wo 2012/050940 A1]I IO 0000 RO A O R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g3 [} 1M1 AL A0 000D O 00 0
ernational Bureau S,/ ‘ 0 |
. . . ME' (10) International Publication Number
(43) International Publication Date \,!:,: #
19 April 2012 (19.04.2012) WO 2012/050940 A1

(51) International Patent Classification: (74) Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &

GO6F 11/14 (2006.01) GOETZEL, P.C.; RANKIN, Rory D., P.O. Box 398,

(21) International Application Number: Austin, Texas 78767-0398 (US).

PCT/US2011/053809 (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

(22) International Filing Date:
29 September 2011 (29.09.2011)

(25) Filing Language: English DZ, EC, EE, EG, ES, FIL, GB, GD, GE, GH, GM, GT,

o , HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(26) Publication Language: Enghsh KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,

12/893,729 29 September 2010 (29.09.2010) Us NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,

RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,

(71) Applicant (for all designated States except US): TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
SYMANTEC CORPORATION [US/US]; 350 Ellis M, ZW.

Street, Mountain View, California 94043 (US).
(84) Designated States (unless otherwise indicated, for every

(72) Inventors; and kind of regional protection available): ARIPO (BW, GH,
(75) Inventors/Applicants (for US only): BEATTY, Louis GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
[US/US]; 41 Riverwood Dr., Ormond, Florida 32176 UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,
(US). SARAF, Deepak [IN/US]; 6412 Earthgold Dr., RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
Windermere, Florida 34786 (US). DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT,

[Continued on next page]

(54) Titlee METHOD AND SYSTEM OF PERFORMING A GRANULAR RESTORE OF A DATABASE FROM A DIFFER-
ENTIAL BACKUP

(57) Abstract: A system and method for performing

< Method a granular restore operation of a database from a dif-

510 P ferential backup of the database. A bitmask is created

Detoct 7 Request 1o Restors a during a differential backup and stored with the dif-

Plurality of Objects to a Database ferential backup file. When a user requests a granular

-— restore operation, views of how the database existed

i at different points of time may be presented to the

For Each Object user. The objects the user wishes to restore may be

— selected from one of the views. Next, the bitmask

l may be read to determine if the objects should be re-

Read the Bitmask File to trieved from the differential backup file or a full

e Diterontal jsicct;gpsftg/’:d backup file. Finally, the objects may be restored to
: &40 the database from the proper file.

Isthe
Object in the Retrieve the Object from
Differential Backup the Differential Backup
File? File 670
650
Retrieve the Object from .
’ Restore the Object fo the
the Full Backup File Database 680

FIG. 6

WO 2012/050940 A1 I 00000) 00T O O RO

LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, Published:
SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, __

GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). with international search report (Art. 21(3))

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

METHOD AND SYSTEM OF PERFORMING A GRANULAR RESTORE OF
A DATABASE FROM A DIFFERENTIAL BACKUP

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates generally to database backups, and in particular to

performing a granular restore of a database from a differential backup.

Description of the Related Art

[0002] Database backup and recovery are challenging processes that become more difficult as
a company’s database grows and as the demands on its online availability increases, limiting the
time available for backup and recovery operations. A database, such as a Microsoft® Structured
Query Language (SQL) database, is often backed up as a single, monolithic database file, which
contains all the tables, records, and indexing information for the database. However, backing up
the entire database may consume large amounts of storage memory, processing cycles, and
network bandwidth.

[0003] Instead of backing up the entire database, a differential backup may be performed to
reduce database downtime and the amount of data being sent over the network and stored within
the backup storage medium. A full backup of the database is performed at least once prior to
doing a differential backup. After a full backup, subsequent backups can be differential backups.
A differential backup may contain only the changes made to the database since the last full
backup. This is an efficient approach to backing up databases, because databases are often
backed up on a regular schedule, and typically only a small amount of data in the database will
change between consecutive backups.

[0004] Once a backup of the database has been stored, a user may wish to restore the database
or one or more items from the database on an as-needed basis. If a user needs to restore the entire
database, then the entire database may be restored to the server hosting the database. However,
when a user only wants to restore a few objects to the database, unless proper mechanisms are in
place to allow for a granular restore, the entire database may need to be restored.

[0005] After performing a differential backup, the data stored in the backup storage medium
will be split between the differential backup and the last full backup, and determining which of
these two backups to pull data from when performing a granular restore can be a slow and

inefficient process. One technique currently used requires restoring the entire full backup and

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

then playing back the changes from the differential backup. This is an inefficient and slow
technique when only a few items of the database need to be restored.
[0006] In view of the above, improved methods and mechanisms for performing a granular

restoration of database items from a differential backup are desired.

SUMMARY OF THE INVENTION

[0007] Various embodiments of methods and mechanisms for performing a granular restore
operation of a database from a differential backup of the database are contemplated. In one
embodiment, when a differential backup of a database is performed, a bitmask may be created
and stored with the differential backup file. When a granular restore operation is requested by a
user, the database as it existed at a specific point in time may be presented to the user by
logically merging the differential backup file with the full backup file. Next, the user may select
objects to restore to the database from a user interface. The bitmask may be loaded into memory
and read to determine where the selected items reside: in the differential backup file or in the full
backup file. The items may then be retrieved from the correct location and restored to the
database.

[0008] These and other features and advantages will become apparent to those of ordinary

skill in the art in view of the following detailed descriptions of the approaches presented herein.

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The above and further advantages of the methods and mechanisms may be better
understood by referring to the following description in conjunction with the accompanying
drawings, in which:
[0010] FIG. 1 is a diagram that illustrates a network architecture in accordance with one or
more embodiments.
[0011] FIG. 2 illustrates one embodiment of a database archival system.
[0012] FIG. 3 illustrates one embodiment of a full backup file, bitmask, and differential
backup file.
[0013] FIG. 4 illustrates one embodiment of a user interface for selecting from a list of
database archives.
[0014] FIG. 5 illustrates one embodiment of a user interface for selecting specific records or
objects to be restored.
[0015] FIG. 6 is a generalized flow diagram illustrating one embodiment of a method for

restoring a plurality of objects to a database.

