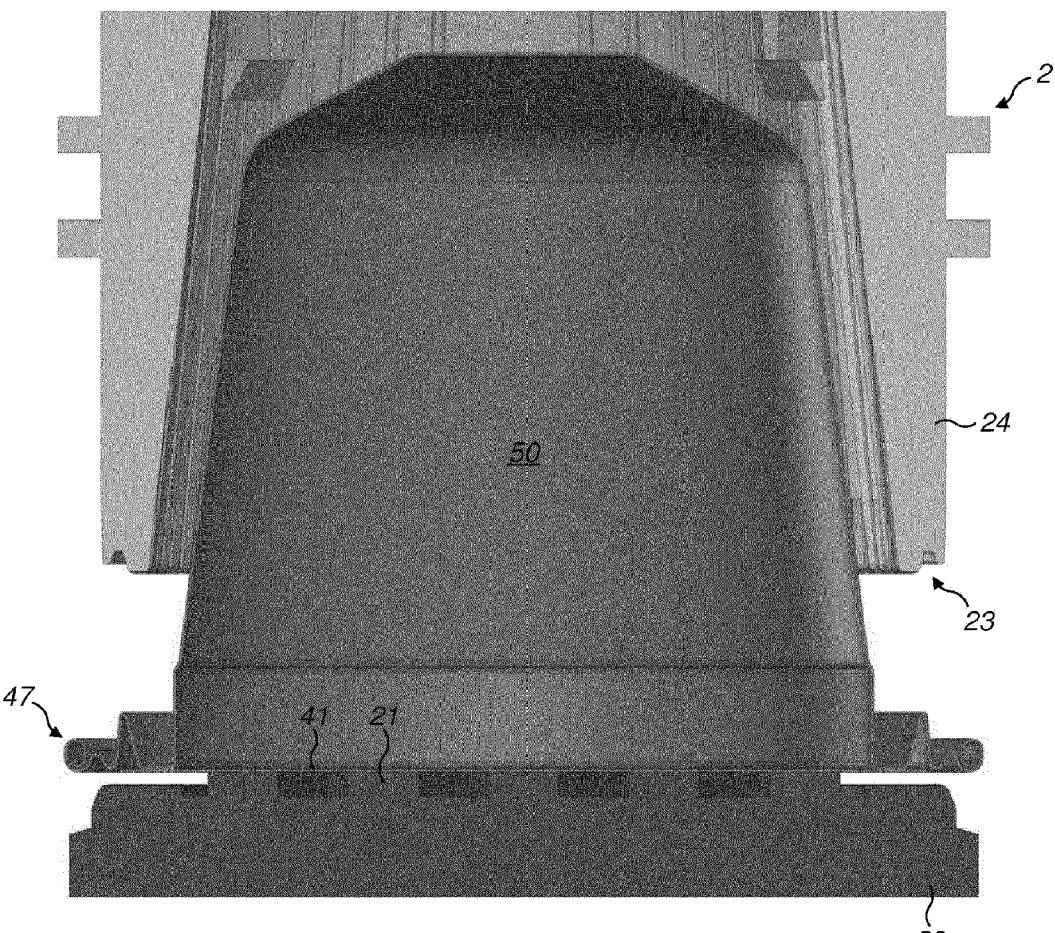



FIG. 8

