wo 20107129135 A1 |00 0K 0O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2010/129135 A1l

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
11 November 2010 (11.11.2010) PCT
(51) International Patent Classification: 74)
GO6F 9/445 (2006.01) GOG6F 21/00 (2006.01)
(21) International Application Number:
PCT/US2010/030515 (81)
(22) International Filing Date:
9 April 2010 (09.04.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/434,629 2 May 2009 (02.05.2009) US
(71) Applicant (for all designated States except US): CITRIX
SYSTEMS, INC. [US/US]; 851 West Cypress Creek
Road, Fort Lauderdale, FL 33309 (US). (84)
(72) Inventors; and
(75) Inventors/Applicants (for US only): CHINTA, Madhav

[IN/US]; C/o Citrix Systems, Inc., 851 West Cypress
Creek Road, Fort Lauderdale, FL 33309 (US). RAJ,
SamArun [IN/IN]; C/o Citrix Systems, Inc., 851 West
Cypress Creek Road, Fort Lauderdale, FL 33309 (US).

Agent: PONIKIEWICZ, Kellan, D.; Choate, Hall &
Stewart LLP, Two International Place, Boston, MA
02110 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHODS AND SYSTEMS FOR LAUNCHING APPLICATIONS INTO EXISTING ISOLATION ENVIRON-

MENTS

: Session | 2001 :
| |
| |Isolation Environment A 2004 Isolation Environment B 2006 |
| | Profile: MS Office Profile: Adobe |
| 1D: 1234 1D: 5678 |
| |
| 2024 2026 5058 |
MS Excel MS Word
| Adobe Reader |
| |
| |
| 2018 2 |
| Launch Module A Launch Module B |
| |
| 4 A |
| v v |
: Run Module 1 2014 :
| |

Runtime Object Table App. Delivery Service

Session | Session 1
- Profile: MS Office e Brofiles.
- Location: ##H#5-1234 - Aetive FIOH es:
- MS Office
- Profile: Adobe
- Adobe

- Location: ####-5678

2012

FIG. 18

2010

(57) Abstract: Methods and systems that can launch
applications into existing isolation environments do so
by executing a run module on a computing machine to
intercept requests to execute an application. A client
communicating with the computing machine generates
requests to execute an application on the computing
machine. A run module identifies a profile associated
with the requested application and queries an applica-
tion delivery service to identify at least one isolation
environment that corresponds to the profile. The run
module receives from the application delivery service
a response that identifies a first isolation environment
associated with the application, and issues a command
to a launch module to launch the application into the
first isolation environment.

WO 20107129135 A1 W00 00 00 0 A

Published:
— with international search report (Art. 21(3))

WO 2010/129135 PCT/US2010/030515

METHODS AND SYSTEMS FOR LAUNCHING APPLICATIONS INTO EXISTING
ISOLATION ENVIRONMENTS

RELATED APPLICATIONS
[0001] This Patent Application claims priority to U.S. Patent Application serial number
12/434,629, filed on May 2, 2009, the disclosure of which is considered part of the disclosure

of this application and is herein incorporated by reference in its entirety.

FIELD OF THE INVENTION
[0002] This invention relates generally to remotely executing applications on a
computing machine. More specifically, this invention relates to remotely executing

applications in isolation environments on a computing machine.

BACKGROUND OF THE INVENTION

[0003] There currently exist methods for isolating applications within isolation
environments and according to an application profile, a user session or another parameter that
can be used to isolate applications. When an application executes within an isolation
environment, typically that application cannot communicate with other applications not
executing within the isolation environment. Permitting an isolated application to
communicate with an application outside of the isolation environment may require an
administrator to package the isolated application and the other application into a larger single
isolation image or profile.

[0004] Creating an isolation environment requires creating an image of disk data,
communicating that image to a kernel mode component and to user mode components. This
process can take a great deal of time and require many resources. In particular, creating an
image of disk data requires parsing data structures on a disk, a process that becomes
increasingly more resource intensive as the number of profiles executing on a disk increases.
Thus, creating a larger single isolation image or profile each time an application wishes to
communicate with another application that does not reside in the application’s isolation
environment, can be time and resource intensive. Methods and systems are therefore needed
that permit applications executing in different isolation environments to talk with one another

without requiring the creation of a separate isolation image or profile.

Page 1 of 102

WO 2010/129135 PCT/US2010/030515

SUMMARY OF THE INVENTION

[0005] In its broadest interpretation, this disclosure describes methods and systems for
launching an application into an existing isolation environment. Launching applications into
an environment where application sociability and compatibility can present problems, often
requires executing the application within an isolation environment or within an isolation
scope within an isolation environment. Creating an isolation environment can be a time
consuming and resource intensive process, therefore systems and methods are needed to
decrease the amount of time and resources required to launch an application into an isolation
environment. Implementing methods and systems that identify a pre-existing isolation
environment associated with an application and launch the application into that pre-existing
isolation environment can both reduce the amount of time and the amount of resources
needed to launch the application into an isolation environment.

[0006] In one aspect, described herein is a method for launching applications into
existing isolation environments. The method can be carried out in part by a run module
executing on a computing machine in communication with a client computing machine. The
run module receives a request to execute an application on the computing machine; the
request generated by a user of the client. The run module identifies a profile associated with
the requested application and queries an application delivery service executing on the
computing machine to identify at least one isolation environment corresponding to the
profile. Upon querying the application delivery service, the run module receives from the
application delivery service a response that identifies a first isolation environment associated
with the application. The run module, upon obtaining information about the first isolation
environment, issues a command to a launch module executing on the computing machine to
launch the application in the first isolation environment.

[0007] In one embodiment, the run module receives an identifier, from the application
delivery service, associated with the first isolation environment. The received identifier can
in some embodiments be a name of a first isolation environment. In some embodiments, the
run module responds to receiving the first isolation environment identifier by querying a
runtime object table for an address of the first isolation environment, wherein the run module
queries the runtime object table using the first isolation environment identifier.

[0008] The first isolation environment, in some embodiments, exposes a communication
interface for communicating with components executing on the computing machine, the

communication interface generated by an inter-process mechanism. Commanding the launch

Page 2 of 102

WO 2010/129135 PCT/US2010/030515

module to launch the application can further comprise transmitting a location of the
application to the exposed communication interface.

[0009] In one embodiment, identifying a first isolation environment further comprises
identifying an address associated with the first isolation environment. The first isolation
environment address can in some embodiments comprise a profile version associated with the
first isolation environment and in other embodiments can comprise a user session identifier
associated with the first isolation environment.

[0010] In one embodiment, the method can comprise failing to identify an isolation
environment corresponding to the profile and launching, by the run module responsive to
failing to identify an isolation environment, a lunch module in a suspended mode. The run
module then issues a command to the application delivery service to isolate the launch
module, sends application information to the launch module, and issues a command to the
launch module to resume execution.

[0011] In one aspect the method can be carried out by a system comprising a computing
machine communicating with a client generating a request to execute an application on the
computing machine, the application associated with a profile. The system further comprises
an application delivery service, launch module and run module executing on the computing
machine. The run module receives the client request and queries the application delivery
service to identify at least one isolation environment corresponding to the profile. Upon
querying the application delivery service, the run module receives from the application
delivery service a response identifying a first isolation environment associated with the
application, and issues a command to the launch module to launch the application into the
first isolation environment.

[0012] In other aspects, the methods and systems can be carried out by a computer
readable medium having instructions executable by a processor to launch applications into

existing isolation environments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The following figures depict certain illustrative embodiments of methods and
systems for launching applications into existing isolation environments, where like reference
numerals refer to like elements. Each depicted embodiment is illustrative of these methods
and systems and not limiting.

[0014] FIG. 1A is a block diagram illustrative of an embodiment of a remote-access,

networked environment with a client machine that communicates with a server.

Page 3 of 102

WO 2010/129135 PCT/US2010/030515

[0015] FIG. 1B and 1C are block diagrams illustrative of an embodiment of computing
machines for practicing the methods and systems described herein.

[0016] FIG. 1D is a block diagram depicting an embodiment of a server farm.

[0017] FIG. 1E is a block diagram depicting one embodiment of a system for providing a
plurality of application programs available to the client via publishing of GUIs in a web
service directory.

[0018] FIG. 2 is a flow diagram depicting one embodiment of the steps taken to select a
method of execution of an application program.

[0019] FIG. 3A is a block diagram depicting one embodiment of a client initiating
execution of a Program Neighborhood application via the World Wide Web.

[0020] FIG. 3B is a flow diagram depicting one embodiment of the steps taken by a client
to access an application program enumerated using a web service directory.

[0021] FIG. 4A is a block diagram of an embodiment of a network providing policy-
based access to application programs for a client.

[0022] FIG. 4B is a block diagram depicting a more detailed embodiment of a policy
engine.

[0023] FIG. 4C a flow diagram depicting one embodiment of the steps taken by a policy
engine to make an access control decision based upon information received about a client.
[0024] FIG. 4D is a block diagram depicting an embodiment of a computer network in
which authorized remote access to a plurality of application sessions is provided.

[0025] FIG. 4E is a flow diagram depicting one embodiment of the steps taken by a
session server to connect a client with its associated application sessions.

[0026] FIG. 5 is a flow diagram depicting one embodiment of the steps taken by a session
server to connect a client node with its associated application sessions.

[0027] FIG. 6 is a block diagram depicting one embodiment of a server including a
management service providing an application enumeration.

[0028] FIG. 7 is a flow diagram depicting one embodiment of the steps taken to access a
plurality of files comprising an application program.

[0029] FIG. 8A is a block diagram depicting one embodiment of a computer running
under control of an operating system that has reduced application compatibility and
application sociability problems.

[0030] FIG. 8B is a block diagram depicting a multi-user computer having reduced

application compatibility and application sociability problems.

Page 4 of 102

WO 2010/129135 PCT/US2010/030515

[0031] FIG. 8C is a flow diagram depicting one embodiment of the steps taken in a
method for associating a process with an isolation scope.

[0032] FIG. 9 is a flow diagram depicting one embodiment of steps taken in a method for
executing an application program.

[0033] FIG. 10 is a flow diagram depicting one embodiment of a plurality of application
files residing on a server.

[0034] FIG. 11 is a flow diagram depicting one embodiment of the steps taken in a
method for responding locally to requests for file metadata associated with files stored
remotely.

[0035] FIG. 12 is a block diagram of one embodiment of a server including a license
management subsystem.

[0036] FIG. 13 is a block diagram depicting one embodiment of components in a
management service on a server.

[0037] FIG. 14 is a flow diagram depicting one embodiment of the steps taken to request
and maintain a license from a server.

[0038] FIG. 15 is a block diagram depicting one embodiment of states that may be
associated with a session monitored by a management service.

[0039] FIG. 16 is a flow diagram depicting one embodiment of the steps taken to install
an application in an application isolation environment.

[0040] FIG. 17 is a block diagram depicting one embodiment of a system for launching
applications into an isolation environment.

[0041] FIG. 18 is a block diagram depicting one embodiment of a system for launching
applications into an existing isolation environment.

[0042] FIG. 19 is a flow diagram depicting one embodiment of a method for launching
applications into an isolation environment.

[0043] FIG. 20 is a flow diagram depicting one embodiment of a method for launching

applications into an isolation environment.

DETAILED DESCRIPTION

[0044] Fig. 1A illustrates one embodiment of a computing environment 101 that includes
one or more client machines 102A-102N in communication with servers 106A-106N, and a
network 104 installed in between the client machines 102A-102N and the servers 106A-
106N. In some embodiments, client machines 102A-10N may be referred to as a single client

machine 102 or a single group of client machines 102, while servers may be referred to as a

Page 5 of 102

WO 2010/129135 PCT/US2010/030515

single server 106 or a single group of servers 106. One embodiment includes a single client
machine 102 communicating with more than one server 106, another embodiment includes a
single server 106 communicating with more than one client machine 102, while another
embodiment includes a single client machine 102 communicating with a single server 106.
[0045] A client machine 102 within the computing environment may in some
embodiments, be referenced by any one of the following terms: client machine(s) 102;
client(s); client computer(s); client device(s); client computing device(s); local machine;
remote machine; client node(s); endpoint(s); endpoint node(s); or a second machine. The
server 106 in some embodiments may be referenced by any one of the following terms:
server(s), local machine; remote machine; server farm(s), host computing device(s), or a first
machine(s).

[0046] The client machine 102 can in some embodiments execute, operate or otherwise
provide an application that can be any one of the following: software; a program; executable
instructions; a web browser; a web-based client; a client-server application; a thin-client
computing client; an ActiveX control; a Java applet; software related to voice over internet
protocol (VoIP) communications like a soft IP telephone; an application for streaming video
and/or audio; an application for facilitating real-time-data communications; a HTTP client; a
FTP client; an Oscar client; a Telnet client; or any other type and/or form of executable
instructions capable of executing on client machine 102. Still other embodiments may
include a computing environment 101 with an application that is any of either server-based or
remote-based, and an application that is executed on the server 106 on behalf of the client
machine 102. Further embodiments of the computing environment 101 include a server 106
configured to display output graphical data to a client machine 102 using a thin-client or
remote-display protocol, where the protocol used can be any one of the following protocols:
the Independent Computing Architecture (ICA) protocol manufactured by Citrix Systems,
Inc. of Ft. Lauderdale, Florida; or the Remote Desktop Protocol (RDP) manufactured by the
Microsoft Corporation of Redmond, Washington.

[0047] In one embodiment, the client machine 102 can be a virtual machine 102C such as
those manufactured by XenSolutions, Citrix Systems, IBM, VMware, or any other virtual
machine able to implement the methods and systems described herein.

[0048] The computing environment 101 can, in some embodiments, include more than
one server 106A-106N where the servers 106A-106N are: grouped together as a single server
106 entity, logically-grouped together in a server farm 106; geographically dispersed and

logically grouped together in a server farm 106, located proximate to each other and logically

Page 6 of 102

WO 2010/129135 PCT/US2010/030515

grouped together in a server farm 106. Geographically dispersed servers 106A-106N within
a server farm 106 can, in some embodiments, communicate using a WAN, MAN, or LAN,
where different geographic regions can be characterized as: different continents; different
regions of a continent; different countries; different states; different cities; different
campuses; different rooms; or any combination of the preceding geographical locations. In
some embodiments the server farm 106 may be administered as a single entity or in other
embodiments may include multiple server farms 106. The computing environment 101 can
include more than one server 106A-106N grouped together in a single server farm 106 where
the server farm 106 is heterogencous such that one server 106A-106N is configured to
operate according to a first type of operating system platform (e.g., WINDOWS NT,
manufactured by Microsoft Corp. of Redmond, Washington), while one or more other servers
106A-106N are configured to operate according to a second type of operating system
platform (e.g., Unix or Linux); more than one server 106 A-106N is configured to operate
according to a first type of operating system platform (e.g., WINDOWS NT), while another
server 106A-106N is configured to operate according to a second type of operating system
platform (e.g., Unix or Linux); or more than one server 106A-106N is configured to operate
according to a first type of operating system platform (e.g., WINDOWS NT) while more than
one of the other servers 106A-106N are configured to operate according to a second type of
operating system platform (e.g., Unix or Linux).

[0049] The computing environment 101 can in some embodiments include a server 106
or more than one server 106 configured to provide the functionality of any one of the
following server types: a file server; an application server; a web server; a proxy server; an
appliance; a network appliance; a gateway; an application gateway; a gateway server; a
virtualization server; a deployment server; a SSL VPN server; a firewall; a web server; an
application server or as a master application server; a server 106 configured to operate as an
active direction; a server 106 configured to operate as application acceleration application
that provides firewall functionality, application functionality, or load balancing functionality,
or other type of computing machine configured to operate as a server 106. In some
embodiments, a server 106 may include a remote authentication dial-in user service such that
the server 106 is a RADIUS server. Embodiments of the computing environment 101 where
the server 106 comprises an appliance, the server 106 can be an appliance manufactured by
any one of the following manufacturers: the Citrix Application Networking Group; Silver
Peak Systems, Inc; Riverbed Technology, Inc.; F5 Networks, Inc.; or Juniper Networks, Inc.

Some embodiments include a server 106 with the following functionality: a first server 106A

Page 7 of 102

WO 2010/129135 PCT/US2010/030515

that receives requests from a client machine 102, forwards the request to a second server
106B, and responds to the request generated by the client machine with a response from the
second server 106B; acquires an enumeration of applications available to the client machines
102 and address information associated with a server 106 hosting an application identified by
the enumeration of applications; presents responses to client requests using a web interface;
communicates directly with the client 102 to provide the client 102 with access to an
identified application; receives output data, such as display data, generated by an execution of
an identified application on the server 106.

[0050] The server 106 can be configured to execute any one of the following
applications: an application providing a thin-client computing or a remote display
presentation application; any portion of the CITRIX ACCESS SUITE by Citrix Systems, Inc.
like the METAFRAME or CITRIX PRESENTATION SERVER; MICROSOFT WINDOWS
Terminal Services manufactured by the Microsoft Corporation; or an ICA client, developed
by Citrix Systems, Inc. Another embodiment includes a server 106 configured to execute an
application so that the server may function as an application server such as any one of the
following application server types: an email server that provides email services such as
MICROSOFT EXCHANGE manufactured by the Microsoft Corporation; a web or Internet
server; a desktop sharing server; or a collaboration server. Still other embodiments include a
server 106 that executes an application that is any one of the following types of hosted
servers applications: GOTOMEETING provided by Citrix Online Division, Inc.; WEBEX
provided by WebEx, Inc. of Santa Clara, California; or Microsoft Office LIVE MEETING
provided by Microsoft Corporation.

[0051] In one embodiment, the server 106 may be a virtual machine 106B such as those
manufactured by Citrix Systems, IBM, VMware, or any other virtual machine able to
implement the methods and systems described herein.

[0052] Client machines 102 may function, in some embodiments, as a client node seeking
access to resources provided by a server 106, or as a server 106 providing other clients 102A-
102N with access to hosted resources. One embodiment of the computing environment 101
includes a server 106 that provides the functionality of a master node. Communication
between the client machine 102 and either a server 106 or servers 106A-106N can be
established via any of the following methods: direct communication between a client machine
102 and a server 106A-106N in a server farm 106; a client machine 102 that uses a program
neighborhood application to communicate with a server 106a-106n in a server farm 106; or a

client machine 102 that uses a network 104 to communicate with a server 106 A-106N in a

Page 8 of 102

WO 2010/129135 PCT/US2010/030515

server farm 106. One embodiment of the computing environment 101 includes a client
machine 102 that uses a network 104 to request that applications hosted by a server 106A-
106N in a server farm 106 execute, and uses the network 104 to receive from the server
106A-106N graphical display output representative of the application execution. In other
embodiments, a master node provides the functionality required to identify and provide
address information associated with a server 106 hosting a requested application. Still other
embodiments include a master node that can be any one of the following: a server 106A-
106N within the server farm 106; a remote computing machine connected to the server farm
106 but not included within the server farm 106; a remote computing machine connected to a
client 102 but not included within a group of client machines 102; or a client machine 102.
[0053] The network 104 between the client machine 102 and the server 106 is a
connection over which data is transferred between the client machine 102 and the server 106.
Although the illustration in Fig. 1A depicts a network 104 connecting the client machines 102
to the servers 106, other embodiments include a computing environment 101 with client
machines 102 installed on the same network as the servers 106. Other embodiments can
include a computing environment 101 with a network 104 that can be any of the following: a
local-area network (LAN); a metropolitan areca network (MAN); a wide area network
(WAN); a primary network 104 comprised of multiple sub-networks 104’ located between
the client machines 102 and the servers 106; a primary public network 104 with a private sub-
network 104’; a primary private network 104 with a public sub-network104’; or a primary
private network 104 with a private sub-network 104°. Still further embodiments include a
network 104 that can be any of the following network types: a point to point network; a
broadcast network; a telecommunications network; a data communication network; a
computer network; an ATM (Asynchronous Transfer Mode) network; a SONET
(Synchronous Optical Network) network; a SDH (Synchronous Digital Hierarchy) network; a
wireless network; a wireline network; a network 104 that includes a wireless link where the
wireless link can be an infrared channel or satellite band; or any other network type able to
transfer data from client machines 102 to servers 106 and vice versa to accomplish the
methods and systems described herein. Network topology may differ within different
embodiments, possible network topologies include: a bus network topology; a star network
topology; a ring network topology; a repeater-based network topology; a tiered-star network
topology; or any other network topology able transfer data from client machines 102 to
servers 106, and vice versa, to accomplish the methods and systems described herein.

Additional embodiments may include a network 104 of mobile telephone networks that use a

Page 9 of 102

WO 2010/129135 PCT/US2010/030515

protocol to communicate among mobile devices, where the protocol can be any one of the
following: AMPS; TDMA; CDMA; GSM; GPRS UMTS; or any other protocol able to
transmit data among mobile devices to accomplish the systems and methods described herein.
[0054] [lustrated in Fig. 1B is an embodiment of a computing device 100, where the
client machine 102 and server 106 illustrated in Fig. 1A can be deployed as and/or executed
on any embodiment of the computing device 100 illustrated and described herein. Included
within the computing device 100 is a system bus 150 that communicates with the following
components: a central processing unit 121; a main memory 122; storage memory 128; an
input/output (I/O) controller 123; display devices 124A-124N; an installation device 116; and
a network interface 118. In one embodiment, the storage memory 128 includes: an operating
system, software routines, and a client agent 120. The I/O controller 123, in some
embodiments, is further connected to a key board 126, and a pointing device 127. Other
embodiments may include an I/O controller 123 connected to more than one input/output
device 130A-130N.