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

[0016] FIG. 7 is a generalized flow diagram illustrating one embodiment of a method for

performing a differential backup.

DETAILED DESCRIPTION
[0017] In the following description, numerous specific details are set forth to provide a
thorough understanding of the methods and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various embodiments may be practiced without
these specific details. In some instances, well-known structures, components, signals, computer
program instructions, and techniques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for simplicity and clarity of illustration,
elements shown in the figures have not necessarily been drawn to scale. For example, the
dimensions of some of the elements may be exaggerated relative to other elements.
[0018] Referring to FIG. 1, one embodiment of a network architecture 100 is shown. Media
server 150 is connected to client computer system 120, client computer system 135, and database
server 125 through network 110. Media server 150 may include at least a single processor or
central processing unit, other system hardware, and a storage medium for storing software
applications. Media server 150 may also include an operating system, and the operating system
may be any of various types, including MS-DOS®, MS-WINDOWS®, OS/2®, UNIX®,
Linux®, Solaris® or another known operating system. The operating system may interface
between the system hardware and the software applications.
[0019] Media server 150 may host one or more software applications to perform backup and
restore operations of databases 130 and 140. Media server 150 may store the backups of
databases 130 and 140 in backup storage device 155. The backups of databases 130 and 140 may
be full backups and/or differential backups. A differential backup of a database may contain all
of the changes made to the database since the last full backup. Other types of backups of
databases 130 and 140 may also be stored in backup storage device 155, including incremental
backups, transaction logs, and others. Also, media server 150 may perform granular restore
operations to restore data objects from backup storage device 155 to databases 130 and 140.
[0020] Backup storage device 155 may include or be further coupled to several varieties of
storage consisting of one or more hard disks, tape drives, server blades, or specialized devices,
and may include a variety of memory devices such as RAM, Flash RAM, MEMS (Micro Electro
Mechanical Systems) storage, battery-backed RAM, and/or non-volatile RAM (NVRAM), ctc.
In another embodiment, the media server 150 may instead store the backups on another device,
such as another storage medium, another computer system, or another server (not shown)

connected over the network 110.

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

[0021] Network 110 may comprise a variety of network connections including combinations
of local area networks (LANs), such as Ethernet networks, Fiber Distributed Data Interface
(FDDI) networks, token ring networks, and wireless local area networks (WLANSs) based on the
Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards (Wi-Fi), and wide arca
networks (WANSs), such as the Internet, cellular data networks, and other data communication
networks.

[0022] In various embodiments of network architecture 100, client computer systems 120 and
135 are representative of any number of stationary or mobile computers such as servers, desktop
PCs, laptops, handheld computers, smartphones, etc. Clients 120 and 135 may include at lcast a
single processor or central processing unit, other system hardware, and a storage medium for
storing software applications. In some embodiments, clients 120 and 135 may include an
operating system of the various types listed above. The operating system may interface between
the system hardware and the software applications.

[0023] Client 120 and/or client 135 may host an intranct portal application. The intranet portal
application may be operable to manage and maintain a plurality of web pages and electronic
documents that make up a web site for a plurality of system users. The web site data may be
stored in database 130 and/or in database 140. In one embodiment, the intranet portal application
may be a Microsoft® SharePoint® Server or a similar enterprise information portal program. In
another embodiment, the intranct portal application may comprise other web site development
software. A database backup for the intranet portal application may be performed that stores a
copy of a web site on backup storage device 155. The web site information may include tables,
records, lists of items, corresponding globally unique identifiers, and other data used to present a
view of web pages within the site to a user.

[0024] The intranet portal application may also include an encapsulated version of a database
for storing lists, items, and records. In one embodiment, the intranet portal application may be
configured to be the "user' of a database. In another embodiment, a Microsoft® SQL server, a
Microsoft Sharepoint server, or other database server system embodies a database. It is further
noted that one or more other client computers may be coupled via a network to client 120 or
client 135 allowing the client systems to access the intranet portal application centrally via one or
more web pages, including access to the database.

[0025] Databases 130 and 140 may be representative of any number and types of databases
connected to network 110. Database server 125 is coupled to database 130, and database 130
may be accessed via database server 125. Client computer system 135 is coupled to database 140,
and database 140 may be accessed through client 135. Databases 130 and 140 may represent both

a database program and/or one or more actual databases implemented therein. The database

4

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

program refers to the executable commands, user interfaces and other program code for
operating the database. The included databases may further comprise various tables, indexes,
relationships, queries, stored procedures, file systems, security layers, networking interfaces, etc.,
which are configured to operate on a plurality of data records.

[0026] In one embodiment in which databases 130 and 140 are relational databases, the
records may be arranged in tables (row and column arrangement). The term "record" as used
herein shall refer to an entry in a database. A collection of associated records may be collectively
described as a "table" in the database. A record may consist of one or more fields, which may
serve as indexes (or keys) to other records in other tables. For example, in a document
management database, each record in a document table may represent a document stored in the
database. In one embodiment, the document may be stored in the fields of the record itself. In
some embodiments, the document may be represented in a record by a reference to the document,
such as a memory location. In addition, the database may create and modify a mounted database
file for storing and accessing any given implementation of a relational databasc. In some
embodiments, databases 130 and 140 may execute on a dedicated computing system, such as
database server 125 or client 135, that is configured for access by other server and client
computers via a communications network.

[0027] Databases 130 and 140 may include various kinds of functions associated with a
relational database, such as add and query procedures. The query function may retrieve
information from the database, such as a change map, allocation maps, objects, tables, records,
and other data. The add function may store information in the database. Databases 130 and 140
may be a Microsoft SQL Server databases and the interfaces used to provide access to databases
130 and 140 may use SQL. Data may be stored and retrieved from a Microsoft SQL Server at a
page level. Each page may have a size of 8 kilobytes (KB) and may consist of a header and data.
The page header may contain an object ID to which the data in the page belongs. Server
input/output (I/O) operations may be performed at the page level, such that an SQL Server reads
or writes whole pages.