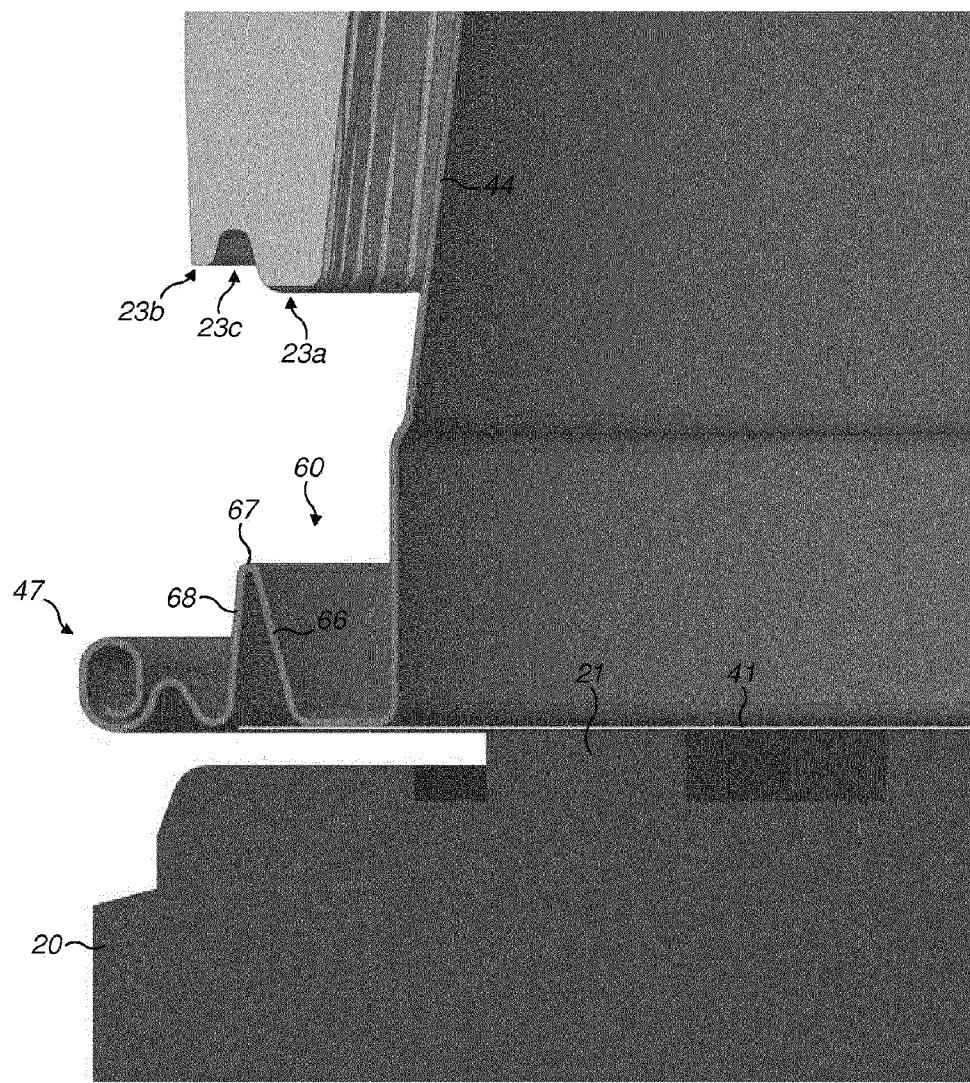


FIG. 10

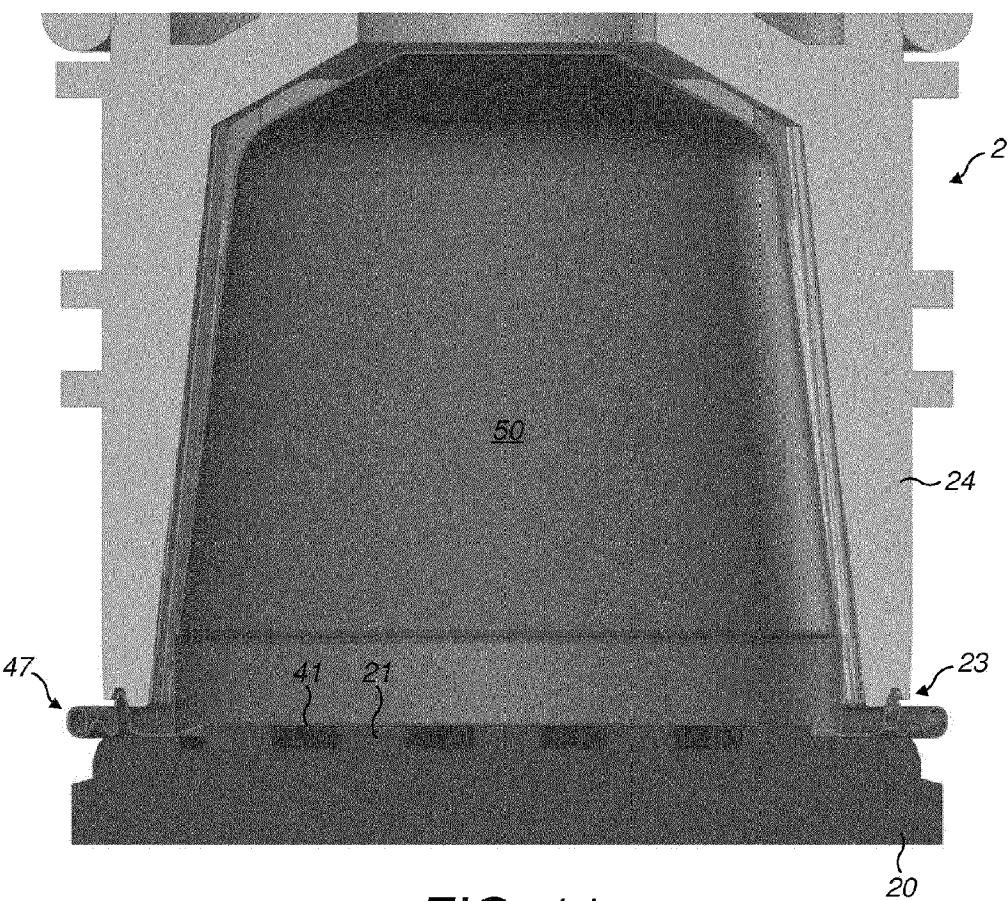


