(19) United States
${ }^{(12)}$ Patent Application Publication
Walensky et al.
(10) Pub. No.: US 2009/0149630 A1
(43)

Pub. Date:
Jun. 11, 2009
(54) STABILIZED ALPHA HELICAL PEPTIDES AND USES THEREOF

Inventors: Loren D. Walensky, Chestnut Hill, MA (US); Stanley J. Korsmeyer, Weston, MA (US); Susan
Korsmeyer, legal representative, Weston, MA (US); Gregory Verdine, Newton, MA (US)

Correspondence Address:
FISH \& RICHARDSON PC
P.O. BOX 1022

MINNEAPOLIS, MN 55440-1022 (US)
(21) Appl. No.: $12 / 233,555$

Filed: \quad Sep. 18, 2008

Related U.S. Application Data

(63) Continuation of application No. $12 / 182,673$, filed on Jul. 30, 2008, which is a continuation of application No. 10/981,873, filed on Nov. 5, 2004.
(60) Provisional application No. 60/517,848, filed on Nov. 5,2003 , provisional application No. $60 / 591,548$, filed on Jul. 27, 2004.

Publication Classification
(51) Int. Cl.
C07K 1/00
C07K 14/00
(52) U.S. CI. 530/324; 530/326; 530/345

(57)

ABSTRACT

Novel polypeptides and methods of making and using the same are described herein. The polypeptides include crosslinking ("hydrocarbon stapling") moieties to provide a tether between two amino acid moieties, which constrains the secondary structure of the polypeptide. The polypeptides described herein can be used to treat diseases characterized by excessive or inadequate cellular death.

Anti-apoptotic

C. elegans

Ced-9

Pro-apoptotic
Multidomain
Mammalian
Bax
Bak
Bok/Mtd

Bid
Bad
Bik/Nbk
BIk
Hrk
Bim/Bod
Bnip3
Nix
Noxa
Puma
Bmf

BH3-only
C. elegans

Egl-1

FIG. 1

FIG. 2

FIG. 3

FIG. 4A
FIG. 4B

Comoound	sequence	HRMS	
SAHESPIDA	ED-IRNIARH A MGG* DRSIW	2752.8	
$54133 \mathrm{BIO}\left(-\mathrm{E}\right.$, W $\mathrm{S}^{\text {A }}$		2436.6	
SAHE3BID(Gment		2824.8	
SAHE3BIDC-E, W, Gmena		2507	
	O-IRATARH A*VSD*A_DRSIW	2654.7	
FITC-SAHB3EICA		3169.6	
ГITC-SALB3GID(G) ${ }^{\text {a }}$	「ITCAB-IDI-RHIAR!LA*U[D*NDDRSIW \square	3242.8	* = 10a
Biot-samb3blda	K(Biot)-D]] [N [APHLA*VG0*N ORSIW	3108.9	7 \% 706
Biot-SABB3RTTYG-TA	K(Biot)-DISRMIARHLA*VED*N PRSIW	3179.	A - 100
$S A H E 3 B: B C$	ED-IRNT*RH_*QVGDSA_DRSIW	2825.7	
SAHBTBID (E.W ${ }^{\text {C }}$	O-IRAE*RH_* VGDSA DRSI	2511.6	
SAHE3pIOftr) ${ }^{\text {b }}$		2150.8	
$5 A+B 3 B 10(G-E) B$		2710.8	
Eiot-5Ahbibtic	K(Biot)-DIIREI*RHL*QVG口SNERSIW	3179.73	
Biot-SALB3BlCtameje	K(Biot)- DI IRNI*RHL*QVEDSNDRSI	3055.7	
SAHBABTOC	Fotrata*H A*VGDSA_DRSTW	2683.5	
SAHB3BITD		2785.8	
SAHB38:0		2691.8	
SAhbsbada		30908	
FTTC-SAHB3GEDE-EWA	FTCABDT-RNTARH:A*VGD* A (DRST		2855.4
FITC-GAHBSEID (-Ed, G - E A	FITCAg DI-RNIARH:A*yED* HDRSI		292. b
SAHB3BED $-E W, L^{4} A, D^{-A} A$	DIIRAIARHAA*VGA* HRSI		2352.4
SAHE3BTM			26.55 .4
FITC-5AHB3ETM			3063.5
FTTC-SAHB3GAD	FTTC-ABN WAAORYGR-1R*NSD*FVDSF	Kk	3507.7

FIG. 5A

Compound	Sequence
BID BH3	EDIIRNIARHLAQVGDSN_DRSIW
$S A H B_{A}$	EDItrniARHLA*VGDD*N_DRSIW
$S A H B_{A(G \rightarrow E)}$	EDIIRNIARHLA*VED*N_DRSIW
SAHB ${ }^{\text {a }}$	EDIIRNI*RHL**QVGDSN_ DRSIW
$S_{\text {SHHB }}$	EDIIRNIA*HLA*VGODS ${ }^{\text {dRSIW }}$
SAHBD	EDITRNIAROA.AQVGD*NV DRSIW
	$\star=S 5, \oplus=R 5, \pm=58$

FIG. 5B

FIG. 6A

FIG. 6B

FIG. 7A

FIG. 7B

FIG. 8A

FIG. 8B

FIG. 9

FIG. 10A

FIG. 10B

FIG. 10C

FIG. 11A

FIG. 11B

FIG. 11C

FIG. 11 D

FIG. 11E

FIG. 11F

$1 \mu \mathrm{M}$: Unmodified SAHB SAHB SAHB SAHB SAHB
FIG. 12A

100 nM : Unmodified SAHB SAHB SAHB SAHB SAHB Peptide 3a 3b 3c 3e 3f

FIG. 12B

FIG. 13A

FIG. 13B

FIG. 14

FL1-H: FITC Peptide

FIG. 15

FIG. 16A

FIG. 16B

FL4-H: FITC Peptides

FL1H: FITC Peptides
FIG. 17A

FIG. 17B

FL1-H: FITC Peptide

FL1-H: FITC Peptide

FL1-H: FITC Peptide
FIG. 17C

FIG. 18

FIG. 19D

Overlay
FIG. 20C

FIG. 21A
FIG. 21B

FIG. 22A

FIG. 22B

FIG. 22C

FIG. 24

Treatment
FIG. 25

FIG. 26A

$S A H B 3_{B I D} A \quad S A H B 3_{B I D G \rightarrow S} A$

FIG. 26 B

FIG. 27A

FIG. 27 B

FIG. 27C

FIG. 27D

FIG. 27F
50
50
100
100

150
150
193
193

MARAROEGSSPEPVEGLARDGPRPFPLGRLVPSAVSCGLCSPGLAAAPAA
MARAROEGSSPEPVEGLARDSPRPFPLGRLMPSAVSCSLCSPGLPAAPAA
PTLLPAAYLCAPTAPPAVTAAL $\overline{G G S R W P G G P R S R P R G P R P D G P O P S L S L A ~}$
PALLPAAYLCAPTAPPAVTAALGGPRWPGGHRSRPRGPRPDGPOPSLSPA

QYERRRQEEOORHRPSPWRVL YNL IMQLLPLPRGHRAPEMEPN
QYERRRQEEQHRHRPSPWRVMYNLFMQLLPLPROPGAPEMEPN
n8bc 3
m8bc 3

FIG. 28A-1

FIG. 28A-2
∞

FIG. 28B-1

FIG. 28B-2

H1299 Cells
FIG. 28B-3

FIG. 28C-1
$\left.\begin{array}{lrl}\text { hBid } & 37 & \text { CDALGHEDP } \\ \text { mBid } & 35 & 45 \\ \text { LEVLGRELP } & 43\end{array}\right\}$ BH3-B

FIG. 28C-2

1
1
1
1
 MAMTLLEDWCRGMDVMSORALLVWGIPVNCDEAEIEETL
HAGLAPLGEYRLLGRMFRRDEMRKVA LI AETS
QAGLAPLGEYRLLGRMFRRDENRKVALVGLTAETSHALV QAGLAPLGETRLLGRMFRRDENKNVALIGLTVETGSALV QAAMPQVS-YRMLGRMFWREENAKAALELTGAVDYAAI ©ETLKSLGRYRLLGKIFRROENANAVLLELLEDTDVSAI PKEIPGKGGIWRVIFKPPDPDNTFLSRLNEFLAGEGMTV PKEIPAKGGVWRVIFKPPDTOSDFLCRLNEFLKGEGMTM PREMPGKGGVWKVLFKPPTSOAEFLERLHLFLAREGWTV PSEVQGKGGVWKVIFKTPNODTEFLERLNLFLEKEGOTV 31
GELSRALGHENGSLDPEOG-MIPEMWAPMLAQAL-EALO GELTRVLGNRNDFLGLDPGIMIPEIRAPMLAQALNEALK QDVARVLGFQNPT--PTPG-- PPEMPAEMLNYILDNVIO SGMFRALGQEGVSPAPVPCI- SPELLAHLLGQAMAHAPO

AWOVPDVEKRRRLLESLRGPALDVIRVLKINNPLITVDE TWOV SDVEKRRRLIESLRGPAFEIIRVLKINNPFITVAE EWQV SDVEKRRRLMESLRGPAADVIRTLKSNNPAITTAE EWPVTEAEKKRWLESLRGPALDLMHIVQADNPSISVEE

CLQALEEVFGVTDNPRELQVKYLTTYHRDEEKLSAYVLR CLKTLETIFGIIDNPRALQVKYLTTYOKTDEKLSAYVLR CLKALEQVFGSVESSRDAQIKFLNTYONPGEKLSAYVIR CLEAFKQVFGSLESRRTAQVRYLKTYOEEGEKVSAYVLR

LEPLLOKLVQRGAIERDAVNQARLDOVIAGAVHKT-IRR

 LEPLLQKLVOKGAIEREVVNQARLDQVIAGAVHKS - VRR LEPLLOKVVEKGAIDKDNVNOARLEOV IAGANHSGAIRR LETLLRRAVEKRAI PRRIADQVRLEQVMAGATLNQMLWCELN-LPEDGPAPGFLQLLVLIKDYEAAE-- EEEALLQA ELG-LPEGSPAPGLLQLLTLIKDKEA-E- EEEVLLQA
 RLRELKDQGPPDSELELMKVIREEEEEEASFENESIEEP

ILEGNFT
 ELEGYCT

SVAGADP
EERDGYGRWNHEGDD
hMAP-1
mMAP-1
hMal
hMaz
hMAP-1
MMAP-1
hMa1
hMa2
ПMAP-1
MMAP-1
hMaI
hMa2
hMAP-1
mMAP-1
hMal
hMa2
hMAP-1
MMAP-1
hMal
hMa2
hMAP-1
MMAP-1
hMaI
hMa2
hMAP-1
mMAP-1
hMal
hMa2
hMAP-1
mMAP-1
hMal
hMa2
hMAP-1
MMAP-1
hMal
hMa2
hMAP-1
MMAP-1
hMal
hMa2

FIG. 28D-2

FIG. 28D-3

FIG. 28E-2

FIG. 28F-4

FIG. 28G-2

FIG. 28G-5

Alignment of BH3 Domains of Select BCL2-Family Members

	1020	
1	硡	BCL
1	SSTMGQVGRQLAIIGDDINRR	BAK
1	QDASTKKLSECLKRIGDELDSN	BAX
1	- ALSPPVVHLALLALRQAGDDFSRRY	BCL-2
1	- - NLWAAQRYGRELRRMSDEFVDSFKK	bad
1	EDIIRNIARHLAQVGDSM	bid
1	VIPMAAVKQALREAGDEFELRY	BCL
1	-MEGSDALALRLACIGDEMDVSL	bik
	MR - PEIWIAQELRRIGDEFNAYY	bim
1	SSAAQLTAARLKALGDELHQRT	BLK
1	QAEVQIARKLQCIADQFHRLH	BMF
1	IERRKEVESILKKNSDWIWDWS	BNIP3
	GRLAEV CAVLLR-LGDELEMIRP	BOK
1	- LAEVCTVLLR-LGDELEQIR	MTD
1	MTVGELSRALGHENGSLDP	MAP -
	- ATSRKL-ETLRRVGDGVQRNHETA	MCL
	SSAAQL TAARLKALGDELHQRT	HRK
	QWARE-IGAQLRRMADDLNAQY	PUMA
	-AELPPEF- AAQLRKIGDKVYCTW	NOXA
	PADLKDE-- CAQLRRIGDKVNLRQ	NOXA
	- - VVEGEKEVEA-LKKSADWVSDS	N IX

FIG. 28 H

STABILIZED ALPHA HELICAL PEPTIDES AND USES THEREOF

CLAIM OF PRIORITY

[0001] This application is a continuation of and claims priority from U.S. application Ser. No. 12/182,673, filed Jul. 30,2008 , which is a continuation of U.S. application Ser. No. 10/981,873, filed Nov. 5, 2004, which claims the benefit of U.S. Provisional Application Ser. No. 60/517,848, filed on Nov. 5, 2003, and U.S. Provisional Application Ser. No. 60/591,548, filed on Jul. 27, 2004. These contents of these prior applications are hereby incorporated by reference in their entirety for all purposes.

BACKGROUND

[0002] Apoptosis, or programmed cell death, plays a critical role in the development and maintenance of homeostasis in all multicellular organisms. Susceptibility to apoptosis varies markedly among cells and is influenced by both external and internal cellular events. Positive and negative regulator proteins that mediate cell fate have been defined, and dysregulation of these protein signaling networks has been documented in the pathogenesis of a wide spectrum of human diseases, including a variety of cancers. BCL-2 is the founding member of this family of apoptotic proteins and was first identified at the chromosomal breakpoint of $\mathrm{t}(14 ; 18)(\mathrm{q} 32$; q21) lymphomas (Bakhashi et al. 1985 Cell 41:899; Cleary et al. 1985 Proc. Nat 'l. Acad. Sci. USA 82:7439).
[0003] Gene rearrangement places BCL-2 under the transcriptional control of the immunoglobulin heavy chain locus, generating inappropriately high levels of $\mathrm{BCL}-2$ and resultant pathologic cell survival. Such aberrations in apoptosis have been identified in lymphocytic and myelogenous leukemias and a host of other malignancies, and have been linked to tumor progression and acquired resistance to chemotherapyinduced apoptosis. The BCL-2 family of proteins has expanded significantly and includes both pro- and anti-apoptotic molecules that provide the checks and balances that govern susceptibility to cell death (FIG. 1). Not surprisingly, apoptotic proteins have become key targets for the development of therapeutics to both prevent precipitous cell death in diseases of cell loss and activate cell death pathways in malignancy.
[0004] The BCL-2 family is defined by the presence of up to four conserved "BCL-2 homology" (BH) domains designated $\mathrm{BH} 1, \mathrm{BH} 2, \mathrm{BH} 3$, and BH 4 , all of which include α-helical segments (Chittenden et al. 1995 EMBO 14:5589; Wang et al. 1996 Genes Dev. 10:2859). Anti-apoptotic proteins, such as BCL-2 and BCL- X_{L}, display sequence conservation in all BH domains. Pro-apoptotic proteins are divided into "multidomain" members (e.g. BAK, BAX), which possess homology in the $\mathrm{BH} 1, \mathrm{BH} 2$, and BH 3 domains, and the "BH3-domain only" members (e.g. BID, BAD, BIM, BIK, NOXA, PUMA), that contain sequence homology exclusively in the BH3 amphipathic α-helical segment. BCL-2 family members have the capacity to form homo- and heterodimers, suggesting that competitive binding and the ratio between pro- and anti-apoptotic protein levels dictates susceptibility to death stimuli. Anti-apoptotic proteins function to protect cells from pro-apoptotic excess, i.e., excessive programmed cell death. Additional "security" measures include regulating transcription of pro-apoptotic proteins and maintaining them as inactive conformers, requiring either pro-
teolytic activation, dephosphorylation, or ligand-induced conformational change to activate pro-death functions. In certain cell types, death signals received at the plasma membrane trigger apoptosis via a mitochondrial pathway (FIG. 2). The mitochondria can serve as a gatekeeper of cell death by sequestering cytochrome c , a critical component of a cytosolic complex which activates caspase 9 , leading to fatal downstream proteolytic events. Multidomain proteins such as BCL-2/BCL- X_{L} and BAK/BAX play dueling roles of guardian and executioner at the mitochondrial membrane, with their activities further regulated by upstream BH3-only members of the BCL-2 family. For example, BID is a member of the "BH3-domain only" subset of pro-apoptotic proteins, and transmits death signals received at the plasma membrane to effector pro-apoptotic proteins at the mitochondrial membrane. BID has the unique capability of interacting with both pro- and anti-apoptotic proteins, and upon activation by caspase 8 , triggers cytochrome c release and mitochondrial apoptosis. Deletion and mutagenesis studies determined that the amphipathic α-helical BH 3 segment of pro-apoptotic family members functions as a death domain and thus represents a critical structural motif for interacting with multidomain apoptotic proteins. Structural studies have demonstrated that the BH3 helix interacts with anti-apoptotic proteins by inserting into a hydrophobic groove formed by the interface of BH1, 2 and 3 domains. Activated BID can be bound and sequested by anti-apoptotic proteins (e.g., BCL-2 and $\mathrm{BCL}-\mathrm{X}_{L}$) and can trigger activation of the pro-apoptotic proteins $B A X$ and $B A K$, leading to cytochrome c release and a mitochondrial apoptosis program.
[0005] BAD is also a "BH3-domain only" pro-apoptotic family member whose expression likewise triggers the activation of $B A X / B A K$. In contrast to $B I D$, however, $B A D$ displays preferential binding to anti-apoptotic members, BCL-2 and BCL- X_{L}. Whereas the BAD BH3 domain exhibits high affinity binding to $\mathrm{BCL}-2, \mathrm{BAD} \mathrm{BH} 3$ peptide is unable to activate cytochrome c release from mitochondria in vitro, suggesting that BAD is not a direct activator of $\mathrm{BAX} / \mathrm{BAK}$. Mitochondria that overexpress BCL-2 are resistant to BIDinduced cytochrome c release, but co-treatment with BAD can restore BID sensitivity. Induction of mitochondrial apoptosis by BAD appears to result from either: (1) displacement of BAX/BAK activators, such as BID and BID-like proteins, from the BCL-2/BCL- X_{L} binding pocket, or (2) selective occupation of the $\mathrm{BCL}-2 / \mathrm{BCL}-\mathrm{X}_{L}$ binding pocket by BAD to prevent sequestration of BID-like proteins by anti-apoptotic proteins. Thus, two classes of "BH3-domain only" proteins have emerged, BID-like proteins that directly activate mitochondrial apoptosis, and BAD-like proteins, that have the capacity to sensitize mitochondria to BID-like pro-apoptotics by occupying the binding pockets of multidomain anti-apoptotic proteins.
[0006] The objective of identifying or generating small molecules to probe apoptotic protein functions in vitro and specifically manipulate apoptotic pathways in vivo has been challenging. High throughput screening has identified several molecules that inhibit the interaction of the BAK BH3 domain with BCL- X_{L} at micromolar affinities. In addition to the potential drawback of identifying low affinity compounds, the technique is limited in its ability to generate panels of compounds tailored to the subtle binding specificities of individual members of protein families. Alternate approaches to manipulating apoptosis pathways have derived from peptide engineering, a technique that uses non-specific
peptide sequence to generate compounds with desired threedimensional structures. One application of this technique involved the generation of "pro-apoptotic" α-helices comprised of nonspecific peptide sequence used to induce cell death by disrupting mitochondrial membranes.
[0007] The alpha-helix is one of the major structural components of proteins and is often found at the interface of protein contacts, participating in a wide variety of intermolecular biological recognition events. Theoretically, helical peptides, such as the BH 3 helix, could be used to selectively interfere with or stabilize protein-protein interactions, and thereby manipulate physiologic processes. However, biologically active helical motifs within proteins typically have little structure when taken out of the context of the full-length protein and placed in solution. Thus, the efficacy of peptide fragments of proteins as in vivo reagents has been compromised by loss of helical secondary structure, susceptibility to proteolytic degradation, and inability to penetrate intact cells. Whereas several approaches to covalent helix stabilization have been reported, most methodologies involve polar and/or labile crosslinks (Phelan et al. 1997 J. Am. Chem. Soc. 119: 455; Leuc et al. 2003 Proc. Nat'l. Acad. Sci. USA 100:11273; Bracken et al., 1994 J. Am. Chem. Soc. 116:6432; Yan et al. 2004 Bioorg. Med. Chem. 14:1403). Subsequently, Verdine and colleagues developed an alternate metathesis-based approach, which employed α, α-disubstituted non-natural amino acids containing alkyl tethers (Schafmeister et al., 2000 J. Am. Chem. Soc. 122:5891; Blackwell et al. 1994 Angew Chem. Int. Ed. 37:3281).