[0055] Fig. 1C illustrates one embodiment of a computing device 100, where the client
machine 102 and server 106 illustrated in Fig. 1A can be deployed as and/or executed on any
embodiment of the computing device 100 illustrated and described herein. Included within
the computing device 100 is a system bus 150 that communicates with the following
components: a bridge 170, and a first I/O device 130A. In another embodiment, the
bridge170 is in further communication with the central processing unit 121, where the central
processing unit 121 can further communicate with a second I/O device 130B, a main memory
122, and a cache memory 140. Included within the central processing unit 121, are 1/O ports,
a memory port 103, and a main processor.

[0056] Embodiments of the computing machine 100 can include a central processing unit
121 characterized by any one of the following component configurations: logic circuits that
respond to and process instructions fetched from the main memory unit 122; a
microprocessor unit, such as: those manufactured by Intel Corporation; those manufactured
by Motorola Corporation; those manufactured by Transmeta Corporation of Santa Clara,
California; the RS/6000 processor such as those manufactured by International Business
Machines; a processor such as those manufactured by Advanced Micro Devices; or any other
combination of logic circuits capable of executing the systems and methods described herein.
Still other embodiments of the central processing unit 122 may include any combination of

the following: a microprocessor, a microcontroller, a central processing unit with a single

Page 10 0of 102

WO 2010/129135 PCT/US2010/030515

processing core, a central processing unit with two processing cores, or a central processing
unit with more than one processing cores.

[0057] One embodiment of the computing machine 100 includes a central processing unit
121 that communicates with cache memory 140 via a secondary bus also known as a
backside bus, while another embodiment of the computing machine 100 includes a central
processing unit 121 that communicates with cache memory via the system bus 150. The local
system bus 150 can, in some embodiments, also be used by the central processing unit to
communicate with more than one type of I/O devices 130A-130N. In some embodiments, the
local system bus 150 can be any one of the following types of buses: a VESA VL bus; an ISA
bus; an EISA bus; a MicroChannel Architecture (MCA) bus; a PCI bus; a PCI-X bus; a PCI-
Express bus; or a NuBus. Other embodiments of the computing machine 100 include an I/O
device 130A-130N that is a video display 124 that communicates with the central processing
unit 121 via an Advanced Graphics Port (AGP). Still other versions of the computing
machine 100 include a processor 121 connected to an 1/0 device 130A-130N via any one of
the following connections: HyperTransport, Rapid 1/0O, or InfiniBand. Further embodiments
of the computing machine 100 include a communication connection where the processor 121
communicates with one 1/0 device 130A using a local interconnect bus and with a second 1/0
device 130B using a direct connection.

[0058] Included within some embodiments of the computing device 100 is each of a main
memory unit 122 and cache memory 140. The cache memory 140 will in some embodiments
be any one of the following types of memory: SRAM; BSRAM; or EDRAM. Other
embodiments include cache memory 140 and a main memory unit 122 that can be any one of
the following types of memory: Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access memory (DRAM), Fast Page Mode
DRAM (FPM DRAM), Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO
RAM), Extended Data Output DRAM (EDO DRAM), Burst Extended Data Output DRAM
(BEDO DRAM), Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDEC
SRAM, PC100 SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM
(ESDRAM), SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM),
Ferroelectric RAM (FRAM), or any other type of memory device capable of executing the
systems and methods described herein. The main memory unit 122 and/or the cache memory
140 can in some embodiments include one or more memory devices capable of storing data
and allowing any storage location to be directly accessed by the central processing unit 121.

Further embodiments include a central processing unit 121 that can access the main memory

Page 11 of 102

WO 2010/129135 PCT/US2010/030515

122 via one of either: a system bus 150; a memory port 103; or any other connection, bus or
port that allows the processor 121 to access memory 122.

[0059] One embodiment of the computing device 100 provides support for any one of the
following installation devices 116: a floppy disk drive for receiving floppy disks such as 3.5-
inch, 5.25-inch disks or ZIP disks, a CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive,
tape drives of various formats, USB device, a bootable medium, a bootable CD, a bootable
CD for GNU/Linux distribution such as KNOPPIX®, a hard-drive or any other device
suitable for installing applications or software. Applications can in some embodiments
include a client agent 120, or any portion of a client agent 120. The computing device 100
may further include a storage device 128 that can be either one or more hard disk drives, or
one or more redundant arrays of independent disks; where the storage device is configured to
store an operating system, software, programs applications, or at least a portion of the client
agent 120. A further embodiment of the computing device 100 includes an installation
device 116 that is used as the storage device 128.

[0060] Furthermore, the computing device 100 may include a network interface 118 to
interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet
through a variety of connections including, but not limited to, standard telephone lines, LAN
or WAN links (e.g., 802.11, T1, T3, 56kb, X.25, SNA, DECNET), broadband connections
(e.g., ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet-over-SONET), wireless
connections, or some combination of any or all of the above. Connections can also be
established using a variety of communication protocols (e.g., TCP/IP, IPX, SPX, NetBIOS,
Ethernet, ARCNET, SONET, SDH, Fiber Distributed Data Interface (FDDI), RS232, RS485,
IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802.11g, CDMA, GSM, WiMax and direct
asynchronous connections). One version of the computing device 100 includes a network
interface 118 able to communicate with additional computing devices 100’ via any type
and/or form of gateway or tunneling protocol such as Secure Socket Layer (SSL) or
Transport Layer Security (TLS), or the Citrix Gateway Protocol manufactured by Citrix
Systems, Inc. Versions of the network interface 118 can comprise any one of: a built-in
network adapter; a network interface card; a PCMCIA network card; a card bus network
adapter; a wireless network adapter; a USB network adapter; a modem; or any other device
suitable for interfacing the computing device 100 to a network capable of communicating and
performing the methods and systems described herein.

[0061] Embodiments of the computing device 100 include any one of the following I/O
devices 130A-130N: a keyboard 126; a pointing device 127; mice; trackpads; an optical pen;

Page 12 of 102

WO 2010/129135 PCT/US2010/030515

trackballs; microphones; drawing tablets; video displays; speakers; inkjet printers; laser
printers; and dye-sublimation printers; or any other input/output device able to perform the
methods and systems described herein. An I/O controller 123 may in some embodiments
connect to mulitple I/O devices 103A-130N to control the one or more 1/0 devices. Some
embodiments of the I/O devices 130A-130N may be configured to provide storage or an
installation medium 116, while others may provide a universal serial bus (USB) interface for
receiving USB storage devices such as the USB Flash Drive line of devices manufactured by
Twintech Industry, Inc. Still other embodiments of an I/O device 130 may be a bridge
between the system bus 150 and an external communication bus, such as: a USB bus; an
Apple Desktop Bus; an RS-232 serial connection; a SCSI bus; a FireWire bus; a FireWire
800 bus; an Ethernet bus; an AppleTalk bus; a Gigabit Ethernet bus; an Asynchronous
Transfer Mode bus; a HIPPI bus; a Super HIPPI bus; a SerialPlus bus; a SCI/LAMP bus; a
FibreChannel bus; or a Serial Attached small computer system interface bus.

[0062] In some embodiments, the computing machine 100 can connect to multiple
display devices 124A-124N, in other embodiments the computing device 100 can connect to
a single display device 124, while in still other embodiments the computing device 100
connects to display devices 124A-124N that are the same type or form of display, or to
display devices that are different types or forms. Embodiments of the display devices 124A-
124N can be supported and enabled by the following: one or multiple I/O devices 130A-
130N; the I/O controller 123; a combination of I/O device(s) 130A-130N and the 1/O
controller 123; any combination of hardware and software able to support a display device
124A-124N; any type and/or form of video adapter, video card, driver, and/or library to
interface, communicate, connect or otherwise use the display devices 124a-124n. The
computing device 100 may in some embodiments be configured to use one or multiple
display devices 124A-124N, these configurations include: having multiple connectors to
interface to multiple display devices 124a-124n; having multiple video adapters, with each
video adapter connected to one or more of the display devices 124A-124N; having an
operating system configured to support multiple displays 124A-124N; using circuits and
software included within the computing device 100 to connect to and use multiple display
devices 124A-124N; and executing software on the main computing device 100 and multiple
secondary computing devices to enable the main computing device 100 to use a secondary
computing device’s display as a display device 124A-124N for the main computing device

100. Still other embodiments of the computing device 100 may include multiple display

Page 13 of 102

WO 2010/129135 PCT/US2010/030515

devices 124A-124N provided by multiple secondary computing devices and connected to the
main computing device 100 via a network.

[0063] In some embodiments of the computing machine 100, an operating system may be
included to control task scheduling and access to system resources. Embodiments of the
computing device 100 can run any one of the following operation systems: versions of the
MICROSOFT WINDOWS operating systems such as WINDOWS 3.x; WINDOWS 95;
WINDOWS 98; WINDOWS 2000; WINDOWS NT 3.51; WINDOWS NT 4.0; WINDOWS
CE; WINDOWS XP; and WINDOWS VISTA,; the different releases of the Unix and Linux
operating systems; any version of the MAC OS manufactured by Apple Computer; OS/2,
manufactured by International Business Machines; any embedded operating system; any real-
time operating system; any open source operating system; any proprietary operating system;
any operating systems for mobile computing devices; or any other operating system capable
of running on the computing device and performing the operations described herein. One
embodiment of the computing machine 100 has multiple operating systems installed thereon.
[0064] The computing machine 100 can be embodied in any one of the following
computing devices: a computing workstation; a desktop computer; a laptop or notebook
computer; a server; a handheld computer; a mobile telephone; a portable telecommunication
device; a media playing device; a gaming system; a mobile computing device; a device of the
IPOD family of devices manufactured by Apple Computer; any one of the PLAYSTATION
family of devices manufactured by the Sony Corporation; any one of the Nintendo family of
devices manufactured by Nintendo Co; any one of the XBOX family of devices
manufactured by the Microsoft Corporation; or any other type and/or form of computing,
telecommunications or media device that is capable of communication and that has sufficient
processor power and memory capacity to perform the methods and systems described herein.
In other embodiments the computing machine 100 can be a mobile device such as any one of
the following mobile devices: a JAV A-enabled cellular telephone or personal digital assistant
(PDA), such as the i55sr, 158sr, 185s, 188s, 190c¢, 195¢l, or the im1100, all of which are
manufactured by Motorola Corp; the 6035 or the 7135, manufactured by Kyocera; the 1300 or
1330, manufactured by Samsung Electronics Co., Ltd; the TREO 180, 270, 600, 650, 680,
700p, 700w, or 750 smart phone manufactured by Palm, Inc; any computing device that has
different processors, operating systems, and input devices consistent with the device; or any
other mobile computing device capable of performing the methods and systems described
herein. Still other embodiments of the computing environment 101 include a mobile

computing device 100 that can be any one of the following: any one series of Blackberry, or

Page 14 of 102

WO 2010/129135 PCT/US2010/030515

other handheld device manufactured by Research In Motion Limited; the iPhone
manufactured by Apple Computer; any handheld or smart phone; a Pocket PC; a Pocket PC
Phone; or any other handheld mobile device supporting Microsoft Windows Mobile
Software.

[0065] Referring now to FIG. 1D, together the servers 106 comprise a farm 38 or server
farm, where each server 106 can include a network-side interface 202 and a farm-side
interface 204. The network-side interface 202 can be in communication with one or more
clients 102 or a network 104. The network 104 can be a WAN, LAN, or any other
embodiment of a network such those networks described above.

[0066] Each server 106 has a farm-side interface 204 connected with one or more farm-
side interface(s) 204 of other servers 106 in the farm 38. In one embodiment, each farm-side
interface 204 is interconnected to other farm-side interfaces 204 such that the servers 106
within the farm 38 may communicate with one another. On each server 106, the farm-side
interface 204 communicates with the network-side interface 202. The farm-side interfaces
204 can also communicate (designated by arrows 220) with a persistent store 230 and, in
some embodiments, with a dynamic store 240. The combination of servers 106, the persistent
store 230, and the dynamic store 240, when provided, are collectively referred to as a farm
38. In some embodiments, a server 106 communicates with the persistent store 230 and other
servers 106' communicate with the server 106 to access information stored in the persistent
store.

[0067] The persistent store 230 may be physically implemented on a disk, disk farm, a
redundant array of independent disks (RAID), writeable compact disc, or any other device
that allows data to be read and written and that maintains written data if power is removed
from the storage device. A single physical device may provide storage for a plurality of
persistent stores, i.¢., a single physical device may be used to provide the persistent store 230
for more than one farm 38. The persistent store 230 maintains static data associated with each
server 106 in farm 38 and global data used by all servers 106 within the farm 38. In one
embodiment, the persistent store 230 may maintain the server data in a Lightweight Directory
Access Protocol (LDAP) data model. In other embodiments, the persistent store 230 stores
server data in an ODBC-compliant database. For the purposes of this description, the term
"static data" refers to data that do not change frequently, i.c., data that change only on an
hourly, daily, or weekly basis, or data that never change. Each server uses a persistent storage

subsystem to read data from and write data to the persistent store 230.

Page 15 0f 102

WO 2010/129135 PCT/US2010/030515

[0068] The data stored by the persistent store 230 may be replicated for reliability
purposes physically or logically. For example, physical redundancy may be provided using a
set of redundant, mirrored disks, each providing a copy of the data. In other embodiments, the
database itself may be replicated using standard database techniques to provide multiple
copies of the database. In further embodiments, both physical and logical replication may be
used concurrently.

[0069] The dynamic store 240 (i.e., the collection of all record tables) can be embodied in
various ways. In one embodiment, the dynamic store 240 is centralized; that is, all runtime
data are stored in the memory of one server 106 in the farm 38. That server operates as a
master network node with which all other servers 106 in the farm 38 communicate when
secking access to that runtime data. In another embodiment, each server 106 in the farm 38
keeps a full copy of the dynamic store 240. Here, cach server 106 communicates with every
other server 106 to keep its copy of the dynamic store 240 up to date.

[0070] In another embodiment, each server 106 maintains its own runtime data and
communicates with other servers 106 when seeking to obtain runtime data from them. Thus,
for example, a server 106 attempting to find an application program requested by the client
102 may communicate directly with every other server 106 in the farm 38 to find one or more
servers hosting the requested application.

[0071] For farms 38 having a large number of servers 106, the network traffic produced
by these embodiments can become heavy. One embodiment alleviates heavy network traffic
by designating a subset of the servers 106 in a farm 38, typically two or more, as "collector
points." Generally, a collector point is a server that collects run-time data. Each collector
point stores runtime data collected from certain other servers 106 in the farm 38. Each server
106 in the farm 38 is capable of operating as, and consequently is capable of being designated
as, a collector point. In one embodiment, each collector point stores a copy of the entire
dynamic store 240. In another embodiment, each collector point stores a portion of the
dynamic store 240, i.c., it maintains runtime data of a particular data type. The type of data
stored by a server 106 may be predetermined according to one or more criteria. For example,
servers 106 may store different types of data based on their boot order. Alternatively, the type
of data stored by a server 106 may be configured by an administrator using an administration
tool (Not Shown.) In these embodiments, the dynamic store 240 is distributed amongst two
or more servers 106 in the farm 38.

[0072] Servers 106 not designated as collector points know the servers 106 in a farm 38

that are designated as collector points. A server 180 not designated as a collector point may

Page 16 0of 102

WO 2010/129135 PCT/US2010/030515

communicate with a particular collector point when delivering and requesting runtime data.
Consequently, collector points lighten network traffic because each server 106 in the farm 38
communicates with a single collector point server 106, rather than with every other server
106, when seeking to access the runtime data.

[0073] Each server 106 can operate as a collector point for more than one type of data.
For example, server 106" can operate as a collector point for licensing information and for
loading information. In these embodiments, each collector point may amass a different type
of run-time data. For example, to illustrate this case, the server 106" can collect licensing
information, while the server 106" collects loading information.

[0074] In some embodiments, each collector point stores data that is shared between all
servers 106 in a farm 38. In these embodiments, cach collector point of a particular type of
data exchanges the data collected by that collector point with every other collector point for
that type of data in the farm 38. Thus, upon completion of the exchange of such data, each
collector point 106" and 106 possesses the same data. Also in these embodiments, each
collector point 106 and 106" also keeps every other collector point abreast of any updates to
the runtime data.

[0075] Browsing enables a client 102 to view farms 38, servers 106, and applications in
the farms 38 and to access available information such as sessions throughout the farm 38.
Each server 106 includes an ICA browsing subsystem 260 to provide the client 102 with
browsing capability. After the client 102 establishes a connection with the ICA browser
subsystem 260 of any of the servers 106, that browser subsystem supports a variety of client
requests. Such client requests include: (1) enumerating names of servers in the farm, (2)
enumerating names of applications published in the farm, (3) resolving a server name and/or
application name to a server address that is useful the client 102. The ICA browser subsystem
260 also supports requests made by clients 10 running a program neighborhood application
that provides the client 102, upon request, with a view of those applications within the farm
38 for which the user is authorized. The ICA browser subsystem 260 forwards all of the
above-mentioned client requests to the appropriate subsystem in the server 106.

[0076] In one embodiment, each server 106 in the farm 38 that has a program
neighborhood subsystem 270 can provide the user of a client 102 with a view of applications
within the farm 38. The program neighborhood subsystem 270 may limit the view to those
applications for which the user of the client 102 has authorization to access. Typically, this
program neighborhood service presents the applications to the user as a list or a group of

icons.

Page 17 0of 102

WO 2010/129135 PCT/US2010/030515

[0077] The functionality provided by the program neighborhood subsystem 270 can be
available to two types of clients, (1) program neighborhood-enabled clients that can access
the functionality directly from a client desktop, and (2) non-program neighborhood-enabled
clients (e.g., legacy clients) that can access the functionality by running a program
neighborhood-enabled desktop on the server.

[0078] Communication between a program neighborhood-enabled client and the program
neighborhood subsystem 270 may occur over a dedicated virtual channel that is established
on top of an ICA virtual channel. In other embodiments, the communication occurs using an
XML service. In one of these embodiments, the program neighborhood-enabled client
communicates with an XML subsystem, such as the XML service 516 described in
connection with FIG. 6 below, providing program neighborhood functionality on a server
106.

[0079] In one embodiment, the program neighborhood-enabled client does not have a
connection with the server with a program neighborhood subsystem 270. For this
embodiment, the client 102 sends a request to the ICA browser subsystem 260 to establish an
ICA connection to the server 106 in order to identify applications available to the client 102.
The client 102 then runs a client-side dialog that acquires the credentials of a user. The
credentials are received by the ICA browser subsystem 260 and sent to the program
neighborhood subsystem 270. In one embodiment, the program neighborhood subsystem 270
sends the credentials to a user management subsystem for authentication. The user
management subsystem may return a set of distinguished names representing the list of
accounts to which the user belongs. Upon authentication, the program neighborhood
subsystem 270 establishes the program neighborhood virtual channel. This channel remains
open until the application filtering is complete.

[0080] The program neighborhood subsystem 270 then requests the program
neighborhood information from the common application subsystem 524 associated with those
accounts. The common application subsystem 524 obtains the program neighborhood
information from the persistent store 230. On receiving the program neighborhood
information, the program neighborhood subsystem 270 formats and returns the program
neighborhood information to the client over the program neighborhood virtual channel. Then
the partial ICA connection is closed.

[0081] For another example in which the program neighborhood-enabled client
establishes a partial ICA connection with a server, consider the user of the client 102 who

selects a farm 38. The selection of the farm 38 sends a request from the client 102 to the ICA

Page 18 0f 102

WO 2010/129135 PCT/US2010/030515

browser subsystem 260 to establish an ICA connection with one of the servers 106 in the
selected farm 38. The ICA browser subsystem 260 sends the request to the program
neighborhood subsystem 270, which selects a server 106 in the farm 38. Address information
associated with the server 106 is identified and returned to the client 102 by way of the ICA
browser subsystem 260. The client 102 can then subsequently connect to the server 106
corresponding to the received address information.

[0082] In another embodiment, the program neighborhood-enabled client 102 establishes
an ICA connection upon which the program neighborhood-virtual channel is established and
remains open for as long as the ICA connection persists. Over this program neighborhood
virtual channel, the program neighborhood subsystem 270 pushes program neighborhood
information updates to the client 102. To obtain updates, the program neighborhood
subsystem 270 subscribes to events from the common application subsystem 524 to allow the
program neighborhood subsystem 270 to detect changes to published applications.

[0083] Referring to FIG. 1E, a block diagram depicts another embodiment of a system
architecture for providing a plurality of application programs available to the client via
publishing of GUISs in a web service directory. The system includes the client 102, and a
plurality of servers 106. A first server 106 functions as a content server. A second server 106’
provides web server functionality, and a third server 106" provides functionality for providing
access to application files and acts as an application server or a file server. The client 102 can
download content from the content server 106, the web server 106", and the application server
106" over the network 104. In one embodiment, the client 102 can download content (e.g., an
application) from the application server 106" over the client-application server
communication channel 150.

[0084] In one embodiment, the web browser 11 on the client 102 uses Secure Socket
Layer (SSL) support for communications to the content server 106 and/or the web server
106'. SSL is a secure protocol developed by Netscape Communication Corporation of
Mountain View, Calif., and is now a standard promulgated by the Internet Engineering Task
Force (IETF). The web browser 11 can alternatively connect to the content server 106 and/or
the web server 106' using other security protocols, such as, but not limited to, Secure
Hypertext Transfer Protocol (SHTTP) developed by Terisa Systems of Los Altos, Calif.,
HTTP over SSL (HTTPS), Private Communication Technology (PCT) developed by
Microsoft Corporation of Redmond, Wash., and the Transport Level Security (TLS) standard

promulgated by the IETF. In other embodiments, the web browser 11 communicates with the

Page 19 of 102

WO 2010/129135 PCT/US2010/030515

servers 106 using a communications protocol without encryption, such as the HyperText
Transfer Protocol (HTTP).