FIG. 11

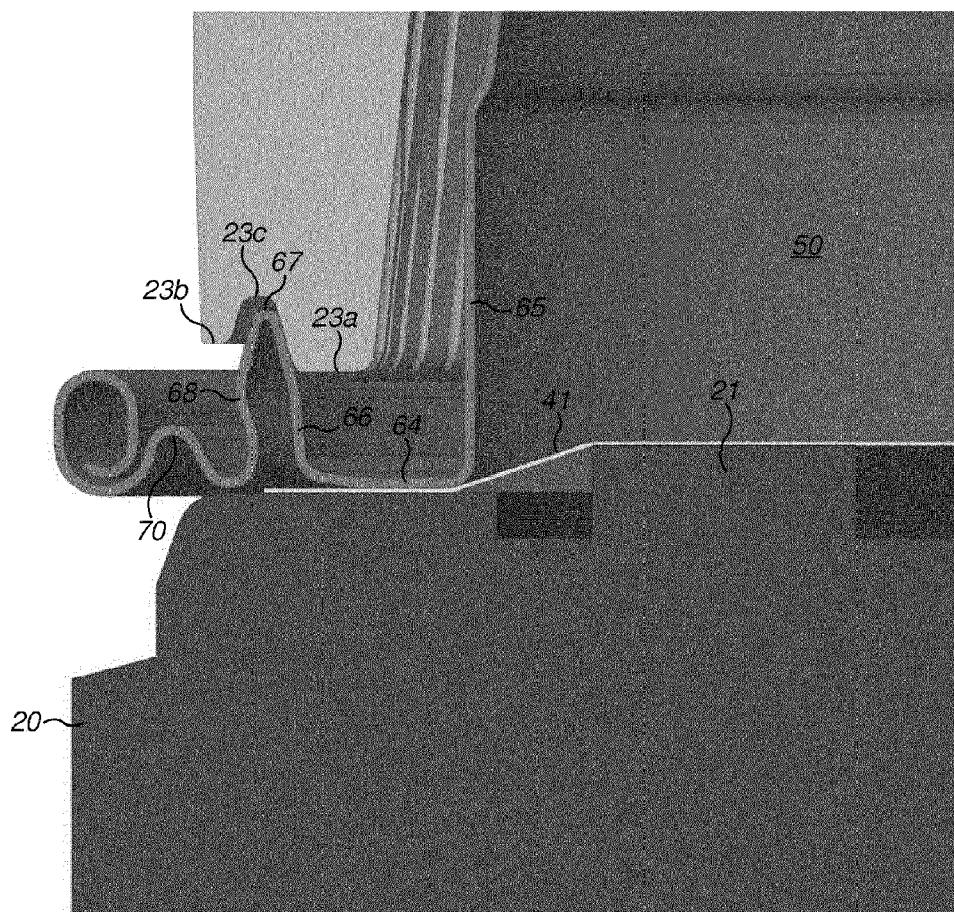