SUMMARY

[0008] This invention is based, in part, on the discovery that stably cross-linking a polypeptide having at least two modified amino acids (a process termed "hydrocarbon stapling") can help to conformationally bestow the native secondary structure of that polypeptide. For example, cross-linking a polypeptide predisposed to have an alpha-helical secondary structure can constrain the polypeptide to its native alphahelical conformation. The constrained secondary structure can increase resistance of the polypeptide to proteolytic cleavage and also increase hydrophobicity. Surprisingly, in some instances, the polypeptides can penetrate the cell membrane (e.g., through an energy-dependent transport mechanism, e.g., pinocytosis). Accordingly, the crosslinked polypeptides described herein can have improved biological activity relative to a corresponding uncrosslinked polypeptide. For example the cross-linked polypeptide can include an alpha-helical domain of a BCL-2 family member polypeptide (e.g., BID-BH3 domain), which can bind to BAK/BAX and/ or BCL-2/BCL-X X_{L} to promote apoptosis in a subject. In some instances, the crosslinked polypeptide can be used to inhibit apoptosis. The cross-linked polypeptides described herein can be used therapeutically, e.g., to treat cancer in a subject.
[0009] In one aspect, the invention features polypeptide of formula (I),

[0010] formula (I)
[0011] wherein;
[0012] each R_{1} and R_{2} are independently H or a C_{1} to C_{10} alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, or heterocyclylalkyl;
[0013] R_{3} is alkyl, alkenyl, alkynyl; $\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}$; each of which is substituted with 0-6 R_{5};
[0014] R_{4} is alkyl, alkenyl, or alkynyl;
[0015] R_{5} is halo, alkyl, $\mathrm{OR}_{6}, \mathrm{~N}\left(\mathrm{R}_{6}\right)_{2}, \mathrm{SR}_{6}, \mathrm{SOR}_{6}, \mathrm{SO}_{2} \mathrm{R}_{6}$, $\mathrm{CO}_{2} \mathrm{R}_{6}, \mathrm{R}_{6}$, a fluorescent moiety, or a radioisotope;
[0016] K is $\mathrm{O}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CONR}_{6}$, or

[0017] R_{6} is H , alkyl, or a therapeutic agent;
[0018] n is an integer from 1-4;
[0019] x is an integer from 2-10;
[0020] each y is independently an integer from $0-100$;
[0021] z is an integer from 1-10 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9,
10); and
[0022] each Xaa is independently an amino acid.
[0023] In some instances, the polypeptide binds to a BCL-2 family protein. The polypeptide can bind to an anti-apoptotic protein. The polypeptide can bind to a pro-apoptotic protein. The polypeptide can bind and activate BAX or BAK. In some instances, the polypeptide binds to a $\mathrm{BH} 1, \mathrm{BH} 2$ and/or BH 3 domain.
[0024] In some instances, the polypeptide activates cell death, for example the polypeptide can trigger cytochrome c release and activate mitochondrial cell death.
[0025] In other instances, the polypeptide can inhibit cell death.
[0026] In some instances, the polypeptide includes a BH3 domain.
[0027] In some instances, x is 2,3 , or 6 .
[0028] In some instances, each y is independently an integer between 3 and 15 .
[0029] In some instances each y is independently an integer between 1 and 15 .
[0030] In some instances, R_{1} and R_{2} are each independently H or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl.
[0031] In some instances, R_{1} and R_{2} are each independently $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl.
[0032] In some instances, at least one of R_{1} and R_{2} are methyl. For example R_{1} and R_{2} are both methyl.
[0033] In some instances R_{3} is alkyl (e.g., C_{8} alkyl) and x is 3.
[0034] In some instances, R_{3} is C_{11} alkyl and x is 6 .
[0035] In some instances, R_{3} is alkenyl (e.g., C_{8} alkenyl) and x is 3 .
[0036] In some instances x is 6 and R_{3} is C_{11} alkenyl.
[0037] In some instances, R_{3} is a straight chain alkyl, alkenyl, or alkynyl.
[0038] In some instances R_{3} is $-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ $\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$.
[0039] In certain embodiments the two alpha, alpha disubstituted stereocenters are both in the R configuration or S configuration (e.g., $\mathrm{i}, \mathrm{i}+4$ cross-link), or one stereocenter is R and the other is S (e.g., $\mathrm{i}, \mathrm{i}+7$ cross-link). Thus, where formula I is depicted as

the C^{\prime} and $\mathrm{C}^{\prime \prime}$ disubstituted stereocenters can both be in the R configuration or they can both be in the S configuration, for example when X is 3 . When x is 6 , the C^{\prime} disubstituted stereocenter is in the R configuration and the $\mathrm{C}^{\prime \prime}$ disubstituted stereocenter is in the S configuration.
The R_{3} double bond may be in the E or Z stereochemical configuration.
[0040] In some instances R_{3} is $\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}$; and R_{4} is a straight chain alkyl, alkenyl, or alkynyl.
[0041] In some instances, the polypeptide includes an amino acid sequence which is at least about $60 \%(70 \%, 80 \%$, $85 \%, 90 \%, 95 \%$ or 98%) identical to the amino acid sequence of EDIIRNI*RHL*QVGDSN ${ }_{L}$ DRSIW (SEQ ID NO:99), wherein $*$ is a tethered amino acid. For example, there can be $1,2,3,4,5$ or more amino acid changes, e.g., conservative changes.
[0042] The tether can include an alkyl, alkenyl, or alkynyl moiety (e.g., $\mathrm{C}_{5}, \mathrm{C}_{8}$ or C_{11} alkyl or $\mathrm{C}_{5}, \mathrm{C}_{8}$ or C_{11} alkenyl, or $\mathrm{C}_{5}, \mathrm{C}_{8}$ or C_{11} alkynyl). The tethered amino acid can be alpha disubstituted (e.g., $\mathrm{C}_{1}-\mathrm{C}_{3}$ or methyl). In some instances, the polypeptide can include an amino acid sequence which is at least about $60 \%(70 \%, 80 \%, 85 \%, 90 \%, 95 \%$ or $98 \%)$ identical to the amino acid sequence of EDIIRNIARHLA*VGD*N ${ }_{L}$ DRSIW (SEQ ID NO:92), wherein * is a tethered amino acid. For example, there can be $1,2,3,4,5$ or more amino acid changes, e.g., conservative changes. In some instances, the polypeptide is transported through the cell membrane (e.g., through an active transport or endocytotic mechanism or by passive transport). In certain embodiments the polypeptide does not include a Cys or Met.
[0043] In some embodiments the polypeptide comprises at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25$, 50 , or more contiguous amino acids of a BCL-2 or BCL-2 like domain, e.g., a BH 3 domain or BH 3 -like domain, e.g., a polypeptide depicted in any of FIGS. $5 a, 5 b$, and $\mathbf{2 8} a-28 h$. Each [Xaa] is a peptide that can independently comprise at least $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25$ or more contiguous amino acids of a BCL-2 or BCL-2 like domain, e.g., a BH3 domain or BH3-like domain, e.g., a polypeptide depicted in any of FIGS. $5 a, 5 b$, and $\mathbf{2 8} a-28 h$. $[\mathrm{Xaa}]_{x}$ is a peptide that can comprise 3 or 6 contiguous amino acids of acids of a BCL-2 or BCL-2 like domain, e.g., a BH3 domain or BH 3 -like domain, e.g., a polypeptide depicted in any of FIGS. $5 a, 5 b$, and $28 a-28 h$.
[0044] The polypeptide can comprise $8,9,10,11,12,13$, $14,15,16,17,18,19,20,25,30,35,40,45,50$ contiguous amino acids of acids of a BCL-2 or BCL-2 like domain, e.g., a BH3 domain or BH3-like domain, e.g., a polypeptide depicted in any of FIGS. $\mathbf{5} a, \mathbf{5} b$, and $\mathbf{2 8} a-\mathbf{2 8} h$ (SEQ ID Nos: 1-118) wherein two amino acids that are separated by three amino acids (or six amino acids) are replaced by amino acid
substitutes that are linked via R_{3}. Thus, at least two amino acids can be replaced by tethered amino acids or tethered amino acid substitutes. Thus, where formula I is depicted as

$[\mathrm{Xaa}]_{y}$, and $[\mathrm{Xaa}]_{y}$, can each comprise contiguous polypeptide sequences from the same or different BCL-2 or BCL-2 like domains.
[0045] The invention features cross-linked polypeptides comprising 10 ($11,12,13,14,15,16,17,18,19,20,21,22$, $23,24,25,30,35,40,45,50$ or more) contiguous amino acids of a BCL-2 or BCL-2 like domain, e.g., a BH3 domain or BH3-like domain, e.g., a polypeptide depicted in any of FIGS. $5 a, 5 b$, and $\mathbf{2 8} a-28 h$ (SEQ ID Nos:1-118) wherein the alpha carbons of two amino acids that are separated by three amino acids (or six amino acids) are linked via R_{3}, one of the two alpha carbons is substituted by R_{1} and the other is substituted by R_{2} and each is linked via peptide bonds to additional amino acids.
[0046] In some embodiments the polypeptide has apoptotic activity.
[0047] In some instances, the polypeptide also includes a fluorescent moiety or radioisotope.
[0048] In some instances, the polypeptide includes 23 amino acids; R_{1} and R_{2} are methyl; R_{3} is C_{8} alkyl, C_{11} alkyl, C_{8} alkenyl, C_{11} alkenyl, C_{8} alkynyl, or C_{11} alkynyl; and x is 2 , 3 , or 6 .
[0049] In some instances, the polypeptide includes an affinity label, a targeting moiety, and/or a biotin moiety.
[0050] In some instances, the polypeptide is a polypeptide selected from the group consisting of the polypeptides depicted in and of FIGS. $\mathbf{2 8} a-h$ and $\mathbf{5} a-b$ (SEQ ID NOS: 1-118). In another aspect, the invention features a method of making a polypeptide of formula (III), including
[0051] providing a polypeptide of formula (II); and
formula (II)

[0052] treating the compound of formula (II) with a catalyst to promote a ring closing metathesis, thereby providing a compound of formula (III)
formula (III)

[0053] wherein
[0054] each R_{1} and R_{2} are independently H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl; heteroarylalkyl; or heterocyclylalkyl;
[0055] each n is independently an integer from 1-15;
[0056] x is 2 , 3 , or 6 each y is independently an integer from 0-100;
[0057] z is an integer from 1-10 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10); and
[0058] each Xaa is independently an amino acid;
[0059] In some instances, the polypeptide binds to a BCL-2 family member protein.
[0060] In some instances, the catalyst is a ruthenium catalyst.
[0061] In some instances, the method also includes providing a reducing or oxidizing agent subsequent to the ring closing metathesis.
[0062] In some instances, the reducing agent is H_{2} or the oxidizing agent is osmium tetroxide
[0063] In some instances, the invention features a method of treating a subject including administering to the subject any of the compounds described herein. In some instances, the method also includes administering an additional therapeutic agent.
[0064] In some instances, the invention features a method of treating cancer in a subject including administering to the subject any of the compounds described herein. In some instances, the method also includes administering an additional therapeutic agent.
[0065] In some instances, the invention features a library of the compounds described herein.
[0066] In some instances, the invention features a method of identifying a candidate compound for the promotion of apoptosis, including;
[0067] providing mitochondria;
[0068] contacting the mitochondria with any of the compounds described herein;
[0069] measuring cytochrome c release; and
[0070] comparing the cytochrome c release in the presence of the compound to the cytochrome c release in the absence of the compound, wherein an increase in cytochrome c release in the presence of the compound of formula I identifies the compound as a candidate compound for the promotion of apoptosis.
[0071] In some instances, the invention features a polypeptide of the formula (IV),

[0072] wherein;
[0073] each R_{1} and R_{2} are independently H , alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, or heterocyclylalkyl;
[0074] R_{3} is alkyl, alkenyl, alkynyl; $\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}$ or a naturally occurring amino acid side chain; each of which is substituted with 0-6 R_{5};
[0075] R_{4} is alkyl, alkenyl, or alkyny1;
[0076] R_{5} is halo, alkyl, $\mathrm{OR}_{6}, \mathrm{~N}\left(\mathrm{R}_{6}\right)_{2}, \mathrm{SR}_{6}, \mathrm{SOR}_{6}, \mathrm{SO}_{2} \mathrm{R}_{6}$, $\mathrm{CO}_{2} \mathrm{R}_{6}, \mathrm{R}_{6}$, a fluorescent moiety, or a radioisotope;
[0077] K is $\mathrm{O}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CONR}_{6}$, or

[0078] R_{6} is H, alkyl, or a therapeutic agent;
[0079] R_{7} is alkyl, alkenyl, alkynyl; $\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}$ or an naturally occurring amino acid side chain; each of which is substituted with $0-6 \mathrm{R}_{5}$;
[0080] n is an integer from 1-4;
[0081] x is an integer from 2-10;
[0082] each y is independently an integer from 0-100;
[0083] z is an integer from $1-10$ (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10); and
[0084] each Xaa is independently an amino acid;
[0085] In some instances, the invention features a polypeptide of formula (I)

[0086] wherein;
[0087] each R_{1} and R_{2} are independently H , alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, or heterocyclylalkyl;
[0088] R_{3} is alkyl, alkenyl, alkynyl; $\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}$; each of which is substituted with 0-6 R_{5};
[0089] R_{4} is alkyl, alkynyl, or alkynyl;
[0090] R_{5} is halo, alkyl, $\mathrm{OR}_{6}, \mathrm{~N}\left(\mathrm{R}_{6}\right)_{2}, \mathrm{SR}_{6}, \mathrm{SOR}_{6}, \mathrm{SO}_{2} \mathrm{R}_{6}$, $\mathrm{CO}_{2} \mathrm{R}_{6}, \mathrm{R}_{6}$, a fluorescent moiety, or a radioisotope;
[0091] K is $\mathrm{O}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CONR}_{6}$, or

[0092] R_{6} is H, alkyl, or a therapeutic agent;
[0093] n is an integer from 1-4;
[0094] x is an integer from 2-10;
[0095] each y is independently an integer from $0-100$;
[0096] z is an integer from 1-10 (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10); and
[0097] each Xaa is independently an amino acid;
[0098] wherein the polypeptide has at least 5% alpha helicity in aqueous solution as determined by circular dichroism.
[0099] In some instances, polypeptide has at least 15%, at least 35%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90% alpha helicity as determined by circular dichroism.
[0100] In some instances, the invention features a polypeptide of formula (I),
formula (I)

[0101] wherein;
[0102] each R_{1} and R_{2} are independently H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, or heterocyclylalkyl;
[0103] R_{3} is alkyl, alkenyl, alkynyl; $\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}$; each of which is substituted with $0-6 \mathrm{R}_{5}$;
[0104] R_{4} is alkyl, alkynyl, or alkynyl;
[0105] R_{5} is halo, alkyl, OR 6 $, \mathrm{N}\left(\mathrm{R}_{6}\right)_{2}, \mathrm{SR}_{6}, \mathrm{SOR}_{6}, \mathrm{SO}_{2} \mathrm{R}_{6}$, $\mathrm{CO}_{2} \mathrm{R}_{6}, \mathrm{R}_{6}$, a fluorescent moiety, or a radioisotope;
[0106] K is $\mathrm{O}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CONR}_{6}$, or

[0107] R_{6} is H , alkyl, or a therapeutic agent;
[0108] n is an integer from 1-4;
[0109] x is an integer from 2-10;
[0110] each y is independently an integer from $0-100$;
[0111] z is an integer from 1-10 (e.g., $1,2,3,4,5,6,7,8,9$, 10); and
[0112] each Xaa is independently an amino acid;
[0113] wherein the polypeptide has at least a 1.25 -fold increase in alpha helicity as determined by circular dichroism compared to the polypeptide of formula (IV)
formula (IV)

[0114] wherein R_{1}, R_{2}, Xaa, x, y, and z are all as defined for formula (I) above.
[0115] In some instances, the polypeptide has at least a 1.5 -fold, at least 1.75 fold, at least 2.0 -fold, at least 2.5 -fold, at least 3 -fold, or at least 4-fold increase in alpha helicity as determined by circular dichroism compared to the polypeptide of formula (IV).
[0116] In some instances, the invention features a method of identifying a candidate compound for the inhibition of apoptosis, including;
[0117] providing mitochondria;
[0118] contacting the mitochondria with a compound described herein;
[0119] measuring cytochrome c release; and
[0120] comparing the cytochrome crelease in the presence the compound described herein to the cytochrome c release in the absence of the compound described herein, wherein a decrease in cytochrome c release in the presence of the compound described herein identifies the compound described herein as a candidate compound for the inhibition of apoptosis.
[0121] Combinations of substituents and variables envisioned by this invention are only those that result in the formation of stable compounds. The term "stable", as used herein, refers to compounds which possess stability sufficient to allow manufacture and which maintains the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., therapeutic administration to a subject or generation of reagents to study or discover a biological pathway either in vitro or in vivo).
[0122] The compounds of this invention may contain one or more asymmetric centers and thus occur as racemates and racemic mixtures, single enantiomers, individual diastereomers and diastereomeric mixtures. All such isomeric forms of these compounds are expressly included in the present invention. The compounds of this invention may also be represented in multiple tautomeric forms, in such instances, the invention expressly includes all tautomeric forms of the compounds described herein (e.g., alkylation of a ring system may result in alkylation at multiple sites, the invention expressly includes all such reaction products). All such isomeric forms of such compounds are expressly included in the present invention. All crystal forms of the compounds described herein are expressly included in the present invention.
[0123] The term "amino acid" refers to a molecule containing both an amino group and a carboxyl group. Suitable amino acids include, without limitation, both the D- and L-isomers of the 20 common naturally occurring amino acids found in peptides (e.g., A, R, N, C, D, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V (as known by the one letter abbreviations)) as well as the naturally occurring and unnaturally occurring amino acids prepared by organic synthesis or other metabolic routes.
[0124] A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of a polypeptide (e.g., a BH3 domain) without abolishing or substantially altering its activity. An "essential" amino acid residue is a residue that, when altered from the wild-type sequence of the polypeptide, results in abolishing or substantially abolishing the polypeptide activity.
[0125] A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a BH 3 polypeptide, for example, is preferably replaced with another amino acid residue from the same side chain family.
[0126] The symbol "/"" when used as part of a molecular structure refers to a single bond or a trans or cis double bond. [0127] The term "amino acid side chain" refers to a moiety attached to the α-carbon in an amino acids. For example, the amino acid side chain for alanine is methyl, the amino acid side chain for phenylalanine is phenylmethyl, the amino acid side chain for cysteine is thiomethyl, the amino acid side chain for aspartate is carboxymethyl, the amino acid side chain for tyrosine is 4 -hydroxyphenylmethyl, etc. Other nonnaturally occurring amino acid side chains are also included, for example, those that occur in nature (e.g., an amino acid metabolite) or those that are made synthetically (e.g., an alpha di-substituted amino acid).
[0128] The term polypeptide encompasses two or more naturally occurring or synthetic amino acids linked by a covalent bond (e.g., a amide bond). Polypeptides as described herein include full length proteins (e.g., fully processed proteins) as well as shorter amino acids sequences (e.g., fragments of naturally occurring proteins or synthetic polypeptide fragments).
[0129] The term "halo" refers to any radical of fluorine, chlorine, bromine or iodine. The term "alkyl" refers to a hydrocarbon chain that may be a straight chain or branched chain, containing the indicated number of carbon atoms. For example, $\mathrm{C}_{1}-\mathrm{C}_{10}$ indicates that the group may have from 1 to 10 (inclusive) carbon atoms in it. In the absence of any numerical designation, "alkyl" is a chain (straight or branched) having 1 to 20 (inclusive) carbon atoms in it. The term "alkylene" refers to a divalent alkyl (i.e., - $\mathrm{R}-$).
[0130] The term "alkenyl" refers to a hydrocarbon chain that may be a straight chain or branched chain having one or more carbon-carbon double bonds. The alkenyl moiety contains the indicated number of carbon atoms. For example, $\mathrm{C}_{2}-\mathrm{C}_{10}$ indicates that the group may have from 2 to 10 (inclusive) carbon atoms in it. The term "lower alkenyl" refers to a $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkenyl chain. In the absence of any numerical designation, "alkenyl" is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
[0131] The term "alkynyl" refers to a hydrocarbon chain that may be a straight chain or branched chain having one or more carbon-carbon triple bonds. The alkynyl moiety con-
tains the indicated number of carbon atoms. For example, $\mathrm{C}_{2}-\mathrm{C}_{10}$ indicates that the group may have from 2 to 10 (inclusive) carbon atoms in it. The term "lower alkynyl" refers to a $\mathrm{C}_{2}-\mathrm{C}_{8}$ alkynyl chain. In the absence of any numerical designation, "alkynyl" is a chain (straight or branched) having 2 to 20 (inclusive) carbon atoms in it.
[0132] The term "aryl" refers to a 6-carbon monocyclic or 10 -carbon bicyclic aromatic ring system wherein $0,1,2,3$, or 4 atoms of each ring may be substituted by a substituent. Examples of aryl groups include phenyl, naphthyl and the like. The term "arylalkyl" or the term "aralkyl" refers to alkyl substituted with an aryl. The term "arylalkoxy" refers to an alkoxy substituted with aryl.
[0133] The term "cycloalkyl" as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12 carbons, preferably 3 to 8 carbons, and more preferably 3 to 6 carbons, wherein the cycloalkyl group additionally may be optionally substituted. Preferred cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
[0134] The term "heteroaryl" refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0,1 , 2,3 , or 4 atoms of each ring may be substituted by a substituent. Examples of heteroaryl groups include pyridyl, furyl or furanyl, imidazolyl, benzimidazolyl, pyrimidinyl, thiophenyl or thienyl, quinolinyl, indolyl, thiazolyl, and the like. The term "heteroarylalkyl" or the term "heteroaralkyl" refers to an alkyl substituted with a heteroaryl. The term "heteroarylalkoxy" refers to an alkoxy substituted with heteroaryl.
[0135] The term "heterocyclyl" refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having 1-3 heteroatoms if monocyclic, 1-6 heteroatoms if bicyclic, or 1-9 heteroatoms if tricyclic, said heteroatoms selected from O, N, or S (e.g., carbon atoms and 1-3, 1-6, or 1-9 heteroatoms of N, O, or S if monocyclic, bicyclic, or tricyclic, respectively), wherein 0,1 , 2 or 3 atoms of each ring may be substituted by a substituent. Examples of heterocyclyl groups include piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, tetrahydrofuranyl, and the like.
[0136] The term "substituents" refers to a group "substituted" on an alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl group at any atom of that group. Suitable substituents include, without limitation, halo, hydroxy, mercapto, oxo, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, thioalkoxy, aryloxy, amino, alkoxycarbonyl, amido, carboxy, alkanesulfonyl, alkylcarbonyl, and cyano groups.
[0137] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