[0028] In one embodiment, a change map may be a differential changed map (DCM) stored in
a Microsoft SQL Server database. The DCM may track the extents that have changed since the
last full database backup. Extents may be a collection of eight physically contiguous pages and
may be used to efficiently manage pages. The DCM may be a bitmap where each bit represents a
single extent. The bitmap may be organized such that if the bit for an extent is 1, then the extent
has been modified since the last full backup and if the bit for an extent is 0, then the extent has

not been modified. In some embodiments, the Microsoft SQL server may read the DCM pages to

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

determine which extents have been modified. Then, the server may send over those extents that
have been modified as part of a differential backup to media server 150.

[0029] Media server 150 may execute a query to retrieve the pages that make up the DCM
from mounted database 130 and/or mounted database 140. As used herein, a “mounted database”
refers to a database that is loaded and accessible to authorized users of a server or client
computer. The first DCM page may be located at the 7" page of a mounted database. The second
DCM page may be located 512232 pages offset from the first DCM page, at the 512239™ page.
The third page DCM page may be offset 1024464 pages from the first DCM page, at the
1022471th page, and so on. In one embodiment, media server 150 may store the retrieved DCM
pages as a bitmask file.

[0030] Media server 150 may also execute a query to retrieve one or more allocation maps
from mounted database 130 and/or mounted database 140. The allocation maps may contain
information about the extents that an object or index uses. For example, the allocation maps may
contain bitmasks of extents indicating which extents are in use for that object. In one
embodiment, one of the allocation maps may be the index allocation map from a Microsoft SQL
server database.

[0031] In other embodiments, the number and type of clients, database and media servers, and
storage devices is not limited to those shown in FIG. 1. Almost any number and combination of
servers, storage devices, and stationary and mobile clients may be interconnected in network
architecture 100 via various combinations of modem banks, direct LAN connections, wireless
connections, WAN links, etc. Also, at various times one or more clients may operate offline. In
addition, during operation, individual client connection types may change as mobile users travel
from place to place connecting, disconnecting, and reconnecting to network architecture 100.
[0032] Referring to Figure 2, a block diagram of one embodiment of a system for backing up
and restoring data to a database is illustrated. On the left side, database 210 is shown. In one
embodiment, database 210 may be an object-oriented database. In another embodiment, database
210 may be a secured relational database management system (RDBMS), such as a Microsoft
SQL Server database. The RDBMS may be both a relational database program and one or more
actual databases implemented therein. The relational database program refers to the executable
commands, user interfaces and other program code for operating database 210. The plurality of
databases included in database 210 may further include various tables, indexes, relationships,
queries, stored procedures, file systems, security layers, networking interfaces, etc., which are
configured to operate on a plurality of data records, also referred to as records or entries, that

constitute the "database”. The records may be arranged in tables in a row and column

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

arrangement. In addition, database 210 may create and modify a mounted database file for
storing and accessing any given implementation of a relational database.

[0033] Database 210 may be accessed by media server 220 via interface 230. Interface 230
may include a local or remote network interface, and may also include network and/or software
driver layers for communicating with database 210. In one embodiment, interface 230 may
provide access to database 210 using SQL.

[0034] Media server 220 may be configured to perform a backup of the contents of database
210. Media server 220 may store the backup of database 210 as a master data file (MDF). Media
server 220 may also be configured to generate and store a schema of table and index information
along with the backed up contents in the unmounted full database backup file 280. In one
embodiment, schema may refer to the data structure of a database file. Schema may include
memory locations that define certain data structures within the database file. Schema may be
used to quickly and efficiently locate objects in the database file, without having to perform
extensive searching operations. Schema may be generated by querying database 210 when a
backup of the database is being created. The unmounted full database backup file 280 may be an
identical instance of a mounted database file previously created by database 210. The schema
may be used to access or restore the contents of the full database backup file 280 without using
database 210.

[0035] Media server 220 may be operable to archive copies of objects and records from
database 210 to backup storage 250. Backup storage 250 may be any of a variety of types of
storage medium. Alternatively, selected objects and records may be transferred from database
210 to a remote archive storage through a network interface. In various embodiments, media
server 220 may also restore objects, records, or other data acquired from previous archive
operations to database 210. Media server 220 may also be configured to provide other known
archiving functionality, as desired, such as various features provided by Backup Exec™ products
from Symantec®. In one embodiment, media server 220 may contain backup system agent
software. A backup system agent may be a software routine that waits for a detection of a
predetermined event and performs one or more actions when such detection occurs. A backup
system agent may be software configured to perform one or more backup and restore functions.
[0036] Media server 220 may access backup storage 250 via interface 240 for selecting and
retrieving content for archiving. Interface 240 may represent file access by media server 220 to a
file system residing on backup storage 250. In one embodiment, interface 240 may include a
network connection to a remote storage medium. In another embodiment, interface 240 may
represent storage access to a storage arca network (SAN), which may be a distributed, shared

storage environment.

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

[0037] Media server 220 may receive data identifying the changes made to the database 210
during a differential backup operation and store the changes in the differential backup file 270.
Media server 220 may also build a bitmask 260 to indicate which objects or records of database
210 have changed and should be retrieved from differential backup file 270 during a restore
operation. The objects may include binary objects of various sizes, tables, records, data stored in
the fields of the records, documents, items, lists, and other data.