FIG. 12

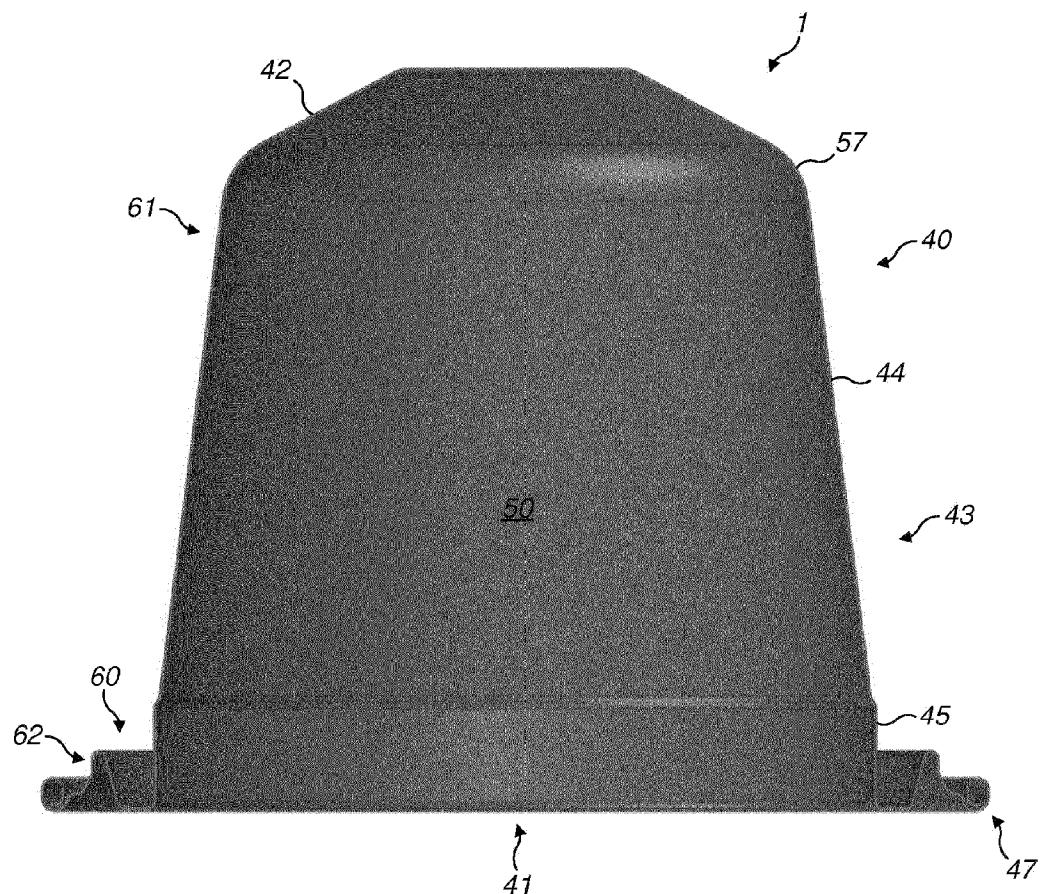


FIG. 13