[0138] FIG. 1 depicts BCL-2 family members having one or more conserved $\mathrm{BCL}-2$ homology (BH) domains.
[0139] FIG. 2 depicts a model of BID-mediated mitochondrial apoptosis. TNF-RI/Fas induces cleavage of BID, which translocates to the mitochondria and trigger apoptosis.
[0140] FIG. 3 depicts a synthetic strategy for the generation of chiral α, α-disubstituted non-natural amino acids containing olefinic side chains.
[0141] FIG. $4 a$ depicts chemical structures of certain nonnatural amino acids.
[0142] FIG. $4 b$ depicts the crosslinking of synthetic amino acids at positions i and $i+4$ and i and $i+7$ by olefin metathesis.
[0143] FIG. $5 a$ depicts SAHB3 compounds generated by non-natural amino acid substitution and olefin metathesis (SEQ ID NOs 92-96, 118, 119, 97-108, 120, 121, 110, 111, 122, and 123 , respectively).
[0144] FIG. $5 b$ depicts certain crosslinked peptides used in the studies described herein (SEQ ID NOs 112-117, respectively).
[0145] FIG. 6 depicts the results of a study showing the degree of α-helicity of BH3 domains of selected BCL-2 family members.
[0146] FIG. 7 depicts the results of a study showing that chemical crosslinking enhances the alpha helicity of $\mathrm{SAHB3}_{B I D}$ compounds compared to the unmodified BID BH3 peptide.
[0147] FIG. 8 depicts the results of a study showing that a gly \rightarrow glu mutant of $\mathrm{SAHB3}_{B I D}$ A polypeptide displays similar helical contact to the corresponding gly containing polypeptide.
[0148] FIG. 9 depicts the results of a study showing that truncation of the 23 -mer $\mathrm{SABH}_{B I D} \mathrm{~B}$ ("SAHB3b") to a 16 -mer results in loss of α-helicity.
[0149] FIG. $10 a$ depicts the results of a study showing that the kinetics of in vitro trypsin proteolysis is retarded 3.5-fold by the $\mathrm{SABH}_{B I D}$ A crosslink.
[0150] FIG. $\mathbf{1 0} b$ depicts the results of a study of ex vivo serum stability of peptides, demonstrating a 10 -fold increase in half-life of the cross-linked peptide compared to the unmodified peptide.
[0151] FIG. $10 c$ depicts the results of an in vivo study showing that $\mathrm{SAHB}_{B D D} \mathrm{~A}$ is maintained at higher serum concentrations over time compared to BID BH3 peptide.
[0152] FIG. 11 a depicts the results of a study showing that SAHB3 $3_{B I D}$ peptides display high affinity binding to GSTBCL2 in a fluorescence polarization competitive binding assay.
[0153] FIG. $11 b$ depicts the results of a study showing that the negative control Gly to Glu point mutants of $\mathrm{SAHB}_{B I D} \mathrm{~A}$ and B are relatively poor binders.
[0154] FIG. 11 c depicts the results of a study showing that truncation of $\mathrm{SAHB3}_{B I D} \mathrm{~B}$ from a 23 -mer to a 16 -mer results in a more than 6 -fold drop in K_{i}, coincident with a significant decrease in percent helicity of the truncated compound.
[0155] FIG. 11 d depicts the results of a BCL-2 fluorescence polarization direct binding assay demonstrating a more than 6 -fold enhancement in binding affinity of $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ compared to unmodified BID BH3.
[0156] FIG. 11e depicts the results of a BAX fluorescence polarization direct binding assay demonstrating that incorporation of a crosslink results in measurable binding of $\mathrm{SAHB3}_{B_{I I D}} \mathrm{~A}$ and $\mathrm{SAHB3}_{B I D\left(G_{\perp} E\right)} \mathrm{A}$ to a multidomain proapoptotic BCL-2 family member. The unmodified BID BH3 peptide shows no binding.
[0157] FIG. $11 f$ depicts HSQC spectra that demonstrate a conformational change in ${ }^{15} \mathrm{~N}$-labeled $\mathrm{BCL}-\mathrm{X}_{L}$ upon

SAHB3 $_{B I D}$ A binding, which is similar to that seen upon BID BH3 binding, confirming that $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ binds to the defined hydrophobic pocket of BCL-X ${ }_{L}$.
[0158] FIGS. $12 a$ and $12 b$ depict the results of studies showing the percent of cytochrome c released by $\mathrm{SAHB} 3_{B I D}$ compounds from purified mouse liver mitochondria.
[0159] FIGS. $13 a$ and $13 b$ depict the results of a study showing that $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ - and $\mathrm{SAHB}_{3 \text { BD }} \mathrm{B}$-induced cytochrome c release is faster and more potent than that of unmodified peptide.
[0160] FIG. 14 depicts the results of a study showing that the Gly to Glu mutation of $\mathrm{SAHB}_{\text {BID }}$ A selectively eliminates Bak-dependent cytochrome release, underscoring the specificity of action of $\mathrm{SAHB3}_{{ }_{B I D}} \mathrm{~A}$-induced cytochrome c release shown in FIG. 13.
[0161] FIG. 15 depicts the results of a study showing that Jurkat T-cell leukemia cells, upon exposure to FITC-BID BH3 and FITC-BID helix 6, lack fluorescent labeling whereas Jurkat T-cell leukemia cells, upon exposure to FITC$\mathrm{SAHB3}_{B I D}$ demonstrate a positive FITC signal, and that these results are not significantly altered by trypsin-treatment of the cells.
[0162] FIG. 16a depicts the results of a study showing that Jurkat T-cells exposed to cross-linked peptides FITC$\mathrm{SAHB3}_{B I D} \mathrm{~A}$ and $\mathrm{SAHB}_{{ }_{B I D(G \rightarrow E)}} \mathrm{A}$ demonstrated fluorescent labeling, whereas Jurkat T-cells exposed to unmodified BH3 peptides FITC-BID and FITC-BID ${ }_{(G \rightarrow S)}$ did not.
[0163] FIG. $16 b$ depicts the results of a study showing that cellular import of FITC-SAHB3 $3_{B I D}$ A is time-dependent at $37^{\circ} \mathrm{C}$., as assessed by FACS analysis.
[0164] FIGS. 17a and $17 b$ depict the results of a study showing Jurkat T-cells treated with FITC-peptides at $4^{\circ} \mathrm{C}$. and $37^{\circ} \mathrm{C}$. FIG. $17 a$ shows that FITC-BID BH3 did not label the cells at either temperature, and FITC-SAHB3 $B_{B I D}$ A labeled the cells at $37^{\circ} \mathrm{C}$. but not $4^{\circ} \mathrm{C}$. FIG. $\mathbf{1 7} b$ shows that FITC-BID helix 6 labels but also permeabilizes the cells in a temperature-independent manner. However, in contrast, FITC-SAHB3 BID A only labels the cells at $37^{\circ} \mathrm{C}$. and does so without cellular permeabilization, consistent with active transport of $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ via an endocytic pathway.
[0165] FIG. 17c depicts the results of a study showing that Jurkat T-cells, when preincubated with or without sodium azide and 2-deoxyglucose followed by treatment with FITCpeptides, showed no labeling for either condition with the FITC-BID BH3 polypeptide. The cells showed reduced labeling for FITC-SAHB3 $3_{B I D}$ A under sodium azide and 2-deoxyglucose conditions, and showed labeling with FITC-BID helix 6 under both conditions. These results are consistent with an ATP-dependant cellular uptake (e.g., endocytosis pathway) for $\mathrm{SAHB}_{B I D}$ import.
[0166] FIG. 18 depicts the results of a study showing that FITC-SAHB $3_{B I D}$ A uptake is not inhibited by cellular treatment with the glycosaminoglycan heparin, indicating that there are distinctions between the mechanism of binding and uptake of FITC-SAHB3 ${ }_{B I D}$ A compared to other cell penetrating peptides (CPPs), such as HIV TAT and Antennapedia peptides.
[0167] FIG. 19 depicts the results of a study showing that FITC-SAHB3 BID A compounds display cytoplasmic labeling with a vesicular distribution in Jurkat T-cells, whereas plasma membrane fluorescence is not evident. On the other hand, FITC-BID BH3 displays no cellular labeling of cells and FITC-BID helix 6 labels the cells diffusely and causes significant architectural destruction.
[0168] FIG. 20 depicts the results of a study showing that FITC-SAHB3 ${ }_{B I D}$ A co-localizes with a mitochondrial membrane marker in Jurkat T-cells.
[0169] FIG. $21 a$ and FIG. $21 b$ depicts the results of a study showing that FITC-SAHB3 ${ }_{B I D}$ A colocalizes in live BCL-2 overexpressing Jurkat T-cells with dextran-labeled endosomes but not transferring-labeled endosomes, indicating that FITC-SAHB3 $3_{B I D} A$ is imported into cells by fluid-phase pinocytosis.
[0170] FIG. $21 c$ depicts the results of a study showing that by 24 hours after treatment, FITC-SAHB3 ${ }_{B I D}$ A colocalizes in the live cells with mitochondria labeled by MitoTracker.
[0171] FIGS. 22 $a, \mathbf{2 2} b$, and $\mathbf{2 2} c$ depict the results of a study showing that $\mathrm{SAHB} 3_{B I D} \mathrm{~A}$ triggers metabolic arrest in a dose responsive fashion in the leukemia cell lines tested, whereas BID BH3 and SAHB3 ${\operatorname{BID}\left(G_{\rightarrow} E\right)}$ A had essentially no effect in this dose range.
[0172] FIG. 23 depicts the results of a study showing that $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ and $\mathrm{SAHB3}_{B I D} \mathrm{~B}$ induced apoptosis in up to 50% of intact Jurkat cells at $10 \mu \mathrm{M}$, an effect specifically inhibited by BCL-2 overexpression (black bars). Unmodified BID BH3 peptide and the gly to glu mutants had no effect based on comparison with the no treatment control.
[0173] FIG. 24 depicts the results of a study showing the dose response of Jurkat BCL-2 overexpressing cells treated with $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}, \mathrm{SAHB} 3_{B I D(G \rightarrow E)}$ and $\mathrm{SAHB} 3_{B I D(G \rightarrow S)}$ A. Whereas $\mathrm{SAHB}_{\text {BID }} \mathrm{A}$ and $\mathrm{SAHB} 3_{B I D(G \rightarrow S)}$ A can overcome BCL-2 inhibition of apoptosis in this dose range, the gly to glu point mutant has not effect.
[0174] FIG. 25 depicts the results of a study showing that $\mathrm{SAHB3}_{B I D}$ A treated leukemia cell lines REH, MV4;11, and SEMK2 underwent specific apoptosis induction, whereas the gly to glu point mutant $\mathrm{SAHB} 3_{B I D(G \rightarrow E)}$ A had no effect on the cells.
[0175] FIGS. $26 a$ and $26 b$ depict the results of a study showing that both $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ and $\mathrm{SAHB} 3_{B I D(G \rightarrow S)} \mathrm{A}$ suppressed the growth of SEMK2 leukemia in NOD-SCID mice, with $\mathrm{SAHB}_{B_{B I D(G \rightarrow S)}}$ A demonstrating a greater potency than $\mathrm{SAHB}_{{ }_{B I D}}$ A.
[0176] FIG. $27 a$ and FIG. $27 b$ depicts the results of a study showing that $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ blunts the progression of SEMK2 leukemia relative to vehicle in NOD-SCID mice. A dose responsive effect is noted in FIG. $27 a$.
[0177] FIGS. 27c, 27d, 27e depict the results of an animal study showing that $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ inhibits the growth of RS4; 11 leukemia relative to vehicle in SCID beige mice, with statistically significant prolongation of survival in SAHB3 ${ }_{B I D}$ A-treated mice compared to vehicle controls.
[0178] FIG. $27 f$ depicts the results of an animal study again showing that $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ causes regression of $\mathrm{RS} 4 ; 11$ leukemia in SCID beige mice, in contrast with $\mathrm{SAHB}_{B I D(G \rightarrow E)}$ A- and vehicle-treated mice which demonstrate leukemia progression.
[0179] FIGS. $28 a-28 h$ depict examples of various alpha helical domains of BCL-2 family member proteins (SEQ ID NOs 1-91, respectively) amenable to crosslinking.