[0038] In one embodiment, media server 220 may perform a differential backup by querying
database 210 to retrieve the first modified page within database 210. Then, media server 220 may
query database 210 to retrieve an offset value containing the difference between the page number
of the first modified page and the page number of the second modified page within database 210.
The media server may query database 210 to retrieve a plurality of offset values, with each offset
value containing a difference between page numbers of the modified pages of database 210.
After retrieving the plurality of the offsets, media server 220 may then use the offset values to
retrieve the plurality of pages that have been modified since the last full backup of database 210.
[0039] Additionally, media server 220 may include a granular restore function to add specific
objects or records from full database backup file 280 or differential backup file 270 to database
210. The granular restore function may also include a means for selecting one or more records or
objects for restoration. In one embodiment, a user interface for selecting and restoring records or
objects may be provided as part of a granular restore operation. Granular recovery may enable
administrators or users to select only the records or objects needed from the backup copy without
having to recover the entire database. In some embodiments, objects may be documents such as
Microsoft Word®, Excel®, PowerPoint®, PDEF’s, video WAV files, and others. In other
embodiments, objects may include sites, sub-sites, lists, and list items.

[0040] Media server 220 may also read data from full backup file 280 and from differential
backup file 270. In one embodiment, media server 220 may retrieve an object or record from
either full database backup file 280 or from differential backup file 270. In another embodiment,
media server 220 may look at bitmask 260 to determine where the latest object or record resides
— cither in differential backup file 270 or in full database backup file 280. In various
embodiments, media server 220 may store data temporarily in a storage medium as it performs
the various functions involved in backing up and restoring data between database 210, full
database backup file 280, differential backup file 270, and bitmask 260. Also, media server 220
may access a storage medium using additional interfaces not shown in FIG. 2.

[0041] In one embodiment, full database backup file 280 and/or differential backup file 270

are binary files that are sequentially accessed, using standard file 1/O calls to the file system of

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

backup storage 250. The file system may be an information system which references and stores
data, hierarchically organized in files and directories, in a volume created on backup storage
250.

[0042] In some embodiments, full backup database file 280 and/or differential backup file 270
may be structured in block units of memory, also referred to as pages or allocation units.
Depending on the type of database 210, the page size may be some multiple of bytes. In one
embodiment, database 210 may be a Microsoft SQL Server with a page size of 8 KB. The
internal references to memory addresses in database file 280 and/or differential backup file 270
may thus be given in units of pages.

[0043] Point in time 261 represents the state of database 210 at a specific point in time at
which a differential backup was performed. Media server 220 may create and store bitmask 260
and differential backup file 270 when a differential backup is performed at a specific time
corresponding to point in time 261. In one embodiment, bitmask 260 and differential backup file
270 may be saved in the same folder within backup storage 250. Point in time 262 and point in
time 263 may correspond to other specific times when differential backups were performed.
There may be a differential backup file and bitmask stored for point in times 262 and 263. Any
number of bitmasks and differential backup files corresponding to any number of points in time
may be stored in backup storage 250. Full database backup file 280 may also correspond to a
different point in time (not shown) corresponding to when the last full backup of database 210
was performed.

[0044] Each time a differential backup operation is performed, media server 220 may store a
differential backup file and a bitmask. In one embodiment, when a new full backup operation is
performed, media server 220 may delete the old full database backup file from backup storage
250. Media server 220 may also delete the old bitmasks and differential backup files at that time.
In another embodiment, media server 220 may retain one or more prior full database backup files
when a new full backup operation is performed. Media server 250 may have a retention policy
regarding bitmasks, differential backup files, and full database backup files that involves deleting
older files to free up storage space in backup storage 250.

[0045] Referring now to FIG. 3, a block diagram of one embodiment of a full backup file 305,
bitmask 306, and differential backup file 307 is shown. Full backup file 305 includes objects
311-323 that are representative of any number of stored database objects. Objects 311-323 may
be representative of any type of data stored in a database, including tables, records, documents,
items, lists, and other data. Differential backup file 307 includes objects 352 and 359 which may

be representative of any number of objects that have changed since full backup file 305 was

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

created. Also, the objects displayed in full backup file 305 and differential backup file 307 may
comprise objects and metadata describing the objects.

[0046] After a database has been stored as a full backup, subsequent backups may be
differential backups; a differential backup may store the changes made to the database since the
last full backup. The changes contained in the differential backup may be stored in differential
backup file 307. Also, when a differential backup is performed, bitmask 306 may be created to
indicate which database objects have changed since the last full backup and are stored in
differential backup file 307. When performing a restore operation, a restore application may use
bitmask 306 to determine whether to pull a specific object from full backup file 305 or from
differential backup file 307. In one embodiment, objects may be restored from full backup file
305 and/or differential backup file 307 to the working copy of the database, or to another copy of
the database. In another embodiment, objects may be buffered in memory before being restored
to the working copy of the database. In a further embodiment, objects may be restored from full
backup file 305 and/or differential backup file 307 to a file system on a storage medium, server,
client, or other computing device. In a still further embodiment, objects may be restored to an
internal portal application or other software application.

[0047] Bitmask 306 may be built at least in part using information retrieved from a change
map such as the DCM and/or one or more allocation maps. Bitmask 306 may also be built at least
in part on information, such as the changed pages and metadata describing the pages, retrieved
from a differential backup of a database. The information used to create bitmask 306 may be the
changed pages and/or objects and metadata describing the changed pages and/or objects received
during a differential backup. Bitmask 306 may be created at the time of a differential backup, or
bitmask 306 may be created at the time a restore operation is detected. If bitmask 306 is created
when a restore operation is detected, the information needed to create bitmask 306 may be pulled
from differential backup file 307. Bitmask 306 may also be built based upon other information
retrieved from a database.