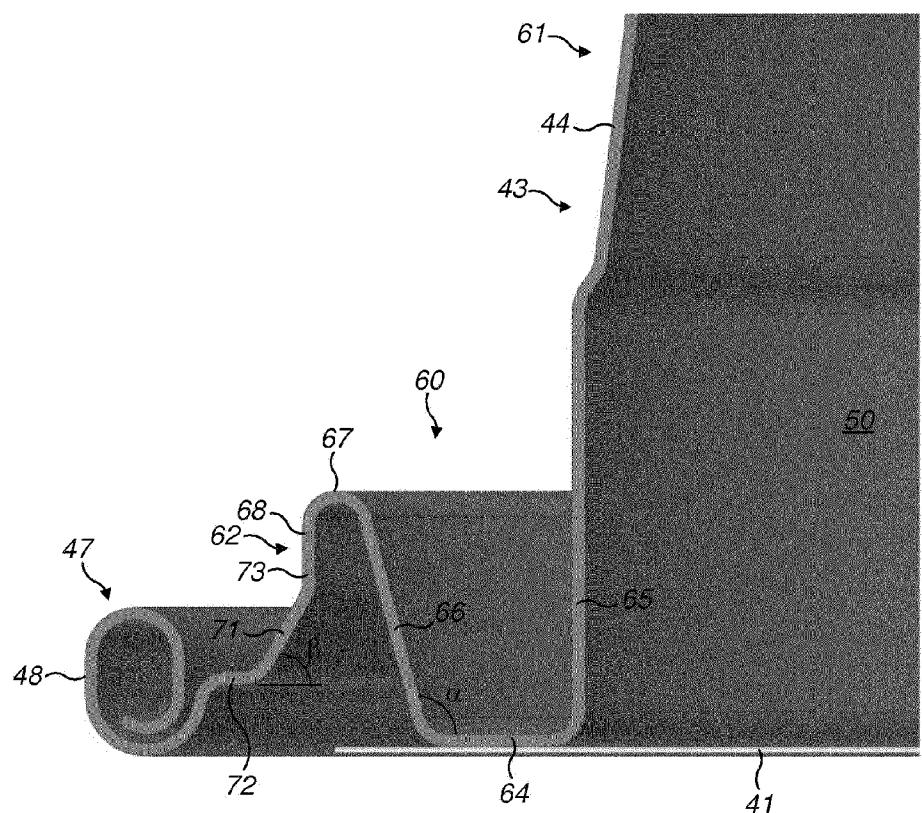


FIG. 14