DETAILED DESCRIPTION

[0180] The invention is based, in part, on the discovery that cross-linked alpha helical domain polypeptides of BCL-2 family proteins have improved pharmacological properties over their uncrosslinked counterparts (e.g., increased hydrophobicity, resistance to proteolytic cleavage, binding affinity, in vitro and in vivo biological activity). Moreover, it has been
surprisingly discovered that the cross-linked polypeptides can penetrate the cell membrane via a temperature- and energy-dependent transport mechanism (e.g., endocytosis, specifically fluid-phase pinocytosis). The polypeptides include a tether between two non-natural amino acids, which tether significantly enhances the alpha helical secondary structure of the polypeptide. Generally, the tether extends across the length of one or two helical turns (i.e., about 3.4 or about 7 amino acids). Accordingly, amino acids positioned at i and $i+3$; i and $i+4$; or i and $i+7$ are ideal candidates for chemical modification and crosslinking. Thus, for example, where a peptide has the sequence $\ldots \mathrm{Xaa}_{1}, \mathrm{Xaa}_{2}, \mathrm{Xaa}_{3}, \mathrm{Xaa}_{4}$, $\mathrm{Xaa}_{5}, \mathrm{Xaa}_{6}, \mathrm{Xaa}_{7}, \mathrm{Xaa}_{8}, \mathrm{Xaa}_{9} \ldots$, crosslinks between Xaa_{1} and Xaa_{4}, or between $X a a_{1}$ and $X \mathrm{Xa}_{5}$, or between $X \mathrm{Xa}_{1}$ and Xaa_{8} are useful as are crosslinks between Xaa_{2} and Xaa_{5}, or between Xaa_{2} and Xaa_{6}, or between Xaa_{2} and Xaa_{9}, etc. In addition, a model polypeptide was prepared incorporating two sets of crosslinks with one located between Xaa_{1} and Xaa_{5} and another between Xaa_{9} and Xaa_{13}. The double crosslink was achieved by careful stereochemical control of the double bond metathesis reactions. Thus, the invention encompasses the incorporation of more than one crosslink within the polypeptide sequence to either further stabilize the sequence or facilitate the stabilization of longer polypeptide stretches. If the polypeptides are too long to be readily synthesized in one part, independently synthesized crosslinked peptides can be conjoined by a technique called native chemical ligation (Bang, et al., J. Am. Chem Soc. 126:1377).
[0181] The novel cross-linked polypeptides are useful, for example, to mimic or study proteins or polypeptides having one or more alpha-helical domains. One family of proteins where family members have at least one alpha helical domain is the BCL- 2 family of proteins. These proteins are involved in cellular apoptotic pathways. Some BCL-2 family members have a pro-apoptotic function, others have an anti-apoptotic function, and still others change functions with a change in cellular conditions. Accordingly, it is desirable to make stabilized polypeptides that would mimic one or more motifs of the BCL-2 family members, thus modulating a variety of BCL-2 related activities.
[0182] Chemical Synthesis of a Panel of SAHB3 ${ }_{B I D}$ Compounds
[0183] α, α-Disubstituted non-natural amino acids containing olefinic side chains of varying length were synthesized according to the schema in FIG. 3 (Williams et al. 1991 J. Am. Chem. Soc. 113:9276; Schafmeister et al. 2000 J. Am. Chem. Soc. 122:5891). Chemically crosslinked BID BH3 peptides were designed by replacing two or four naturally occurring amino acids with the corresponding synthetic amino acids (FIG. 4a). Substitutions were made at discrete locations, namely the " i, and $i+4$ positions" or the " i, and $i+7$ positions", which facilitate crosslinking chemistry by placing reactive residues on the same face of the α-helix (FIG. 4b). Highly conserved amino acids among apoptotic proteins, in addition to those sequences found to be important in protein-protein interactions based on X-ray crystallographic and NMR studies (Muchmore et al. 1996 Nature 381:335; Sattler et al. 1997 Science $275: 983$), were specifically not replaced in certain circumstances, conserved amino acids could be replaced by other amino acids (e.g., synthetic non-naturally occurring amino acids) to enhance activity (this effect can be seen in the $\mathrm{SAHB}_{B I D}$ mutants described herein). $\mathrm{SAHB}_{B I D}$ compounds were generated by solid phase peptide synthesis followed by olefin metathesis-based crosslinking of the syn-
thetic amino acids via their olefin-containing side chains. The variations of $\mathrm{SAHB3}_{B I D}$ compounds generated are illustrated in FIG. $5 a$. SAHB3 $_{B I D}\left(\mathrm{SAHB}_{A}\right)$ variants incorporating specific mutations known to alter BID function (Wang et al. 1996 Genes Dev. 10:2859) were also constructed to serve as negative controls in biological experiments (FIG. 5a). The amino termini of selected compounds were further derivatized with fluorescein isothiocyanate (FITC) or biotin conjugated-lysine to generate labeled $\mathrm{SAHB}_{B I D}$ compounds for cell permeability studies and biochemical assays, respectively (FIG. 5a). In several syntheses, a C-terminal tryptophan was added to the sequence to serve as a UV label for purification and concentration determination purposes; the N -terminal glutamic acid was eliminated in several peptides in order to increase the overall pI of the compound to potentially facilitate cell penetration (see below). The metathesis approach was readily applied to the generation of alternate SAHB3s, including SAHB3 $3_{B A D}$ and $\mathrm{SAHB3}_{B M M}$ (FIG. $5 a$).
[0184] The non-natural amino acids (R and S enantiomers of the 5 -carbon olefinic amino acid and the S enantiomer of the 8 -carbon olefinic amino acid) were characterized by nuclear magnetic resonance (NMR) spectroscopy (Varian Mercury 400) and mass spectrometry (Micromass LCT). Peptide synthesis was performed either manually or on an automated peptide synthesizer (Applied Biosystems, model 433A), using solid phase conditions, rink amide AM resin (Novabiochem), and Fmoc main-chain protecting group chemistry. For the coupling of natural Fmoc-protected amino acids (Novabiochem), 10 equivalents of amino acid and a 1:1:2 molar ratio of coupling reagents HBTU/HOBt (Novabiochem)/DIEA were employed. Non-natural amino acids (4 equiv) were coupled with a 1:1:2 molar ratio of HATU (Applied Biosystems)/HOBt/DIEA. Olefin metathesis was performed in the solid phase using 10 mM Grubbs catalyst (Blackewell et al. 1994 supra) (Strem Chemicals) dissolved in degassed dichloromethane and reacted for 2 hours at room temperature. The amino termini of selected compounds were further derivatized with b -alanine and fluorescein isothiocyanate (FITC [Sigma]/DMF/DIEA) to generate fluorescently labeled compounds. A C-terminal tryptophan was incorporated to serve as a UV label for purification and concentration determination purposes; SAHBA compounds were also synthesized without the C-terminal tryptophan and N -terminal glutamic acid, the latter modification performed to increase the overall pI of the molecules. Isolation of metathesized compounds was achieved by trifluoroacetic acid-mediated deprotection and cleavage, ether precipitation to yield the crude product, and high performance liquid chromatography (HPLC) (Varian ProStar) on a reverse phase C18 column (Varian) to yield the pure compounds. Chemical composition of the pure products was confirmed by LC/MS mass spectrometry (Micromass LCT interfaced with Agilent 1100 HPLC system) and amino acid analysis (Applied Biosystems, model 420A).
[0185] FIG. $5 b$ schematically depicts a subset of the peptides in FIG. $5 a$, including the stereochemistry of the olefinic amino acids (R and S enantiomers of the 5 -carbon olefinic amino acid and the S enantiomer of the 8-carbon olefinic amino acid).
[0186] SAHB3 ${ }_{B I D}$ Compounds Display Enhanced α-helicity
[0187] We examined the percent helicity of pro-apoptotic BH3 domains, and found that these unmodified peptides were predominantly random coils in solution, with α-helical con-
tent all under 25% (FIG. 6). Briefly, compounds were dissolved in aqueous 50 mM potassium phosphate solution pH 7 to concentrations of $25-50 \mathrm{mM}$. CD spectra were obtained on a Jasco J-710 spectropolarimeter at $20^{\circ} \mathrm{C}$. using the following standard measurement parameters: wavelength, $190-260 \mathrm{~nm}$; step resolution, 0.5 nm ; speed, $20 \mathrm{~nm} / \mathrm{sec}$; accumulations, 10 ; response, 1 sec ; bandwidth, 1 nm ; path length, 0.1 cm . The a-helical content of each peptide was calculated by dividing the mean residue ellipticity $[\phi] 222$ obs by the reported [$\phi] 222$ obs for a model helical decapeptide (Yang et al. 1986 Methods Enzymol. 130:208)).
[0188] In each case, the chemical crosslink(s) increased the percent α-helicity of BID's BH3 domain, with $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ and B achieving more than 5 -fold enhancement (FIG. 7) $\mathrm{SAHB3}_{B I D\left(G_{\perp}\right)} \mathrm{A}$, a negative control Gly to Glu point mutant of $\mathrm{SAHB}_{B I D} \mathrm{~A}$, displays similar helical content to $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ (FIG. 8). Thus, the all-hydrocarbon crosslink can transform an apoptotic peptide that is essentially a random coil in aqueous solution into one that is predominantly α-helical in structure. Interestingly, the importance of the fourth helical turn in stabilizing BID BH3 peptides is underscored by the decrease in helicity observed when the $\mathrm{SAHB}_{{ }_{B I D}} \mathrm{~B} 23$-mer is truncated to the 16 -mer, $\mathrm{SAHB} 3_{B I D}$ ${ }_{(t)}$ B (FIG. 9).
[0189] The All-Hydrocarbon Crosslink Increases Protease Resistance of SAHB3 $B_{B D}$ Compounds
[0190] The amide bond of the peptide backbone is susceptible to hydrolysis by proteases, thereby rendering peptidic compounds vulnerable to rapid degradation in vivo. Peptide helix formation, however, buries the amide backbone and therefore shields it from proteolytic cleavage. $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ was subjected to in vitro trypsin proteolysis to assess for any change in degradation rate compared to the unmodified BID BH3 peptide. $\mathrm{SAHB}_{{ }_{B I D}} \mathrm{~A}$ and unmodified peptide were incubated with trypsin agarose and the reactions quenched at various time points by centrifugation and subsequent HPLC injection to quantitate the residual substrate by ultraviolet absorption at 280 nm . Briefly, BID BH3 and SAHB3 $3_{B I D} \mathrm{~A}$ compounds (5 mcg) were incubated with trypsin agarose (Pierce) (S/E 125) for 0,10, 20, 90, and 180 minutes. Reactions were quenched by tabletop centrifugation at high speed; remaining substrate in the isolated supernatant was quantified by HPLC-based peak detection at 220 nm . The proteolytic reaction displayed first order kinetics and the rate constant, k , determined from a plot of $\ln [\mathrm{S}]$ versus time ($\mathrm{k}=-1 \times \mathrm{slope}$) (FIG. 10a). The experiment, performed in triplicate, demonstrated a 3.5 -fold enhancement in trypsin resistance of $\mathrm{SAHB3}_{{ }_{B I D}} \mathrm{~A}$ compared to the unmodified peptide. Thus, enhanced protection of trypsin-sensitive amide bonds by burying them at the core of the α-helix affords a more stable peptidic compound, and may therefore render such compounds particularly stable in serum
[0191] For ex vivo serum stability studies, FITC-conjugated peptides BID BH3 and $\mathrm{SAHB}_{\text {BID }} \mathrm{A}(2.5 \mathrm{mcg})$ were incubated with fresh mouse serum (20 mL) at $37^{\circ} \mathrm{C}$. for 0,1 , $2,4,8$, and 24 hours. The level of intact FITC-compound was determined by flash freezing the serum specimens in liquid nitrogen, lyophilization, extraction in 50:50 acetonitrile/water containing 0.1% trifluoroacetic acid, followed by HPLCbased quantitation using fluorescence detection at excitation/ emission settings of $495 / 530 \mathrm{~nm}$. The results of this analysis are shown in FIG. $10 b$.
[0192] To investigate the in vivo stability of $\mathrm{SAHB}_{{ }_{B I D}} \mathrm{~A}$, $10 \mathrm{mg} / \mathrm{kg}$ of FITC-conjugated BID BH3 peptide and

SAHB3 $3_{B I D}$ A were injected into NOD-SCID mice and blood specimens withdrawn at $0,1,4$ and 22 hours post-injection. Levels of intact FITC-compound in $25 \mu \mathrm{~L}$ of fresh serum were then measured. The results of this analysis, depicted in FIG. 10c, show that $\mathrm{SAHB3}_{B D D} \mathrm{~A}$ was readily detectable over a 22 hour period, with 13% of the input still measurable a 22 hours. In contrast, only 12% of BID BH3 was detectable one hour after injection.
[0193] SAHB3 $_{B D}$ Compounds Retain High Affinity Anti- $^{\text {a }}$ Apoptotic Binding
[0194] The all-hydrocarbon crosslinks were selectively placed on the charged face of the BID BH3 amphipathic helix in order to avoid interference with critical interactions between the binding pocket of multidomain apoptotic proteins and the hydrophobic residues of the BID BH3 helix. Fluorescence polarization competitive binding experiments were performed to evaluate the efficacy of $\mathrm{SAHB}_{B I D}$ compounds in competing with FITC-labeled unmodified BID BH3 peptide for GST-BCL-2 binding. All SAHB3 $3_{B I D}$ compounds demonstrate high affinity binding to GST-BCL2, with $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ and B , the two compounds with the greatest percent helicity, likewise displaying the highest affinity binding (FIG. 11a). Of note, Gly to Glu mutation of SAHB3 $B_{B I D} \mathrm{~A}$ and B eliminates high affinity binding, as would be predicted from previous studies (FIG. 11 b). We additionally determined that Gly to Ser mutation of SAHB3 $3_{B I D} \mathrm{~A}$ abolishes BCL-2 binding in this assay (data not shown). Truncation of the $23-$ mer $\mathrm{SAHB}_{B I D}$ B to a 16 -mer results in loss of BCL-2 binding affinity, coincident with the decrement in α-helicity described above (FIG. 11c).
[0195] FITC-labeled BID BH3 peptide binds to BCL-2 with a K_{D} of 220 nM , and once bound, displacement of this interaction by unlabeled BID BH3 occurs at an IC_{50} of 838 nM . This supports a model whereby BH3 binding to BCL-2 triggers an overall conformational change favoring the interaction, resulting in the need for excess amounts of unlabeled peptide to displace prebound FITC-labeled BID BH3. We have further shown that the BAD BH 3 domain has an enhanced K_{D} of 41 nM for BCL-2 binding, and that it can displace prebound FITC-BID BH3 with an IC_{50} of 173 nM . In a similar experiment, $\mathrm{SAHB}_{\text {BID }}$ A was found to displace FITC-BID BH3 from BCL-2 with an IC_{50} of 62 nM , reflecting a more than 13 -fold increase in displacement potency compared to unmodified BID BH3 peptide. These data confirm that $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ binds with enhanced affinity to BCL-2 compared to unmodified BH 3 peptides, and suggest that preorganization of α-helical structure by chemical crosslinking provides a kinetic advantage for target binding.
[0196] Direct binding assays by fluorescence polarization demonstrated that incorporation of the crosslink into BID BH3 peptide resulted in enhanced binding affinity of SAHB3 $3_{B I D}$ A for both BCL-2, an anti-apoptotic multidomain protein, and BAX, a pro-apoptotic multidomain protein, compared to unmodified BID BH3 peptide (FIGS. 11 d and 11e). A direct BCL-2 fluorescence polarization binding assay demonstrated a 6 -fold enhancement in BCL-2 binding affinity of $\mathrm{SAHB3}_{B I D} \mathrm{~A}\left(\mathrm{~K}_{D}, 38.8 \mathrm{~nm}\right)$ compared to unmodified BID BH3 peptide ($\mathrm{K}_{\mathrm{D}}, 269 \mathrm{nM}$) (FIG. 11d). A Gly to Glu mutation, $\mathrm{SAHB}_{A(G \rightarrow E)}\left(\mathrm{K}_{D}, 483 \mathrm{nM}\right)$, eliminates high affinity binding and serves as a useful control (FIG. 11d). Briefly, Escherichia coli BL21 (DE3) containing the plasmid encoding C-terminal deleted GST-BCL-2 were cultured in ampicil-lin-containing Luria Broth and induced with 0.1 mM IPTG. The bacterial pellets were resuspended in lysis buffer (1
$\mathrm{mg} / \mathrm{ml}$ lysozyme, 1% Triton X-100, $0.1 \mathrm{mg} / \mathrm{ml}$ PMSF, 2 $\mu \mathrm{g} / \mathrm{ml}$ aprotinin, $2 \mu \mathrm{~g} / \mathrm{ml}$ leupeptine, $1 \mu \mathrm{~g} / \mathrm{ml}$ pepstatin A in PBS) and sonicated. After centrifugation at $20,000 \times \mathrm{g}$ for 20 min , the supernatant was applied to a column of glutathioneagarose beads (Sigma). The beads were washed with PBS and treated with 50 mM glutathione, 50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ to elute the protein, which was then dialyzed against binding assay buffer ($140 \mathrm{mM} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris- $\mathrm{HCl}[\mathrm{pH} 7.4]$). Fluorescinated compounds (25 nM) were incubated with GST-BCL2 ($25 \mathrm{nM}-1000 \mathrm{nM}$) in binding buffer at room temperature. Binding activity was measured by fluorescence polarization on a Perkin-Elmer LS50B luminescence spectrophotometer. KD values were determined by nonlinear regression analysis using Prism software (Graphpad). Fulllength BAX protein was prepared as previously described (Suzuki et al, Cell, 103:645) and fluorescence polarization assay performed as described above.
[0197] $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ Binds to BCL-X
[0198] To determine if $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ specifically interacts with the defined binding groove of an anti-apoptotic multidomain protein, a two-dimensional ${ }^{15} \mathrm{~N} /{ }^{1} \mathrm{H}$ heteronuclear single-quantum correlation (HSQC) spectrum of ${ }^{15} \mathrm{~N}$-labeled BCL-X X_{L} before and after the addition of $\mathrm{SAHB}_{B_{B I D}}$ A was recorded and compared with the corresponding BID BH3/ ${ }^{15} \mathrm{~N}-\mathrm{BCL}-\mathrm{X}_{L}$ spectrum. Briefly, Escherichia coli BL21 (DE3) containing the plasmid encoding C-terminal deleted $\mathrm{BCL}^{1} \mathrm{X}_{L}$ were cultured in M9-minimal medium containing ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}$ (Cambridge Isotope Laboratories) to generate uniformly ${ }^{15} \mathrm{~N}$-labeled protein. Recombinant proteins were isolated from bacteria. Unlabeled SAHB3 BID A and BID BH3 peptides were generated and purified as described above. The following 1:1 complexes were prepared at 0.1 mM in 50 mM potassium phosphate (pH 7), 50 mM sodium chloride, 5% DMSO in $\mathrm{D}_{2} \mathrm{O}$ or $\mathrm{H}_{2} \mathrm{O} / \mathrm{D}_{2} \mathrm{O}$ (95:5): ${ }^{15} \mathrm{~N}$-BCL- $\mathrm{X}_{L} /$ unlabeled BID BH3, ${ }^{15} \mathrm{~N}-\mathrm{BCL}-\mathrm{X}_{L}$ /unlabeled $\mathrm{SAHB}_{B I D} \mathrm{~A}$. Two dimensional ${ }^{15} \mathrm{~N} /{ }^{1} \mathrm{H}$ heteronuclear single-quantum spectra were recorded for the two complexes and analyzed for changes in resonance upon ligand binding.
[0199] The overall similarity of the HSQC spectra indicates that the structural changes occurring in BCL- X_{L} after addition of $\mathrm{SAHB}_{B_{B D}} \mathrm{~A}$ are nearly identical to those observed with BID BH3 peptide(FIG. 11f).
[0200] SAHB3 ${ }_{B L D}$ Compounds Trigger Rapid and Specific Release of Mitochondrial Cytochrome C
[0201] In order to assess the biological activity of SAHB3 ${ }_{B D D}$ compounds in vitro, cytochrome c release assays were performed using purified mouse liver mitochondria. Mitochondria ($0.5 \mathrm{mg} / \mathrm{mL}$) were incubated for 40 minutes with $1 \mu \mathrm{M}$ and 100 nM of $\mathrm{SAHB}_{B I D}$ compounds and then supernatants and mitochondrial fractions isolated and subjected to cytochrome c ELISA assay. Background cytochrome c release ($10-15 \%$) was subtracted from total release for each sample, and the percent actual cytochrome c release was determined (FIG. 12). The identical experiment was performed concurrently on mouse liver mitochondria isolated from Bak-/- mice, which do not release mitochondrial cytochrome c in response to BID-BH3 activation; data from the BAK-/- mitochondria therefore serve as a negative control for BAK-mediated cytochrome c release in response to $\mathrm{SAHB3}_{B I D}$ treatments. In each case, except for the double cross-linked $\mathrm{SAHB}_{B I D} \mathrm{E}$ (which may lack critical amino acids for biological activity or, in this case, be overly constrained by the dual cross-links), there is approximately a doubling of cytochrome c release in response to $1 \mu \mathrm{M}$

SAHB3 $_{B I D}$ compounds compared to the unmodified peptide (FIG. 12a). BAK-independent cytochrome c release is observed at this dose with $\mathrm{SAHB}_{{ }_{B I D}} \mathrm{~A}, \mathrm{~B}$, and, in particular, D. Whereas this cytochrome c release may represent a nonspecific membrane perturbing effect of the α-helices, the role of a $\mathrm{SAHB3}_{B I D}$-induced, BAK-independent component of cytochrome c release is worthy of further exploration. Interestingly, the $\mathrm{SAHB3}_{B I D}$ compound that induces the most significant level of BAK-independent cytochrome c release, $\mathrm{SAHB}_{B I D} \mathrm{D}$, is also the most hydrophobic of the $\mathrm{SAHB} 3_{B I D}$ compounds; $\mathrm{SAHB3}_{B I D} \mathrm{D}$ elutes from the reverse phase C18 column at 95% acetonitrile/ 5% water, compared to the other SAHB3 ${ }_{B I D}$ compounds that elute at $50-75 \%$ acetonitrile. BID mutants with defective BH3 domains can promote BAKindependent cytochrome c mobilization (Scorrano et al, Dev Cell, 2:55), and the highly hydrophobic BID helix 6 has been implicated in this activity (L. Scorrano, S. J. Korsmeyer, unpublished results). It is plausible that SAHB3BIDD displays both BAK dependent and independent cytochrome c release by mimicking features of BID helices 3 and 6 . At ten-fold lower dosing $\mathrm{SAHB}_{B I D} \mathrm{~A}$ and B retain selective BAK-dependent cytochrome c release activity (FIG. 12b). The potency of $\mathrm{SAHB} 3_{B I D} \mathrm{~B}$, in particular, compares favorably with maximally activated myristolated BID protein, which releases approximately 65% cytochrome c under these conditions at doses of 30 nM .
[0202] The most active $\mathrm{SAHB}_{B I D}$ compounds, A and B , were subjected to further kinetic studies to determine if helical preorganization can trigger more rapid cytochrome c release compared to the unmodified peptide. Similar to the above experiment, mouse liver mitochondria from wild-type and Bak-/- mice were exposed to the compounds at various concentrations and assayed for cytochrome c release at 10 and 40 minute intervals. Whereas at 10 minutes the unmodified peptide causes less than 10% release at the highest dose tested $(1 \mu \mathrm{M}), \mathrm{SAHB}_{B I D} \mathrm{~B}$ has an EC50 for release at this timepoint of just under 400 nM , with almost maximal cytochrome release at $1 \mu \mathrm{M}$ (FIG. 13a). Likewise, $\mathrm{SAHB}_{\text {BID } \mathrm{A} \text { triggers }}$ significant cytochrome c release at the 10 minute time interval. The EC50 for cytochrome c release at 40 minutes is 2.9 $\mu \mathrm{M}$ for the unmodified peptide and 310 and 110 nM for $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ and B , respectively (FIG. 13b). Thus, $\mathrm{SAHB}_{B I D} \mathrm{~A}$ and B display a $10-25$ fold enhancement in cytochrome c release activity at the 40 minute time point. Whereas the BAK-dependent cytochrome c release increases over time, the BAK-independent release does not change between the 10 and 40 minute timepoints, suggesting that this distinct release occurs early and is maximally achieved within 10 minutes. Of note, the negative control Gly to Glu point mutant of $\operatorname{SAHB}_{B_{B I D}} \mathrm{~A}, \mathrm{SAHB} 3_{B I D\left(G_{-} E\right)}$ A, generates only Bak-independent cytochrome c release, confirming that $\mathrm{SAHB3}_{B I D}$ A functions via the Bak-dependent mitochondrial apoptosis pathway (FIG. 14). Taken together, these cytochrome c release data indicate that $\mathrm{SAHB} 3_{B I D} \mathrm{~A}$ and B are capable of specifically inducing BAK-dependent cytochrome c release with markedly enhanced potency and kinetics compared to the unmodified peptide.