[0048] In onc embodiment, bitmask 306 may be built with pointers to full backup file 305 or
to differential backup file 307. In another embodiment, bitmask 306 may store binary data for the
objects of the database. For example, bitmask 306 may store a ‘1’ for an object if the object has
changed since the last full backup and should be retrieved from the differential backup file 307.
Bitmask 306 may store a ‘0’ for an object if the object has not changed since the last full backup
and should be retrieved from full backup file 305. In a further embodiment, bitmask 306 may
contain Boolean fields having values of TRUE or FALSE to determine whether an object is
stored in differential backup file 307 or full backup file 305. Other methods of organizing

bitmask 306 are possible and contemplated.
10

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

[0049] The illustrations of full backup file 305, bitmask 306, and differential backup file 307
in FIG. 3 are logical representations of these files. The actual structure and organization of these
files may be different from how they appear in FIG. 3. For example, additional data may be
appended to the end of differential backup file 307. If data is added to the database after full
backup file 305 was created, the new data may be added to the end of differential backup file
307. In addition, pointers or binary data may be added to the end of bitmask 306 that corresponds
to the new data. Also, if objects are deleted from the database after full backup file 305 was
created, metadata describing the deleted objects may be appended to differential backup file 307,
and pointers or binary data corresponding to the deleted data may be appended to bitmask 306.
[0050] The methods and mechanisms described herein may also be used with incremental
backups. Generally speaking, an incremental backup may store all of the changes to a database
since the last incremental backup or the last full backup. For example, a full backup may be
performed, and then any number of incremental backups may be performed. Metadata from each
of the incremental backups may be merged with the full backup metadata as described above.
Alternatively, the incremental backup metadata may me merged together into a single file which
may then be merged with the full backup metadata. The merging together of all of the
incremental backups metadata into a single file may create a file similar to a differential backup
file. The single merged file may need to be reformatted or organized in a different way to match
up with the format of a differential backup file. A bitmask may be generated from the metadata
describing the data in the single file, similar to how a bitmask may be generated from a stored
differential backup file, and then the merged file may take the place of the differential backup file
in the methods described herein. Using the above described method, a granular restore operation
may be performed following one or more incremental backups of a database. As used herein, a
“partial backup” may refer to either a differential or an incremental backup.

[0051] Referring now to FIG. 4, one embodiment of a user interface 400 that may be
presented by a backup application for selecting from a list of database archives is illustrated.
Backup application 410 may run on a media server, database server, client computer, or other
computing device. Backup application 410 may present user interface 400 to a user to access and
select from a plurality of stored point in time backups of a database. User interface 400 may
include features such as drop-down menus, a navigation bar, an address field, and other common
features of web pages and graphical user interfaces (GUIs). The user may be an administrator,
software developer, or other user. The user may wish to restore one or more objects from a
backup copy of a database from a specific point in time. Alternatively, the user may wish to
restore the entire database from a specific point in time. As depicted in FIG. 4, user interface 400

may display a plurality of backups for the user to select from when considering a restore
11

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

operation. The point in time backups may be listed according to the date or time on which the
backups were performed. Other methods of listing and organizing the point in time backups are
possible and contemplated.

[0052] The following backups are displayed in the “Point In Time Backups” pane 405 of user
interface 400: June 1, 2010 backup 410, the morning or AM backup of June 1 (420), the
afternoon or PM backup of June 1 (430), June 2 backup 440, June 3 backup 450, June 4 backup
460, and June 5 backup 470. Any of the specific days displayed in the Point in Time Backups
pane 405 may have multiple backups for that specific day. The backups displayed in the Point in
Time Backups pane 405 are representative of any number of backups which may be displayed as
part of a user interface 400 of a backup application 410.

[0053] The user may search the list in Point in Time Backups pane 405 for a specific point in
time backup from which to restore objects. The backup that was performed at that specific point
in time may have been a full or a differential backup. In one embodiment, the pane 405 may not
differentiate between a backup coming from a full backup or a differential backup. In another
embodiment, Point in Time Backups pane 405 may display different shading for full backups
versus differential backups, or give an indication so that the user may see which type of backup
was performed at the point in time. In either case, the user may not need to know if the backup
for a specific point in time was a full or differential; the user may restore objects from a specific
point in time without that knowledge. After the user has selected the specific point in time
backup from which to restore objects, the user may select the “open” button to expand the
backup to see the objects of the database as they existed at that point in time. User interface 400
may take on other forms or display point in time backups in other formats than the one shown in
FI1G. 4.

[0054] Tuming now to FIG. 5, one embodiment of a user interface 500 that may be presented
by backup application 510 for selecting specific records or objects to be restored is illustrated.
User interface 500 may include features such as drop-down menus, a navigation bar, an address
field, and other common features of web pages and GUIs. User interface 500 is presented for
discussion purposes only; other representations of user interfaces are possible and contemplated.
In another embodiment, user interface 500 may show other types of objects, such as sites,
subsites, lists and/or items, which may be selected for restoration. In FIG. 5, user interface 500
shows a view of how the records and objects may be presented from a specific point in time
backup; in this case, the specific point in time backup is June 4 Backup 460. June 4 backup 460
may have been selected on a previous user interface, such as the one shown in FIG. 4, where a

plurality of point in time backups are presented to a user.

12

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

[0055] A hierarchical listing of records and objects may be presented in a “Records” pane
504 in user interface 500. Record 510 is displayed in Records pane 504, as are objects 511-514
of record 510. Records 520, 530, 540, and 550 are also displayed in Records pane 504, and
objects 551-55 appear under the listing for record 550. The listing shown in Records pane 504
may only be a portion of the records and objects stored in the June 4 backup 460 of a database.
The entries of June 4 backup 460 may have been traversed to reach the records and objects
displayed in user interface 500. Records and objects may be selected from the listing in Records
pane 504 and added to the “Restore Objects” pane 505 by using an Add button. Records and
objects may be selected and removed from the Restore Objects pane 505 by using a Remove
button. As is shown in FIG. 5, objects 514 and 551 appear under the restore folder 560 in Restore
Objects pane 505, indicating that objects 514 and 551 have been selected by a user for
restoration.

[0056] In one embodiment, the view shown in user interface 500 may be created by merging
metadata from a full database backup file with metadata from a differential backup file
corresponding to the point in time backup of June 4. In this sense, the view may be considered a
“synthetic full backup view” to the extent it presents a view of a full backup as it would appear
had it been performed instead of the point in time backup of June 4 (i.c., the partial backup). In
another embodiment, the view shown in user interface 500 may be created by logically merging a
differential backup file with a last full backup file. In a further embodiment, a bitmask may be
used to generate the view shown in user interface 500. The view of user interface 500 is a virtual
representation of the underlying data structure of a database at a specific point in time. A map
that translates objects to pages and pages to objects may also be used to present the view of user
interface 500. User interface 500 displays objects, and a differential backup file, bitmask, and full
database backup file may be organized according to pages. A translation map may be used to
convert the page structure of the backup files into the object view of user interface 500. A
translation map may also be used to find the objects selected for restoration by a user in user
interface 500 within the page structure of a differential backup file and a full database backup
file.