[0085] The client 102 can additionally include an application client 13 for establishing
and exchanging communications with the application server 106" over the client-application
server communication channel 150. In one embodiment, the application client 13 is a GUI
application. In some embodiments, the application client 13 is an Independent Computing
Architecture (ICA) client, developed by Citrix Systems, Inc. of Fort Lauderdale, Fla., and is
also referred to below as ICA client 13. Other embodiments of the application client 13
include a Remote Display Protocol (RDP) client, developed by Microsoft Corporation of
Redmond, Wash., an X-Windows client 13, a client-side player, interpreter or simulator
capable of executing multimedia applications, email, Java, or .NET code. Moreover, in one
embodiment the output of an application executing on the application server 106" can be
displayed at the client 102 via the ICA client 13. In some embodiments, the application client
13 is an application client such as the application streaming client 552, described in greater
detail in connection with FIG. 5.

[0086] The client 102 searches the web service directory 160 for a web service. In one
embodiment, the search is a manual search. Alternatively, the search is an automatic search.
The web service directory 160 may also provide a service based view, such as white and
yellow pages, to search for web services in the web service directory. In another embodiment,
the web service directory 160 supports a hierarchical browsing based on a structured service
name and service kind for GUI applications. In one embodiment, the web service directory
160 executes on a server independent of the content server 106, such as a directory server. In
other embodiments, the web service directory 160 executes on multiple servers.

[0087] In some embodiments, the content server 106 enables the client 102 to select web
services based on additional analysis or information by providing this information or analysis
in the web service directory 160. Examples of service information that the web service
directory 160 can list includes, but is not limited to, the name of the business offering the
service, the service type, a textual description of the service, one or more service access
points (SAPs), the network type, the path to use (e.g., TCP or HTTPS), and quality of service
(QoS) information. Moreover, service information can be client device type or user (e.g.,
role) specific. Thus, service selection can be based on one or more of the above attributes.
[0088] In one embodiment, the service type denotes a programming interface that the

client 102 must use to access the web service. For instance, the service type can state that the

Page 20 of 102

WO 2010/129135 PCT/US2010/030515

service is encoded by an interface description language, such as Web Services Description
Language (WSDL).

[0089] The service access point, or SAP, is a unique address for an application. The SAPs
enable the computer system to support multiple applications at the client 102 and each server
106. For example, the application server 106" may support an electronic mail (i.c., e-mail)
application, a file transfer application, and/or a GUI application. In one embodiment, these
applications would each have a SAP that is unique within the application server 106". In one
embodiment, the SAP is a web or Internet address (e.g., Domain Name System (DNS) name,
IP/port, or Uniform Resource Locator (URL)). Thus, in one embodiment the SAP identifies
the address of the web server 106" as part of the address for an application stored on the web
server 106'. In some embodiments, the SAP identifies the address of a publishing server plug-
in 165 as part of the address for an application stored on the web server 106', as described
below. In one embodiment, the SAP is an "accessPoint" from the UDDI registry.

[0090] To prepare an item for publishing in the web service directory 160, the content
server 106 includes a web publishing tool 170. In one embodiment, the web publishing tool
173 is a software module. Alternatively, the web publishing tool 173 is another server that
may be externally located from or internally located in the content server 106.

[0091] In one embodiment, the web server 106’ delivers web pages to the client 102. The
web server 106' can be any server 106 capable of providing web pages to the client 102. In
another embodiment, the web server 106' is an Enterprise Information Portal (e.g., corporate
Intranet or secured business-to-business extranet). Enterprise portals are company web sites
that aggregate, personalize and serve applications, data and content to users, while offering
management tools for organizing and using information more efficiently. In some companies,
portals have replaced traditional desktop software with browser-based access to a virtual
workplace.

[0092] The web server 106' can also include a publishing server plug-in 165 to enable the
publishing of graphical user interface (GUI) applications. More specifically, the publishing
server plug-in 165 translates a new web service entry URL into a GUI application service so
that the GUI can be accessed via the web service directory 160. In one embodiment, the
publishing server plug-in 165 is a Common Gateway Interface (CGI) script, which is a
program designed to accept and return data that conforms to the CGI specification. The
program can be written in any programming language, such as C, Perl, Java, or Visual Basic.
In another embodiment, the publishing server plug-in 165 is a Java Server Page (JSP). Using

the publishing server plug-in 165 to facilitate the publishing of remote GUI applications, the

Page 21 of 102

WO 2010/129135 PCT/US2010/030515

client 102 can thereby access the web service, not through a programming interface or a web
page, but through a full GUI interface, such as with Citrix's ICA or Microsoft's RDP.

[0093] The application server 106" hosts one or more applications that are available for
the client 102. Examples of such applications include word processing programs such as
MICROSOFT WORD and spreadsheet programs such as MICROSOFT EXCEL, both
manufactured by Microsoft Corporation of Redmond, Wash., financial reporting programs,
customer registration programs, programs providing technical support information, customer
database applications, or application set managers.

[0094] In some embodiments, one or more communication links 150 are established over
different networks. For example, the client-content server communication channel 150’ can
belong to a first network (e.g., the World Wide Web) and the client-web server
communication channel 150" can belong to a second network (e.g., a secured extranet or
Virtual Private Network (VPN)).

[0095] In one embodiment, the web publishing tool 173 stores information about an
application that the web publishing tool 173 is currently publishing in the web service
directory 160 in a persistent mass storage 225. In one embodiment the information is a URL
for the dynamic publishing server plug-in 165. The persistent mass storage 225 may be a
magnetic disk or magneto-optical drive. In one embodiment, the persistent mass storage 225
is a database server, which stores data related to the published application in one or more
local service databases. The persistent mass storage 225 may be a component internally
located in or externally located from any or all of the servers 106.

[0096] In other embodiments, the content server 106 or the web server 106' communicate
with a server 106 in the farm 38 to retrieve the list of applications. In one of these
embodiments, the content server 106 or the web server 106' communicate with the farm 38
instead of with the persistent mass storage 225.

[0097] Referring now to FIG. 2, a flow diagram depicts one embodiment of the steps
taken to select a method of execution of an application program. In brief overview,
credentials associated with the client or with a user of the client are received, with a request
for an enumeration of applications available for execution by the client (step 202). An
enumeration of a plurality of application programs available to the client is provided,
responsive to the received credentials (step 204). A request is received to execute an
enumerated application (step 206). One of a predetermined number of methods for executing

the enumerated application is selected, responsive to a policy, the predetermined number of

Page 22 of 102

WO 2010/129135 PCT/US2010/030515

methods including a method for application streaming of the enumerated application (step
208).

[0098] Credentials associated with the client or with a user of the client are received, with
a request for an enumeration of applications available for execution by the client (step 202).
In one embodiment, the server receives a request for enumeration of available applications
from the client 102 with the credentials. In another embodiment, an XML service on the
server 106 receives the request and the credentials and transmits the request and credentials to
a management service on the server 106.

[0099] In some embodiments, a server 106 functioning as a web server receives
communications from the client 102 and forwards the communications to a server 106'. In
one of these embodiments, the web server forwards the communications to an XML service
on the server 106'. In another of these embodiments, the web server resides on the client. In
other embodiments where communications from the client 102 are routed to a server 106' by
the web server, the server 106 may be selected responsive to an Internet Protocol (IP) address
of the client 102.

[00100] In some embodiments, a client 102 requests access to an application residing on a
server 106. In one of these embodiments, the client 102 requests execution by the server 106
of the application residing on the server 106. In another of these embodiments, the client 102
requests retrieval of a plurality of application files that comprise the application.

[0100] In some embodiments, the user provides credentials to the server 106 via a
graphical user interface presented to the client 102 by the server 106. In other embodiments, a
server 106™ having the functionality of a web server provides the graphical user interface to
the client 102. In still other embodiments, a collection agent transmitted to the client 102 by
the server 106 gathers the credentials from the client 102. In one embodiment, a credential
refers to a username and password. In another embodiment, a credential is not limited to a
username and password but includes, without limitation, a machine ID of the client 102,
operating system type, existence of a patch to an operating system, MAC addresses of
installed network cards, a digital watermark on the client device, membership in an Active
Directory, existence of a virus scanner, existence of a personal firewall, an HTTP header,
browser type, device type, network connection information such as internet protocol address
or range of addresses, machine ID of the server 106, date or time of access request including
adjustments for varying time zones, and authorization credentials.

[0101] In some embodiments, a credential associated with a client is associated with a

user of the client. In one of these embodiments, the credential is information possessed by the

Page 23 of 102

WO 2010/129135 PCT/US2010/030515

user. In another of these embodiments, the credential is user authentication information. In
other embodiments, a credential associated with a client is associated with a network. In one
of these embodiments, the credential is information associated with a network to which the
client may connect. In another of these embodiments, the credential is information associated
with a network collecting information about the client. In still other embodiments, a
credential associated with a client is a characteristic of the client.

[0102] An enumeration of a plurality of application programs available to the client is
provided, responsive to the received credentials (step 204). In one embodiment, a user of a
client 102 may learn of the availability of application programs hosted by the servers 106 on
the network 104 without knowing where to find such applications and without technical
information necessary to link to such applications. These available application programs can
comprise the "program neighborhood" of the user. A system for determining a program
neighborhood for a client may include an application program (hereafter referred to as the
"Program Neighborhood" application), memory for storing components of the application
program, and a processor for executing the application program. The Program Neighborhood
(PN) application can be installed in the memory of the client 102 and/or on a server 106 as
described below.

[0103] A server 106 operating according to the Program Neighborhood application
collects application-related information from each of the servers 106 in a farm 38. The
application-related information for each hosted application can be a variety of information
including, for example, an address of the server hosting that application, the application
name, the users or groups of users who are authorized to use that application, and the
minimum capabilities required of the client 102 before establishing a connection to run the
application. For example, the application may stream video data, and therefore a required
minimum capability may be that the client supports video data. Other examples are
requirements that the client support audio data or have the capacity to process encrypted data.
The application-related information can be stored in a database.

[0104] When a client 102 connects to the network 104, the user of the client 102 provides
user credentials. User credentials may include the username of a user of the client 102, the
password of the user, and the domain name for which the user is authorized. Alternatively,
the user credentials may be obtained from smart cards, time-based tokens, social security
numbers, user passwords, personal identification (PIN) numbers, digital certificates based on
symmetric key or elliptic curve cryptography, biometric characteristics of the user, or any

other means by which the identification of the user of the client 102 can be obtained and

Page 24 of 102

WO 2010/129135 PCT/US2010/030515

submitted for authentication. The server 106 responding to the client 102 can authenticate the
user based on the user credentials. The user credentials can be stored wherever the Program
Neighborhood application is executing. For embodiments in which the client 102 executes
the Program Neighborhood application, the user credentials may be stored at the client 102.
For embodiments in which a server 106 executes the Program Neighborhood, the user
credentials can be stored at that server 106.

[0105] From the user credentials and the application-related information, the server 106
can also determine which application programs hosted by servers 106 are available for use by
the user of the client 102. The server 106 transmits information representing the available
application programs to the client 102. This process eliminates the need for a user of the
client 102 to establish application connections. Additionally, an administrator of the server
106 may control access to applications among multiple users of a client 102.

[0106] In some embodiments, the user authentication performed by the server 106 may
suffice to authorize the user of each hosted application program presented to the client 102,
although such applications may reside at another server 106'. Accordingly, when the client
102 launches (i.e., initiates execution of) one of the hosted applications, additional input of
user credentials by the client 102 may be unnecessary to authenticate use of that application.
Thus, a single entry of the user credentials may serve to determine the available applications
and to authorize the launching of such applications without an additional, manual log-on
authentication process by the user.

[0107] Either a client 102 or server 106 can launch the Program Neighborhood
application. The results can be displayed on the display screen of the client 102. In a
graphical windows-based implementation, the results can be displayed in a Program
Neighborhood graphical window and each authorized application program can be represented
by a graphical icon in that window.

[0108] In one embodiment, the Program Neighborhood application filters out application
programs that the client 102 is unauthorized to execute and displays only authorized (i.c.,
available) programs. In other embodiments, the Program Neighborhood application can
display authorized and unauthorized applications. When unauthorized applications are not
filtered from the display, a notice can be provided indicating that such applications are
unavailable. Alternatively, the Program Neighborhood application can report all applications
hosted by the servers 106 to the user of a client 102 without identifying which applications
the client 102 is authorized or unauthorized to execute. Authorization can be subsequently

determined when the client 102 attempts to run one of those applications.

Page 25 of 102

WO 2010/129135 PCT/US2010/030515

[0109] The client 102 may request application enumeration from a server 106.
Application enumeration enables a user of the client 102 to view the names of every
published application. In one embodiment, the user of the client 102 can view the application
names regardless of whether the user has the authorization to execute the application. In
another embodiment, the user views only those application names that the user is authorized
to execute.

[0110] Requests for application enumeration pass to the ICA browser subsystem 260, to
the program neighborhood subsystem 270, or to a common application subsystem 524,
depending upon the particular process being run by the client 102. For example, when the
client 102 runs the program neighborhood application, the requests for application
enumeration are sent to the program neighborhood subsystem 270 on a server 106. When the
client 102 submits the enumeration request through a web page, the requests pass to the
common access point subsystem 524. For these embodiments, the common application
subsystem 524 serves as an initial access point for the program neighborhood subsystem 270,
ICA browser subsystem 260, and common application subsystems when the client 102 wants
to enumerate applications. In some embodiments, when the client 102 submits the
enumeration request through a web page, an intermediate server 106 hosting a web server
receives the request and forwards the request to a server 106'.

[0111] Upon receiving the enumeration requests, a common application subsystem 524
queries the persistent store 230 for a list of all applications. For requests received from the
program neighborhood subsystem 270 and common access point (Not Shown) subsystems,
this list of applications is filtered according to the credentials of the user of the client 102
(i.e., the user views only those applications for which the user is authorized).

[0112] The client 102 can also request server enumeration. Server enumeration enables a
user of the client 102 to view a list of servers in the farm 38. In one embodiment, the list of
servers can be filtered according to the type of server, as determined by the specialized server
subsystem on that server.

[0113] Requests for server enumeration pass to the ICA browser subsystem 260 or to the
common access point subsystem (Not Shown), depending upon the particular process being
run by the client 120. For example, when the client 120 submits the server enumeration
request through a web page, the requests pass to the common access point subsystem (Not
Shown). For these embodiments, the common server subsystem 300 serves as an initial
access point for the ICA browser subsystem 260 and common access point (Not Shown)

subsystems. Upon receiving the server enumeration requests, the common server subsystem

Page 26 of 102

WO 2010/129135 PCT/US2010/030515

queries the persistent store 230 for a list of all servers. Optionally, the list of servers is filtered
according to the server type.

[0114] FIG. 3A depicts an embodiment of a block diagram that illustrates a process by
which a client 102 initiates execution of the Program Neighborhood application, in this
example via the World Wide Web. A client 102 executes a web browser application 80, such
as NETSCAPE NAVIGATOR, manufactured by Netscape Communications, Inc. of
Mountain View, Calif. or MICROSOFT INTERNET EXPLORER, manufactured by
Microsoft Corporation of Redmond, Wash., or FIREFOX, manufactured by Mozilla
Foundation of Mountain View, Calif., or OPERA, manufactured by Opera Software ASA, of
Oslo, Norway, or SAFARI, manufactured by Apple Computer, Inc., of Cupertino, Calif.
[0115] The client 102, via the web browser 80, transmits a request 82 to access a Uniform
Resource Locator (URL) address corresponding to an HTML page residing on server 106. In
some embodiments the first HTML page returned 84 to the client 102 by the server 106 is an
authentication page that secks to identify the client 102.

[0116] Still referring to FIG. 3A, once the client 102 is authenticated by the server 106,
the server 106 prepares and transmits to the client 102 an HTML page 88, in response to
another Request 86, that includes a Program Neighborhood window 58 in which appears
graphical icons 57 representing application programs to which the client 102 has access. A
user of client 102 invokes execution of an application represented by icon 57 by clicking that
icon 57.

[0117] In some embodiments, the server 106 executes the Program Neighborhood
application on behalf of a user of the client 102. In one of these embodiments, the server 106
is an intermediate server residing between the client 102 and a server 106'.

[0118] Referring to FIG. 3B, a flow diagram depicts one embodiment of the steps taken
to provide a plurality of application programs available to the client via publishing of GUIs in
a web service directory. The web publishing tool 173 receives a web service description and
access information for an application (e.g., GUI application) for publishing (step 300). In one
embodiment, the web service description includes the service information described above
(c.g., the name of the business offering the web service, the service type, a textual description
of the service, and a SAP). The access information may include, for example, a published
application name, a Transmission Control Protocol (TCP) browsing server farm address, and
a MetaFrame server IP address. In some embodiments, the access information specifies the

address to use and a ticket to use to traverse network or security gateways or bridge devices.

Page 27 of 102

WO 2010/129135 PCT/US2010/030515

[0119] The web publishing tool 173 then constructs a service-publishing request to
request the publication of the web service (i.e., GUI application) (step 305). In one
embodiment, the service-publishing request includes a SAP. In some embodiments, the SAP
is a URL including the web address of the web server 106" and the publishing server plug-in
165. Further, the web address can be a Uniform Resource Identifier (URI), which is the
generic term for the types of names and addresses that refer to objects on the web. A URL is
one kind of URI. An example of the URI is the name of the web server 106’ (e.g., "web-
server") and the CGI script name (e.g., "dynamic-component") for the publishing server plug-
in 165.

[0120] The web publishing tool 173 stores a SAP entry associated with the SAP in the
persistent mass storage 225 (step 310). In some embodiments, the web publishing tool 173
also associates published application information (e.g., ICA-published-app-info) with the
GUI application. In further embodiments, the web publishing tool 173 also includes a key in
the service-publishing request to identify the SAP entry that the content server 106 stores in
the persistent mass storage 225. For instance, the key can have the value of "123456677." An
example of a SAP identifying the web server 106, the CGI script name of the publishing
server plug-in 165, and the key described above is "http://web-server/dynamic-
component/?app=123456677."

[0121] An example of the SAP entry associated with the SAP described above is
"key=123456677, value=ICA-published-app-info." The key can be any length (e.g., 56 bit
key, 128 bit key). In one embodiment, the key is a cryptographic random number. The key
may also provides an access right to the key holder. Although illustrated with a key, any
means can be used to provide a form of security to the SAP entry stored in the persistent mass
storage 225.

[0122] The web publishing tool 173 provides the service-publishing request to the
content server 106 for publishing in the web service directory 160 (step 315). Moreover, in
one embodiment, the content server 106 transmits the key of the SAP to the client 102
requesting the particular web service for subsequent use in locating the SAP entry. In one
embodiment, the publishing of the service-publishing request enables users of the client 102
to access the service. In one embodiment, GUI applications are published on the web service
directory 160 using NFUSE developed by Citrix Systems, Inc. of Fort Lauderdale, Fla. In
some embodiments, a publisher of a GUI application customizes the publication of the GUI

application on the web service directory 160 using Application Launching And Embedding

Page 28 0of 102

WO 2010/129135 PCT/US2010/030515

(ALE), also developed by Citrix Systems, Inc. ALE enables the launching of a GUI
application from or the embedding of the application into an HTML page.

[0123] The client 102 then queries a service name from the web service directory 160
(step 320). The content server 106 receives the query from the client 102 (step 325) and finds
the requested service name in the web service directory 160. In another embodiment, the user
of the client 102 navigates the web service directory 160 until locating a particular service
name that the user of the client 102 was attempting to find. Although illustrated with the
client 102, any web service directory client (e.g., UDDI client or LDAP browser) can query
or navigate the web service directory 160 to discover published web services.

[0124] Upon location of the SAP associated with the received query, the content server
106 transmits the SAP to the client 102 (step 330). The client 102 receives the SAP (step 335)
and determines the address of the publishing server plug-in 165 from the SAP. The client 102
subsequently transmits a request for the GUI application to the web server 106" (step 340). In
some embodiments, the request from the client 102 is an HTTP request transmitted from the
web browser 11 to the web server 106'. In other embodiments, an application (e.g., general
directory browser or HTML Ul) executing on the client 102 receives the SAP from the
content server 106 and provides the SAP as an argument to the web browser 11. The web
browser 11 may then automatically transmit an HTTP request (for the GUI application) to the
web server 106'. Following along the lines of the previous examples, a particular example of
the application request to the web server 106' is http://web-server/dynamic-
component/?app=123456677).

[0125] The web server 106', and, more particularly, the publishing server plug-in 165,
receives the application request associated the SAP (step 345) and determines the SAP entry
associated with the request (step 350). In one embodiment, the publishing server plug-in 165
receives the request from the client 102 and retrieves the published application information
associated with the request that had been stored (as part of the SAP entry) in the persistent
mass storage 225. In some embodiments, the publishing server plug-in 165 uses the SAP (or
part of the SAP) that the client 102 received from the content server 106 as the key to access
the proper service entry (e.g., the published application information) stored in the persistent
mass storage 225.

[0126] The publishing server plug-in 165 then constructs a file or document having the
published application information (e.g., HTTP address of the application server 106") (step
352) and transmits this document to the client 102 (step 355). The publishing server plug-in

165 constructs the file so that the file has a format compatible with the application client 13.

Page 29 of 102

WO 2010/129135 PCT/US2010/030515

In one embodiment, the document is a Multipurpose Internet Mail Extensions (MIME) or a
secure MIME (S/MIME) document. In another embodiment, the document is an HTML
document containing an ICA web client embedded object HTML tag. In still another
embodiment, the document is an HTML document containing an application streaming client
embedded object HTML tag.