[0203] $\mathrm{SAHB3}_{B D D}$ Compounds Penetrate Intact Cells

[0204] Fluorescein-derivatized $\mathrm{SAHB}_{{ }_{B I D}}$ compounds, BID BH3 peptides, and a BID helix 6 peptide were incubated with Jurkat T-cell leukemia cells in culture for 4-24 hours and subsequently FACS sorted to determine percent labeling of leukemia cells. In order to avoid confounding results from cell-surface bound compounds, the Jurkat cells were washed
thoroughly and subjected to trypsin overdigestion, in accordance with recent reports. For each compound tested, there was no significant change in the FITC signal profile after trypsin digestion, suggesting that in the case of these peptides, little to no FITC-labeled compound is surface bound (FIG. 15). Whereas BID BH3-treated cells were FITC-negative, both FITC-SAHB3 BID $^{\text {A- and FITC-SAHB3 }}{ }_{B I D\left(G _E\right)} \mathrm{A}^{-}$ treated cells were FITC-positive, as indicated by a rightward shift of the FITC signal (FIG. 16a). The similar profile of FITC-SAHB3 $3_{B D}$ A and FITC-SAHB3 $3_{B I D\left(G_{-} E\right)} \mathrm{A}$ in these cell permeability studies is particularly important, given the use of the point mutant compound as a negative control in biological experiments. BID helix 6 , a cell permeable and membrane perturbing peptide, was used as a positive control for FITC-labeling in this experiment.
[0205] Surprisingly, it was discovered that FITC$\mathrm{SAHB}_{{ }_{B I D}}$ A appears to enter the cell via endocytosis, a tem-perature- and energy-dependent transport pathway. Cellular import of FITC-SAHB3 $3_{B I D}$ A occurred in a time-dependent manner (FIG. 16b). When cellular endocytosis was inhibited by performing the experiment at $4^{\circ} \mathrm{C}$. (FIG. 17a, 17b) or by treatment with the energy poisons sodium azide and 2 -deoxyglucose (FIG. 17c), cell labeling was inhibited or markedly diminished, respectively. Of note, Jurkat cells labeled by FITC-SAHB $3_{B I D}$ A at $37^{\circ} \mathrm{C}$. are propidium iodide (PI) negative, confirming that the crosslinked peptide does not merely function as a permeabilizing agent (FIG. 17b); in contrast, FITC-BID helix 6 readily penetrates at both temperatures, effectively permeabilizing the cells, as evidenced by the degree of PI positivity (FIG. 17b). These data support an endocytic mechanism of entry for the SAHB3 $_{B I D}$ compounds, consistent with recent reports citing cell-surface adherence followed by endocytosis as the mechanism of entry for other cell-penetrating peptides (CPPs), such as the HIV transactivator of transcription (TAT). Whereas highly basic CPPs, such as TAT and Antennapedia, are believed to be concentrated at the cell surface by adherence to negatively charged glycosaminoglycans SAHB3 $_{B D}$ A import was not inhibited in a dose-responsive manner by heparin (FIG. 18) The biophysical properties of the $\mathrm{SAHB}_{B D D}$ amphipathic α-helix may facilitate distinct cell contacts via electrostatic and/or lipid membrane interactions
[0206] Confocal microscopy experiments were employed in order to determine the intracellular localization of $\mathrm{SAHB3}_{B I D}$ A. Jurkat T-cell leukemia cells were incubated with FITC-labeled compounds as described above or with serum replacement at 4 hours followed by additional 16 hours incubation at $37^{\circ} \mathrm{C}$., and after washing twice with PBS, were cytospun at 600 RPM for 5 minutes onto superfrost plus glass slides (Fisher). Cells were then fixed in 4\% paraformaldehyde, washed with PBS, incubated with TO-PRO-3 iodide $(100 \mathrm{nM})$ (Molecular Probes) to counterstain nuclei, treated with Vectashield mounting medium (Vector), and then imaged by confocal microscopy (BioRad 1024). For double labeling experiments, fixed cells were additionally incubated with primary antibody to TOM20, and rhodamine-conjugated secondary antibody prior to TOPRO-3 counterstaining. For live confocal microscopy, double labeling of Jurkat cells was performed with FITC-SAHB $A_{A}(10 \mu \mathrm{M})$ and MitoTracker (100 nM , Molecular Probes), tetramethylrhodamine isothiocyanate (TRITC)-Dextran 4.4 kD or 70 kD ($25 \mathrm{mcg} / \mathrm{mL}$, Molecular Probes), or Alexa Fluor 594 -transferrin ($25 \mathrm{mcg} / \mathrm{mL}$, Molecular Probes) for 4 hours (dextran and transferrin) or 24 hours (MitoTracker). Due to limitations of photobleaching,

BCL-2 overexpressing Jurkat cells were used for live confocal microscopy in order to optimize FITC imaging. FITCSAHB_{A} labeling of mitochondria was brighter in BCL-2 overexpressing Jurkats (consistent with the mechanism for SAHB activity), and thus image capture was facilitated using these cells. Treated Jurkats were washed twice and then resuspended in PBS and wet mount preparations analyzed with a BioRad 1024 (Beth Israel/Deaconess Center for Advanced Microscopy) or Zeiss LSM510 laser scanning confocal microscope (Children's Hospital Boston Imaging Core).
[0207] In fixed sections, $\mathrm{SAHB3}_{{ }_{B I D}} \mathrm{~A}$ compounds localized to the cytoplasmic rim of the leukemic cells, with no plasma membrane or surface fluorescence evident; the vesicular pattern of fluorescence suggested an organelle-specific localization (FIGS. 19a and 19b). Consistent with the FACS data, Jurkat cells treated with FITC-BID BH3 showed no fluorescent labeling (FIG. 19c). Whereas FITC$\mathrm{SAHB}_{B I D}$ A-treated cells display selective intracellular fluorescence and maintain their cellular architecture (FIG. 19a), FITC-BID helix 6-treated cells are diffusely labeled and demonstrate disrupted cellular morphology (FIG. 19d). Colocalization studies using FITC-SAHB3 ${ }_{B I D} A$ and an antibody to mitochondrial membrane protein Tom 20 , demonstrated extensive overlap of $\mathrm{SAHB}_{\text {BID }}$ A fluorescence with mitochondria, the expected site of SAHB3BID's molecular targets (FIG. 20).
[0208] Live cell imaging performed 4 hr after SAHB treatment demonstrated an initial colocalization of FITC-SAHB A with dextran (4.4 kD or 70 kD)-labeled endosomes (FIG. 21a), but not transferrin-labeled endosomes (FIG. 21b), consistent with cellular uptake by fluid-phase pinocytosis (manuscript ref 27), the endocytic pathway determined for TAT and Antp peptides (manuscript ref 28). At a 24 hr time point, intracellular FITC-SAHB A_{A} showed increased colocalization with MitoTracker-labeled mitochondria in live cells (FIG. 21c) consistent with the mitochondrial colocalization observed in fixed cells using an antibody to Tom20, a mitochondrial outer membrane protein (FIG. 20). Taken together, the FACS data and confocal imaging demonstrate that the all-hydrocarbon crosslink enables $\mathrm{SAHB}_{{ }_{B I D}}$ A compounds to be imported by intact cells (e.g., through an endocytotic mechanism).
[0209] $\mathrm{SAHB3}_{B I D}$ Compounds Trigger Apoptosis of B-, T-, and Mixed-Lineage Leukemia (MLL) Cells
[0210] In order to assess whether $\mathrm{SAHB3}_{B I D}$ compounds could arrest the growth of proliferating leukemia cells in culture, 3-(4,5-dimethylthiazol-2-yl)2,5-dipheny tetrazolium bromide, MTT assays using serial dilutions of $\mathrm{SAHB3}_{B_{B I D}} \mathrm{~A}$ were performed on T-cell (Jurkat), B-cell (REH), and Mixed Lineage Leukemia (MLL)-cells (MV4;11, SEMK2, RS4;11) in culture. $\mathrm{SAHB}_{{ }_{B I D}}$ A inhibited the leukemic cells at $\mathrm{IC}_{50} \mathrm{~S}$ of 2.2 (Jurkat), 10.2 (REH), 4.7 (MV4;11), 1.6 (SEMK2), and 2.7 (RS4;11) $\mu \mathrm{M}$ (FIG. 22a). Neither the BID BH3 peptide nor the $\mathrm{SAHB}_{A(G \rightarrow E)}$ point mutant had an effect in this dose range (FIG. 22 $b, \mathbf{2 2} c$).
[0211] To assess whether this metabolic arrest represented apoptosis induction, Jurkat leukemia cells were treated with $10 \mu \mathrm{M} \mathrm{SAHB3} 3_{B I D} \mathrm{~A}$ and $\mathrm{B}, \mathrm{SAHB}_{B_{B I D\left(G_{\overrightarrow{-}}\right)} \mathrm{A}} \mathrm{A}$ and B , and unmodified BID BH3 peptide, in serum-free media for 4 hours followed by a 16 hour incubation in serum-containing media (ie. final peptide concentrations of $5 \mu \mathrm{M}$), and then assayed for apoptosis by flow cytometric detection of annexin V-treated cells. $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ and B demonstrated between $40-60 \%$ annexin V positivity by 20 hours post treatment,
whereas the unmodified peptide and SAHB3 $_{B I D}$ point mutants had no effect (FIGS. 23 a and 23b). Comparable studies that use either unmodified BH3 peptides with carrier reagents or engineered helices with nonspecific mitochondrial perturbing effects, required doses of $200-300 \mu \mathrm{M}$ to activate apoptosis. An additional control experiment using Jurkat cells engineered to overexpress BCL-2 was subsequently undertaken to assess whether SAHB3BID-induced apoptosis could be decreased by excess BCL-2, which would suggest that the compounds specifically function within cells through the mitochondrial apoptosis pathway. Indeed, the pro-apoptotic effect of $10 \mathrm{uM} \mathrm{SAHB} 3_{B I D} \mathrm{~A}$ and B on "wildtype" Jurkats was abolished in the BCL-2 overexpressing cells. This protective effect, however, can be overcome by dose escalation of $\mathrm{SAHB}_{B_{B D D}} \mathrm{~A}$ but not of $\mathrm{SAHB3}_{B I D\left(G_{-E)}\right)} \mathrm{A}$ (FIG. 24); in addition, a gly to ser point mutant of $\mathrm{SAHB3}_{B D D} \mathrm{~A}\left(\mathrm{SAHB3}_{B I D\left(G_{\triangle} S\right)} \mathrm{A}\right)$, which does not exhibit BCL-2 binding affinity (see above), is equally effective as a pro-apoptotic in "wild-type" and BCL-2 overexpressing Jurkat cells (FIG. 24). Apoptosis induction assays using $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ and $\mathrm{SAHB}_{B I D\left(G_{-E}\right)} \mathrm{A}$ were additionally performed in the REH, MV4;11, and SEMK2 cell lines with similar results (FIG. 25). Taken together, these data indicate that $\mathrm{SAHB}_{B I D}$ compounds can penetrate and kill proliferating leukemia cells. The observed pro-apoptotic effects are selectively abolished by gly to glu mutation of $\mathrm{SAHB}_{B I D} \mathrm{~A}$ and cellular overexpression of BCL-2, findings which underscore that $\mathrm{SAHB3}_{B I D}$ compounds function via the defined mitochondrial apoptosis pathway.
[0212] $\mathrm{SAHB3}_{B I D} \mathrm{~A}$ and $\mathrm{SAHB}_{3_{B I D G-\rightarrow S}} \mathrm{~A}$ Demonstrate Leukemic Suppression In Vivo
[0213] NOD-SCID mice were subjected to 300 cGy total body irradiation followed by intravenous injection of 4×10^{6} SEMK2-M1 leukemia cells exhibiting stable luciferase expression. The mice were monitored weekly for leukemia engraftment using the In Vivo Imaging System (IVIS, Xenogen), which quantitates total body luminescence after intraperitoneal injection of D -luciferin. On day 0 , the leukemic mice were imaged and then treated intravenously with 10 $\mathrm{mg} / \mathrm{kg}$ of $\mathrm{SAHB3}_{B I D} \mathrm{~A}, \mathrm{SAHB3}_{B I D G->S} \mathrm{~A}$, or no injection on days $1,2,3,5,6$. Total body luminescence was measured on days 4 and 7. Referring to FIG. $\mathbf{2 6} a$, analysis of tumor burden among the groups demonstrates leukemic suppression by SAHB3 $3_{B I D} \mathrm{~A}$ and $\mathrm{SAHB}_{B_{B I D(G-->S)}} \mathrm{A}$ compared to untreated control mice. Referring to FIG. 26 , total body luminescence images demonstrate more advanced leukemia in the untreated group by day 7 (red density, representing high level leukemia, is seen throughout the skeletal system) compared to the $\mathrm{SAHB}_{{ }_{B I D}}$ A-treated mice, which demonstrate lower level and more localized disease. Interestingly, the G-->S mutant, which cannot be sequestered by BCL-2 appears to be more potent than the parent compound, $\mathrm{SAHB3}_{B I D} \mathrm{~A}$, in suppressing leukemic growth.
[0214] In further animal experiments, leukemic mice (generated as above) were imaged on day 0 and then treated intravenously with $10 \mathrm{mg} / \mathrm{kg} \mathrm{SAHB3}_{B I D} \mathrm{~A}, 5 \mathrm{mg} / \mathrm{kg}$ $\mathrm{SAHB3}_{B I D} \mathrm{~A}$, or vehicle control (5% DMSO in D5W) on days $1,2,3,6$, and 7 . Total body luminescence was measured on days 4 and 8. Referring to FIG. 27a, analysis of tumor burden among the groups demonstrates leukemic suppression by $\mathrm{SAHB}_{3_{B I D}} \mathrm{~A}$ in a dose-dependent manner compared to untreated control mice. Referring to FIG. 27b, total body luminescence images demonstrate more advanced leukemia in the untreated group by day 8 (red density represents high
level leukemia) compared to the $\mathrm{SAHB}_{{ }_{B I D}} \mathrm{~A}$-treated mice, whose leukemic progression is noticeably blunted.
[0215] In additional animal experiments that instead employed SCID beige mice and RS4;11 leukemia cells, SAHB3 $_{B I D}$ A treatment consistently suppressed leukemia growth in vivo. For in vivo leukemia imaging, mice were anesthetized with inhaled isoflurane (Abbott Laboratories) and treated concomitantly with intraperitoneal injection of D-luciferin ($60 \mathrm{mg} / \mathrm{kg}$) (Promega). Photonic emission was imaged (2 min exposure) using the In Vivo Imaging System (Xenogen) and total body bioluminescence quantified by integration of photonic flux (photons/sec) (Living Image Software, Xenogen). Starting on experimental day 1 , mice received a daily tail vein injection of $\mathrm{SAHB}_{B I D} \mathrm{~A}(10 \mathrm{mg} / \mathrm{kg})$ or vehicle (5% DMSO in D5W) for seven days. Mice were imaged on days 1,3 , and 5 and survival monitored daily for the duration of the experiment. The survival distributions of SAHB3 $3_{B I D} \mathrm{~A}$ and vehicle-treated mice were determined using the Kaplan-Meier method and compared using the logrank test. The Fisher's Exact test was used to compare the proportion of mice who failed treatment between days 3 and 5, where treatment failure was defined as progression or death, and success as stable disease or regression. Expired mice were subjected to necropsy (Rodent Histopathology Core, DF/HCC).
[0216] Control mice demonstrated progressive acceleration of leukemic growth as quantitated by increased bioluminescent flux from days 1-5 (FIG. 27c). SAHB3 $3_{B I D}$ A treatment suppressed the leukemic expansion after day 3 , with tumor regression observed by day 5 . Representative mouse images demonstrate the progressive leukemic infiltration of spleen and liver in mice, but regression of disease at these anatomical sites in SAHB_{A}-treated mice by day 5 of treatment (FIG. 27d). The median time to death in this cohort was 5 days for control animals, whereas none of the SAHB_{A}-treated animals dies during the seven day treatment period, and instead survived for a median of 11 days (FIG. 27e). Histologic examination of SAHB_{A}-treated mice showed no obvious toxicity of the compound to normal tissue. In an additional study comparing $\mathrm{SAHB}_{B_{B I D}} \mathrm{~A}$ - and $\mathrm{SAHB}_{B_{B I D(G \rightarrow E)}} \mathrm{A}$-treated mice, animals receiving the point mutant SAHB did not exhibit tumor regression (FIG. 27f), highlighting the in vivo specificity of $\mathrm{SAHB3}_{B I D}$ A's anti-leukemic activity.

Polypeptides

[0217] In some instances, the hydrocarbon tethers (i.e., cross links) described herein can be further manipulated. In one instance, a double bond of a hydrocarbon alkenyl tether, (e.g., as synthesized using a ruthenium-catalyzed ring closing metathesis (RCM)) can be oxidized (e.g., via epoxidation or dihydroxylation) to provide one of compounds below.

Either the epoxide moiety or one of the free hydroxyl moieties can be further functionalized. For example, the epoxide can be treated with a nucleophile, which provides additional functionality that can be used, for example, to attach a tag (e.g., a radioisotope or fluorescent tag). The tag can be used to help direct the compound to a desired location in the body (e.g., directing the compound to the thyroid when using an Iodine tag) or track the location of the compound in the body. Alternatively, an additional therapeutic agent can be chemically attached to the functionalized tether (e.g., an anti-cancer agent such as rapamycin, vinblastine, taxol, etc.). Such derivitization can alternatively be achieved by synthetic manipulation of the amino or carboxy terminus of the polypeptide or via the amino acid side chain.
[0218] While hydrocarbon tethers have been described, other tethers are also envisioned. For example, the tether can include one or more of an ether, thioether, ester, amine, or amide moiety. In some cases, a naturally occurring amino acid side chain can be incorporated into the tether. For example, a tether can be coupled with a functional group such as the hydroxyl in serine, the thiol in cysteine, the primary amine in lysine, the acid in aspartate or glutamate, or the amide in asparagine or glutamine. Accordingly, it is possible to create a tether using naturally occurring amino acids rather than using a tether that is made by coupling two non-naturally occurring amino acids. It is also possible to use a single non-naturally occurring amino acid together with a naturally occurring amino acid.
[0219] It is further envisioned that the length of the tether can be varied. For instance, a shorter length of tether can be used where it is desirable to provide a relatively high degree of constraint on the secondary alpha-helical structure, whereas, in some instances, it is desirable to provide less constraint on the secondary alpha-helical structure, and thus a longer tether may be desired.
[0220] Additionally, while examples of tethers spanning from amino acids ito $i+3$, i to $i+4$; and i to $\mathrm{i}+7$ have been described in order to provide a tether that is primarily on a single face of the alpha helix, the tethers can be synthesized to span any combinations of numbers of amino acids
[0221] In some instances, alpha disubstituted amino acids are used in the polypeptide to improve the stability of the alpha helical secondary structure. However, alpha disubstituted amino acids are not required, and instances using monoalpha substituents (e.g., in the tethered amino acids) are also envisioned.
[0222] As can be appreciated by the skilled artisan, methods of synthesizing the compounds of the described herein will be evident to those of ordinary skill in the art. Additionally, the various synthetic steps may be performed in an alternate sequence or order to give the desired compounds.

Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing the compounds described herein are known in the art and include, for example, those such as described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2d. Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995), and subsequent editions thereof.
[0223] The peptides of this invention can be made by chemical synthesis methods, which are well known to the ordinarily skilled artisan. See, for example, Fields et al., Chapter 3 in Synthetic Peptides: A User's Guide, ed. Grant, W. H. Freeman \& Co., New York, N.Y., 1992, p. 77. Hence, peptides can be synthesized using the automated Merrifield techniques of solid phase synthesis with the $\alpha-\mathrm{NH}_{2}$ protected by either t-Boc or F -moc chemistry using side chain protected amino acids on, for example, an Applied Biosystems Peptide Synthesizer Model 430A or 431.
[0224] One manner of making of the peptides described herein is using solid phase peptide synthesis (SPPS). The C-terminal amino acid is attached to a cross-linked polystyrene resin via an acid labile bond with a linker molecule. This resin is insoluble in the solvents used for synthesis, making it relatively simple and fast to wash away excess reagents and by-products. The N-terminus is protected with the Fmoc group, which is stable in acid, but removable by base. Any side chain functional groups are protected with base stable, acid labile groups.
[0225] Longer peptides could be made by conjoining individual synthetic peptides using native chemical ligation. Alternatively, the longer synthetic peptides can be synthesized by well known recombinant DNA techniques. Such techniques are provided in well-known standard manuals with detailed protocols. To construct a gene encoding a peptide of this invention, the amino acid sequence is reverse translated to obtain a nucleic acid sequence encoding the amino acid sequence, preferably with codons that are optimum for the organism in which the gene is to be expressed. Next, a synthetic gene is made, typically by synthesizing oligonucleotides which encode the peptide and any regulatory elements, if necessary. The synthetic gene is inserted in a suitable cloning vector and transfected into a host cell. The peptide is then expressed under suitable conditions appropriate for the selected expression system and host. The peptide is purified and characterized by standard methods.
[0226] The peptides can be made in a high-throughput, combinatorial fashion, e.g., using a high-throughput polychannel combinatorial synthesizer available from Advanced Chemtech.
[0227] FIGS. 28a-28f depict various peptides that include domains that are useful for creating cross-linked peptides.