[0057] A differential backup file, a last full backup file, and/or a bitmask may be loaded from
backup storage to the physical memory of a media server to present the view shown in FIG. 5,
and the files may stay in memory to allow for objects to be quickly retrieved after the user selects
objects for restoration. The view of June 4 backup 460 shown in user interface 500 of FIG. 5 may
show the database as it existed at the time the differential backup was performed on June 4. In

other embodiments, different types of views may be presented by user interface 500. For

13

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

example, if the database stores a website, user interface 500 may present a view of the website
as it looked at a specific point in time in the past.

[0058] Referring now to FIG. 6, an embodiment of a method 600 for restoring a plurality of
objects to a database is shown. For purposes of discussion, the steps in this embodiment are
shown in sequential order. It should be noted that in various embodiments of the method
described below, one or more of the elements described may be performed concurrently, in a
different order than shown, or may be omitted entirely. Other additional elements may also be
performed as desired.

[0059] The method 600 starts in block 610, and then a request to restore a plurality of objects
to a database is detected in block 620. Next, for each object (block 630), the following steps may
be performed. In block 640, the bitmask file may be read to determine if the object is stored in
the differential backup file. If the object is in the differential backup file (conditional block 650),
then the object may be retrieved from the differential backup file (block 670). If the object is not
in the differential backup file (conditional block 650), then the object may be retrieved from the
full backup file (block 660). After block 660 or block 670, the object may be restored to the
database (block 680). Next, if the object restored in block 680 is the last object (conditional block
690), then the method 600 may end in block 695. If it is not the last object (conditional block
690), then the method 600 may return to block 630 to restore the next object.

[0060] Turning now to FIG. 7, an embodiment of a method 700 for performing a differential
backup is shown. For purposes of discussion, the steps in this embodiment are shown in
sequential order. It should be noted that in various embodiments of the method described below,
one or more of the elements described may be performed concurrently, in a different order than

shown, or may be omitted entirely. Other additional elements may also be performed as desired.

[0061] The method 700 starts in block 705, and then a request to perform a database backup
may be detected (block 710). Next, a customized query may be run to find and retrieve a change
map from the database (block 720). In one embodiment, the change map may be a differential
changed map (DCM). Next, the change map may be stored by a backup application (block 730).
Then, the pages from the database backup may be read and compared to the stored change map
(block 740). Next, the pages containing changes as indicated by the change map may be collected
and saved as a differential backup file (block 750). After block 750, the method 700 may end in
block 760. In this method, a full backup may be performed from the client’s point of view, but a
media server may only store the changes to the database as if a differential backup were

performed.

14

10

15

20

25

30

WO 2012/050940 PCT/US2011/053809

[0062] It is noted that the above-described embodiments may comprise software. In such an
embodiment, program instructions and/or a database (both of which may be referred to as
“instructions”) that represent the described systems and/or methods may be stored on a computer
readable storage medium. Generally speaking, a computer readable storage medium may include
any storage media accessible by a computer during use to provide instructions and/or data to the
computer. For example, a computer readable storage medium may include storage media such as
magnetic or optical media, e.g., disk (fixed or removable), tape, CD-ROM, DVD-ROM, CD-R,
CD-RW, DVD-R, DVD-RW, or Blu-Ray. Storage media may further include volatile or non-
volatile memory media such as RAM (e.g., synchronous dynamic RAM (SDRAM), double data
rate (DDR, DDR2, DDR3, etc.) SDRAM, low-power DDR (LPDDR2, etc.) SDRAM, Rambus
DRAM (RDRAM), static RAM (SRAM)), ROM, Flash memory, non-volatile memory (e.g.
Flash memory) accessible via a peripheral interface such as the USB interface, etc. Storage
media may include micro-clectro-mechanical systems (MEMS), as well as storage media
accessible via a communication medium such as a network and/or a wireless link.

[0063] In various embodiments, one or more portions of the methods and mechanisms
described herein may form part of a cloud computing environment. In such embodiments,
resources may be provided over the Internet as services according to one or more various models.
Such models may include Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). In laaS, computer infrastructure is delivered as a service. In such a
case, the computing equipment is generally owned and operated by the service provider. In the
PaaS model, software tools and underlying equipment used by developers to develop software
solutions may be provided as a service and hosted by the service provider. SaaS typically
includes a service provider licensing software as a service on demand. The service provider may
host the software, or may deploy the software to a customer for a given period of time. Numerous
combinations of the above models are possible and are contemplated.

[0064] Although several embodiments of approaches have been shown and described, it will
be apparent to those of ordinary skill in the art that a number of changes, modifications, or
alterations to the approaches as described may be made. Changes, modifications, and alterations
should therefore be seen as within the scope of the methods and mechanisms described herein. It
should also be emphasized that the above-described embodiments are only non-limiting

examples of implementations.

15

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

WHAT IS CLAIMED IS
1. A method of performing a granular restore operation from a differential backup of a
database, the method comprising:
detecting a request to restore a database;
identifying a full backup corresponding to the database;
identifying a partial backup corresponding to the database;
presenting at least a portion of a synthetic full backup view of the database based upon
the full backup and the partial backup;
detecting a sclection by a user of an object in the synthetic full backup view to be
restored;
restoring the object from the full backup in response to determining the object
corresponds to the full backup; and
restoring the object from the partial backup in response to determining the object

corresponds to the partial backup.

2. The method as recited in claim 1, wherein creating the synthetic full backup view comprises:
accessing metadata associated with the full backup;
accessing metadata associated with the partial backup; and
presenting a synthetic full backup view of the database based upon a merger of the
metadata associated with the full backup and the metadata associated with the

partial backup.