[0127] The web browser 11 subsequently receives the document and attempts to open the
document. In one embodiment, if the application client 13 is not installed on the client 102,
the client 102 communicates with the application server 106" to download and install the
application client 13. Upon installation of the application client 13 or, alternatively, if the
application client 13 has already been installed on the client 102, the client 102 launches the
application client 13 to view the document received from the web server 106' (step 360).
[0128] Once the application client 13 is installed and executing on the client 102, the
application server 106" then executes the application and displays the application on the
application client 13 (step 365). In an alternative embodiment, the application server 106"
transmits a plurality of application files comprising the application to the application client 13
for execution on the client 102, as described in further detail below in connection with FIG.
7. In another embodiment, the client 102 views the document (even before launching the
application client 13) and uses the information in the document to obtain the GUI application
from the application server 106". In this embodiment, the display of the GUI application
includes the installation and execution of the application client 106". Moreover, the viewing
of the document may be transparent to the user of the client 102. For example, the client 102
may receive the document from the web server 106' and interpret the document before
automatically requesting the GUI application from the application server 106".

[0129] Thus, the application client 13 provides service-based access to published
applications, desktops, desktop documents, and any other application that is supported by the
application client 13. Examples of applications that the application client 13 can provide
access to include, but are not limited to, the WINDOWS desktops, WINDOWS documents
such as MICROSOFT EXCEL, WORD, and POWERPOINT, all of which were developed
by Microsoft Corporation of Redmond, Wash., Unix desktops such as SUN SOLARIS
developed by Sun Microsystems of Palo Alto, Calif., and GNU/Linux distributed by Red Hat,
Inc. of Durham, N.C., among others.

[0130] In some embodiments, an enumeration of a plurality of application programs
available to the client 102 is provided (step 204) responsive to a determination by a policy

engine regarding whether and how a client may access an application. The policy engine may

Page 30 of 102

WO 2010/129135 PCT/US2010/030515

collect information about the client prior to making the determination. Referring now to FIG.
4A, one embodiment of a computer network is depicted, which includes a client 102, a
collection agent 404, a policy engine 406, a policy database 408, a farm 38, and an
application server 106'. In one embodiment, the policy engine 406 is a server 106. Although
only one client 102, collection agent 404, policy engine 406, farm 38, and application server
106" are depicted in the embodiment shown in FIG. 4A, it should be understood that the
system may provide multiple ones of any or each of those components.

[0131] In brief overview, when the client 102 transmits a request 410 to the policy engine
406 for access to an application, the collection agent 404 communicates with client 102,
retrieving information about the client 102, and transmits the client information 412 to the
policy engine 406. The policy engine 406 makes an access control decision by applying a
policy from the policy database 408 to the received information 412.

[0132] In more detail, the client 102 transmits a request 410 for a resource to the policy
engine 406. In one embodiment, the policy engine 406 resides on an application server 106'.
In another embodiment, the policy engine 406 is a server 106. In still another embodiment, an
application server 106' receives the request 410 from the client 102 and transmits the request
410 to the policy engine 406. In yet another embodiment, the client transmits a request 410
for a resource to a server 106", which transmits the request 410 to the policy engine 406.
[0133] In some embodiments, the client 102 transmits the request 410 over a network
connection. The network can be a local area network (LAN), a metropolitan area network
(MAN), or a wide area network (WAN) such as the Internet. The client 102 and the policy
engine 406 may connect to a network through a variety of connections including standard
telephone lines, LAN or WAN links (e.g., T1, T3, 56 kb, X.25), broadband connections
(ISDN, Frame Relay, ATM), and wireless connections. Connections between the client 102
and the policy engine 10 may use a variety of data-link layer communication protocols (e.g.,
TCP/IP, IPX, SPX, NetBIOS, NetBEUI, SMB, Ethernet, ARCNET, Fiber Distributed Data
Interface (FDDI), RS232, IEEE 802.11, IEEE 802.11a, IEE 802.11b, IEEE 802.11g and
direct asynchronous connections). The connection may also be a communications link 150 as
described above.

[0134] Upon receiving the request, the policy engine 406 initiates information gathering
by the collection agent 404. The collection agent 404 gathers information regarding the client
102 and transmits the information 412 to the policy engine 406.

[0135] In some embodiments, the collection agent 404 gathers and transmits the

information 412 over a network connection. In some embodiments, the collection agent 404

Page 31 of 102

WO 2010/129135 PCT/US2010/030515

comprises bytecode, such as an application written in the bytecode programming language
JAVA. In some embodiments, the collection agent 404 comprises at least one script. In those
embodiments, the collection agent 404 gathers information by running at least one script on
the client 102. In some embodiments, the collection agent comprises an Active X control on
the client 102. An Active X control is a specialized Component Object Model (COM) object
that implements a set of interfaces that enable it to look and act like a control.

[0136] In one embodiment, the policy engine 406 transmits the collection agent 404 to
the client 102. In one embodiment, the policy engine 406 requires a second execution of the
collection agent 404 after the collection agent 404 has transmitted information 412 to the
policy engine 406. In this embodiment, the policy engine 406 may have insufficient
information 412 to determine whether the client 102 satisfies a particular condition. In other
embodiments, the policy engine 406 requires a plurality of executions of the collection agent
404 in response to received information 412.

[0137] In some embodiments, the policy engine 406 transmits instructions to the
collection agent 404 determining the type of information the collection agent 404 gathers. In
those embodiments, a system administrator may configure the instructions transmitted to the
collection agent 404 from the policy engine 406. This provides greater control over the type
of information collected. This also expands the types of access control decisions that the
policy engine 406 can make, due to the greater control over the type of information collected.
The collection agent 404 gathers information 412 including, without limitation, machine ID
of the client 102, operating system type, existence of a patch to an operating system, MAC
addresses of installed network cards, a digital watermark on the client device, membership in
an Active Directory, existence of a virus scanner, existence of a personal firewall, an HTTP
header, browser type, device type, network connection information such as internet protocol
address or range of addresses, machine ID of the server 106, date or time of access request
including adjustments for varying time zones, and authorization credentials.

[0138] In some embodiments, the device type is a personal digital assistant. In other
embodiments, the device type is a cellular telephone. In other embodiments, the device type
is a laptop computer. In other embodiments, the device type is a desktop computer. In other
embodiments, the device type is an Internet kiosk.

[0139] In some embodiments, the digital watermark includes data embedding. In some
embodiments, the watermark comprises a pattern of data inserted into a file to provide source

information about the file. In other embodiments, the watermark comprises data hashing files

Page 32 0of 102

WO 2010/129135 PCT/US2010/030515

to provide tamper detection. In other embodiments, the watermark provides copyright
information about the file.

[0140] In some embodiments, the network connection information pertains to bandwidth
capabilities. In other embodiments, the network connection information pertains to Internet
Protocol address. In still other embodiments, the network connection information consists of
an Internet Protocol address. In one embodiment, the network connection information
comprises a network zone identifying the logon agent to which the client provided
authentication credentials.

[0141] In some embodiments, the authorization credentials include a number of types of
authentication information, including without limitation, user names, client names, client
addresses, passwords, PINs, voice samples, one-time passcodes, biometric data, digital
certificates, tickets, etc. and combinations thereof. After receiving the gathered information
412, the policy engine 406 makes an access control decision based on the received
information 412.

[0142] Referring now to FIG. 4B, a block diagram depicts one embodiment of a policy
engine 406, including a first component 420 comprising a condition database 422 and a logon
agent 424, and including a second component 430 comprising a policy database 432. The first
component 420 applies a condition from the condition database 422 to information received
about client 102 and determines whether the received information satisfies the condition.
[0143] In some embodiments, a condition may require that the client 102 execute a
particular operating system to satisfy the condition. In other embodiments, a condition may
require that the client 102 execute a particular operating system patch to satisfy the condition.
In still other embodiments, a condition may require that the client 102 provide a MAC
address for each installed network card to satisfy the condition. In some embodiments, a
condition may require that the client 102 indicate membership in a particular Active
Directory to satisfy the condition. In another embodiment, a condition may require that the
client 102 execute a virus scanner to satisfy the condition. In other embodiments, a condition
may require that the client 102 execute a personal firewall to satisfy the condition. In some
embodiments, a condition may require that the client 102 comprise a particular device type to
satisfy the condition. In other embodiments, a condition may require that the client 102
establish a particular type of network connection to satisfy the condition.

[0144] If the received information satisfies a condition, the first component 420 stores an
identifier for that condition in a data set 426. In one embodiment, the received information

satisfies a condition if the information makes the condition true. For example, a condition

Page 33 of 102

WO 2010/129135 PCT/US2010/030515

may require that a particular operating system be installed. If the client 102 has that operating
system, the condition is true and satisfied. In another embodiment, the received information
satisfies a condition if the information makes the condition false. For example, a condition
may address whether spyware exists on the client 102. If the client 102 does not contain
spyware, the condition is false and satisfied.

[0145] In some embodiments, the logon agent 424 resides outside of the policy engine
406. In other embodiments, the logon agent 424 resides on the policy engine 406. In one
embodiment, the first component 420 includes a logon agent 424, which initiates the
information gathering about client 102. In some embodiments, the logon agent 424 further
comprises a data store. In these embodiments, the data store includes the conditions for which
the collection agent may gather information. This data store is distinct from the condition
database 422.

[0146] In some embodiments, the logon agent 424 initiates information gathering by
executing the collection agent 404. In other embodiments, the logon agent 424 initiates
information gathering by transmitting the collection agent 404 to the client 102 for execution
on the client 102. In still other embodiments, the logon agent 424 initiates additional
information gathering after receiving information 412. In one embodiment, the logon agent
424 also receives the information 412. In this embodiment, the logon agent 424 generates the
data set 426 based upon the received information 412. In some embodiments, the logon agent
424 generates the data set 426 by applying a condition from the database 422 to the
information received from the collection agent 404.

[0147] In another embodiment, the first component 420 includes a plurality of logon
agents 424. In this embodiment, at least one of the plurality of logon agents 424 resides on
cach network domain from which a client 102 may transmit a resource request. In this
embodiment, the client 102 transmits the resource request to a particular logon agent 424. In
some embodiments, the logon agent 424 transmits to the policy engine 406 the network
domain from which the client 102 accessed the logon agent 424. In one embodiment, the
network domain from which the client 102 accesses a logon agent 424 is referred to as the
network zone of the client 102.

[0148] The condition database 422 stores the conditions that the first component 420
applies to received information. The policy database 432 stores the policies that the second
component 430 applies to the received data set 426. In some embodiments, the condition
database 422 and the policy database 432 store data in an ODBC-compliant database. For

example, the condition database 422 and the policy database 432 may be provided as an

Page 34 0of 102

WO 2010/129135 PCT/US2010/030515

ORACLE database, manufactured by Oracle Corporation of Redwood Shores, Calif. In other
embodiments, the condition database 422 and the policy database 432 can be a Microsoft
ACCESS database or a Microsoft SQL server database, manufactured by Microsoft
Corporation of Redmond, Wash.

[0149] After the first component 420 applies the received information to each condition
in the condition database 422, the first component transmits the data set 426 to second
component 430. In one embodiment, the first component 420 transmits only the data set 426
to the second component 430. Therefore, in this embodiment, the second component 430
does not receive client information 412, only identifiers for satisfied conditions. The second
component 430 receives the data set 426 and makes an access control decision by applying a
policy from the policy database 432 based upon the conditions identified within data set 426.
[0150] In one embodiment, policy database 432 stores the policies applied to the received
information 412. In one embodiment, the policies stored in the policy database 432 are
specified at least in part by the system administrator. In another embodiment, a user specifies
at least some of the policies stored in the policy database 432. The user-specified policy or
policies are stored as preferences. The policy database 432 can be stored in volatile or non-
volatile memory or, for example, distributed through multiple servers.

[0151] In one embodiment, a policy allows access to a resource only if one or more
conditions are satisfied. In another embodiment, a policy allows access to a resource but
prohibits transmission of the resource to the client 102. Another policy might make
connection contingent on the client 102 that requests access being within a secure network. In
some embodiments, the resource is an application program and the client 102 has requested
execution of the application program. In one of these embodiments, a policy may allow
execution of the application program on the client 102. In another of these embodiments, a
policy may enable the client 102 to receive a stream of files comprising the application
program. In this embodiment, the stream of files may be stored and executed in an isolation
environment. In still another of these embodiments, a policy may allow only execution of the
application program on a server, such as an application server, and require the server to
transmit application-output data to the client 102.

[0152] Referring now to FIG. 4C, a flow diagram depicts one embodiment of the steps
taken by the policy engine 406 to make an access control decision based upon information
received about a client 102. Upon receiving gathered information about the client 102 (Step
450), the policy engine 406 generates a data set based upon the information (Step 452). The

data set 426 contains identifiers for each condition satisfied by the received information 412.

Page 35 0f 102

WO 2010/129135 PCT/US2010/030515

The policy engine 406 applies a policy to each identified condition within the data set 426.
That application yields an enumeration of resources which the client 102 may access (Step
454). The policy engine 406 then presents that enumeration to the client 102. In some
embodiments, the policy engine 406 creates a Hypertext Markup Language (HTML)
document used to present the enumeration to the client.

[0153] Referring to FIG. 4D, and in more detail, one embodiment of a network
constructed is depicted, which includes a client 102, a collection agent 404, a policy engine
406, a policy database 408, a condition database 409, a client 102, 102°, a session server 420,
a stored application database 422, a first server 106', a first database 428, a second server
106", and a second database 432. In brief overview, when the client 102 transmits to the
access control server 406 or policy engine, a request 410 for access to an application
program, the collection agent 404 communicates with client 102, retrieves information about
client 102, and transmits the client information 412 to the policy engine 406. The policy
engine 406 makes an access control decision, as discussed above in FIG. 4A and FIG. 4B,
and the client 102 receives an enumeration of available applications associated with the client
102.

[0154] In some embodiments, the session server 420 establishes a connection between the
client 102 and a plurality of application sessions associated with the client 102. In other
embodiments, the policy engine 406 determines that the client 102 has authorization to
retrieve a plurality of application files comprising the application and to execute the
application program locally. In one of these embodiments, the server 106’ stores application
session data and a plurality of application files comprising the application program. In
another of these embodiments, the client 102 establishes an application streaming session
with a server 106 storing the application session data and the plurality of application files
comprising the application program.

[0155] Referring now to FIG. 4E, a flow diagram depicts one embodiment of the steps
taken by the session server 420 to provide access for the client 102 to its associated
application sessions. The session server 420 receives information about the client 102 from
the policy engine 406 containing access control decision the policy engine 406 made (step
480). The session server 420 generates an enumeration of associated applications (step 482).
The session server 420 may connect the client 102 to an associated application (step 484). In
one embodiment, the information also includes the client machine information 412. In
another embodiment, the information includes authorization to execute the application

program locally.

Page 36 0of 102

WO 2010/129135 PCT/US2010/030515

[0156] The session server 420 generates an enumeration of associated applications (step
482). In some embodiments, the policy engine 406 identifies a plurality of application
sessions already associated with the client 102. In other embodiments, the session server 420
identifies stored application sessions associated with the client 102. In some of these
embodiments, the session server 420 automatically identifies the stored application sessions
upon receiving the information from the policy engine 406. In one embodiment, the stored
application database 422 resides on the session server 420. In another embodiment, the stored
application database 422 resides on the policy engine 406.

[0157] The stored application database 422 contains data associated with a plurality of
servers in the farm 38 executing application sessions or providing access to application
session data and application files comprising application programs. In some embodiments,
identifying the application sessions associated with the client 102 requires consulting stored
data associated with one or more servers or servers. In some of these embodiments, the
session store 420 consults the stored data associated with one or more servers. In others of
these embodiments, the policy engine 406 consults the stored data associated with one or
more servers. In some embodiments, a first application session runs on a first server 106’ and
a second application session runs on a second server 106". In other embodiments, all
application sessions run on a single server 106 within the farm 38.

[0158] The session server 420 includes information related to application sessions
initiated by users. The session server can be stored in volatile or non-volatile memory or, for
example, distributed through multiple servers. Table 1 shows the data included in a portion of

an illustrative session server 420:

Application Session | App Session 1 App Session 2 App Session 3
User ID User 1 User 2 User 1
Client ID First Client First Client
Client Address 172.16.0.50 172.16.0.50
Status Active Disconnected Active
Applications Word Processor Data Base Spreadsheet
Process Number 1 3 2
Server Server A Server A Server B
Server Address 172.16.2.55 172.16.2.55 172.16.2.56
Table 1

Page 37 0of 102

WO 2010/129135 PCT/US2010/030515

[0159] The illustrative session server 420 in Table 1 includes data associating each
application session with the user that initiated the application session, an identification of the
client computer 102, 102°, if any, from which the user is currently connected to the server
106', and the IP address of that client computer 102, 102°. The illustrative session server 420
also includes the status of each application session. An application session status can be, for
example, "active" (meaning a user is connected to the application session), or "disconnected”
(meaning a user is not connected to the application session). In an alternative embodiment, an
application session status can also be set to "executing-disconnected" (meaning the user has
disconnected from the application session, but the applications in the application session are
still executing), or "stalled-disconnected" (meaning the user is disconnected and the
applications in the application session are not executing, but their operational state
immediately prior to the disconnection has been stored). The session server 420 further stores
information indicating the applications that are executing within each application session and
data indicating each application's process on the server. In embodiments in which the server
106’ is part of the farm 38, the session server 420 is at least a part of the dynamic store, and
also includes the data in the last two rows of Table 1 that indicate on which server 106 in the
farm 38 each application is/was executing, and the IP address of that server 106. In
alternative embodiments, the session server 420 includes a status indicator for each
application in each application session.

[0160] For example, in the example of Table 1, three application sessions exist, App
Session 1, App Session 2, and App Session 3. App Session 1 is associated with User 1, who
is currently using terminal 1. Terminal 1's IP address is 152.16.2.50. The status of App
Session 1 is active, and in App Session 1, a word processing program, is being executed. The
word processing program is executing on Server A as process number 1. Server A's 1P
address is 152.16.2.55. App Session 2 in Table 1 is an example of a disconnected application
session 118. App Session 2 is associated with User 2, but App Session 2 is not connected to a
client 102 or 20. App Session 2 includes a database program that is executing on Server A, at
IP address 152.16.2.55 as process number 3. App Session 3 is an example of how a user can
interact with application sessions operating on different servers 106. App Session 3 is
associated with User 1, as is App Session 1. App Session 3 includes a spreadsheet program
that is executing on Server B at IP address 152.16.2.56 as process number 2, whereas the

application session included in App Session 1 is executing on Server A.

Page 38 0f 102

WO 2010/129135 PCT/US2010/030515

[0161] In another example, a user may access a first application program through an
application session executing on a server 106', such as Server A, while communicating across
an application streaming session with a second server 106", such as Server B, to retrieve a
second application program from the second server 106" for local execution. The user of the
client 102 may have acquired authorization to execute the second application program locally
while failing to satisfy the execution pre-requisites of the first application program.

[0162] In one embodiment, the session server 420 is configured to receive a disconnect
request to disconnect the application sessions associated with the client 102 and disconnects
the application sessions in response to the request. The session server 420 continues to
execute an application session after disconnecting the client 102 from the application session.
In this embodiment, the session server 420 accesses the stored application database 422 and
updates a data record associated with each disconnected application session so that the record
indicates that the application session associated with the client 102 is disconnected.

[0163] After receiving authentication information associated with a client connecting to
the network, the session server 420 consults the stored applications database 422 to identify
any active application sessions that are associated with a user of the client, but that are
connected to a different client, such as the client 102’ if the authentication information is
associated with client 102°, for example. In one embodiment, if the session server 420
identifies any such active application sessions, the session server 420 automatically
disconnects the application session(s) from the client 102 and connects the application
session(s) to the current client 102°. In some embodiments, the received authentication
information will restrict the application sessions to which the client 102 may reconnect. In
other embodiments, the received authentication information authorizes execution of an
application program on the client 102°, where the authorization may have been denied to
client 102. In one of these embodiments, the session server 420 may provide the client access
information for retrieving the application program for local execution.

[0164] A request is received to execute an enumerated application (step 206). In one
embodiment, a user of the client 102 selects an application for execution from a received
enumeration of available applications. In another embodiment, the user selects an application
for execution independent of the received enumeration. In some embodiments, the user
selects an application for execution by selecting a graphical representation of the application
presented on the client 102 by a client agent. In other embodiments, the user selects an
application for execution by selecting a graphical representation of the application presented

to the user on a web server or other server 106"

Page 39 of 102

WO 2010/129135 PCT/US2010/030515

[0165] In still other embodiments, the user requests to access a file. In one of these
embodiments, execution of an application is required to provide the user with access to the
file. In another of these embodiments, the application is automatically selected for execution
upon selection of the file for access. In still another of these embodiments, prior to the request
for access to the file, the application is associated with a type of file, enabling automatic
selection of the application upon identification of a type of file associated with the requested
file.

[0166] In one embodiment, the enumerated application comprises a plurality of
application files. In some embodiments, the plurality of application files reside on the server
106'. In other embodiments, the plurality of application files reside on a separate file server or
server 106". In still other embodiments, the plurality of application files may be transmitted
to a client 102. In yet other embodiments, a file in the plurality of application files may be
executed prior to transmission of a second file in the plurality of application files to the client
102.

[0167] In some embodiments, the server 106 retrieves information about the enumerated
application from a server 106". In one of these embodiments, the server 106 receives an
identification of a server 106" hosting a plurality of application files. In another of these
embodiments, the server 106 receives identification of a location of a plurality of application
files, the identification conforming to a Universal Naming Convention (UNC). In still another
of these embodiments, the identification includes a network location and a socket for an
application streaming protocol.