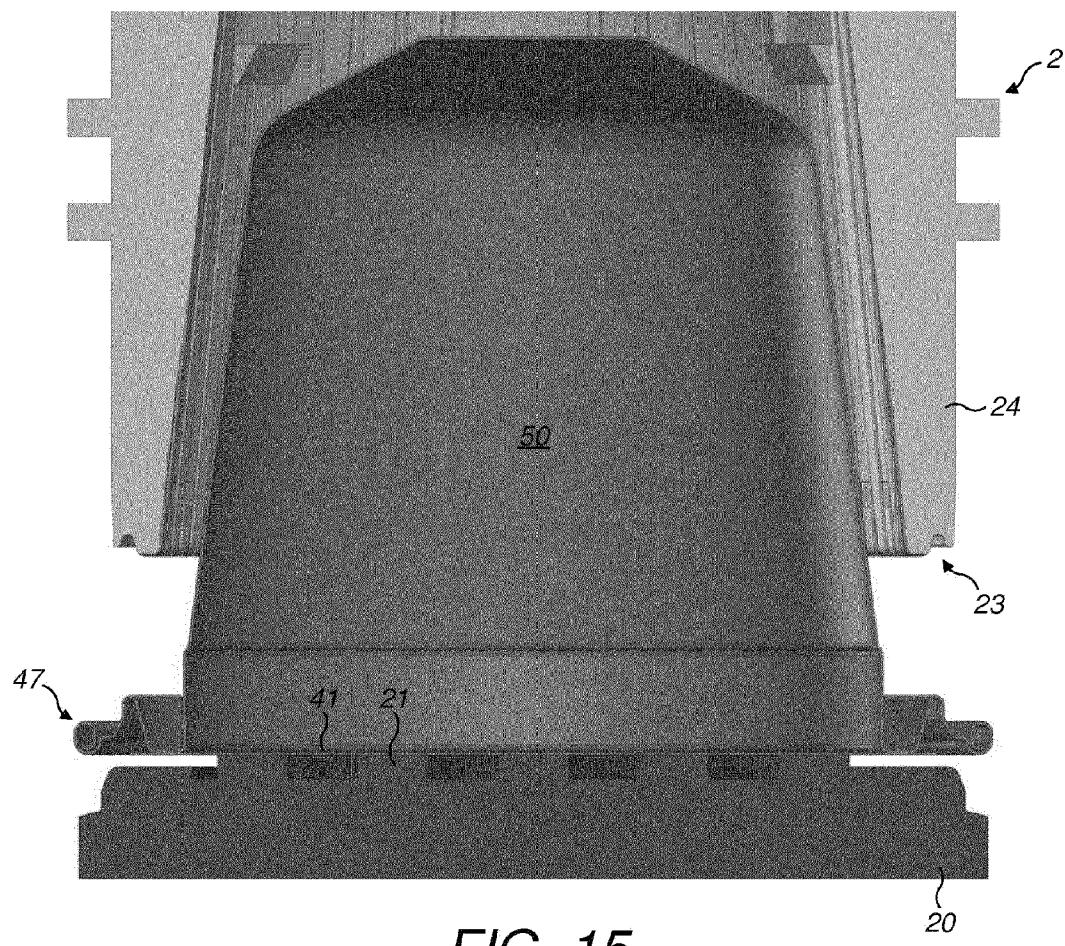
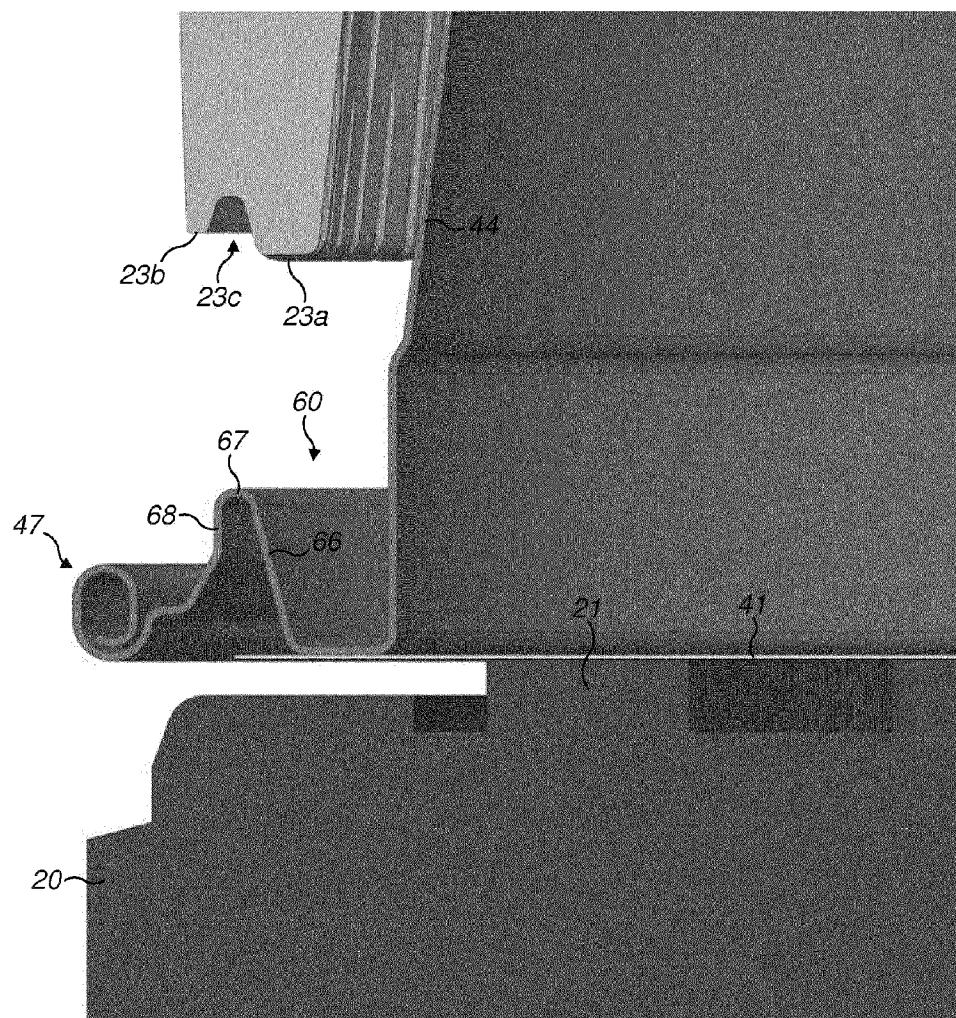