3. The method as recited in claim 1, wherein prior to detecting the request to perform the restore
operation the method comprises:
performing a full backup of the database and storing data received from the full backup;
and
performing a partial backup of the database, wherein performing a partial backup
comprises:
detecting a request to perform a partial backup of the database;
storing data received from the partial backup;
building a bitmask file including indicators that specify which objects in the
database have been modified subsequent to the full backup and are stored
as part of the partial backup; and
storing the bitmask file.

16

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

4. The method as recited in claim 1, wherein performing a partial backup comprises:

detecting a request to perform a backup of the database;

initiating a backup procedure;

running a customized query on the database to identify changed objects in the
database since a last full backup;

storing a change map that identifies the changed objects;

receiving a plurality of data objects during the backup procedure;

comparing objects of the plurality of data objects to objects identified in the change
map;

saving particular objects of the plurality of data objects as part of the partial backup,
in response to determining the change map indicates the particular objects

have changed.

. The method as recited in claim 3, wherein determining whether the object corresponds to the

full backup or the partial backup comprises comparing an identifier included in a header

associated with the object to identifiers stored in the bitmask file.

. The method as recited in claim 3, wherein the bitmask file is generated based upon data in an

SQL server.

. The method as recited in claim 1, wherein the database comprises a Microsoft SharePoint

content database.

. A computer readable storage medium comprising program instructions for performing a

granular restore operation from a differential backup, wherein when executed the program

instructions are operable to perform any of methods 1 to 7.

. A computing system for performing a granular restore operation from a differential backup,

the system comprising:
a processor;
a memory; and
a server, wherein the server is configured to:
detect a request to restore a database;

identify a full backup corresponding to the database;
17

10

15

20

25

30

35

WO 2012/050940 PCT/US2011/053809

identify a partial backup corresponding to the database;
present at least a portion of a synthetic full backup view of the database based
upon the full backup and the partial backup;
detect a selection by a user of an object in the synthetic full backup view to be
restored;
restore the object from the full backup in response to determining the object
corresponds to the full backup; and
restore the object from the partial backup in response to determining the object

corresponds to the partial backup.

10. The computer system as recited in claim 9, wherein the server is further configured to:
access metadata associated with the full backup;

access metadata associated with the partial backup; and

present a synthetic full backup view of the database based upon a merger of the metadata

associated with the full backup and the metadata associated with the partial
backup.

11. The computer system as recited in claim 9, prior to detecting a request to perform a granular

restore operation, the server is further configured to:

perform a full backup of the database and storing data received from the full backup; and

perform a partial backup of the database, wherein performing a partial backup comprises:

detect a request to perform a partial backup of the database;

store data received from the partial backup;

build a bitmask file including indicators that specify which objects in the database

have been modified subsequent to the full backup and are stored as part of

the partial backup; and
store the bitmask file.

12. The computer system as recited in claim 9, wherein to perform a differential backup, the
server is configured to:
detect a request to perform a backup of the database;
initiate a backup procedure;
run a customized query on the database to identify changed objects in the database;
store a change map that identifies the changed objects;

receive a plurality of data objects during the backup procedure;
18

WO 2012/050940 PCT/US2011/053809

compare objects of the plurality of data objects to objects identified in the change map;
save objects of the plurality of data objects that are identified as having changed; and

discard objects of the plurality of data objects that are not identified as having changed.

5 13. The computer system as recited in claim 11, wherein to determine whether the object
corresponds to the full backup or the partial backup the server is configured to compare an

identifier included in a header associated with the object to identifiers stored in the bitmask

file.
10

14. The computer system as recited in claim 9, wherein the database comprises a Microsoft

SharePoint content database.

19

PCT/US2011/053809

WO 2012/050940

1/7

GGl odlAe(Q
abeloig
dnyoeg

0SL ==
lanleg
eIpsN “

} Old

[IN%
slomieN

oL
asegele(
0¢l
asegele(
/ Gel welsAg
Jandwo)n
IVET (g}
Gzl lanes
asegeie
=3

NN\ 02) weishs
N Jeindwion

usIO

\ 00}

21N}08}IY04Y YIOMISN

PCT/US2011/053809

WO 2012/050940

2/7

¢ ol

08¢
a[l4 dmyjoeg
aseqele(||In4

0/¢
9l
dnyoeg

[enuasayid

09¢
3sewlig

19¢

awil] U] Julod

9¢ swi] ujjuiod

€9¢ swi| ujjuiod

0sC
obeiojs

dnyoeg

oy
aoeLIsu|

0¢c
loAlag elpaly

0£Z 99epau]

0L¢c
aseqeleq

WO 2012/050940

PCT/US2011/053809

3/7
[oN
>
=
3
o~ o
™~ LOI 0
mol o) o
Em S S "wn
2 2 RS
= o) 0
o o) O
[
=
3 A A
(o]
o <= L\l[col < | v | «© I\I o] | o ol \—l c\l| co|
™ || A D || || o o | S| <| | |} | | <
AN AN A A A | A A]S A Aol | oo
'x L B T e e D R B Ui D U D O B U S S N SO BT T D SR B S
7 dlolodlo|lo|lolo|lo|lolaalaoala]la] "
© = a4 A= | = | = | = | = = | = = = | =) =
crcleleleleleleleleltelel
& clo|lc|lc|oc|lc|clc|jc|c|c|alo
5 SN O o IO o RO N DO I D N T I WO (o OO [0 OO [WO (Y SN o S o
8|
& Y Y Y Y VY YVYY YvYyYyvy
()]
— x—C\IOOIﬁ‘LO(OI\OOO)O\—C\ICO
L ~t 1~ ~] ~|]~|]| ~l}|~|}]! ~|1N]]|]N] NN
e e B e R I e B e R e B e B e B el R B e R e
S o|loolo|loc|lo|lololoco]j]c|lc|lolo|lo] **
2 olole|o|lololo|le|lale]ale|a
O Slolo|lololog|loalola|la|lolola
L%‘ O|J|OJO|O]J]O]J]OJO|O|JO|lO|JO|lO|O
=
L