Methods of Treatment

[0228] The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant (e.g., insufficient or excessive) BCL-2 family member expression or activity (e.g., extrinsic or intrinsic apoptotic pathway abnormalities). As used herein, the term "treatment" is defined as the application or administration of a therapeutic
agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease. A therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides.
[0229] It is possible that some BCL-2 type disorders can be caused, at least in part, by an abnormal level of one or more BCL-2 family members (e.g., over or under expression), or by the presence of one or more BCL-2 family members exhibiting abnormal activity. As such, the reduction in the level and/or activity of the BCL-2 family member or the enhancement of the level and/or activity of the BCL-2 family member, which would bring about the amelioration of disorder symptoms.
[0230] The polypeptides of the invention can be used to treat, prevent, and/or diagnose cancers and neoplastic conditions. As used herein, the terms "cancer", "hyperproliferative" and "neoplastic" refer to cells having the capacity for autonomous growth, i.e., an abnormal state or condition characterized by rapidly proliferating cell growth. Hyperproliferative and neoplastic disease states may be categorized as pathologic, i.e., characterizing or constituting a disease state, or may be categorized as non-pathologic, i.e., a deviation from normal but not associated with a disease state. The term is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness. "Pathologic hyperproliferative" cells occur in disease states characterized by malignant tumor growth. Examples of non-pathologic hyperproliferative cells include proliferation of cells associated with wound repair.
[0231] Examples of cellular proliferative and/or differentiative disorders include cancer, e.g., carcinoma, sarcoma, or metastatic disorders. The compounds (i.e., polypeptides) can act as novel therapeutic agents for controlling breast cancer, ovarian cancer, colon cancer, lung cancer, metastasis of such cancers and the like. A metastatic tumor can arise from a multitude of primary tumor types, including but not limited to those of breast, lung, liver, colon and ovarian origin.
[0232] Examples of cancers or neoplastic conditions include, but are not limited to, a fibrosarcoma, myosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, gastric cancer, esophageal cancer, rectal cancer, pancreatic cancer, ovarian cancer, prostate cancer, uterine cancer, cancer of the head and neck, skin cancer, brain cancer, squamous cell carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinoma, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, choriocarcinoma, seminoma, embryonal carcinoma, Wilm's tumor, cervical cancer, testicular cancer, small cell lung carcinoma, non-small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma,
oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma, leukemia, lymphoma, or Kaposi sarcoma.
[0233] Examples of proliferative disorders include hematopoietic neoplastic disorders. As used herein, the term "hematopoietic neoplastic disorders" includes diseases involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof. Preferably, the diseases arise from poorly differentiated acute leukemias, e.g., erythroblastic leukemia and acute megakaryoblastic leukemia. Additional exemplary myeloid disorders include, but are not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus, L. (1991) Crit. Rev. in Oncol./Hemotol. 11:267-97); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM). Additional forms of malignant lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, peripheral T cell lymphomas, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease and Reed-Sternberg disease.
[0234] Examples of cellular proliferative and/or differentiative disorders of the breast include, but are not limited to, proliferative breast disease including, e.g., epithelial hyperplasia, sclerosing adenosis, and small duct papillomas; tumors, e.g., stromal tumors such as fibroadenoma, phyllodes tumor, and sarcomas, and epithelial tumors such as large duct papilloma; carcinoma of the breast including in situ (noninvasive) carcinoma that includes ductal carcinoma in situ (including Paget's disease) and lobular carcinoma in situ, and invasive (infiltrating) carcinoma including, but not limited to, invasive ductal carcinoma, invasive lobular carcinoma, medullary carcinoma, colloid (mucinous) carcinoma, tubular carcinoma, and invasive papillary carcinoma, and miscellaneous malignant neoplasms. Disorders in the male breast include, but are not limited to, gynecomastia and carcinoma.
[0235] Examples of cellular proliferative and/or differentiative disorders of the lung include, but are not limited to, bronchogenic carcinoma, including paraneoplastic syndromes, bronchioloalveolar carcinoma, neuroendocrine tumors, such as bronchial carcinoid, miscellaneous tumors, and metastatic tumors; pathologies of the pleura, including inflammatory pleural effusions, noninflammatory pleural effusions, pneumothorax, and pleural tumors, including solitary fibrous tumors (pleural fibroma) and malignant mesothelioma.
[0236] Examples of cellular proliferative and/or differentiative disorders of the colon include, but are not limited to, non-neoplastic polyps, adenomas, familial syndromes, colorectal carcinogenesis, colorectal carcinoma, and carcinoid tumors.
[0237] Examples of cellular proliferative and/or differentiative disorders of the liver include, but are not limited to, nodular hyperplasias, adenomas, and malignant tumors, including primary carcinoma of the liver and metastatic tumors.
[0238] Examples of cellular proliferative and/or differentiative disorders of the ovary include, but are not limited to, ovarian tumors such as, tumors of coelomic epithelium,
serous tumors, mucinous tumors, endometeriod tumors, clear cell adenocarcinoma, cystadenofibroma, brenner tumor, surface epithelial tumors; germ cell tumors such as mature (benign) teratomas, monodermal teratomas, immature malignant teratomas, dysgerminoma, endodermal sinus tumor, choriocarcinoma; sex cord-stomal tumors such as, granulosatheca cell tumors, thecoma-fibromas, androblastomas, hill cell tumors, and gonadoblastoma; and metastatic tumors such as Krukenberg tumors.
[0239] The polypeptides described herein can also be used to treat, prevent or diagnose conditions characterised by overactive cell death or cellular death due to physiologic insult etc. Some examples of conditions characterized by premature or unwanted cell deth are or alternatively unwanted or excessive cellular proliferation include, but are not limited to hypocellular/hypoplastic, acellular/aplastic, or hypercellular/hyperplastic conditions. Some examples include hematologic disorders including but not limited to fanconi anemia, aplastic anemia, thalaessemia, congenital neutropenia, myelodysplasia.
[0240] The polypeptides of the invention that act to decrease apoptosis can be used to treat disorders associated with an undesirable level of cell death. Thus, the anti-apoptotic peptides of the invention can be used to treat disorders such as those that lead to cell death associated with viral infection, e.g., infection associated with infection with human immunodeficiency virus (HIV). A wide variety of neurological diseases are characterized by the gradual loss of specific sets of neurons, and the anti-apoptotic peptides of the infection can be used in the treatment of these disorders. Such disorders include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) retinitis pigmentosa, spinal muscular atrophy, and various forms of cerebellar degeneration. The cell loss in these diseases does not induce an inflammatory response, and apoptosis appears to be the mechanism of cell death. In addition, a number of hematologic diseases are associated with a decreased production of blood cells. These disorders include anemia associated with chronic disease, aplastic anemia, chronic neutropenia, and the myelodysplastic syndromes. Disorders of blood cell production, such as myelodysplastic syndrome and some forms of aplastic anemia, are associated with increased apoptotic cell death within the bone marrow. These disorders could result from the activation of genes that promote apoptosis, acquired deficiencies in stromal cells or hematopoietic survival factors, or the direct effects of toxins and mediators of immune responses. Two common disorders associated with cell death are myocardial infarctions and stroke. In both disorders, cells within the central area of ischemia, which is produced in the event of acute loss of blood flow, appear to die rapidly as a result of necrosis. However, outside the central ischemic zone, cells die over a more protracted time period and morphologically appear to die by apoptosis. The antiapoptotic peptides of the invention can be used to treat all such disorders associated with undesirable cell death.
[0241] Some examples of immunologic disorders that can be treated with the polypeptides described herein include but are not limited to organ transplant rejection, arthritis, lupus, IBD, crone's disease, asthma, multiple sclerosis, diabetes etc. [0242] Some examples of neurologic disorders that can be treated with the polypeptides described herein include but are not limited to Alzheimer's Disease, Down's Syndrome, Dutch Type Hereditary Cerebral Hemorrhage Amyloidosis, Reactive Amyloidosis, Familial Amyloid Nephropathy with

Urticaria and Deafness, Muckle-Wells Syndrome, Idiopathic Myeloma; Macroglobulinemia-Associated Myeloma, Familial Amyloid Polyneuropathy, Familial Amyloid Cardiomyopathy, Isolated Cardiac Amyloid, Systemic Senile Amyloidosis, Adult Onset Diabetes, Insulinoma, Isolated Atrial Amyloid, Medullary Carcinoma of the Thyroid, Familial Amyloidosis, Hereditary Cerebral Hemorrhage With Amyloidosis, Familial Amyloidotic Polyneuropathy, Scrapie, Creutzfeldt-Jacob Disease, Gerstmann Straussler-Scheinker Syndrome, Bovine Spongiform Encephalitis, a Prion-mediated disease, and Huntington's Disease.
[0243] Some examples of endocrinologic disorders that can be treated with the polypeptides described herein include but are not limited to diabetes, hypthyroidism, hyopituitarism, hypoparathyroidism, hypogonadism, etc.
[0244] Examples of cardiovascular disorders (e.g., inflammatory disorders) that can be treated or prevented with the compounds and methods of the invention include, but are not limited to, atherosclerosis, myocardial infarction, stroke, thrombosis, aneurism, heart failure, ischemic heart disease, angina pectoris, sudden cardiac death, hypertensive heart disease; non-coronary vessel disease, such as arteriolosclerosis, small vessel disease, nephropathy, hypertriglyceridemia, hypercholesterolemia, hyperlipidemia, xanthomatosis, asthma, hypertension, emphysema and chronic pulmonary disease; or a cardiovascular condition associated with interventional procedures ("procedural vascular trauma"), such as restenosis following angioplasty, placement of a shunt, stent, synthetic or natural excision grafts, indwelling catheter, valve or other implantable devices. Preferred cardiovascular disorders include atherosclerosis, myocardial infarction, aneurism, and stroke.

Pharmaceutical Compositions and Routes of Administration

[0245] As used herein, the compounds of this invention, including the compounds of formulae described herein, are defined to include pharmaceutically acceptable derivatives or prodrugs thereof. A "pharmaceutically acceptable derivative or prodrug" means any pharmaceutically acceptable salt, ester, salt of an ester, or other derivative of a compound of this invention which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound of this invention. Particularly favored derivatives and prodrugs are those that increase the bioavailability of the compounds of this invention when such compounds are administered to a mammal (e.g., by allowing an orally administered compound to be more readily absorbed into the blood) or which enhance delivery of the parent compound to a biological compartment (e.g., the brain or lymphatic system) relative to the parent species. Preferred prodrugs include derivatives where a group which enhances aqueous solubility or active transport through the gut membrane is appended to the structure of formulae described herein.
[0246] The compounds of this invention may be modified by appending appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and include those which increase biological penetration into a given biological compartment (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of excretion.
[0247] Pharmaceutically acceptable salts of the compounds of this invention include those derived from pharmaceutically acceptable inorganic and organic acids and bases.

Examples of suitable acid salts include acetate, adipate, benzoate, benzenesulfonate, butyrate, citrate, digluconate, dodecylsulfate, formate, fumarate, glycolate, hemisulfate, heptanoate, hexanoate, hydrochloride, hydrobromide, hydroiodide, lactate, maleate, malonate, methanesulfonate, 2 -naphthalenesulfonate, nicotinate, nitrate, palmoate, phosphate, picrate, pivalate, propionate, salicylate, succinate, sulfate, tartrate, tosylate and undecanoate. Salts derived from appropriate bases include alkali metal (e.g., sodium), alkaline earth metal (e.g., magnesium), ammonium and N -(alkyl) ${ }_{4}{ }^{+}$ salts. This invention also envisions the quaternization of any basic nitrogen-containing groups of the compounds disclosed herein. Water or oil-soluble or dispersible products may be obtained by such quaternization.
[0248] The compounds of the formulae described herein can, for example, be administered by injection, intravenously, intraarterially, subdermally, intraperitoneally, intramuscularly, or subcutaneously; or orally, buccally, nasally, transmucosally, topically, in an ophthalmic preparation, or by inhalation, with a dosage ranging from about 0.001 to about 100 $\mathrm{mg} / \mathrm{kg}$ of body weight, or according to the requirements of the particular drug. The methods herein contemplate administration of an effective amount of compound or compound composition to achieve the desired or stated effect. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 6 times per day or alternatively, as a continuous infusion. Such administration can be used as a chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w / w). Alternatively, such preparations contain from about 20% to about 80% active compound.
[0249] Lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the disease, condition or symptoms, the patient's disposition to the disease, condition or symptoms, and the judgment of the treating physician.
[0250] Upon improvement of a patient's condition, a maintenance dose of a compound, composition or combination of this invention may be administered, if necessary. Subsequently, the dosage or frequency of administration, or both, may be reduced, as a function of the symptoms, to a level at which the improved condition is retained. Patients may, however, require intermittent treatment on a long-term basis upon any recurrence of disease symptoms.
[0251] Pharmaceutical compositions of this invention comprise a compound of the formulae described herein or a pharmaceutically acceptable salt thereof, an additional agent including for example, morphine or codeine; and any pharmaceutically acceptable carrier, adjuvant or vehicle. Alternate compositions of this invention comprise a compound of the formulae described herein or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, adjuvant or vehicle. The compositions delineated herein include the compounds of the formulae delineated herein, as well as additional therapeutic agents if present, in amounts
effective for achieving a modulation of disease or disease symptoms, including BCL-2 family member mediated disorders or symptoms thereof.
[0252] The term "pharmaceutically acceptable carrier or adjuvant" refers to a carrier or adjuvant that may be administered to a patient, together with a compound of this invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.
[0253] Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems (SEDDS) such as d- α-tocopherol polyethyleneglycol 1000 succinate, surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as $\alpha-, \beta-$, and γ-cyclodextrin, may also be advantageously used to enhance delivery of compounds of the formulae described herein.
[0254] The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or via an implanted reservoir, preferably by oral administration or administration by injection. The pharmaceutical compositions of this invention may contain any conventional nontoxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
[0255] The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant,
or carboxymethyl cellulose or similar dispersing agents which are commonly used in the formulation of pharmaceutically acceptable dosage forms such as emulsions and or suspensions. Other commonly used surfactants such as Tweens or Spans and/or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms may also be used for the purposes of formulation.
[0256] The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, emulsions and aqueous suspensions, dispersions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions and/or emulsions are administered orally, the active ingredient may be suspended or dissolved in an oily phase is combined with emulsifying and/or suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
[0257] The pharmaceutical compositions of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable nonirritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
[0258] The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques wellknown in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
[0259] When the compositions of this invention comprise a combination of a compound of the formulae described herein and one or more additional therapeutic or prophylactic agents, both the compound and the additional agent should be present at dosage levels of between about 1 to 100%, and more preferably between about 5 to 95% of the dosage normally administered in a monotherapy regimen. The additional agents may be administered separately, as part of a multiple dose regimen, from the compounds of this invention. Alternatively, those agents may be part of a single dosage form, mixed together with the compounds of this invention in a single composition.
[0260] Screening Assays
[0261] The invention provides methods (also referred to herein as "screening assays") for identifying polypeptides which modulate the activity of one or more BCL-2 family proteins or which bind to one or more BCL-2 family proteins (e.g., a polypeptide having at least one BH homology domain).
[0262] The binding affinity of polypeptides described herein can be determined using, for example, a titration binding assay. A BCL-2 family polypeptide or polypeptide comprising a BH domain (e.g., BID, BAK, BAX, etc.) can be exposed to varying concentrations of a candidate compound
(i.e., polypeptide) (e.g., $1 \mathrm{nM}, 10 \mathrm{nM}, 100 \mathrm{nM}, 1 \mu \mathrm{M}, 10 \mu \mathrm{M}$, $100 \mu \mathrm{M}, 1 \mathrm{mM}$, and 10 mM) in the presence of a substrate such as a fluorescently labeled BH 3 containing polypeptide or a fragment thereof (e.g., BID, BAD, BAK, BAX, etc.). The effect of each concentration of candidate compound is then analyzed to determine the effect of the candidate compound on BCL-2 family binding activity at varying concentrations, which can be used to calculate the K_{i} of the candidate compound. The candidate compound can modulate BCL-2 type activity in a competitive or non-competitive manner. Direct binding assays can also be performed between BCL-2 family proteins and fluorescently labeled candidate compounds to determine the K_{d} for the binding interaction. Candidate compounds could also be screened for biological activity in vitro, for example, by measuring their dose-responsive efficacy in triggering cytochrome c from purified mitochondria. Cell permeability screening assays are also envisioned, in which fluorescently labeled candidate compounds are applied to intact cells, which are then assayed for cellular fluorescence by microscopy or high-throughput cellular fluorescence detection.
[0263] The assays described herein can be performed with individual candidate compounds or can be performed with a plurality of candidate compounds. Where the assays are performed with a plurality of candidate compounds, the assays can be performed using mixtures of candidate compounds or can be run in parallel reactions with each reaction having a single candidate compound. The test compounds or agents can be obtained using any of the numerous approaches in combinatorial library methods known in the art.
[0264] In one embodiment, an assay is a cell-based assay in which a cell that expresses a BCL-2 family protein or biologically active portion thereof is contacted with a candidate polypeptide, and the ability of the test compound to modulate BCL-2 type activity is determined (e.g., in some instances increase in apoptosis and in other instances decrease apoptosis, via intrinsic or extrinsic cell death pathways). Determining the ability of the test compound to modulate BCL-2 type activity within cells can be accomplished by monitoring, for example, release of cytochrome c from the mitochondria or other relevant physiologic readout (e.g., annexin V staining, MTT assay, caspase activity assay, TUNEL assay).
[0265] In one embodiment, an assay is a biochemical assay, whereby crosslinked polypeptides can be linked to affinity resin in order to purify or identify new or known interactive partners in the apoptotic pathway.
[0266] All references cited herein, whether in print, electronic, computer readable storage media or other form, are expressly incorporated by reference in their entirety, including but not limited to, abstracts, articles, journals, publications, texts, treatises, internet web sites, databases, patents, and patent publications.