[0168] In one embodiment, the server 106 retrieves a file containing information about
the enumerated application. The file may include an identification of a location of a server
hosting the enumerated application. The file may include an identification of a plurality of
versions of the enumerated application. The file may include an enumeration of a plurality of
application files comprising the enumerated application. The file may include an
identification of a compressed file comprising a plurality of applications files comprising the
enumerated application. The file may include an identification of pre-requisites to be satisfied
by a machine executing the enumerated application. The file may include an enumeration of
data files associated with the enumerated application. The file may include an enumeration of
scripts to be executed on a machine executing the enumerated application. The file may
include an enumeration of registry data associated with the enumerated application. The file

may include an enumeration of rules for use in an embodiment where the enumerated

Page 40 of 102

WO 2010/129135 PCT/US2010/030515

application executes within an isolation environment. In one embodiment, the file may be
referred to as a "manifest” file.

[0169] In some embodiments, the server 106 applies a policy to an identified
characteristic of the client 102. In one of these embodiments, the server 106 identifies a
version of the enumerated application for execution responsive to the identified characteristic.
In another of these embodiments, the server 106 makes a determination to execute a version
of the enumerated application compatible with a characteristic of the client 102. In still
another of these embodiments, the server 106 makes a determination to execute a version of
the enumerated application compatible with an operating system executing on the client 102.
In yet another of these embodiments, the server 106 makes a determination to execute a
version of the enumerated application compatible with a revision level of an operating system
on the client 102. In one of these embodiments, the server 106 makes a determination to
execute a version of the enumerated application compatible with a language specified by an
operating system on the client 102.

[0170] One of a predetermined number of methods for executing the enumerated
application is selected, responsive to a policy, the predetermined number of methods
including a method for application streaming of the enumerated application (step 208). In one
embodiment, the selection is made responsive to an application of a policy to the received
credentials associated with the client 102. In some embodiments, the selection is made by a
policy engine such as the policy engine 406 described above in FIG. 4A, FIG. 4B and FIG.
4C. In other embodiments, the server 106 receiving the credentials and the request to execute
the enumerated application further comprises such a policy engine 406.

[0171] In one embodiment, the predetermined number of methods includes a method for
executing the enumerated application on a server 106". In another embodiment, the
predetermined number of methods includes a method for executing the enumerated
application on the client 102. In still another embodiment, the predetermined number of
methods includes a method for executing the enumerated application on a second server 106'.
[0172] In some embodiments, the predetermined number of methods includes a method
for providing the enumerated application to the client 102 across an application streaming
session. In one of these embodiments, the client 102 comprises a streaming service agent
capable of initiating a connection with a server 106' and receiving from the server 106’ a
stream of transmitted data packets.

[0173] The stream of data packets may include application files comprising the

enumerated application. In some embodiments, application files include data files associated

Page 41 of 102

WO 2010/129135 PCT/US2010/030515

with an application program. In other embodiments, application files include executable files
required for execution of the application program. In still other embodiments, the application
files include metadata including information about the files, such as location, compatibility
requirements, configuration data, registry data, identification of execution scripts rules for use
in isolation environments, or authorization requirements.

[0174] In some embodiments, the streamed application executes prior to the transmission
of each application file in a plurality of application files comprising the streamed application.
In one of these embodiments, execution of the streamed application begins upon receipt by a
client 102 of one application file in the plurality of applications. In another of these
embodiments, execution of the streamed application begins upon receipt by a client 102 of an
executable application file in the plurality of application files. In still another of these
embodiments, the client 102 executes a first received application file in a plurality of
application files and the first received application file requests access to a second application
file in the plurality of application files.

[0175] In one embodiment, the streamed application executes on the client 102 without
permanently residing on the client 102. In this embodiment, the streamed application may
execute on the client 102 and be removed from the client 102 upon termination of the
streamed application. In another embodiment, the streamed application executes on the client
102 after a pre-deployed copy of each application file is stored on the client 102. In still
another embodiment, the streamed application executes on the client 102 after a copy of each
application file is stored in an isolation environment on the client 102. In yet another
embodiment, the streamed application executes on the client 102 after a copy of each
application file is stored in a cache on the client 102.

[0176] In one embodiment, the method for streaming the application to the client 102 is
selected from the predetermined number of methods responsive to a determination that the
client 102 may receive the streamed application files. In another embodiment, the method for
streaming the application to the client 102 is selected from the predetermined number of
methods responsive to a determination that the client 102 has authority to execute the
streamed application files locally at the client 102.

[0177] In other embodiments, the predetermined number of methods include a method for
providing application-output data to the client 102, the application-output data generated
from an execution of the enumerated application on a server 106. In one of these
embodiments, the server 106 is the server 106 receiving the request for execution of the

enumerated application. In another of these embodiments, the server 106 is a second server

Page 42 of 102

WO 2010/129135 PCT/US2010/030515

106', such as a file server or an application server. In some embodiments, the enumerated
application resides on the server 106' executing the enumerated application. In other
embodiments, the server 106' executing the enumerated application first receives the
enumerated application from a second server 106' across an application streaming session. In
one of these embodiments, the server 106’ comprises a streaming service agent capable of
initiating a connection with a second server 106" and receiving from the second server 106’ a
stream of transmitted data. In another of these embodiments, the second server 106' may be
identified using a load balancing technique. In still another of these embodiments, the second
server 106' may be identified based upon proximity to the server 106'.

[0178] In some embodiments, the server 106 selects from the predetermined number of
methods for executing the enumerated application, a method for streaming the enumerated
application to the server 106, executing the enumerated application on the server 106, and
providing to the client 102 application-output data generated by the execution of the
enumerated application. In one of these embodiments, the server 106 selects the method
responsive to an evaluation of the client 102. In another of these embodiments the
determination is made responsive to an application of a policy to the evaluation of the client
102. In still another of these embodiments, the determination is made responsive to an
evaluation of the received credentials. In one embodiment, the server 106 receives a plurality
of application files comprising the enumerated application. In another embodiment, the server
106 provides the application-output data via a presentation level protocol, such as an ICA
presentation level protocol or a Remote Desktop Windows presentation level protocol or an
X-Windows presentation level protocol.

[0179] In some embodiments, the server 106 also provides access information associated
with the enumerated application, the access information generated responsive to the selected
method. In one of these embodiments, the access information provides an indication to the
client 102 of the selected method for execution of the enumerated application program. In
another of these embodiments, the access information includes an identification of a location
of the enumerated application, the identification conforming to a Universal Naming
Convention (UNC). In still another of these embodiments, the access information includes an
identification of a session management server.

[0180] In some embodiments, the access information includes a launch ticket comprising
authentication information. In one of these embodiments, the client 102 may use the launch
ticket to authenticate the access information received from the server 106. In another of these

embodiments, the client 102 may use the launch ticket to authenticate itself to a second server

Page 43 of 102

WO 2010/129135 PCT/US2010/030515

106 hosting the enumerated application. In still another of these embodiments, the server 106
includes the launch ticket in the access information responsive to a request from the client
102 for the launch ticket.

[0181] Referring now to FIG. 5, a block diagram depicts an embodiment of the system
described herein in which a client 102 requests execution of an application program and a
server 106 selects a method of executing the application program. In one embodiment, the
server 106 receives credentials from the client 102. In another embodiment, the server 106
receives a request for an enumeration of available applications from the client 102.

[0182] In some embodiments, multiple, redundant, servers 106, 106', 106", 106™, and
106" are provided. In one of these embodiments, there may be, for example, multiple file
servers, multiple session management servers, multiple staging machines, multiple web
interfaces, or multiple access suite consoles. In another of these embodiments, if a server
fails, a redundant server 106 is selected to provide the functionality of the failed machine. In
other embodiments, although the servers 106, 106", 106", 106", and 106", and the web
interface 558 and access suite console 520 are described as separate servers 106 having the
separate functionalities of a management server, a session management server, a staging
machine, a file server, a web server, and an access suite console, a single server 106 may be
provided having the functionality of all of these machines. In still other embodiments, a
server 106 may provide the functionality and services of one or more of the other servers.
[0183] Referring now to FIG. 5 in greater detail, a block diagram depicts one
embodiment of a server 106 providing access to an application program. In addition to the
interfaces and subsystems described above in connection with FIG. 1D, the server 106 may
further include a management communication service 514, an XML service 516, and a
management service 504. The management service 504 may comprise an application
management subsystem 506, a server management subsystem 508, a session management
subsystem 510, and a license management subsystem 512. The server 106 may be in
communication with an access suite console 520.

[0184] In one embodiment, the management service 504 further comprises a specialized
remote procedure call subsystem, the MetaFrame Remote Procedure Call (MFRPC)
subsystem 522. In some embodiments, the MFRPC subsystem 522 routes communications
between subsystems on the server 106, such as the XML service 516, and the management
service 504. In other embodiments, the MFRPC subsystem 522 provides a remote procedure
call (RPC) interface for calling management functions, delivers RPC calls to the management

service 504, and returns the results to the subsystem making the call.

Page 44 of 102

WO 2010/129135 PCT/US2010/030515

[0185] In some embodiments, the server 106 is in communication with a protocol engine,
such as the protocol engine 406 described above in FIG. 4B. In one of these embodiments,
the server 106 is in communication with a protocol engine 406 residing on a server 106'. In
other embodiments, the server 106 further comprises a protocol engine 406.

[0186] The server 106 may be in communication with an access suite console 520. The
access suite console 520 may host management tools to an administrator of a server 106 or of
a farm 38. In some embodiments, the server 106 communicates with the access suite console
520 using XML. In other embodiments, the server 106 communicates with the access suite
console 520 using the Simple Object Access Protocol (SOAP).

[0187] For embodiments such as those described in FIG. 1D and in FIG. 5 in which the
server 106 comprises a subset of subsystems, the management service 504 may comprise a
plurality of subsystems. In one embodiment, each subsystem is either a single-threaded or a
multi-threaded subsystem. A thread is an independent stream of execution running in a multi-
tasking environment. A single-threaded subsystem is capable of executing only one thread at
a time. A multi-threaded subsystem can support multiple concurrently executing threads, i.c.,
a multi-threaded subsystem can perform multiple tasks simultaneously.

[0188] The application management subsystem 506 manages information associated with
a plurality of applications capable of being streamed. In one embodiment, the application
management subsystem 506 handles requests from other components, such as requests for
storing, deleting, updating, enumerating or resolving applications. In another embodiment,
the application management subsystem 506 handles requests sent by components related to
an application capable of being streamed. These events can be classified into three types of
events: application publishing, application enumeration and application launching, each of
which will be described in further detail below. In other embodiments, the application
management subsystem 506 further comprises support for application resolution, application
publication and application publishing. In other embodiments, the application management
subsystem 506, uses a data store to store application properties and policies.

[0189] The server management subsystem 508 handles configurations specific to
application streaming in server farm configurations. In some embodiments, the server
management subsystem 508 also handles events that require retrieval of information
associated with a configuration of a farm 38. In other embodiments, the server management
subsystem 508 handles events sent by other components related to servers providing access to
applications across application streams and properties of those servers. In one embodiment,

the server management subsystem 508 stores server properties and farm properties.

Page 45 of 102

WO 2010/129135 PCT/US2010/030515

[0190] In some embodiments, the server 106 further comprises one or more common
application subsystems 524 providing services for one or more specialized application
subsystems. These servers 106 may also have one or more common server subsystems
providing services for one or more specialized server subsystems. In other embodiments, no
common application subsystems 524 are provided, and each specialized application and
server subsystem implements all required functionality.

[0191] In one embodiment in which the server 106 comprises a common application
subsystem 524, the common application subsystem 524 manages common properties for
published applications. In some embodiments, the common application subsystem 524
handles events that require retrieval of information associated with published applications or
with common properties. In other embodiments, the common application subsystem 524
handles all events sent by other components related to common applications and their
properties.

[0192] A common application subsystem 524 can "publish" applications to the farm 38,
which makes each application available for enumeration and launching by a client 102.
Generally, an application is installed on each server 106 on which availability of that
application is desired. In one embodiment, to publish an application, an administrator runs an
administration tool specifying information such as the servers 106 hosting the application, the
name of the executable file on each server, the required capabilities of a client for executing
the application (e.g., audio, video, encryption, etc.), and a list of users that can use the
application. This specified information is categorized into application-specific information
and common information. Examples of application-specific information are: the path name
for accessing the application and the name of the executable file for running the application.
Common information (i.e., common application data) includes, for example, the user-friendly
name of the application (e.g., "Microsoft WORD 2000"), a unique identification of the
application, and the users of the application.

[0193] The application-specific information and common information may be sent to a
specialized application subsystem controlling the application on each server 106 hosting the
application. The specialized application subsystem may write the application-specific
information and the common information into a persistent store 240.

[0194] When provided, a common application subsystem 524 also provides a facility for
managing the published applications in the farm 38. Through a common application
subsystem 524, an administrator can manage the applications of the farm 38 using an

administration tool such as the access suite console 520 to configure application groups and

Page 46 of 102

WO 2010/129135 PCT/US2010/030515

produce an application tree hierarchy of those application groups. Each application group
may be represented as a folder in the application tree hierarchy. Each application folder in the
application tree hierarchy can include one or more other application folders and specific
instances of servers. The common application subsystem 524 provides functions to create,
move, rename, delete, and enumerate application folders.

[0195] In one embodiment, the common application subsystem 524 supports the
application management subsystem 506 in handling application enumeration and application
resolution requests. In some embodiments, the common application subsystem 524 provides
functionality for identifying an application for execution responsive to a mapping between a
type of data file and an application for processing the type of data file. In other embodiments,
a second application subsystem provides the functionality for file type association.

[0196] In some embodiments, the server 106 may further comprise a policy subsystem. A
policy subsystem includes a policy rule for determining whether an application may be
streamed to a client 102 upon a request by the client 102 for execution of the application. In
some embodiments, the policy subsystem identifies a server access option associated with a
streamed application published in the access suite console 520. In one of these embodiments,
the policy subsystem uses the server access option as a policy in place of the policy rule.
[0197] The session monitoring subsystem 510 maintains and updates session status of an
application streaming session associated with a client 102 and enforces license requirements
for application streaming sessions. In one embodiment the session management subsystem
510 monitors sessions and logs events, such as the launching of an application or the
termination of an application streaming session. In another embodiment, the session
monitoring subsystem 510 receives communications, such as heartbeat messages, transmitted
from the client 102 to the server 106. In still another embodiment, the session management
subsystem 510 responds to queries about sessions from management tools, such as tools
within the access suite console 520. In some embodiments, the management service 504
further comprises a license management subsystem communicating with the session
management subsystem to provide and maintain licenses to clients for execution of
applications.

[0198] In one embodiment, the management service 504 provides functionality for
application enumeration and application resolution. In some embodiments, the management
service 504 also provides functionality for application launching, session monitoring and

tracking, application publishing, and license enforcement.

Page 47 of 102

WO 2010/129135 PCT/US2010/030515

[0199] Referring now to FIG. 6, a block diagram depicts one embodiment of a server 106
comprising a management service providing an application enumeration. The management
service 504 may provide application enumeration through the use of a web interface
interacting with an XML service 516. In one embodiment, XML service 516 enumerates
applications for a user of a client 102. In another embodiment, the XML service 516
implements the functionality of the ICA browser subsystem and the program neighborhood
subsystem described above. The XML service 516 may interact with a management
communications service 514. In one embodiment, the XML service 516 generates an
application enumeration request using the management communications service 514. The
application enumeration request may include a client type indicating a method of execution to
be used when executing the enumerated application. The application enumeration request is
sent to a common application subsystem 524. In one embodiment, the common application
subsystem 524 returns an enumeration of applications associated with the client type of the
application enumeration request. In another embodiment, the common application subsystem
524 returns an enumeration of applications available to the user of the client 102, the
enumeration selected responsive to an application of a policy to a credential associated with
the client 102. In this embodiment, a policy engine 406 may apply the policy to credentials
gathered by a collection agent 404, as described in connection with FIG. 4B above. In still
another embodiment, the enumeration of applications is returned and an application of a
policy to the client 102 is deferred until an execution of an enumerated application is
requested.

[0200] The management service 504 may provide application resolution service for
identifying a second server 106" hosting an application. In one embodiment, the second server
106' 1s a file server or an application server. In some embodiments, the management service
504 consults a file including identifiers for a plurality of servers 106 hosting applications. In
one embodiment, the management service 504 provides the application resolution service
responsive to a request from a client 102 for execution of an application. In another
embodiment, the management service 504 identifies a second server 106’ capable of
implementing a different method of executing the application than a first server 106. In some
embodiments, the management service 504 identifies a first server 106' capable of streaming
an application program to a client 102 and a second server 106' capable of executing the
application program and providing application-output data generated responsive to the

execution of the application program to the client 102.

Page 48 0of 102

WO 2010/129135 PCT/US2010/030515

[0201] In one embodiment, a web interface transmits an application resolution request to
the XML service 516. In another embodiment, the XML service 516 receives a application
resolution request and transmits the request to the MFRPC subsystem 522.

[0202] In one embodiment, the MFRPC subsystem 522 identifies a client type included
with a received application resolution request. In another embodiment, the MFRPC
subsystem applies a policy to the client type and determines to "stream” the application to the
client 102. In this embodiment, the MFRPC subsystem 522 may forward the application
resolution request to an application management subsystem 506. In one embodiment, upon
receiving the application resolution request from the MFRPC subsystem 522, the application
management subsystem 506 may identify a server 106" functioning as a session management
server 562 for the client 102. In some embodiments, the client transmits a heartbeat message
to the session management server 562. In another embodiment, the application management
subsystem 506 may identify a server 106' hosting a plurality of application files comprising
the application to be streamed to the client 102.

[0203] In some embodiments, the application management subsystem 506 uses a file
enumerating a plurality of servers hosting the plurality of application files to identify the
server 106'. In other embodiments, the application management subsystem 506 identifies a
server 106' having an IP address similar to an IP address of the client 102. In still other
embodiments, the application management subsystem 506 identifies a server 106' having an
IP address in a range of IP addresses accessible to the client 102.

[0204] In still another embodiment, the MFRPC subsystem 522 applies a policy to the
client type and determines that the application may be executed on a server 106', the server
106' transmitting application-output data generated by an execution of the application to the
client 102. In this embodiment, the MFRPC subsystem 522 may forward the application
resolution request to a common application subsystem 524 to retrieve an identifier of a host
address for a server 106'. In one embodiment, the identified server 106' may transmit the
application-output data to the client using a presentation level protocol such as ICA or RDP
or X Windows. In some embodiments, the server 106’ receives the application from a second
server 106’ across an application streaming session.

[0205] In one embodiment, upon completion of application enumeration and application
resolution, access information is transmitted to the client 102 that includes an identification of
a method of execution for an enumerated application and an identifier of a server 106' hosting
the enumerated application. In one embodiment where the management service 504

determines that the enumerated application will execute on the client 102, a web interface

Page 49 of 102

WO 2010/129135 PCT/US2010/030515

creates and transmits to the client 102 a file containing name-resolved information about the
enumerated application. In some embodiments, the file may be identified using a ".rad"
extension. The client 102 may execute the enumerated application responsive to the contents

of the received file. Table 2 depicts one embodiment of information contained in the file:

UNC path Points to a Container master manifest file on the file | XML service
server

Initial program Program to launch from container XML service

Command line For launching documents using FTA XML service

Web server URL | For messages from RADE client to W1 WI config

Farm ID The farm the application belongs to — needed for WI config
heartbeat messages

LaunchTicket Application streaming client uses LaunchTicket to XML/IMA
acquire a license authorizing execution of the
program

ICA fallback Embedded ICA file for fallback, if fallback is to be XML Service

launch info allowed

Table 2

[0206] The file may also contain a launch ticket for use by the client in executing the
application, as shown in Table 2. In some embodiments, the launch ticket expires after a
predetermined period of time. In one embodiment, the client provides the launch ticket to a
server hosting the enumerated application to be executed. Use of the launch ticket to
authorize access to the enumerated application by a user of the client assists in preventing the
user from reusing the file or generating an unauthorized version of the file to inappropriately
access to applications. In one embodiment, the launch ticket comprises a large, randomly-
generated number.

[0207] As described above in connection with FIG. 2, a method for selecting a method of
execution of an application program begins when credentials associated with the client 102 or
with a user of the client 102 are received (step 202) and an enumeration of a plurality of

application programs available to the client 102 is provided, responsive to the received

Page 50 of 102

WO 2010/129135 PCT/US2010/030515

credentials (step 204). A request is received to execute an enumerated application (step 206)
and one of a predetermined number of methods for executing the enumerated application is
selected, responsive to a policy, the predetermined number of methods including a method
for application streaming of the enumerated application (step 208).

[0208] Referring now to FIG. 7, a flow diagram depicts one embodiment of the steps
taken to access a plurality of files comprising an application program. A client performs a
pre-launch analysis of the client (step 210). In one embodiment, the client 102 performs the
pre-launch analysis prior to retrieving and executing a plurality of application files
comprising an application program. In another embodiment, the client 102 performs the pre-
launch analysis responsive to a received indication that the pre-launch analysis is a
requirement for authorization to access the plurality of application files comprising an
application program.

[0209] In some embodiments, the client 102 receives, from a server 106, access
information associated with the plurality of application files. In one of these embodiments,
the access information includes an identification of a location of a server 106’ hosting the
plurality of application files. In another of these embodiments, the client 102 receives an
identification of a plurality of applications comprising one or more versions of the application
program. In still another of these embodiments, the client 102 receives an identification of a
plurality of application files comprising one or more application programs. In other
embodiments, the client 102 receives an enumeration of application programs available to the
client 102 for retrieval and execution. In one of these embodiments, the enumeration results
from an evaluation of the client 102. In still other embodiments, the client 102 retrieves the at
least one characteristic responsive to the retrieved identification of the plurality of application
files comprising an application program.