FIG. 3

PCT/US2011/053809

WO 2012/050940

4/7

0ov
aoBl8)U|
198

0107 ' sunp H\
0102 ‘v eunp ﬂm

010z ‘¢ sunp _U\
010z ‘Z aunp rd\

PCT/US2011/053809

WO 2012/050940

57

00S
aoepa)U|
19

G0g

3
4
3
W

166 19l00 J

yL6 10840 B
096 Jep|o4 aloisey

A0Sy

K=
|
<C

56510800 B
peg8lao B
€56 100[q0 B l

059 Eooom CJ =
0pG PI038Y

0€G PI0d8Y
0¢G PI0d9Y

y1G100[00 B
¢Lg1elao B
ZL50elao B

11610800 B
016 pI09sy J [

v0S

WO 2012/050940 PCT/US2011/053809
6/7

ST Method
510 600
v

Detect a Request to Restore a |

Plurality of Objects to a Database
620

Y

4

For Each Object
630

Y
Read the Bitmask File to
Determine if the Object is Stored
in the Differential Backup File

: 640

Is the
Object in the Retrieve the Object from

Differential Backup the Differential Backup
File? File 670
650

)\
Retrieve the Object from .

the Full Backup File - Resto[)e the ObjeCt to the

660 atabase 680

FIG. 6

WO 2012/050940

717

Start
705

Y

Detect a Request to Perform a
Database Backup
710

y

Run a Customized Query to
Identify Changed Objects in
Database
720

\

Build and Store Change Map
730

A

Read and Compare Pages from
the Database Backup to the
Change Map
740

\

Collect and Save the Changed
Pages from the Database
Backup
750

Y
End
760

FIG. 7

PCT/US2011/053809

Method

700
/

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/053809

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6Fl1/14
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched {classification system followed by classification symbols)

Documentation searshed other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the intemational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X US 7 634 511 B1 (FREIHEIT KIRK HARTMANN 1,2,4,

[US] ET AL) 15 December 2009 (2009-12-15) 6-10,12,
14

Y abstract; figures 1-10 3,5,11,
column 2, line 50 - column 15, line 65 13

Y WO 2007/002397 A2 (SYNCSORT INC [US]; LIU 3,5,11,
PETER CHI-HSIUNG [US]; ACHARYA SOUBIR 13
[US]) 4 January 2007 (2007-01-04)
page 9, line 24 - page 27, line 6

Y US 2009/313447 Al (NGUYEN SINH D [US] ET 1-14

AL) 17 December 2009 (2009-12-17)
abstract; figures 1-5

paragraph [0007] - paragraph [0008]
paragraph [0017] - paragraph [0025]
paragraph [0027] - paragraph [0029]
paragraph [0035] - paragraph [0054]

_____ o

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" documentwhich may throw doubts on priority claim(s) or
which is cited to establish the publication date of ancther
citation or other special reason {(as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and notin conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
_m%r:ts, ﬁuch combination being obvious to a person skilled
inthe art.

'&" document member of the same patent family

Date of the actual completion of the international search

5 January 2012

Date of mailing of the international search report

12/01/2012

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswilk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Bozas, I[oannis

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/053809

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

US 7 694 088 Bl (BROMLEY GRAHAM [US] ET
AL) 6 April 2010 (2010-04-06)

abstract

column 2, Tine 44 - column 4, line 20
US 2007/168401 Al (KAPOOR ADITYA [US] ET
AL) 19 July 2007 (2007-07-19)

abstract; figures 1-6

paragraph [0045] - paragraph [0072]

US 2010/082553 Al (BEATTY LOUIS [US] ET
AL) 1 April 2010 (2010-04-01)

the whole document

EP 1 640 868 A2 (MICROSOFT CORP [US])
29 March 2006 (2006-03-29)

the whole document

1-14

1-14

1-14

1-14

Form PCT/ISA210 (continuation of second sheet) [Aptil 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent famlly members

International application No

PCT/US2011/053809
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 7634511 Bl 15-12-2009 NONE

W0 2007002397 A2 04-01-2007 AT 497210 T 15-02-2011
AU 2006262045 Al 04-01-2007
AU 2006262046 Al 04-01-2007
CA 2613359 Al 04-01-2007
CA 2613419 Al 04-01-2007
CN 101243413 A 13-08-2008
CN 101495970 A 29-07-2009
CN 102117233 A 06-07-2011
EP 1907935 A2 09-04-2008
EP 1907972 A2 09-04-2008
JP 2008547123 A 25-12-2008
JP 2009506399 A 12-02-2009
US 2009222496 Al 03-09-2009
Us 2010077160 Al 25-03-2010
US 2011218968 Al 08-09-2011
WO 2007002397 A2 04-01-2007
WO 2007002398 A2 04-01-2007

US 2009313447 Al 17-12-2009 US 2009313447 Al 17-12-2009
US 2010241075 Al 23-09-2010

US 7694088 Bl 06-04-2010 NONE

US 2007168401 Al 19-07-2007 NONE

US 2010082553 Al 01-04-2010 CN 102171660 A 31-08-2011
EP 2347335 Al 27-07-2011
US 2010082553 Al 01-04-2010
WO 2010039608 Al 08-04-2010

EP 1640868 A2 29-03-2006 AU 2005203663 Al 06-04-2006
AU 2010246446 Al 16-12-2010
BR P10503703 A 02-05-2006
CA 2516102 Al 22-03-2006
CN 1752939 A 29-03-2006
EP 1640868 A2 29-03-2006
JP 4807992 B2 02-11-2011
JP 2006092553 A 06-04-2006
KR 20060050742 A 19-05-2006
MX PAD5009680 A 27-03-2006
US 2006064444 Al 23-03-2006
US 2010274763 Al 28-10-2010

Form PCT/ISA210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report