Other Applications

[0267] Biologically relevant applications for the peptides described herein are numerous and readily apparent, as indicated by the following cell compartment-based examples:
(1) Cell surface-Natural peptides representing key helical regions of the HIV-1 protein gp41 (e.g. C-peptide, T-20 peptide) have been shown to prevent viral fusion, and therefore, HIV infectivity. Helical peptides participate in fusion mechanisms essential to many virus-host cell infection paradigms (e.g. Dengue, Hepatitis C, Influenza), and therefore, hydro-carbon-stapled analogues of these critical helical regions may
function as effective antibiotics by inhibiting viral fusion. In general, ligands that interact with cell surface receptors using helical interfaces to activate or inhibit signaling pathways, represent additional applications for the polypeptides described herein.
(2) Intramembrane - Receptor dimerization and oligomerization are cardinal features of ligand-induced receptor activation and signaling. Transmembrane helical domains widely participate in such essential oligomerization reactions (e.g. Epidermal Growth Factor Receptor [EGFR] family), and specific peptide sequences have been defined that facilitate these tight intramembrane helical associations. Aberrant activation of such receptors through oligomerization are implicated in disease pathogenesis (e.g. erbB and cancer). Therefore, in the appropriate setting, activation or inhibition of transmembrane inter-helical interactions would have therapeutic benefit.
(3) Cytosolic-Cytosolic targets include soluble protein targets and those associated with specific intracytosolic organelles, including the mitochondria, endoplasmic reticulum, Golgi network, lysosome, and peroxisome. Within the field of apoptosis, there are multiple cytosolic and mitochondrial apoptotic protein targets for hydrocarbon-stapled BCL-2 family domains. Within the BH 3 -only subgroup of pro-apoptotic proteins, two major subsets of BH 3 domains have been identified: (1) BID-like BH3s (e.g., BIM) which are apoptosis "activators," inducing BAK oligomerization and cytochrome c release at the mitochondrion and (2) BADlike BH3s which are apoptosis "sensitizers" that selectively target anti-apoptotic multidomain proteins, enabling subliminal levels of activating domains to be maximally effective. In addition to distinct binding of BH 3 -only proteins to pro- vs. anti-apoptotic multidomain family members, BH 3 domains display differential binding among anti-apoptotic proteins. For example, it has been demonstrated that BAD preferentially binds to the anti-apoptotic BCL-2, whereas BIM targets the anti-apoptotic MCL-1. Identifying and exploring these selective interactions are critically important because different BCL-2 family members are implicated in different types of cancer. For example, BCL-2 overexpression is responsible for the development of follicular lymphoma and chemotherapy resistance in general, whereas MCL-1 is believed to play an important role in the pathogenesis of multiple myeloma. The ability to transform the many BH 3 domains into structurally stable and cell permeable reagents would provide an important opportunity to explore and differentially manipulate apoptotic pathways in cancer cells. Targeting further helix-dependent interactions in the cytosol or at cytosolic organelles is envisioned.
(4) Nuclear-Nuclear transcription factors and their modulatory proteins drive a host of physiologic processes based upon peptide helical interactions with nuclear proteins and nucleic acids. The feasibility of generating hydrocarbonstapled peptides to engage in nuclear interactions has recently been demonstrated by our synthesis of a panel of hydrocar-bon-stapled 553 peptides, which interact with MDM2 at picomolar affinities. In addition to modulating protein-protein interactions within the nucleus, protein-nucleic acid interactions are also apparent targets. Multiple transcription factor families, such as homeodomain, basic helix-loop-helix, nuclear receptor, and zinc finger-containing proteins, directly interact with DNA via their peptide helices to activate or inhibit gene transcription. As an example, homeodomain proteins are a family of essential transcription factors that regulate genetic programs of growth and differentiation in all
multicellular organisms. These proteins share a conserved DNA-binding motif, called the homeodomain, which contains a 60 amino acid long peptide that forms three a-helices, the third of which makes direct contact with the major groove of DNA. Like the BH3 domain of apoptotic proteins, the homeodomain is a critical effector motif with sufficient variation among homologs to facilitate differential binding specificities and physiologic activities. Protein-DNA interactions can be complex and extensive, and thereby present a challenge to small molecule development for the purpose of studying and selectively modulating transcriptional events. In higher organisms, homeodomain proteins are highly expressed during development, specifying the body plan and dictating tissue differentiation. Overexpression of specific homeoproteins (e.g. CDX4) can activate tissue-specific differentiation programs resulting in, for example, blood formation from mouse embryonic stem cells. Deregulation of homeotic gene expression, such as aberrant upregulation of homeodomain proteins typically expressed in undifferenti-
ated cells or inappropriate downregulation of such proteins normally expressed in differentiated cells, can contribute to the development and maintenance of cancer. For example, in pediatric alveolar rhabdomyosarcoma, fusion of the PAX3 or PAX 7 DNA binding domain to the transactivating domain of forkhead has been implicated in cellular transformation; translocations involving the DNA-binding domains of several HOX genes have been linked to the pathogenesis of leukemia. Thus, the ability to chemically-stabilize transcription factor helices, such as homeodomain peptides, for cellular delivery has the potential to yield a chemical toolbox for the investigation and modulation of diverse transcription programs responsible for a multitude of biological process in health and disease.
[0268] A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

SEQUENCE LISTING

$<210>$ SEQ ID NO 2
$<211>$ LENGTH: 193
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Mus musculus
$<400>$ SEQUENCE: 2


```
<210> SEO ID NO 3
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 3
```

$\begin{array}{ll}\text { Trp Ala Arg Glu } \\ 1 & \text { Ile Gly Ala Gln Leu Arg Arg Met Ala Asp Asp Leu } \\ 10\end{array}$
Asn Ala Gln Tyr
20
$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 20
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetically generated peptide
$<400>$ SEQUENCE: 4
Ile Gly Tyr Glu Ile Gly Ser Lys Leu Ala Ala Met Cys Asp Asp Phe
Asp Ala Gln Met
20

```
<210> SEQ ID NO 5
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 5
Ala Ala Gln Arg Tyr Gly Arg Glu Leu Arg Arg Met Ser Asp Glu Phe
1 5 10 15
Val Asp Ser Phe
20
<210> SEQ ID NO 6
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 6
Pro Glu Ile Trp Ile Ala Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe
Asn Ala Tyr Tyr
20
```

<210> SEQ ID NO 7
<211> LENGTH: 20
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 7
Ile Ile Arg Asn Ile Ala Arg His Leu Ala Gln Val Gly Asp Ser Met
1
Asp Arg Ser Ile
20
$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 20
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetically generated peptide
$<400>$ SEQUENCE: 8
Gly Ser Asp Ala Leu Ala Leu Arg Leu Ala Cys Ile Gly Asp Glu Met

Asp Val Ser Leu
20
$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 20
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE: 9

Ala Leu Ala Leu Arg Leu Ala Cys Ile Gly Asp Glu Met Asp Val Ser

Leu Arg
$<210>$ SEQ ID NO 11
$<211>$ LENGTH: 18
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE: 11
Trp Ile Ala Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe Asn Ala Tyr
$15010 \quad 15$
Tyr Ala
$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 18
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE: 12
Glu Cys Ala Thr Gln Leu Arg Arg Phe Gly Asp Lys Leu Asn Phe Arg
1
1
Gln Lys
$<210>$ SEQ ID NO 13
$<211>$ LENGTH: 18
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE: 13
Asn Ile Ala Arg His Leu Ala Gln Val Gly Asp Ser Met Asp Arg Ser
1

Ile Pro
$<210>$ SEQ ID NO 14
$<211>$ LENGTH: 18
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE: 14


```
<210> SEQ ID NO 16
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 16
```

Leu Asp Ala Leu Gly His Glu Leu Pro
15
<210> SEQ ID NO 17
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 17
Leu Glu Val Leu Gly Arg Glu Leu Pro
15
<210> SEQ ID NO 18
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 18
Leu Ala Gln Val Gly Asp Ser Met Asp
15
<210> SEQ ID NO 19
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 19
Leu Ala Gln Ile Gly Asp Glu Met Asp
<210> SEQ ID NO 20
<211> LENGTH: 9
$<212>$ TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 20
Leu Ala Cys Ile Gly Asp Glu Met Asp
<210> SEQ ID NO 21

```
<211> LENGTH: 9
<212> TYPE: PRT
<21.3> ORGANISM: Homo sapiens
<400> SEQUENCE: 21
```

Leu Arg Arg Ile Gly Asp Glu Phe Asn
1
$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 9
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 22
Leu Lys Ala Leu Gly Asp Glu Leu His
l
5
$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 9
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 23
Leu Arg Arg Met Ser Asp Glu Phe Val
l
5
$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 9
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 24
Leu Ala Ile Ile Gly Asp Asp Ile Asn
l
5
$<210>$ SEQ ID NO 25
$<211>$ LENGTH: 9
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 25
Leu Lys Arg Ile Gly Asp Glu Leu Asp
1
$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 9
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Mus musculus
$<400>$ SEQUENCE: 26
Leu Leu Arg Leu Gly Asp Glu Leu Glu
l
$<210>$ SEQ ID NO 27
$<211>$ LENGTH: 351
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 27
Met Thr Leu Arg Leu Leu Glu Asp Trp Cys Arg Gly Met Asp Met Asn

M
1

Pro Arg Lys Ala Leu Leu Ile Ala Gly Ile Ser Gln Ser Cys Ser Val

$<210>$ SEQ ID NO 28
$<211>$ LENGTH: 352
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Mus musculus
$<400>$ SEQUENCE: 28
Met Thr Leu Arg Leu Leu Glu Asp Trp Cys Arg Gly Met Asp Met Asn
1

$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 329
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 29

$<210>$ SEQ ID NO 30
$<211>$ LENGTH: 364
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 30


```
<210> SEQ ID NO 31
<211> LENGTH: 8
<212> TYPE: PRT
<21.3> ORGANISM: Homo sapiens
<400> SEQUENCE: 31
```

Leu Ser Arg Ala Leu Gly His Glu
1 5
$<210\rangle$ SEQ ID NO 32
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 32
Leu Thr Arg Val Leu Gly Asn Arg

```
<210> SEQ ID NO }3
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: }3
```

Leu Asp Ala Leu Gly His Glu
1
$<210>$ SEQ ID NO 34
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Mus musculus
<400> SEQUENCE: 34
Leu Glu Val Leu Gly Arg Glu
1
<210> SEQ ID NO 35
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 35

Leu Lys Ala Leu Gly Asp Glu	
1	5

$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 7
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 36
Leu Ala Gln Val Gly Asp Ser
l
5
$<210>$ SEQ ID NO 37
$<211>$ LENGTH: 7
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 37
Leu Lys Arg Ile Gly Asp Glu
l
5
$<210>$ SEQ ID NO 38
$<211>$ LENGTH: 7
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 38
Leu Arg Arg Ile Gly Asp Glu
l
$<210>$ SEQ ID NO 39
$<211>$ LENGTH: 7
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 39
Leu Ala Gln Ile Gly Asp Glu
1
<210> SEQ ID NO 40
<211> LENGTH: 213
<212> TYPE: PRT
<213> ORGANISM: Rattus norvegicus
<400> SEQUENCE: 40

$<210>$ SEQ ID NO 41
$<211>$ LENGTH: 211
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE : 41

$<210>$ SEQ ID NO 42
$<211>$ LENGTH: 192
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Bos taurus
$<400>$ SEQUENCE: 42


```
<210> SEQ ID NO 43
<211> LENGTH: }19
<212> TYPE: PRT
<213> ORGANISM: Rattus norvegicus
```

<400> SEQUENCE: 43

Met Ala Thr Pro Ala Ser Ala Pro Asp Thr Arg Ala Leu Val Ala Asp Phe $15010 \begin{array}{lll}15 & 5\end{array}$				
Val Gly Tyr Lys Leu Arg Gln Lys Gly Tyr Val Cys Gly Ala gly Pro2020				
Gly Glu Gly Pro Ala Ala Asp Pro Leu His Gln Ala Met Arg Ala Ala 35 40 45				
Gly Asp Glu Phe Glu Thr Arg Phe Arg Arg Thr Phe Ser Asp Leu Ala5050				
Ala Gln Leu His Val Thr Pro Gly Ser AlaGln Gln Arg Phe Thr Gln 70 70$\quad 80$				
Val Ser Asp Glu Leu Phe Gln Gly Gly Pro Asn Trp Gly Arg Leu Val859095				
Ala Phe Phe Val Phe Gly Ala Ala Leu Cys Ala Glu Ser Val Asn Lys100105				
Glu Phe Thr Ala Leu Tyr Gly Asp Gly Ala Leu Glu Glu Ala Arg Arg150155160				
Val Ala Leu Gly Ala Leu Val Thr Val Gly Ala Phe Phe Ala Ser Lys 180185190				

$<210>$ SEQ ID NO 44
$<211>$ LENGTH: 194
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 44

$<210>$ SEQ ID NO 45
$<211>$ LENGTH: 200
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Homo sapiens
$<400>$ SEQUENCE: 45

$<210>$ SEQ ID NO 46
$<211>$ LENGTH: 231
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Caenorhabditis elegans
$<400>$ SEQUENCE: 46


```
<210> SEQ ID NO 47
<211> LENGTH: 270
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Consensus sequence
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 77, 114, 123, 168, 221
<223> OTHER INFORMATION: Xaa = any amino acid
<400> SEQUENCE: 47
```



```
<210> SEQ ID NO 48
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 48
```

$\begin{array}{ll}\text { Lys Ala Glu Leu Leu Gln Gly Gly Asp Lys Lys Arg Gln Arg } \\ 1 & 5 \\ 10\end{array}$
$<210>$ SEQ ID NO 49
$<211>$ LENGTH: 14
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE: 49
Ala Leu Arg Leu Ala Cys Ile Gly Asp Glu Met Asp Val ser

```
<210> SEQ ID NO 50
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 50
```


$<210>$ SEQ ID NO 51
$<211>$ LENGTH: 14
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE: 51
Ala Arg His Leu Ala Gln Val Gly Asp Ser Met Asp Arg Ser
15510

```
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: }5
Gly Arg Gln Leu Ala Ile Ile Gly Asp Asp Ile Asn Arg Arg
<210> SEQ ID NO 53
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 53
```

Ala Ala Arg Leu Lys Ala Leu Gly Asp Glu Leu His Gln Arg	
l	10

$<210>$ SEQ ID NO 54
$<211>$ LENGTH: 14
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<400>$ SEQUENCE : 54
Ser Glu Cys Leu Arg Arg Ile Gly Asp Glu Leu Asp Ser Asn
<210> SEQ ID NO 55
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 55
$\begin{array}{lc}\text { Ala Gln Glu Leu Arg Arg Ile Gly Asp Glu Phe Asn Ala Tyr } \\ \text { I } & 10\end{array}$
$<210>$ SEQ ID NO 56
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
$<400\rangle$ SEQUENCE: 56
Cys Thr Val Leu Leu Arg Leu Gly Asp Glu Leu Glu Gln Ile
15510
$<210>$ SEQ ID NO 57
$<211>$ LENGTH: 14
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SYnthetically generated peptide
$<400>$ SEQUENCE : 57
Lys Gln Ala Leu Arg Glu Ala Gly Asp Glu Phe Glu Leu Arg

```
<210> SEQ ID NO 58
<211> LENGTH: 14
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 58
\begin{tabular}{lcc} 
His Leu Thr Leu Arg Gln Ala Gly Asp Asp Phe Ser Arg Arg \\
1 & 5 & 10
\end{tabular}
\(<210>\) SEQ ID NO 59
\(<211>\) LENGTH: 14
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<400>\) SEQUENCE: 59
```

| Leu Glu Thr Leu Arg Arg Val Gly Asp Gly Val Gln Arg Asn | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | 5 | 10 |

$<210>$ SEQ ID NO 60
$<211>$ LENGTH: 184
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Mus musculus
$<400>$ SEQUENCE: 60

Asn Pro Asn Gly Ala Gly Pro Arg
180

```
<210> SEQ ID NO 61
<211> LENGTH: 185
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
```



```
<210> SEQ ID NO 65
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 65
Gly Arg Gln Leu Ala Ile Ile Gly Asp Asn Arg Arg
1 5 10
```

```
<210> SEQ ID NO 66
```

<210> SEQ ID NO 66
<211> LENGTH: 12
<211> LENGTH: 12
<212> TYPE: PRT
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 66
<400> SEQUENCE: 66
Ser Glu Cys Leu Lys Arg Ile Gly Asp Asp Ser Asn
1 5
<210> SEQ ID NO 67
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 67
Ala Leu Leu Ala Cys Ile Gly Asp Asp Val Ser
1 5 10

```
<210> SEQ ID NO 68
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 68
\(\begin{array}{ll}\text { Thr Ala Ala Leu Lys Ala Gly Asp His Gln Arg } \\ 1 & 5\end{array}\)
\(<210\rangle\) SEQ ID NO 69
<211> LENGTH: 12
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE.
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 69
Gly Arg Glu Leu Arg Arg Ser Asp Phe Val Asp Ser
15010
```

<210> SEQ ID NO 70
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 70

```
```

Ser Ser Ala Ala Glu Glu Leu Ala Ala Ala Leu Arg Arg Ile Gly Asp
1 5 10}1
Glu Leu Asp Arg Arg Tyr
20
<210> SEQ ID NO 71
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 71
Glu Gly Pro Ala Asp Pro Leu His Gln Ala Met Arg Ala Ala Gly Asp
Glu Phe Glu Thr Arg Phe
20

```
```

<210> SEQ ID NO 72
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 72

```

Ile Gly Asp Asp Ile Asn Arg Arg
20
\(<210\rangle\) SEQ ID NO 73
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 73

Asp Glu Leu Asp Ser Asn
20
```

<210> SEQ ID NO 74
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 74

```
\(\begin{array}{ccc}\text { Ala Leu Ser Pro Pro Val Val His Leu Ala Leu Ala Leu Arg Gln Ala Gly Asp } \\ & 5 & 10\end{array}\)
Asp Phe Ser Arg Arg Tyr
20
```

<210> SEQ ID NO 75
<211> LENGTH: }2
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE.

```
```

<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 75
Asn Leu Trp Ala Ala Gln Arg Tyr Gly Arg Glu Leu Arg Arg Met Ser
1 5 10 15
Asp Glu Phe Val Asp Ser Phe Lys Lys
20

```
<210> SEQ ID NO 76
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 76
Glu Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Gln Val Gly Asp
Ser Met Asp Arg Ser Ile
20
\(<210>\) SEQ ID NO 77
\(<211>\) LENGTH: 23
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<400>\) SEQUENCE: 77

Asp
20
20
\(<210>\) SEQ ID NO 78
\(<211>\) LENGTH: 20
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<400>\) SEQUENCE: 78

```

<210> SEQ ID NO 79
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 79

```

Glu Phe Asn Ala Tyr Tyr
20
\(<211>\) LENGTH: 22
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<400>\) SEQUENCE: 80
Ser Ser Ala Ala Gln Leu Thr Ala Ala Arg Leu Lys Ala Leu Gly Asp
1
5
Glu Leu His Gln Arg Thr
20
\(<210>\) SEQ ID NO 81
\(<211>\) LENGTH: 22
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: SYnthetically generated peptide
\(<400>\) SEQUENCE : 81

Gln Phe His Arg Leu His
20
```

<210> SEQ ID NO 82
<211> LENGTH: }2
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE.
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 82

```
\begin{tabular}{ll} 
Ile Glu Arg Arg Lys Glu Val Glu Ser \\
Ile Leu Lys Lys Asn Ser Asp \\
& 5
\end{tabular}
Trp Ile Trp Asp Trp Ser
20
\(<210>\) SEQ ID NO 83
\(<211>\) LENGTH: 22
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<400>\) SEQUENCE: 83
Gly Arg Leu Ala Glu Val Cys Ala Val Leu Leu Arg Leu Gly Asp Glu
Leu Glu Met Ile Arg Pro
20
```

<210> SEQ ID NO 84
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 84

```
Leu Ala Glu Val Cys Thr Val Leu Leu Arg Leu Gly Asp Glu Leu Glu
1

Gln Ile Arg
```

<210> SEQ ID NO }8
<211> LENGTH: 19
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 85
Met Thr Val Gly Glu Leu Ser Arg Ala Leu Gly His Glu Asn Gly Ser
1 5 10}1
Leu Asp Pro

```
\(<210\rangle\) SEQ ID NO 86
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 86
Ala Thr Ser Arg Lys Leu Glu Thr Leu Arg Arg Val Gly Asp Gly Val
151015
Gln Arg Asn His Glu Thr Ala
20
```

<210> SEQ ID NO }8
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetically generated peptide
<400> SEQUENCE: }8

```
Ser Ser Ala Ala Gln Leu Thr Ala Ala Arg Leu Lys Ala Leu Gly Asp
\(15010 \quad 15\)
Glu Leu His Gln Arg Thr
20
<210> SEQ ID NO 88
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 88
Glu Gln Trp Ala Arg Glu Ile Gly Ala Gln Leu Arg Arg Met Ala Asp
1501015
Asp Leu Asn Ala Gln Tyr
20
\(<210\rangle\) SEQ ID NO 89
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<400> SEQUENCE: 89
Ala Glu Leu Pro Pro Glu Phe Ala Ala Gln Leu Arg Lys Ile Gly Asp
```

Lys Val Tyr Cys Thr Trp
20

```
<210> SEQ ID NO 90
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetically generated peptide
<400> SEQUENCE: 90

Lys Val Asn Leu Arg Gln
20
\(<210>\) SEQ ID NO 91
\(<211>\) LENGTH: 22
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<400>\) SEQUENCE: 91
Val Val Glu Gly Glu Lys Glu Val Glu Ala Leu Lys Lys ser Ala Asp
Trp Val Ser Asp Trp Ser
20
```