[0210] In some embodiments, the access information includes a launch ticket capable of
authorizing the client to access the plurality of application files. In one of these embodiments,
the launch ticket is provided to the client 102 responsive to an evaluation of the client 102. In
another of these embodiments, the launch ticket is provided to the client 102 subsequent to a
pre-launch analysis of the client 102 by the client 102.

[0211] In other embodiments, the client 102 retrieves at least one characteristic required
for execution of the plurality of application files. In one of these embodiments, the access
information includes the at least one characteristic. In another of these embodiments, the
access information indicates a location of a file for retrieval by the client 102, the file

enumerating the at least one characteristic. In still another of these embodiments, the file

Page 51 of 102

WO 2010/129135 PCT/US2010/030515

enumerating the at least one characteristic further comprises an enumeration of the plurality
of application files and an identification of a server 106 hosting the plurality of application
files.

[0212] The client 102 determines the existence of the at least one characteristic on the
client. In one embodiment, the client 102 makes this determination as part of the pre-launch
analysis. In another embodiment, the client 102 determines whether the client 102 has the at
least one characteristic.

[0213] In one embodiment, determining the existence of the at least one characteristic on
the client 102 includes determining whether a device driver is installed on the client. In
another embodiment, determining the existence of the at least one characteristic on the client
102 includes determining whether an operating system is installed on the client 102. In still
another embodiment, determining the existence of the at least one characteristic on the client
102 includes determining whether a particular operating system is installed on the client 102.
In yet another embodiment, determining the existence of the at least one characteristic on the
client 102 includes determining whether a particular revision level of an operating system is
installed on the client 102.

[0214] In some embodiments, determining the existence of the at least one characteristic
on the client 102 includes determining whether the client 102 has acquired authorization to
execute an enumerated application. In one of these embodiments, a determination is made by
the client 102 as to whether the client 102 has received a license to execute the enumerated
application. In another of these embodiments, a determination is made by the client 102 as to
whether the client 102 has received a license to receive across an application streaming
session a plurality of application files comprising the enumerated application. In other
embodiments, determining the existence of the at least one characteristic on the client 102
includes determining whether the client 102 has sufficient bandwidth available to retrieve and
execute an enumerated application.

[0215] In some embodiments, determining the existence of the at least one characteristic
on the client 102 includes execution of a script on the client 102. In other embodiments,
determining the existence of the at least one characteristic on the client 102 includes
installation of software on the client 102. In still other embodiments, determining the
existence of the at least one characteristic on the client 102 includes modification of a registry
on the client 102. In yet other embodiments, determining the existence of the at least one
characteristic on the client 102 includes transmission of a collection agent 404 to the client

102 for execution on the client 102 to gather credentials associated with the client 102.

Page 52 of 102

WO 2010/129135 PCT/US2010/030515

[0216] The client 102 requests, from a server 106, authorization for execution of the
plurality of application files, the request including a launch ticket (step 212). In some
embodiments, the client 102 makes the request responsive to a determination that at least one
characteristic exists on the client 102. In one of these embodiments, the client 102 determines
that a plurality of characteristics exist on the client 102, the plurality of characteristics
associated with an enumerated application and received responsive to a request to execute the
enumerated application. In another of these embodiments, whether the client 102 receives an
indication that authorization for execution of the enumerated application files depends upon
existence of the at least one characteristic on the client 102. In one embodiment, the client
102 received an enumeration of application programs, requested execution of an enumerated
application, and received access information including the at least one characteristic and a
launch ticket authorizing the execution of the enumerated application upon the determination
of the existence of the at least one characteristic on the client 102.

[0217] In one embodiment, the client 102 receives from the server 106 a license
authorizing execution of the plurality of application files. In some embodiments, the license
authorizes execution for a specified time period. In one of these embodiments, the license
requires transmission of a heart beat message to maintain authorization for execution of the
plurality of application files.

[0218] In another embodiment, the client 102 receives from the server 106 the license and
an identifier associated with a server 106 monitoring execution of the plurality of application
files. In some embodiments, the server is a session management server 562, as depicted
above in FIG. 5. In one of these embodiments, the session management server 562 includes a
session management subsystem 510 that monitors the session associated with the client 102.
In other embodiments, a separate server 106" is the session management server 562.

[0219] The client 102 receives and executes the plurality of application files (step 214).
In one embodiment, the client 102 receives the plurality of application files across an
application streaming session. In another embodiment, the client 102 stores the plurality of
application files in an isolation environment on the client 102. In still another embodiment,
the client 102 executes one of the plurality of application files prior to receiving a second of
the plurality of application files. In some embodiments, a server transmits the plurality of
application files to a plurality of clients, each client in the plurality having established a
separate application streaming session with the server.

[0220] In some embodiments, the client 102 stores the plurality of application files in a

cache and delays execution of the application files. In one of these embodiments, the client

Page 53 of 102

WO 2010/129135 PCT/US2010/030515

102 receives authorization to execute the application files during a pre-defined period of time.
In another of these embodiments, the client 102 receives authorization to execute the
application files during the pre-defined period of time when the client 102 lacks access to a
network. In other embodiments, the client stores the plurality of application files in a cache.
In one of these embodiments, the application streaming client 552 establishes an internal
application streaming session to retrieve the plurality of application files from the cache. In
another of these embodiments, the client 102 receives authorization to execute the application
files during a pre-defined period of time when the client 102 lacks access to a network.
[0221] The client 102 transmits at least one heartbeat message to a server (step 216). In
some embodiments, the client 102 transmits the at least one heartbeat message to retain
authorization to execute the plurality of application files comprising the enumerated
application. In other embodiments, the client 102 transmits the at least one heartbeat message
to retain authorization retrieve an application file in the plurality of application files. In still
other embodiments, the client 102 receives a license authorizing execution of the plurality of
application files during a pre-determined period of time.

[0222] In some embodiments, the client 102 transmits the heartbeat message to a second
server 106"". In one of these embodiments, the second server 106" may comprise a session
management server 562 monitoring the retrieval and execution of the plurality of application
files. In another of these embodiments, the second server 106" may renew a license
authorizing execution of the plurality of application files, responsive to the transmitted
heartbeat message. In still another of these embodiments, the second server 106" may
transmit to the client 102 a command, responsive to the transmitted heartbeat message.
[0223] Referring back to FIG. 5, the client 102 may include an application streaming
client 552, a streaming service 554 and an isolation environment 556.

[0224] The application streaming client 552 may be an executable program. In some
embodiments, the application streaming client 552 may be able to launch another executable
program. In other embodiments, the application streaming client 552 may initiate the
streaming service 554. In one of these embodiments, the application streaming client 552
may provide the streaming service 554 with a parameter associated with executing an
application program. In another of these embodiments, the application streaming client 552
may initiate the streaming service 554 using a remote procedure call.

[0225] In one embodiment, the client 102 requests execution of an application program
and receives access information from a server 106 regarding execution. In another

embodiment, the application streaming client 552 receives the access information. In still

Page 54 of 102

WO 2010/129135 PCT/US2010/030515

another embodiment, the application streaming client 552 provides the access information to
the streaming service 554. In yet another embodiment, the access information includes an
identification of a location of a file associated with a plurality of application files comprising
the application program.

[0226] In one embodiment, the streaming service 554 retrieves a file associated with a
plurality of application files. In some embodiments, the retrieved file includes an
identification of a location of the plurality of application files. In one of these embodiments,
the streaming service 554 retrieves the plurality of application files. In another of these
embodiments, the streaming service 554 executes the retrieved plurality of application files
on the client 102. In other embodiments, the streaming service 554 transmits heartbeat
messages to a server to maintain authorization to retrieve and execute a plurality of
application files.

[0227] In some embodiments, the retrieved file includes an identification of a location of
more than one plurality of application files, each plurality of application files comprising a
different application program. In one of these embodiments, the streaming service 554
retrieves the plurality of application files comprising the application program compatible with
the client 102. In another of these embodiments, the streaming service 554 receives
authorization to retrieve a particular plurality of application files, responsive to an evaluation
of the client 102.

[0228] In some embodiments, the plurality of application files are compressed and stored
on a file server within an archive file such as a CAB, ZIP, SIT, TAR, JAR or other archive
file. In one embodiment, a plurality of application files stored in an archive file comprise an
application program. In another embodiment, multiple pluralities of application files stored in
an archive file each comprise different versions of an application program. In still another
embodiment, multiple pluralities of application files stored in an archive file each comprise
different application programs. In some embodiments, an archive file includes metadata
associated with each file in the plurality of application files. In one of these embodiments, the
streaming service 554 generates a directory structure responsive to the included metadata. As
will be described in greater detail in connection with FIG. 12 below, the metadata may be
used to satisfy requests by application programs for directory enumeration.

[0229] In one embodiment, the streaming service 554 decompresses an archive file to
acquire the plurality of application files. In another embodiment, the streaming service 554
determines whether a local copy of a file within the plurality of application files exists in a

cache on the client 102 prior to retrieving the file from the plurality of application files. In

Page 55 of 102

WO 2010/129135 PCT/US2010/030515

still another embodiment, the file system filter driver 564 determines whether the local copy
exists in the cache. In some embodiments, the streaming service 554 modifies a registry entry
prior to retrieving a file within the plurality of application files.

[0230] In some embodiments, the streaming service 554 stores a plurality of application
files in a cache on the client 102. In one of these embodiments, the streaming service 554
may provide functionality for caching a plurality of application files upon receiving a request
to cache the plurality of application files. In another of these embodiments, the streaming
service 554 may provide functionality for securing a cache on the client 102. In another of
these embodiments, the streaming service 554 may use an algorithm to adjust a size and a
location of the cache.

[0231] In some embodiments, the streaming service 554 creates an isolation environment
556 on the client 102. In one of these embodiments, the streaming service 554 uses an
isolation environment application programming interface to create the isolation environment
556. In another of these embodiments, the streaming service 554 stores the plurality of
application files in the isolation environment 556. In still another of these embodiments, the
streaming service 554 executes a file in the plurality of application files within the isolation
environment. In yet another of these embodiments, the streaming service 554 executes the
application program in the isolation environment.

[0232] For embodiments in which authorization is received to execute an application on
the client 102, the execution of the application may occur within an isolation environment
556. In some embodiments, a plurality of application files comprising the application are
stored on the client 102 prior to execution of the application. In other embodiments, a subset
of the plurality of application files are stored on the client 102 prior to execution of the
application. In still other embodiments, the plurality of application files do not reside in the
isolation environment 556. In yet other embodiments, a subset of the plurality of applications
files do not reside on the client 102. Regardless of whether a subset of the plurality of
application files or each application file in the plurality of application files reside on the client
102 or in isolation environment 556, in some embodiments, an application file in the plurality
of application files may be executed within an isolation environment 556.

[0233] The isolation environment 556 may consist of a core system able to provide File
System Virtualization, Registry System Virtualization, and Named Object Virtualization to
reduce application compatibility issues without requiring any change to the application
source code. The isolation environment 556 may redirect application resource requests using

hooking both in the user mode for registry and named object virtualization, and in the kernel

Page 56 of 102

WO 2010/129135 PCT/US2010/030515

using a file system filter driver for file system virtualization. The following is a description of
some embodiments of an isolation environment 556.

[0234] Referring now to FIG. 8A, one embodiment of a computer running under control
of an operating system 8100 that has reduced application compatibility and application
sociability problems is shown. The operating system 8100 makes available various native
resources to application programs 8112, 8114 via its system layer 8108. The view of
resources embodied by the system layer 8108 will be termed the "system scope". In order to
avoid conflicting access to native resources 8102, 8104, 8106, 8107 by the application
programs 8112, 8114, an isolation environment 8200 is provided. As shown in FIG. 8A, the
isolation environment 8200 includes an application isolation layer 8220 and a user isolation
layer 8240. Conceptually, the isolation environment 8200 provides, via the application
isolation layer 8220, an application program 8112, 8114, with a unique view of native
resources, such as the file system 8102, the registry 8104, objects 8106, and window names
8107. Each isolation layer modifies the view of native resources provided to an application.
The modified view of native resources provided by a layer will be referred to as that layer's
"isolation scope”. As shown in FIG. 8A, the application isolation layer includes two
application isolation scopes 8222, 8224. Scope 8222 represents the view of native resources
provided to application 8112 and scope 8224 represents the view of native resources provided
to application 8114. Thus, in the embodiment shown in FIG. 8A, APP1 8112 is provided with
a specific view of the file system 8102', while APP2 8114 is provided with another view of
the file system 8102" which is specific to it. In some embodiments, the application isolation
layer 8220 provides a specific view of native resources 8102, 8104, 8106, 8107 to each
individual application program executing on top of the operating system 8100. In other
embodiments, application programs 8112, 8114 may be grouped into sets and, in these
embodiments, the application isolation layer 8220 provides a specific view of native
resources for each set of application programs. Conflicting application programs may be put
into separate groups to enhance the compatibility and sociability of applications. In still
further embodiments, the applications belonging to a set may be configured by an
administrator. In some embodiments, a "passthrough" isolation scope can be defined which
corresponds exactly to the system scope. In other words, applications executing within a
passthrough isolation scope operate directly on the system scope.

[0235] In some embodiments, the application isolation scope is further divided into
layered sub-scopes. The main sub-scope contains the base application isolation scope, and

additional sub-scopes contain various modifications to this scope that may be visible to

Page 57 of 102

WO 2010/129135 PCT/US2010/030515

multiple executing instances of the application. For example, a sub-scope may contain
modifications to the scope that embody a change in the patch level of the application or the
installation or removal of additional features. In some embodiments, the set of additional sub-
scopes that are made visible to an instance of the executing application is configurable. In
some embodiments, that set of visible sub-scopes is the same for all instances of the
executing application, regardless of the user on behalf of which the application is executing.
In others, the set of visible sub-scopes may vary for different users executing the application.
In still other embodiments, various sets of sub-scopes may be defined and the user may have
a choice as to which set to use. In some embodiments, sub-scopes may be discarded when no
longer needed. In some embodiments, the modifications contained in a set of sub-scopes may
be merged together to form a single sub-scope.

[0236] Referring now to FIG. 8B, a multi-user computer having reduced application
compatibility and application sociability problems is depicted. The multi-user computer
includes native resources 8102, 8104, 8106, 8107 in the system layer 8108, as well as the
isolation environment 8200 discussed immediately above. The application isolation layer
8220 functions as discussed above, providing an application or group of applications with a
modified view of native resources. The user isolation layer 8240, conceptually, provides an
application program 8112, 8114, with a view of native resources that is further altered based
on user identity of the user on whose behalf the application is executed. As shown in FIG.
8B, the user isolation layer 8240 may be considered to comprise a number of user isolation
scopes 8242', 8242" 8242™, 8242™", 8242™", 8242"" (generally 8242). A user isolation scope
8242 provides a user-specific view of application-specific views of native resources. For
example, APP1 8112 executing in user session 8110 on behalf of user "a" is provided with a
file system view 8102'(a) that is altered or modified by both the user isolation scope 8242
and the application isolation scope 8222.

[0237] Put another way, the user isolation layer 8240 alters the view of native resources
for each individual user by "layering" a user-specific view modification provided by a user
isolation scope 8242' "on top of" an application-specific view modification provided by an
application isolation scope 8222, which is in turn "layered on top of" the system-wide view of
native resources provided by the system layer. For example, when the first instance of APP1
8112 accesses an entry in the registry database 8104, the view of the registry database
specific to the first user session and the application 8104'(a) is consulted. If the requested
registry key is found in the user-specific view of the registry 8104'(a), that registry key is
returned to APP1 8112. If not, the view of the registry database specific to the application

Page 58 0of 102

WO 2010/129135 PCT/US2010/030515

8104' is consulted. If the requested registry key is found in the application-specific view of
the registry 8104, that registry key is returned to APP1 8112. If not, then the registry key
stored in the registry database 8104 in the system layer 8108 (i.e. the native registry key) is
returned to APP1 8112.

[0238] In some embodiments, the user isolation layer 8240 provides an isolation scope
for each individual user. In other embodiments, the user isolation layer 8240 provides an
isolation scope for a group of users, which may be defined by roles within the organization or
may be predetermined by an administrator. In still other embodiments, no user isolation layer
8240 is provided. In these embodiments, the view of native resources seen by an application
program is that provided by the application isolation layer 8220. The isolation environment
8200, although described in relation to multi-user computers supporting concurrent execution
of application programs by various users, may also be used on single-user computers to
address application compatibility and sociability problems resulting from sequential
execution of application programs on the same computer system by different users, and those
problems resulting from installation and execution of incompatible programs by the same
user.

[0239] In some embodiments, the user isolation scope is further divided into sub-scopes.
The modifications by the user isolation scope to the view presented to an application
executing in that scope is the aggregate of the modifications contained within each sub-scope
in the scope. Sub-scopes are layered on top of each other, and in the aggregate view
modifications to a resource in a higher sub-scope override modifications to the same resource
in lower layers.

[0240] In some of these embodiments, one or more of these sub-scopes may contain
modifications to the view that are specific to the user. In some of these embodiments, one or
more sub-scopes may contain modifications to the view that are specific to sets of users,
which may be defined by the system administrators or defined as a group of users in the
operating system. In some of these embodiments, one of these sub-scopes may contain
modifications to the view that are specific to the particular login session, and hence that are
discarded when the session ends. In some of these embodiments, changes to native resources
by application instances associated with the user isolation scope always affects one of these
sub-scopes, and in other embodiments those changes may affect different sub-scopes
depending on the particular resource changed.

[0241] The conceptual architecture described above allows an application executing on

behalf of a user to be presented with an aggregate, or unified, virtualized view of native

Page 59 of 102

WO 2010/129135 PCT/US2010/030515

resources, specific to that combination of application and user. This aggregated view may be
referred to as the "virtual scope". The application instance executing on behalf of a user is
presented with a single view of native resources reflecting all operative virtualized instances
of the native resources. Conceptually this aggregated view consists firstly of the set of native
resources provided by the operating system in the system scope, overlaid with the
modifications embodied in the application isolation scope applicable to the executing
application, further overlaid with the modifications embodied in the user isolation scope
applicable to the application executing on behalf of the user. The native resources in the
system scope are characterized by being common to all users and applications on the system,
except where operating system permissions deny access to specific users or applications. The
modifications to the resource view embodied in an application isolation scope are
characterized as being common to all instances of applications associated with that
application isolation scope. The modifications to the resource view embodied in the user
isolation scope are characterized as being common to all applications associated with the
applicable application isolation scope that are executing on behalf of the user associated with
the user isolation scope.

[0242] This concept can be extended to sub-scopes; the modifications to the resource
view embodied in a user sub-scope are common to all applications associated with the
applicable isolation sub-scope executing on behalf of a user, or group of users, associated
with a user isolation sub-scope. Throughout this description it should be understood that
whenever general reference is made to "scope," it is intended to also refer to sub-scopes,
where those exist.

[0243] When an application requests enumeration of a native resource, such as a portion
of the file system or registry database, a virtualized enumeration is constructed by first
enumerating the "system-scoped" instance of the native resource, that is, the instance found in
the system layer, if any. Next, the "application-scoped” instance of the requested resource,
that is the instance found in the appropriate application isolation scope, if any, is enumerated.
Any enumerated resources encountered in the application isolation scope are added to the
view. If the enumerated resource already exists in the view (because it was present in the
system scope, as well), it is replaced with the instance of the resource encountered in the
application isolation scope. Similarly, the "user-scoped" instance of the requested resource,
that is the instance found in the appropriate user isolation scope, if any, is enumerated. Again,
any enumerated resources encountered in the user isolation scope are added to the view. If the

native resource already exists in the view (because it was present in the system scope or in

Page 60 of 102

WO 2010/129135 PCT/US2010/030515

the appropriate application isolation scope), it is replaced with the instance of the resource
encountered in the user isolation scope. In this manner, any enumeration of native resources
will properly reflect virtualization of the enumerated native resources. Conceptually the same
approach applies to enumerating an isolation scope that comprises multiple sub-scopes. The
individual sub-scopes are enumerated, with resources from higher sub-scopes replacing
matching instances from lower sub-scopes in the aggregate view.

[0244] In other embodiments, enumeration may be performed from the user isolation
scope layer down to the system layer, rather than the reverse. In these embodiments, the user
isolation scope is enumerated. Then the application isolation scope is enumerated and any
resource instances appearing in the application isolation scope that were not enumerated in
the user isolation scope are added to the aggregate view that is under construction. A similar
process can be repeated for resources appearing only in the system scope.

[0245] In still other embodiments, all isolation scopes may be simultaneously enumerated
and the respective enumerations combined.

[0246] If an application attempts to open an existing instance of a native resource with no
intent to modify that resource, the specific instance that is returned to the application is the
one that is found in the virtual scope, or equivalently the instance that would appear in the
virtualized enumeration of the parent of the requested resource. From the point of view of the
isolation environment, the application is said to be requesting to open a "virtual resource",
and the particular instance of native resource used to satisfy that request is said to be the
"literal resource” corresponding to the requested resource.

[0247] If an application executing on behalf of a user attempts to open a resource and
indicates that it is doing so with the intent to modify that resource, that application instance is
normally given a private copy of that resource to modify, as resources in the application
isolation scope and system scope are common to applications executing on behalf-of other
users. Typically a user-scoped copy of the resource is made, unless the user-scoped instance
already exists. The definition of the aggregate view provided by a virtual scope means that
the act of copying an application-scoped or system-scoped resource to a user isolation scope
does not change the aggregate view provided by the virtual scope for the user and application
in question, nor for any other user, nor for any other application instance. Subsequent
modifications to the copied resource by the application instance executing on behalf of the
user do not affect the aggregate view of any other application instance that does not share the

same user isolation scope. In other words, those modifications do not change the aggregate

Page 61 of 102

WO 2010/129135 PCT/US2010/030515

view of native resources for other users, or for application instances not associated with the
same application isolation scope.