FIG. 15

FIG. 16

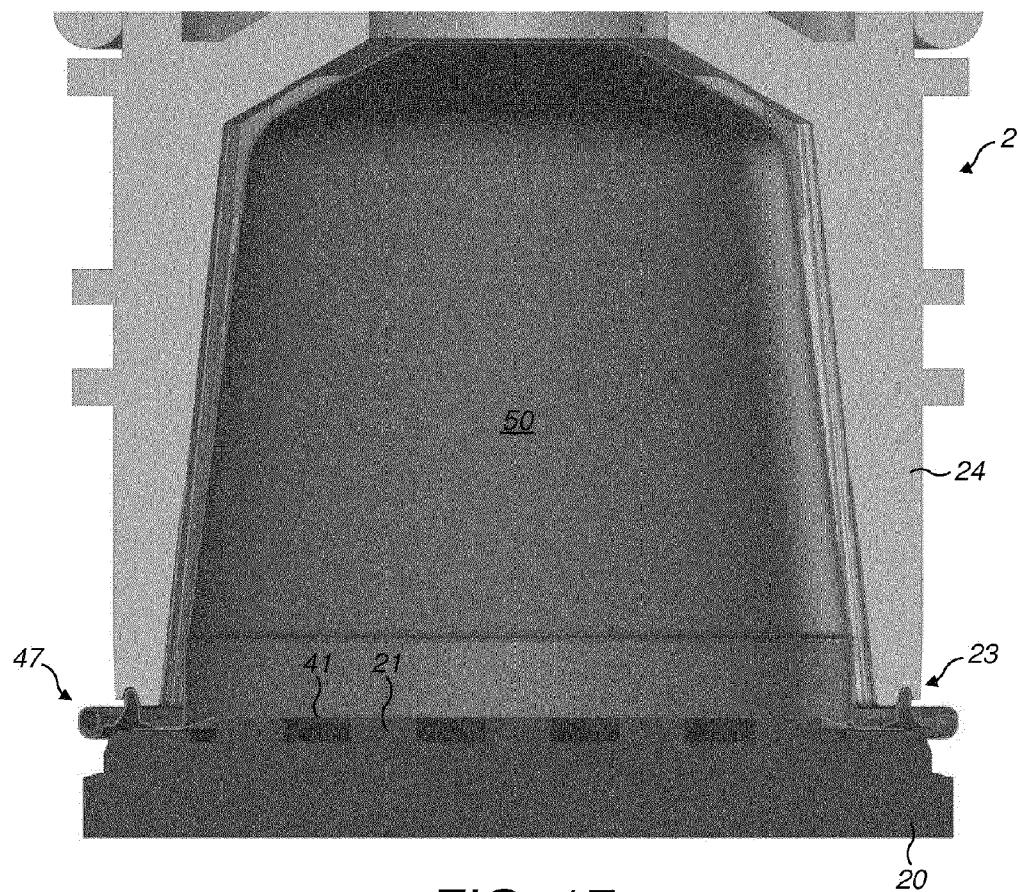
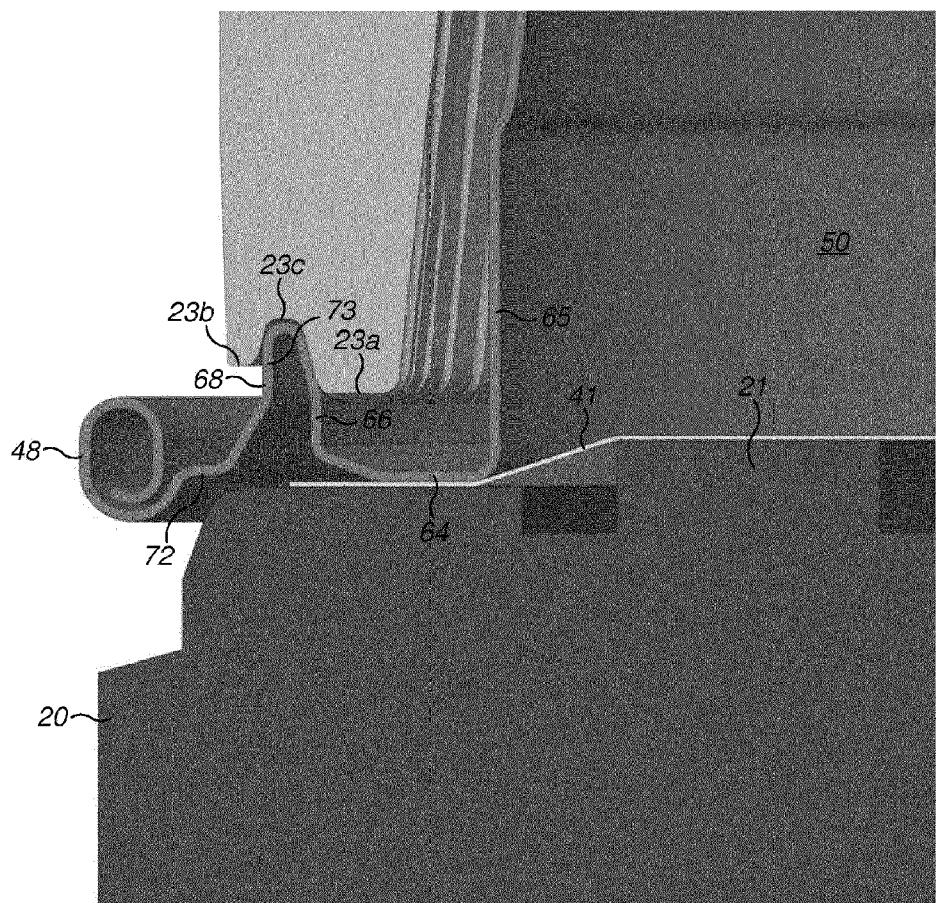



FIG. 17

FIG. 18