<210> SEQ ID NO }9
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE.
<221> NAME/KEY: VARIANT
<222> LOCATION: 13, 17
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 92

```

Xaa Xaa Asp Arg Ser Ile Trp
20
\(<210>\) SEQ ID NO 93
\(<211>\) LENGTH: 21
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 12, 16
\(<223>\) OTHER INFORMATION: Xaa \(=\) any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 17
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
<400> SEQUENCE: 93

Xaa Asp Arg Ser Ile
20
<210> SEQ ID NO 94
\(<211>\) LENGTH: 23
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
<223> OTHER INFORMATION: SYnthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 13, 17
\(<223>\) OTHER INFORMATION: Xaa \(=\) any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 18
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
\(<400>\) SEQUENCE: 94
Glu Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Glu Asp
151015

Xaa Xaa Asp Arg Ser Ile Trp
20
\(<210>\) SEQ ID NO 95
\(<211>\) LENGTH: 21
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 12, 16
\(<223>\) OTHER INFORMATION: Xaa \(=\) any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 17
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
\(<400>\) SEQUENCE: 95

Xaa Asp Arg Ser Ile
20
\(<210>\) SEQ ID NO 96
\(<211>\) LENGTH: 22
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 12, 16
\(<223>\) OTHER INFORMATION: Xaa = any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 17
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
\(<400>\) SEQUENCE: 96
Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Ser Asp Xaa
1 A
```

Xaa Asp Arg Ser Ile Trp
20
<210> SEQ ID NO 97
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: BINDING
<222> LOCATION: 1
<223> OTHER INFORMATION: Have an N-terminal label which is biotin
attached to a labeled residue
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 12, 16
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 17
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: }9

```
Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Gly Asp Xaa
151015
Xaa Asp Arg Ser Ile Trp
20
<210> SEQ ID NO 98
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: BINDING
<222> LOCATION: 1
\(<223>\) OTHER INFORMATION: Have an N-terminal label which is biotin
    attached to a labeled residue
<220> FEATURE:
<221> NAME/KEY: VARIANT
\(<222>\) LOCATION: 12,16
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
\(<222>\) LOCATION: 17
<223> OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
<400> SEQUENCE: 98
Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Glu Asp Xaa
15
Xaa Asp Arg Ser Ile Trp
20
```

<210> SEQ ID NO }9
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 8, 12
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18

```
```

<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: }9
Glu Asp Ile Ile Arg Asn Ile Xaa Arg His Leu Xaa Gln Val Gly Asp
Ser Xaa Asp Arg Ser Ile Trp
20
$<210>$ SEQ ID NO 100
$<211>$ LENGTH: 21
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Synthetically generated peptide
$<220>$ FEATURE:
$<221>$ NAME/KEY: VARIANT
$<222>$ LOCATION: 7, 11
$<223>$ OTHER INFORMATION: Xaa $=$ any amino acid
$<220>$ FEATURE:
$<221>$ NAME/KEY: MOD-RES
$<222>$ LOCATION: 17
$<223>$ OTHER INFORMATION: Xaa $=$ Nle (norleucine)
$<400>$ SEQUENCE: 100
Asp Ile Ile Arg Asn Ile Xaa Arg His Leu Xaa Gln Val Gly Asp Ser
1 5 10
Xaa Asp Arg Ser Ile
20

```
```

<210> SEQ ID NO 101
<211> LENGTH: 17
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 4, 8
<223> OTHER INFORMATION: Xaa = anY amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 14
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 101

```
Arg Asn Ile Xaa Arg His Leu Xaa Gln Val Gly Asp Ser Xaa Asp Arg
\begin{tabular}{l} 
A \\
\hline
\end{tabular}

Trp
\(<210>\) SEQ ID NO 102
\(<211>\) LENGTH: 23
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 8, 12
\(<223>\) OTHER INFORMATION: Xaa \(=\) any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 18
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
\(<400>\) SEQUENCE: 102
Glu Asp Ile Ile Arg Asn Ile Xaa Arg His Leu Xaa Gln Val Glu Asp
L
Ser Xaa Asp Arg Ser Ile Trp
20

\(<210>\) SEQ ID NO 103
\(<211>\) LENGTH: 22
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: BINDING
\(<222>\) LOCATION: 1
\(<223>\) OTHER INFORMATION: Have an N-terminal label which is biotin

\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 7, II
\(<223>\) OTHER INFORMATION: Xaa \(=\) any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: I7
\(<223>\) OTHER INFORMATION: Xaa = Nle (norleucine)
\(<400>\) SEQUENCE: 103

Xaa Asp Arg Ser Ile Trp
20
\(<210>\) SEQ ID NO 104
\(<211>\) LENGTH: 21
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: BINDING
\(<222>\) LOCATION: 1
\(<223>\) OTHER INFORMATION: Have an N-terminal label which is biotin
<2ttached to a labeled residue
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 7, 11
\(<223>\) OTHER INFORMATION: Xaa = any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 17
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
\(<400>\) SEQUENCE : IO4

Xaa Asp Arg Ser Ile
20
\(<210>\) SEQ ID NO 105
\(<211>\) LENGTH: 23
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 9, 13
\(<223>\) OTHER INFORMATION: Xaa \(=\) any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
```

<222> LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 105

```
Glu Asp Ile Ile Arg Asn Ile Ala Xaa His Leu Ala Xaa Val Gly Asp
\begin{tabular}{l} 
G \\
1
\end{tabular}
\begin{tabular}{l} 
Ser Xaa Asp Arg Ser Ile Trp \\
20
\end{tabular}
```

<210> SEQ ID NO 106
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 10, 17
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 106

```
\(\begin{array}{ll}\text { Glu Asp Ile Ile Arg Asn Ile Ala Arg Xaa Leu Ala Gln Val Gly Asp } \\ 1 & 5\end{array}\)
Xaa Xaa Asp Arg Ser Ile Trp
20
\(<210>\) SEQ ID NO 107
\(<211>\) LENGTH: 23
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 5, 9, 13,17
\(<223>\) OTHER INFORMATION: Xaa = any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 18
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
\(<400>\) SEQUENCE: 107
Glu Asp Ile Ile Xaa Asn Ile Ala Xaa His Leu Ala Xaa Val Gly Asp
\(\begin{array}{llll}1 & 5 & 10 & 15\end{array}\)
Xaa Xaa Asp Arg Ser Ile Trp
20
```

<210> SEQ ID NO 108
<211> LENGTH: }2
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 14, 18
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 15
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 108

```

```

<210> SEQ ID NO 109
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 12, 16
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 17
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 109

```
\(\begin{array}{lll}\text { Asp Ile } \\ 1 & \text { Ile Arg Asn Ile Ala Arg His Ala Ala Xaa Val Gly Ala Xaa } \\ 5 & 10\end{array}\)
Xaa Asp Arg Ser Ile
20
\(<210\rangle\) SEQ ID NO 110
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
\(<222>\) LOCATION: 12,16
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 17
<223> OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
<400> SEQUENCE: 110
Asp Ile Ile Arg Asn Ile Ala Arg His Ala Ala Xaa Val Glu Ala Xaa
1501015
Xaa Asp Arg Ser Ile
20
```

<210> SEQ ID NO 111
<211> LENGTH: 21
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 9, 13
<223> OTHER INFORMATION: Xaa = any amino acid
<400> SEQUENCE: 111

```
\(\begin{array}{ll}\text { Ile Trp Ile Ala Gln Glu Leu Arg Xaa } \\ \text { I } & \text { Ile Gly Asp Xaa Phe Asn Ala } \\ 5 & 10\end{array}\)
Tyr Tyr Ala Arg Arg
20
```

<210> SEQ ID NO 112
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 112

```
Glu Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Gln Val Gly Asp
\(105010 \quad 15\)
Ser Xaa Asp Arg Ser Ile Trp
20
```

<210> SEQ ID NO 113
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SYnthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 13, 17
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 113

```
Glu Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Gly Asp
\(15010 \quad 15\)
Xaa Xaa Asp Arg Ser Ile Trp
20
\(<210>\) SEQ ID NO 114
\(<211>\) LENGTH: 23
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 13, 17
\(<223>\) OTHER INFORMATION: Xaa \(=\) any amino acid
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: MOD-RES
\(<222>\) LOCATION: 18
\(<223>\) OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
\(<400>\) SEQUENCE : 114
Glu Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Glu Asp
\(1 \quad 5 \quad 10 \quad 15\)
Xaa Xaa Asp Arg Ser Ile Trp
20
\(<210>\) SEQ ID NO 115
\(<211>\) LENGTH: 23
\(<212>\) TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Synthetically generated peptide
\(<220>\) FEATURE:
\(<221>\) NAME/KEY: VARIANT
```

<222> LOCATION: 8, 12
<223> OTHER INFORMATION: Xaa = any amino cid
acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 115

```

Ser Xaa Asp Arg Ser Ile Trp
20
\(<210\rangle\) SEQ ID NO 116
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 9, 13
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
\(<222>\) LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 116

Ser Xaa Asp Arg Ser Ile Trp
20
```

<210> SEQ ID NO 117

```
<211> LENGTH: 23
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 10
<223> OTHER INFORMATION: Xaa =any amino acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
\(<222>\) LOCATION: 17
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
\(<222>\) LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
\(<400\rangle\) SEQUENCE: 117
\(\begin{array}{lc}\text { Glu Asp Ile Ile Arg Asn Ile Ala Arg Xaa } \\ 1 & 5\end{array}\)
Xaa Xaa Asp Arg Ser Ile Trp
20
20
\(<210>\) SEQ ID NO 118
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
<223> OTHER INFORMATION: SYnthetically generated peptide
<220> FEATURE:
```

<221> NAME/KEY: MOD-RES
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa = beta-Alanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 14, 18
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 19
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 118

```
Xaa Glu Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Glu Asp
1501015
Xaa Xaa Asp Arg Ser Ile Trp
20
\(<210>\) SEQ ID NO 119
<211> LENGTH: 24
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa = beta-Alanine
<220> FEATURE:
\(<221>\) NAME/KEY: VARIANT
\(<222>\) LOCATION: 14, 18
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 19
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 119

Xaa Xaa Asp Arg Ser Ile Trp
20
<210> SEQ ID NO 120
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: MOD-RES
\(<222>\) LOCATION: 1
<223> OTHER INFORMATION: Xaa = beta-Alanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
\(<222>\) LOCATION: 13, 17
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18
\(<223>\) OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 120
Xaa Asp
1
Xaa Asp Arg Ser Ile
20
```

<210> SEQ ID NO 121
<211> LENGTH: 22
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa = beta-Alanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 13, 17
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 18
<223> OTHER INFORMATION: Xaa = Nle (norleucine)
<400> SEQUENCE: 121

```
Xaa Asp Ile Ile Arg Asn Ile Ala Arg His Leu Ala Xaa Val Glu Asp Xaa
1501015
Xaa Asp Arg Ser Ile
20
\(<210>\) SEQ ID NO 122
<211> LENGTH: 22
<212> TYPE: PRT
\(<213>\) ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa = beta-Alanine
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 10, 14
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<400> SEQUENCE: 122

\(<210\rangle\) SEQ ID NO 123
<211> LENGTH: 26
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetically generated peptide
<220> FEATURE:
<221> NAME/KEY: MOD-RES
<222> LOCATION: 1
\(<223\) ) OTHER INFORMATION: Xaa = beta-Alanine
\(<220>\) FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 15, 19
<223> OTHER INFORMATION: Xaa \(=\) any amino acid
<220> FEATURE:
<221> NAME/KEY: MOD-RES
\(<222>\) LOCATION: 16
<223> OTHER INFORMATION: Xaa \(=\) Nle (norleucine)
<400> SEQUENCE: 123
```

Xaa Asn Leu Trp Ala Ala Gln Arg Tyr Gly Arg Glu Leu Arg Xaa Xaa Ser
1 5 10
Asp Xaa Phe Val Asp Ser Phe Lys Lys
20 25

```

What is claimed is:
1. A crosslinked \(\alpha\)-helical polypeptide comprising a crosslinker connecting a first amino acid to a second amino acid, wherein the cross-linked polypeptide has enhanced cell penetrability relative to a corresponding unmodified polypeptide.
2. The crosslinked polypeptide of claim 1, wherein the crosslinker stabilizes an \(\alpha\)-helix structure of the polypeptide.
3. The crosslinked polypeptide of claim 1 , wherein at least one of the amino acids is a non-natural amino acid.
4. The crosslinked polypeptide of claim 1, wherein the crosslinker connects an \(\alpha\)-carbon atom of the first amino acid to the second amino acid.
5. The crosslinked polypeptide of claim 4, wherein the crosslinker connects an \(\alpha\)-carbon atom of the first amino acid to an \(\alpha\)-carbon atom of the second amino acid.
6. The crosslinked polypeptide of claim 3 , wherein at least one of the amino acids is an \(\alpha, \alpha\)-disubstituted amino acid.
7. The crosslinked polypeptide of claim 1, wherein the enhanced cell penetrability includes enhanced energy-dependent transport across a cell membrane.
8. The crosslinked polypeptide of claim 1, wherein the enhanced cell penetrability includes enhanced endocytosis.
9. The crosslinked polypeptide of claim 1, which comprises a pro-apoptotic polypeptide.
10. The crosslinked polypeptide of claim 1, which comprises an anti-apoptotic polypeptide.
11. The crosslinked polypeptide of claim \(\mathbf{1}\), wherein the crosslinked polypeptide comprises an alpha-helical domain of a \(\mathrm{Bcl}-2\) family member.
12. The crosslinked polypeptide of claim 9 , wherein the crosslinked polypeptide comprises a BH 3 domain or a portion thereof.
13. The crosslinked polypeptide of claim 1 , comprising an amino acid sequence which is at least \(60 \%\) identical to the amino acid sequence DIIRNIARHLAQVGDSN \({ }_{L}\) DRSI, wherein \(\mathrm{N}_{L}\) is norleucine.
14. The crosslinked polypeptide of claim 1, comprising an amino acid sequence which is at least \(60 \%\) identical to the amino acid sequence IWIAQELRRIGDEFNAYYARR.
15. The crosslinked polypeptide of claim 1, comprising an amino acid sequence which is at least \(60 \%\) identical to the amino acid sequence NLWAAQRYGRELRRNLSDEFVDSFKK, wherein \(\mathrm{N}_{L}\) is norleucine.
16. The crosslinked polypeptide of claim 1 , wherein the crosslinked polypeptide comprises a compound of formula I:
(Formula I)

wherein:
each \(R_{1}\) and \(R_{2}\) are independently \(H\), alkyl, alkenyl, alkynyl, arylalkyl, cycloalkyl, heteroarylalkyl, or heterocyclylalkyl;
\(\mathrm{R}_{3}\) is alkyl, alkenyl, alkynyl; \(\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}\); each of which is substituted with 0-6 \(\mathrm{R}_{5}\);
\(\mathrm{R}_{4}\) is alkyl, alkenyl, or alkynyl;
\(\mathrm{R}_{5}\) is halo, alkyl, \(\mathrm{OR}_{6}, \mathrm{~N}\left(\mathrm{R}_{6}\right)_{2}, \mathrm{SR}_{6}, \mathrm{SOR}_{6}, \mathrm{SO}_{2} \mathrm{R}_{6}, \mathrm{CO}_{2} \mathrm{R}_{6}\), \(\mathrm{R}_{6}\), a fluorescent moiety, or a radioisotope;
K is \(\mathrm{O}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CONR}_{6}\), or

\(\mathrm{R}_{\sigma}\) is H , alkyl, or a therapeutic agent; n is an integer from 1-4;
\(x\) is an integer from 2-10;
each y is independently an integer from \(0-100\);
\(z\) is an integer from 1-10; and
each Xaa is independently an amino acid.
17. A crosslinked polypeptide comprising natural and/or unnatural amino acids, wherein at least two of the amino acids are linked by a crosslinker which stabilizes an \(\alpha\)-helical structure of the polypeptide, wherein the crosslinked polypeptide has increased protease resistance relative to an unmodified polypeptide, and wherein the crosslinked polypeptide further has enhanced cell penetrability relative to an unmodified polypeptide.
18. A method of producing a modified \(\alpha\)-helical polypeptide having enhanced cell penetrability relative to an unmodified polypeptide, the method comprising
(a) selecting a precursor polypeptide comprising at least two moieties capable of undergoing reaction to form at least one crosslink;
(b) reacting the precursor polypeptide in conditions sufficient to promote formation of said crosslink between said moieties; wherein the modified polypeptide has enhanced cell penetrability relative to the unmodified polypeptide, and further wherein the enhanced cell penetrability is determined by cell penetrability studies.
19. The method of claim 18, wherein the crosslink stabilizes an \(\alpha\)-helical structure.
20. The method of claim 18 , wherein the at least two moieties comprise at least one amino acid functionalized at its alpha carbon.
21. The method of claim 18 , wherein at least one of the moieties is a non-natural amino acid.
22. The method of claim 21, wherein at least one of the moieties is an \(\alpha, \alpha\)-disubstituted amino acid.
23. The method of claim 18 , wherein the moieties comprise at least one terminal olefin group.
24. The method of claim 23 , wherein the moieties comprise at least one amino acid functionalized at its alpha carbon with at least one substituent comprising a terminal olefin group.
25. The method of claim 24 , wherein the moieties comprise at least one amino acid functionalized at its alpha carbon with a substituent comprising a terminal olefin group and further substituted at its alpha carbon with an \(\alpha\)-alkyl group.
26. The method of claim \(\mathbf{2 5}\), wherein the \(\alpha\)-alkyl group is methyl.
27. The method of claim 18, wherein the crosslink is formed by olefin metathesis.
28. The method of claim 18, wherein the increased cell penetrability includes increased energy-dependent transport across the cell membrane.
29. The method of claim 18, wherein the increased cell penetrability includes increased endocytosis.
30. The method of claim 18, wherein the modified polypeptide has the formula:

wherein:
each \(\mathrm{R}_{1}\) and \(\mathrm{R}_{2}\) are independently H, alkyl, alkenyl, alkynyl, arylalkyl, cycloalkylalkyl, heteroarylalkyl, or heterocyclylalkyl;
\(\mathrm{R}_{3}\) is alkyl, alkenyl, alkynyl, or \(\left[\mathrm{R}_{4}-\mathrm{K}-\mathrm{R}_{4}\right]_{n}\); each of which is substituted with \(0-6 \mathrm{R}_{5}\);
\(\mathrm{R}_{4}\) is alkyl, alkenyl, or alkynyl;
\(\mathrm{R}_{5}\) is halo, alkyl, \(\mathrm{OR}_{6}, \mathrm{~N}\left(\mathrm{R}_{6}\right)_{2}, \mathrm{SR}_{6}, \mathrm{SOR}_{6}, \mathrm{SO}_{2} \mathrm{R}_{6}, \mathrm{CO}_{2} \mathrm{R}_{6}\), \(\mathrm{R}_{6}\), a fluorescent moiety, or a radioisotope;
K is \(\mathrm{O}, \mathrm{S}, \mathrm{SO}, \mathrm{SO}_{2}, \mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CONR}_{6}\), or

\(\mathrm{R}_{6}\) is H , alkyl, or a therapeutic agent; n is an integer from 1-4; x is an integer from 2-11; each y is independently an integer from 1-111; \(z\) is an integer from 1-11; and each Xaa is independently an amino acid.
31. The method of claim 30 , wherein \(R_{3}\) is alkyl, alkenyl, or alkynyl.
32. The method of claim \(\mathbf{3 0}\), wherein x is 3 .
33. The method of claim \(\mathbf{3 0}\), wherein x is 6 .
34. The method of claim \(\mathbf{3 0}\), wherein \(R_{3}\) comprises at least nine consecutive carbon-carbon bonds.
35. The method of claim 30, wherein at least one of \(R_{1}\) and \(\mathrm{R}_{2}\) are methyl.
36. The method of claim 35 , wherein \(R_{1}\) and \(R_{2}\) are methyl.
37. The method of claim \(\mathbf{3 0}\), wherein \(R_{3}\) is \(\left[R_{4}-K-R_{4}\right]\); and \(R_{4}\) is alkyl, alkenyl, or alkynyl.
38. The method of claim 18, further comprising a fluorescent moiety or radioisotope.
39. The method of claim 18 , further comprising an affinity label.
40. The method of claim 18 , wherein the modified polypeptide further comprises a targeting moiety.
41. The method of claim 18 , wherein the modified polypeptide binds to a BCL-2 family polypeptide.
42. The method of claim 18, wherein the modified polypeptide comprises a BH3 domain.
```