[0248] Applications may be installed into a particular isolation scope (described below in
more detail). Applications that are installed into an isolation scope are always associated with
that scope. Alternatively, applications may be launched into a particular isolation scope, or
into a number of isolation scopes. In effect, an application is launched and associated with
one or more isolation scopes. The associated isolation scope, or scopes, provide the process
with a particular view of native resources. Applications may also be launched into the system
scope, that is, they may be associated with no isolation scope. This allows for the selective
execution of operating system applications such as Internet Explorer, as well as third party
applications, within an isolation environment.

[0249] This ability to launch applications within an isolation scope regardless of where
the application is installed mitigates application compatibility and sociability issues without
requiring a separate installation of the application within the isolation scope. The ability to
selectively launch installed applications in different isolation scopes provides the ability to
have applications which need helper applications (such as Word, Notepad, etc.) to have those
helper applications launched with the same rule sets.

[0250] Further, the ability to launch an application within multiple isolated environments
allows for better integration between isolated applications and common applications.

[0251] Referring now to FIG. 8C, and in brief overview, a method for associating a
process with an isolation scope includes the steps of launching the process in a suspended
state (step 882). The rules associated with the desired isolation scope are retrieved (step 884)
and an identifier for the process and the retrieved rules are stored in a memory element (step
886) and the suspended process is resumed (step 888). Subsequent calls to access native
resources made by the process are intercepted or hooked (step 890) and the rules associated
with the process identifier, if any, are used to virtualize access to the requested resource (step
892).

[0252] Still referring to FIG. 8C, and in more detail, a process is launched in a suspended
state (step 882). In some embodiments, a custom launcher program is used to accomplish this
task. In some of these embodiments, the launcher is specifically designed to launch a process
into a selected isolation scope. In other embodiments, the launcher accepts as input a
specification of the desired isolation scope, for example, by a command line option.

[0253] The rules associated with the desired isolation scope are retrieved (step 884). In

some embodiments, the rules are retrieved from a persistent storage element, such as a hard

Page 62 of 102

WO 2010/129135 PCT/US2010/030515

disk drive or other solid state memory element. The rules may be stored as a relational
database, flat file database, tree-structured database, binary tree structure, or other persistent
data structure. In other embodiments, the rules may be stored in a data structure specifically
configured to store them.

[0254] An identifier for the process, such as a process id (PID), and the retrieved rules are
stored in a memory element (step 886). In some embodiments, a kernel mode driver is
provided that receives operating system messages concerning new process creation. In these
embodiments, the PID and the retrieved rules may be stored in the context of the driver. In
other embodiments, a file system filter driver, or mini-filter, is provided that intercepts native
resource requests. In these embodiments, the PID and the retrieved rules may be stored in the
filter. In other embodiments still, all interception is performed by user-mode hooking and no
PID is stored at all. The rules are loaded by the user-mode hooking apparatus during the
process initialization, and no other component needs to know the rules that apply to the PID
because rule association is performed entirely in-process.

[0255] The suspended process is resumed (step 888) and subsequent calls to access native
resources made by the process are intercepted or hooked (step 890) and the rules associated
with the process identifier, if any, are used to virtualize access to the requested resource (step
892). In some embodiments, a file system filter driver, or mini-filter, or file system driver,
intercepts requests to access native resources and determines if the process identifier
associated with the intercepted request has been associated with a set of rules. If so, the rules
associated with the stored process identifier are used to virtualize the request to access native
resources. If not, the request to access native resources is passed through unmodified. In other
embodiments, a dynamically-linked library is loaded into the newly-created process and the
library loads the isolation rules. In still other embodiments, both kernel mode techniques
(hooking, filter driver, mini-filter) and user-mode techniques are used to intercept calls to
access native resources. For embodiments in which a file system filter driver stores the rules,
the library may load the rules from the file system filter driver.

[0256] Processes that are "children" of processes associated with isolation scopes are
associated with the isolation scopes of their "parent” process. In some embodiments, this is
accomplished by a kernel mode driver notifying the file system filter driver when a child
process is created. In these embodiments, the file system filter driver determines if the
process identifier of the parent process is associated with an isolation scope. If so, file system
filter driver stores an association between the process identifier for the newly-created child

process and the isolation scope of the parent process. In other embodiments, the file system

Page 63 of 102

WO 2010/129135 PCT/US2010/030515

filter driver can be called directly from the system without use of a kernel mode driver. In
other embodiments, in processes that are associated with isolation scopes, operating system
functions that create new processes are hooked or intercepted. When request to create a new
process are received from such a process, the association between the new child process and
the isolation scope of the parent is stored.

[0257] In some embodiments, a scope or sub-scope may be associated with an individual
thread instead of an entire process, allowing isolation to be performed on a per-thread basis.
In some embodiments, per-thread isolation may be used for Services and COM+ servers.
[0258] In some embodiments, isolation environments are used to provide additional
functionality to the application streaming client 552. In one of these embodiments, an
application program is executed within an isolation environment. In another of these
embodiments, a retrieved plurality of application files resides within the isolation
environment. In still another of these embodiments, changes to a registry on the client 810 are
made within the isolation environment.

[0259] In one embodiment, the application streaming client 552 includes an isolation
environment 556. In some embodiments, the application streaming client 552 includes a file
system filter driver 564 intercepting application requests for files. In one of these
embodiments, the file system filter driver 564 intercepts an application request to open an
existing file and determines that the file does not reside in the isolation environment 556. In
another of these embodiments, the file system filter driver 564 redirects the request to the
streaming service 554 responsive to a determination that the file does not reside in the
isolation environment 556. The streaming service 554 may extract the file from the plurality
of application files and store the file in the isolation environment 556. The file system filter
driver 564 may then respond to the request for the file with the stored copy of the file. In
some embodiments, the file system filter driver 564 may redirect the request for the file to a
file server 540, responsive to an indication that the streaming service 554 has not retrieved
the file or the plurality of application files and a determination the file does not reside in the
isolation environment 556.

[0260] In some embodiments, the file system filter driver 564 uses a strict isolation rule
to prevent conflicting or inconsistent data from appearing in the isolation environment 556. In
one of these embodiments, the file system filter driver 564 intercepting a request for a
resource in a user isolation environment may redirect the request to an application isolation
environment. In another of these embodiments, the file system filter driver 564 does not

redirect the request to a system scope.

Page 64 of 102

WO 2010/129135 PCT/US2010/030515

[0261] In one embodiment, the streaming service 554 uses IOCTL commands to
communicate with the filter driver. In another embodiment, communications to the file server
540 are received with the Microsoft SMB streaming protocol.

[0262] In some embodiments, the packaging mechanism 530 stores in a manifest file a
list of file types published as available applications and makes this information available to
application publishing software. In one of these embodiments, the packaging mechanism 530
receives this information from monitoring an installation of an application program into the
isolation environment on the staging machine. In another of these embodiments, a user of the
packaging mechanism 530 provides this information to the packaging mechanism 530. In
other embodiments, application publishing software within the access suite console 520
consults the manifest file to present to a user of the access suite console 520 the possible file
types that can be associated with the requested application being published. The user selects a
file type to associate with a particular published application. The file type is presented to the
client 102 at the time of application enumeration.

[0263] The client 102 may include a client agent 560. The client agent 560 provides
functionality for associating a file type with an application program and selecting a method of
execution of the application program responsive to the association. In one embodiment, the
client agent 560 is a program neighborhood application.

[0264] When an application program is selected for execution, the client 102 makes a
determination as to a method of execution associated with a file type of the application
program. In one embodiment, the client 102 determines that the file type is associated with a
method of execution requiring an application streaming session for retrieval of the application
files and execution within an isolation environment. In this embodiment, the client 102 may
redirect the request to the application streaming client 552 instead of launching a local
version of the application program. In another embodiment, the client agent 560 makes the
determination. In still another embodiment, the client agent 560 redirects the request to the
application streaming client 552.

[0265] In one embodiment, the application streaming client 552 requests access
information associated with the application program from the server 106. In some
embodiments, the application streaming client 552 receives an executable program containing
the access information. In one of these embodiments, the application streaming client 552
receives an executable program capable of displaying on the client 102 application-output
data generated from an execution of the application program on a server. In another of these

embodiments, the application streaming client 552 receives an executable program capable of

Page 65 of 102

WO 2010/129135 PCT/US2010/030515

retrieving the application program across an application streaming session and executing the
application program in an isolation environment on the client 102. In this embodiment, the
application streaming client 552 may execute the received executable program. In still
another of these embodiments, the server 106 selects an executable program to provide to the
client 102 responsive to performing an application resolution as described above.

[0266] Referring now to FIG. 9, a flow diagram depicts one embodiment of steps taken in
a method for executing an application. As described above in FIG. 7, regarding step 214, a
client 102 receives and executes the plurality of application files. In brief overview, the client
102 receives a file including access information for accessing a plurality of application files
and for executing a first client capable of receiving an application stream (step 902). The
client 102 retrieves an identification of the plurality of application files, responsive to the file
(step 904). The client 102 retrieves at least one characteristic required for execution of the
plurality of application files, responsive to the file (step 906). The client 102 determines
whether the client 102 includes the at least one characteristic (step 908). The client 102
executes a second client, the second client requesting execution of the plurality of application
files on a server, responsive to a determination that the client 102 lacks the at least one
characteristic (step 910).

[0267] Referring to FIG. 9, and in greater detail, the client 102 receives a file including
access information for accessing a plurality of application files and for executing a first client
capable of receiving an application stream (step 902). In one embodiment, the client 102
receives access information including an identification of a location of a plurality of
application files comprising an application program. In another embodiment, the client 102
receives the file responsive to requesting execution of the application program. In still
another embodiment, the access information includes an indication that the plurality of
application files reside on a server 106' such as an application server or a file server. In yet
another embodiment, the access information indicates that the client 102 may retrieve the
plurality of application files from the server 106 over an application streaming session.
[0268] The client 102 retrieves an identification of the plurality of application files,
responsive to the file (step 904). In one embodiment, the client 102 identifies a server on
which the plurality of application files reside, responsive to the file including access
information. In another embodiment, the client 102 retrieves from the server 106 a file
identifying the plurality of application files. In some embodiments, the plurality of

application files comprise an application program. In other embodiments, the plurality of

Page 66 of 102

WO 2010/129135 PCT/US2010/030515

application files comprise multiple application programs. In still other embodiments, the
plurality of application files comprise multiple versions of a single application program.
[0269] Referring ahead to FIG. 10, a flow diagram depicts one embodiment of a plurality
of application files residing on a server 106", such as file server 540. In FIG. 10, a plurality of
application files, referred to as a package, includes application files comprising three different
versions of one or more application programs.

[0270] In one embodiment, each subset of application files comprising a version of one or
more application programs and stored within the package is referred to as a target. Target 1,
for example, includes a version of a word processing application program and of a
spreadsheet program, the version compatible with the English language version of the
Microsoft Windows 2000 operating system. Target 2 includes a version of a word processing
application program and of a spreadsheet program, the version compatible with the English
language version of the Microsoft XP operating system. Target 3 a version of a word
processing application program and of a spreadsheet program, the version compatible with
the Japanese language version of the Microsoft Windows 2000 operating system with service
pack 3.

[0271] Returning now to FIG. 9, in some embodiments, the file retrieved from the server
106 hosting the plurality of application files includes a description of the package and the
targets included in the plurality of application files. In other embodiments, the file retrieved
from the server 106 identifies the plurality of application files comprising an application
program requested for execution by the client 102.

[0272] The client 102 retrieves at least one characteristic required for execution of the
plurality of application files, responsive to the file (step 906). In some embodiments, the
client 102 may not execute an application program unless the client includes certain
characteristics. In one of these embodiments, different application programs require clients
10 to include different characteristics from the characteristics required by other application
programs. In another of these embodiments, the client 102 receives an identification of the at
least one characteristic required for execution of the plurality of application files comprising
the application program requested by the client 102.

[0273] The client determines whether the client 102 includes the at least one
characteristic (step 908). In one embodiment, the client 102 evaluates an operating system on
the client 102 to determine whether the client 102 includes the at least one characteristic. In
another embodiment, the client 102 identifies a language used by an operating system on the

client 102 to determine whether the client 102 includes the at least one characteristic. In still

Page 67 of 102

WO 2010/129135 PCT/US2010/030515

another embodiment, the client 102 identifies a revision level of an operating system on the
client 102 to determine whether the client 102 includes the at least one characteristic. In yet
another embodiment, the client 102 identifies an application version of an application
program residing on the client 102 to determine whether the client 102 includes the at least
one characteristic. In some embodiments, the client 102 determines whether the client 102
includes a device driver to determine whether the client 102 includes the at least one
characteristic. In other embodiments, the client 102 determines whether the client 102
includes an operating system to determine whether the client 102 includes the at least one
characteristic. In still other embodiments, the client 102 determines whether the client 102
includes a license to execute the plurality of application files to determine whether the client
102 includes the at least one characteristic.

[0274] The client 102 executes a second client, the second client requesting execution of
the plurality of application files on a server 106, responsive to a determination that the client
102 lacks the at least one characteristic (step 910). In one embodiment, when the client 102
determines that the client 102 lacks the at least one characteristic, the client 102 does not
execute the first client capable of receiving an application stream. In another embodiment, a
policy prohibits the client 102 from receiving the plurality of application files over an
application stream when the client 102 lacks the at least one characteristic. In some
embodiments, the client 102 determines that the client 102 does include the at least one
characteristic. In one of these embodiments, the client 102 executes the first client, the first
client receiving an application stream comprising the plurality of application files from a
server 106 for execution on the client.

[0275] In some embodiments, the client 102 executes the second client requesting
execution of the plurality of application files on a server upon determining that the client 102
lacks the at least one characteristic. In one of these embodiments, the second client transmits
the request to a server 106 hosting the plurality of application files. In another of these
embodiments, the server 106 executes the plurality of application files comprising the
application program and generates application-output data. In still another of these
embodiments, the second client receives application-output data generated by execution of
the plurality of application files on the server. In some embodiments, the second client
receives the application-output data via an Independent Computing Architecture presentation
level protocol or a Remote Desktop Windows presentation level protocol or an X-Windows
presentation level protocol. In yet another of these embodiments, the second client displays

the application-output on the client 102.

Page 68 0of 102

WO 2010/129135 PCT/US2010/030515

[0276] In some embodiments, the second client transmits the request to a server 106 that
does not host the plurality of application files. In one of these embodiments, the server 106
may request the plurality of application files from a second server 106 hosting the plurality of
application files. In another of these embodiments, the server 106 may receive the plurality of
application files from the second server 106 across an application streaming session. In still
another of these embodiments, the server 106 stores the received plurality of application files
in an isolation environment and executes the application program within the isolation
environment. In yet another of these embodiments, the server transmits the generated
application-output data to the second client on the client.

[0277] Referring back to FIG. 5, in one embodiment, the first client, capable of receiving
the application stream, is an application streaming client 552. The application streaming
client 552 receiving the file, retrieving an identification of a plurality of application files and
at least one characteristic required for execution of the plurality of application files,
responsive to the file, and determining whether the client 102 includes the at least one
characteristic. In another embodiment, the second client is a client agent 560. In some
embodiments, the client agent 560 receives the file from the application streaming client 552
responsive to a determination, by the application streaming client 552, that the client 102
lacks the at least one characteristic.

[0278] In some embodiments, an application 566 executing on the client 102 enumerates
files associated with the application 566 using the Win32 FindFirstFile() and FindNextFile()
API calls. In one of these embodiments, a plurality of application files comprise the
application 566. In another of these embodiments, not all files in the plurality of application
files reside on the client 102. In still another of these embodiments, the streaming service 554
retrieved the plurality of application file in an archived files but extracted only a subset of the
plurality of application files. In yet another of these embodiments, the streaming service 554
and the file system filter driver 564 provide functionality for satisfying the enumeration
request, even when the requested file does not reside on the client 102.

[0279] In one embodiment, the functionality is provided by intercepting the enumeration
requests and providing the data as if all files in the plurality of application files reside on the
client 102. In another embodiment, the functionality is provided by intercepting, by the file
system filter driver 564, an enumeration request transmitted as an IOCTL command, such as
IRP_MJ DIRECTORY_CONTROL IOCTL. When the file system filter driver 564
intercepts the call, the file system filter driver 564 redirects the request to the streaming

service 554. In one embodiment, the file system filter driver 564 determines that the

Page 69 of 102

WO 2010/129135 PCT/US2010/030515

requested enumeration resides in an isolation environment on the client 102 prior to
redirecting the request to the streaming service 554. In another embodiment, the streaming
service 554 fulfills the request using a file in the plurality of application files, the file
including an enumeration of a directory structure associated with the plurality of application
files. In still another embodiment, the streaming service 554 provides the response to the
request to the file system filter driver 564 for satisfaction of the enumeration request.

[0280] FIG. 12 shows one¢ embodiment of the server 106 in the farm 38 in which the
server 106 includes a license management subsystem 1510, a group subsystem 1520, a
persistent store system service module 1570, a dynamic store system service module 1580, a
relationship subsystem 1530, a specialized server subsystem 1540, and a common access
point subsystem 524 in communication with an event bus 1570. Those subsystems shown in
FIG. 12 are for purposes of describing the behavior of the license management subsystem
1510. The server 106 can include other types of subsystems.

[0281] The license management subsystem 1510 communicates with the group
subsystem 1520 over an event bus to form and maintain a logical grouping of licenses
(hereafter, "license groups") to facilitate license pools, assignments, and groups. A license
group includes a collection of license strings, described below, and/or other license groups.
License groups collect licenses of similar features and consequently enable pooling of
licenses. A pooled license is a license that is available for use by any server 106 in the farm
38. Each license group holds the collective capabilities of the licenses in the license group
and the other license subgroups (i.c. other license groups within a license group). Information
relating to license pools is, in one embodiment, maintained in the dynamic store 240. In this
embodiment, each license management subsystem 1610 stores locally the total number of
licenses and the number of license assigned to a server 106 in the farm 38. Upon granting a
pooled license, the granting license management subsystem 1510 makes an entry in the
dynamic store 240 indicating that a pooled license is "in use." Every other license
management subsystem 1510 recognizes that such pooled license is unavailable for granting.
In one particular embodiment, the dynamic store 240 store server ID/client ID pairs
associated with each license group to identify pooled licenses that are in use.

[0282] The relationship subsystem 1530 maintains associations between licenses and
servers 106 and between license groups and servers 106. The associations define the number
of licenses for each license and license group that only the associated server 106 may obtain
(i.e., "local licenses"). A local license is a license that is assigned to one server in the farm 38

and is not shared by other servers 38. The license management subsystem 1510

Page 70 of 102

WO 2010/129135 PCT/US2010/030515

communicates with the relationship subsystem 1530 to create, delete, query, and update such
associations. The common access point subsystem 524 provides remote procedure calls
(RPCs) for use by software products residing on the server 106. These RPC interfaces enable
such software products to communicate through the common access subsystem 524 to access
licensing information.

[0283] Still referring to FIG. 15, the specialized server subsystem 1540 communicates
with the license management subsystem 1510 to obtain a feature license for each capability of
the specialized server subsystem 1540 for which a license is required. This occurs at
initialization of specialized server subsystem 1540 and after any license event. If unable to
obtain the feature license, the specialized server subsystem 1540 restricts the functionality
that the subsystem would provide with a license. Also, the specialized server subsystem 1540
uses the license management subsystem 1510 to obtain client connection licenses whenever a
client session is initiated with the server 106.

[0284] The license management subsystem 1510 communicates with the persistent store
system service module 352 to store feature and connection licenses in a license repository
1550 as license strings formed in accordance with a naming convention. The license
repository 1550 resides in the persistent store 230. Cyclical redundancy checks (CRC)
prevent tampering of the licenses while such licenses are stored in the license repository
1550. The license management subsystem 1510 also stores information related to the license
strings in the license repository 1550. For example, the information may indicate which
licenses are assigned to which servers 106 of the farm 38 and, in some embodiments, the
activation status of each license. In one embodiment, a connection license table 1560 stores
identifiers of those clients that have obtained a connection license.

[0285] In one embodiment, the license management subsystem 1510 supports events
from subsystems requesting use of a licensed capability, such as a request for an available
pooled license. The event includes the UID of the subsystem requesting the license and the
UID of the server 106 upon which that subsystem resides. The event also contains the license
type requested (i.e., feature or connection license) in the form of a license group ID. The
actual license group ID stored in the persistent store 230 is arbitrary, but adherence to the
naming convention provides flexibility for the future addition of new software products (i.c.,
subsystems) to the server 106.

[0286] The event sent by a requesting subsystem secking a license includes (1) an
indication of the license group type, the identity of the client and server requesting the

license, and a "force acquire" flag. An indication of license group type may include

Page 71 of 102

WO 2010/129135 PCT/US2010/030515

identification of a feature license, such as a load management, or a connection type license,
such as a software application product. The field identifying the client and server seeking the
license may include the unique identifier associated with the server and the client. The force
acquire flag may be used, for example, to reacquire connection licenses after a license change
event. A license change event indicates that licensing information in the persistent store 230
has changed; for example, a license has been deleted, added, or assigned. Upon a license
change event, each server 106 attempts to reacquire all connection licenses that it possessed
before the license change event because the particular cause of the license change event is
unknown to that server. This flag, if set, indicates that a connection license must be acquired
even if doing so increases the number of connections to the server 106 in excess of the
predetermined maximum number of allowable connections. No new connection licenses are
subsequently granted until the number of connection licenses in use drops below this
predetermined maximum number. In this manner, a client connection will not be terminated
in mid-session due to a license change event.

[0287] Referring now to FIG. 13, a block diagram depicts one embodiment of the
components involved in licensing enforcement. A server 106 includes a server management
subsystem 508 and a license management subsystem 512. In some embodiments, the server
management subsystem 508 and the license management subsystem 512 provide the
functionality of the license management subsystem 1510 described above. In other
embodiments, an application management subsystem 506 and a session management
subsystem 510 provide the functionality of the license management subsystem 1510
described above. In still other embodiments, other subsystems provide the functionality of the
license management subsystem 1510 described above.

[0288] In one embodiment, the server management subsystem 508 may include a
licensing component used to request issuance and revocation of licenses. In another
embodiment, the license management subsystem 512 may apply a policy to a request for
issuance or revocation of a license received from the server management subsystem 508. In
still another embodiment, the license management subsystem 512 may transmit the request to
a server 106 providing license enforcement functionality. In some embodiments, the
management service 504 may maintain a connection with a second server 106 providing
license enforcement functionality. In other embodiments, the server 106 provides the license
enforcement functionality.

[0289] In some embodiments, a license expires and ceases to be valid upon a failure of

the client 102 to transmit a predetermined number of heartbeat messages to the server. In one

Page 72 of 102

WO 2010/129135 PCT/US2010/030515

of these embodiments, expiration of the license revokes authorization for execution of an
application program by the client 102.

[0290] In other embodiments, a session times out upon the expiration of a predetermined
period of time. In one embodiment, the management service 504 maintains session-related
data after the expiration of a license until an expiration of a session. In some embodiments,
the session-related data may include information such as session name, session id, client id,
client name, session start time, server name (UNC Path of File Server), application name
(Unique name generated by client, based on browser name), alias name, session state
(active/licensed, active/unlicensed, reconnected/unlicensed). In another embodiment, the
client 102 ceases transmission of heartbeat messages and restarts transmission of heartbeat
messages at a later point in time. In still another embodiment, the management service 504
may reissue a license and make the maintained session-related data available to the client 102
if the client 102 restarts transmission of heartbeat messages prior to the expiration of the
session.

[0291] Referring now to FIG. 14, a flow diagram depicts one embodiment of the steps
taken to request and maintain a license from a server 106 for the duration of a session on a
client 102. In brief overview, an application streaming client requests a license (step 1702). A
server 106 receives the request for the license, verifies a ticket associated with the request,
and generates a license (step 1704). The server 106 provides the license and information
associated with the license to the client 102 (step 1706). The client 102 executes the
application as described above in connection to step 214 in FIG. 7. The client transmits a
heartbeat message indicating that the client has executed an application (step 1708). The
server 106 receives the heartbeat message and verifies identifying information transmitted
with the heartbeat message (step 1708). The server 106 creates a session associated with the
executed application and with the client 102 (step 1710). A result of creating the session is
transmitted to the client 102 (step 1712). The client transmits heartbeat messages throughout
the execution of the application, as described above in connection with step 216 of FIG. 7.
The client receives a response to a transmitted heartbeat message (step 1714). The client
transmits a heartbeat message indicating a termination of an execution of the application (step
1716). The server 106 receives the heartbeat message and determines whether to remove
session related data and whether to release the license associated with the client 102 and the
terminated application (step 1718). A result of the determination made by the server 106 is

transmitted to the client 102 (step 1720).

Page 73 of 102

WO 2010/129135 PCT/US2010/030515

[0292] Referring now to FIG. 14, and in greater detail, an application streaming client on
a client 102 requests a license (step 1702). In some embodiments, the client 102 requests the
license upon receiving access information associated with an application program. In one of
these embodiments, the client requests a license from the server 106 granting authorization
for execution of the application program by the client 102. In some embodiments, the request
for the license includes a launch ticket received from the server 106 with the access
information. In other embodiments, an application streaming client 552 on the client 102
transmits the request to a web interface 558 and the web interface 558 transmits the request to
the server 106. In still other embodiments, a session management subsystem 510 on the
server receives and processes the request for the license.

[0293] A server 106 receives the request for the license, verifies a ticket associated with
the request, and generates a license (step 1704). In one embodiment, the server 106 verifies
that the client 102 is authorized to execute the application. In another embodiment, the server
106 determines whether the client 102 is already associated with an existing license. In still
another embodiment, the server 106 determines that the client 102 is associated with an
existing license and provides the client 102 with an identifier for a session management
server 562 managing the existing license. In yet another embodiment, the server 106
generates and provides to the client 102 a new license, a session identifier, and an
identification of a session management server 562 managing the new license.

[0294] In some embodiments, the server 106 uses a license management subsystem 1510
to respond to a license request in an embodiment in which. The license management
subsystem 1510 receives a license request. The request can be for a feature license or for a
connection license. The license management subsystem 1510 determines if the license has
already been granted, i.c., the feature has already been started or a connection for a client
already exists. If the license is already granted, the license management subsystem 1510
sends a "grant" event to the license requester. If the license has not been previously granted,
the license management subsystem 1510 determines if a local license, i.¢., a license that has
been permanently assigned to the server 106, is available. In some embodiments, the license
management subsystem 1510 performs this determination by checking local memory. If a
local license is available, i.e., the server 106 has more licenses permanently assigned than
currently granted, the license management subsystem 1510 sends a "grant" event to the
license requestor.

[0295] The server 106 provides the license and information associated with the license to

the client 102 (step 1706). In one embodiment, upon receiving the license, the session

Page 74 of 102

WO 2010/129135 PCT/US2010/030515

identifier, and the identification of the session management server 562 from the server 106,
the client 102 executes the application. The client 102 may execute the application as
described above in connection to step 214 in FIG. 7. The client transmits a heartbeat message
indicating that the client has executed an application (step 1708). In one embodiment, the
client transmits the heartbeat message to the server 106 for transmission of the heartbeat
message to a session management server 562. In another embodiment, the client 102
transmits a heartbeat message directly to a session management server 562, responsive to an
identifier of the session management server 562 received from the server 106.

[0296] The server 106 receives the heartbeat message and verifies identifying information
transmitted with the heartbeat message (step 1708). In one embodiment, a server 106' is the
session management server 562. In another embodiment, the session management server 562
verifies a server identifier provided with the heartbeat message by the client 102. In still
another embodiment, the server identifier is the identifier provided to the client 102 by a
server 106.

[0297] The server 106 creates a session associated with the executed application and with
the client 102 (step 1710). In one embodiment, the session management server 562 creates a
new session associated with the executing application upon receiving the heartbeat message.
In another embodiment, a third server 106 creates the new session. In some embodiments, the
session management server 562 stores session-related information upon the creation of the
new session.

[0298] A result of creating the session is transmitted to the client 102 (step 1712). In
some embodiments, the result confirms the creation of the session. In other embodiments, the
result identifies the application or applications associated with the session. The client
transmits heartbeat messages throughout the execution of the application, as described above
in connection with step 216 of FIG. 7. In one embodiment, the client 102 continues to
transmit heartbeat messages at regular intervals to the session management server 562 at
periodic intervals throughout the execution of the application program. The client receives a
response to a transmitted heartbeat message (step 1714). In one embodiment, the client 102
receives a confirmation of receipt of the heartbeat messages from the session management
server 562. In another embodiment, the client 102 receives a command for execution from the
session management server 562, responsive to the receipt of a heartbeat message by the
session management server 562.

[0299] The client transmits a heartbeat message indicating a termination of an execution

of the application (step 1716). The server 106 receives the heartbeat message and determines

Page 75 of 102

WO 2010/129135 PCT/US2010/030515

whether to remove session related data and whether to release the license associated with the
client 102 and the terminated application (step 1718). A result of the determination made by
the server 106 is transmitted to the client 102 (step 1720).

[0300] Referring now to FIG. 15, a block diagram depicts one embodiment of states that
may be associated with a session monitored by a management service 504. In one
embodiment, a session maintenance subsystem 510 on the management service 504 monitors
a session of a client 102 and assigns a state to the session. In another embodiment, the session
maintenance subsystem 510 maintains a list of license-related data, which may include an
identifier associated with the client, an identifier associated with the session, a session state,
and a timestamp indicating the last time the server 106 received a message from the client
102. In some embodiments, the session maintenance subsystem 510 includes a session
monitoring thread. In one of these embodiments, the session monitoring thread awakens at a
periodic license timeout interval to scan the list of license-related data and update the session
status of a session.

[0301] A first state that a session may be in is an active and licensed state. In one
embodiment, when in this state, the client 102 has maintained a valid license authorizing
execution of an application. In another embodiment, a session management server 562
maintains session-related data. In some embodiments, the session management server 562
stores the session-related data on a second server. In one embodiment, when a client 102
initially executes an application, the session for the client is in the active and licensed state.
[0302] A second state that a session may be in is an active and unlicensed state. In one
embodiment, a session is in this state when the client 102 fails to transmit heartbeat messages
and a license to the client 102 has expired. In another embodiment, if a session is in this state
then, while the license has expired, insufficient time has elapsed for the session to expire, and
the session is considered active. In some embodiments, while a session is in this state, a
server 106 or a session management server 562 may store session-related data on behalf of
the client 102. In other embodiments, if a client 102 transmits a heartbeat message prior to the
expiration of the session, session-related data is transmitted to the client 102 with a new
license and the session returns to the active and licensed state. In one embodiment, a server
106 uses session identifiers and identifiers associated with the client to verify that the session
has not expired and to provide the client with the appropriate session-related data.

[0303] A third state that a session may be in is a disconnected and non-existent state.

When a session expires, session-related data is deleted.

Page 76 of 102

WO 2010/129135 PCT/US2010/030515

[0304] A fourth state that a session may be in is a reconnected and unlicensed state. In
one embodiment, when a session on a client 102 expires, session-related data is deleted. In
another embodiment, when the client 102 transmits a new heartbeat message, a new session
identifier and client identifier are generated for the client 102. In some embodiments, the
client 102 re-authenticates to the server 106, receives a new license, and enters the active and
licensed state.

[0305] Table 3 summarizes the states that may be associated with a session.

Session Status Description
Active\Licensed Normal mode of operation
Active\Unlicensed Duration of missing heartbeats > License
Timeout
AND
Duration of missing heartbeats < Session
Timeout

Reconnected\Unlicensed Duration of missing heartbeats > Session
Timeout

OR CPS/RADE hosting the session is down and

back online

Table 3

[0306] In some embodiments, a packaging mechanism enables creation of a plurality of
application files associated with an application program. In one of these embodiments, the
packaging mechanism enables identification of a plurality of application files. In another of
these embodiments, the packaging mechanism enables grouping of individual application
files into the plurality of application files. In still another of these embodiments, the
packaging mechanism enables hosting of the plurality of application files on a server, such as
a file server or application server.

[0307] In one embodiment, the packaging mechanism executes on a server described as a
"staging machine." In another embodiment, the packaging mechanism executes on a "clean
machine." A clean machine may be a server having only an operating system installed on it,
without additional software, drivers, registry entries, or other files. In still another

embodiment, the packaging machine executes on a server, the server resembling a client on

Page 77 of 102

WO 2010/129135 PCT/US2010/030515

which an application program may execute. In some embodiments, the server on which the
packaging mechanism executes includes an isolation environment providing a clean machine
environment into which an application may be installed, even where the server is not itself a
clean machine.

[0308] In one embodiment, the plurality of application files is referred to as a "package.”
In another embodiment, the package may be an archive file storing the plurality of
application files. In still another embodiment, the package may be an archive file storing the
plurality of application files and a file including metadata associated with at least one file in
the plurality of application files. In some embodiments, a package includes a plurality of
application files comprising an application program. In other embodiments, a package
includes a plurality of application files comprising a suite of application programs. In yet
other embodiments, a package includes a plurality of application files comprising an
application program and a prerequisite required for execution of the application program.
[0309] In one embodiment, the packaging mechanism initiates execution of an
installation program in an isolation environment. In another embodiment, the packaging
mechanism monitors a change to the isolation environment generated by the installation
program. In still another embodiment, the packaging mechanism monitors a creation by the
installation program of a file in the isolation environment. In yet another embodiment, the
packaging mechanism monitors a modification by the installation program of a file in the
isolation environment. In some embodiments, the plurality of application files includes a file
created or modified by the installation program. In other embodiments, the packaging
mechanism implements a file system filter driver 564 to monitor the isolation environment.
[0310] In some embodiments, a packaging mechanism may generate multiple pluralities
of application files, each comprising a different version of an application program configured
for execution in a different target environment. In one of these embodiments, a plurality of
application files is configured to execute on a client having a particular operating system,
revision level, language configurations and master drive (e.g., one plurality of application
files may be configured to execute on a client having the Windows XP Professional operating
system with revision level SP2 and above, using English and having a master Drive C:). In
another of these embodiments, more than one plurality of application files may be combined
in a single archive file. In still another of these embodiments, each plurality of application
files may be referred to as a "target." In yet another of these embodiments, an archive file

containing one or more pluralities of application files may be referred to as a "package."”

Page 78 0of 102

WO 2010/129135 PCT/US2010/030515

[0311] Referring now to FIG. 16, a flow diagram depicts one embodiment of the steps
followed to install an application in an application isolation environment 2512. The
application isolation environment 2512 provides a virtualized view of the server operating
system to the application installer (step 2602). The APIs on the server relating to system
reboots and shutdowns are hooked (step 2604) to prevent the application installer 2506 from
causing a reboot. The application installer 2506 requests file-copying operations to locked
files, the request being intercepted and redirected to non-conflicting locations (step 2606).
When the application installer 2506 attempts to reboot by calling a system API, the request is
intercepted and the reboot is prevented (step 2608). The post-install processor module 2510
performs actions that ordinarily occur after reboot (step 2610) and the application may then
be executed in the application isolation environment 2512 without reboot of a server 106
(step 2612).

[0312] In some embodiments, following installation of the application program into the
application isolation environment 2512, a packaging mechanism identifies a plurality of
application files created or modified during installation of an application program. In one of
these embodiments, the plurality of application files are stored on a server. In another of these
embodiments, a client retrieving the plurality of application files may execute the application
program.

[0313] In some embodiments, the packaging mechanism 530 executes on a server
including an isolation environment 532 and a file system filter driver 534 and installs an
application program into the isolation environment 532. In one of these embodiments, the
server is referred to as a "clean machine” or a "staging machine." In another of these
embodiments, the isolation environment 532 includes an application isolation scope
providing a modifiable, virtualized instance of a native resource provided by an operating
system on the clean machine. In still another of these embodiments, the isolation environment
532 includes a system isolation scope providing a read-only view of the native resource. In
yet another of these embodiments, the read-only view of the native resource comprises a
snapshot of a file system and registry residing on the clean machine.

[0314] In one embodiment, a redirector intercepts a request for a change to the native
resource. In some embodiments, the redirector is a file system filter driver 534. In another
embodiment, an installer program executed by the packaging mechanism 530 makes the
request for the change. In still another embodiment, the change to the native resource is
required to install an application program on to the clean machine. In yet another

embodiment, the redirector redirects the request to the isolation environment 532.

Page 79 of 102

WO 2010/129135 PCT/US2010/030515

[0315] In some embodiments, redirecting requests to change native resources to the
isolation environment 532 results in isolation of changes associated with installation of an
application program. In other embodiments, the requests to change native resources are
recorded and stored in a storage element. In one of these embodiments, all changes associated
with installation of an application program reside in the storage element. In another of these
embodiments, a client 552 retrieving the contents of the storage element and implementing
the changes to native resources residing in an isolation environment 556 on the client 552
result in installation of the application program on the client 552.

[0316] In some embodiments, a pre-launch analysis of the client 102 may be required. In
one of these embodiments, the client 102 verifies that at least one characteristic is included in
the client 102. In another of these embodiments, the at least one characteristic is added to the
client 102 after the pre-launch analysis determines that the client 102 lacks the at least one
characteristic. In still another of these embodiments, the at least one characteristic is included
in a server hosting an application program and failure of the client to include the at least one
characteristic will prevent execution of the application program. In yet another embodiment,
the application program requires existence of the at least one characteristic on the client for
execution.

[0317] In some embodiments, the packaging mechanism enables identification of at least
one characteristic for use in a pre-launch analysis on the client. In other embodiments, the
packaging mechanism enables association of at least one characteristic with an application
program available for execution on the client. In still other embodiments, the packaging
mechanism enables association of an executable script with an application program, the client
executing the executable script to complete the pre-launch analysis. In yet other
embodiments, the at least one characteristic is required to exist on the client after the
execution of the application program.

[0318] The packaging mechanism may provide functionality for signing a plurality of
application files. In one embodiment, signing the plurality of application files enables a client
to verify integrity of the plurality of application files. In another embodiment, signing the
plurality of application files prevents a client from executing a corrupted application
program. In some embodiments, a cryptographic checksum, such as an MD4 hash, an MD5
hash, or a SHA-1 hash, of a file in the plurality of application files is computed.

[0319] In other embodiments, a cryptographic checksum of every file in the plurality of
application files is computed. In one of these embodiments, the cryptographic checksum is

stored in a second file. In another of these embodiments, the second file is associated with the

Page 80 of 102

WO 2010/129135 PCT/US2010/030515

plurality of application files. In some embodiments, the second file is added to the plurality of
application files. In other embodiments, the second file is signed using a certificate, such as
an X.509 certificate. In still other embodiments, a client retrieving the plurality of application
files verifies the signature using a public portion of the certificate. In yet other embodiments,
the client receives the public portion of the certificate and an identification of a certificate
trust list for verification of the signature. In one of these embodiments, client receives a
registry key containing the identification of a certificate trust list.

[0320] In one embodiment, the packaging mechanism provides functionality for
customizing an isolation environment. In another embodiment, the packaging mechanism
provides functionality for generating a file storing a definition of an isolation environment. In
still another embodiment, the packaging mechanism includes the file with the plurality of
application files comprising an application program. In yet another embodiment, a client
receives the file with access information from a server.

[0321] In some embodiments, a plurality of application files are stored in an archive file.
In one of these embodiments, the archive file is in a CAB file format. In another of these
embodiments, the archive file format does not provide support for specification by an
application program of a short file names of a file. In still another of these embodiments, an
operating system, such as WINDOWS 2000 may not provide support for specification by an
application program of a short file names of a file. In other embodiments, an operating
system, such as WINDOWS XP, provides support for specification by an application
program of a short file name of a file. In one of these embodiments, a request to execute the
file must include the correct short file name of the file.

[0322] In one embodiment, a mapping may be generated to associate a long file name of
a file in the plurality of application files with a short name of the file. In another embodiment,
the mapping is stored in a file in the plurality of application files. In still another embodiment,
a file has a short file name only if the long file name of the file is longer than twelve
characters. In some embodiments, the short file name is a virtual file name associated with
the file. In one of these embodiments, the file is transmitted to a client 102 for execution
where it is stored with a long file name. In another of these embodiments, an application file
on the client 102 requests execution of the file using the short file name. In still another of
these embodiments, the mapping enables execution of the file although the request for
execution of the file did not use the name of the file on the client (the long file name).

[0323] In some embodiments, the packager mechanism 530 generates the mapping. In

one of these embodiments, the packager mechanism 530 selects a short file name for a file

Page 81 of 102

WO 2010/129135 PCT/US2010/030515

having a long file name. In another of these embodiments, an operating system on the server
106’ on which the packager mechanism 530 is executing selects a short file name for a file
having a long file name. In still another of these embodiments, a unique short file name is
selected that does not conflict with a second short file name on the server 106'. In yet another
of these embodiments, the installer program executed by the packager mechanism 530
generates a file including a mapping between a long file name with a short file name. In other
embodiments, the mapping is transmitted to a client 102 retrieving the file. In one of these
embodiments, the client 102 refers to the file when executing the file.

[0324] [lustrated in Figure 17 is an embodiment of a system able to launch applications
into existing isolation environments. Clients 102, 102’ executing either a first or second user
session, communicate with a server 106 hosting the first user session 2001 and the second
user session 2002, where the first user session 2001 corresponds to the user session hosted by
the first client 102 and the second user session 2002 corresponds to the user session hosted by
the second client 102°. A runtime object table 2012 on the server 106 tracks each runtime
object on the server 106 and communicates with a first run module 2014 executing in the first
user session 2001 and a second run module 2016 executing in the second user session 2002.
The run modules 2014, 2016 each communicate with an application delivery service 2010
executing on the server 106 and launch modules 2018, 2020, 2022 executing within isolation
environments, within a user session and on the server 106. Executing within the first user
session 2001 is isolation environment A 2004 and isolation environment B 2006. Launch
module A 2018, a first application 2024 and a second application 2026 execute within
isolation environment A 2004 which executes within the first user session 2001 and on the
server 106. Launch module B 2020 and a third application 2028 execute within isolation
environment B 2006 which executes within the first user session 2001 and on the server 106.
Launch module C 2022 and a fourth application 2030 execute within isolation environment C
2008 which executes within the second user session 2002 and on the server 106. Each run
module can communicate with the application delivery service 2010, and each launch module
can communicate with the run module(s).

[0325] Further referring to Figure 17, and in more detail, in one embodiment the system
includes clients 102, 102’ able to communicate with the server 106. The clients 102, 102’
can be any client computing machine described herein. Further, the clients 102, 102’ can in
some embodiments communicate with the server 106 using any of the communication
methods described herein. In one embodiment, the clients 102, 102’ can communicate with

the server 106 over a communication channel and via a network 104. In other embodiments,

Page 82 of 102

WO 2010/129135 PCT/US2010/030515

the clients 102, 102’ can communicate with the server 106 using a presentation layer protocol
such as the Citrix ICA protocol. While two clients 102, 102’ are depicted, any number of
client computing machines may communicate with the server 106. A user of the client 102,
102’ can, in some embodiments, communicate with the server 106 through a user session.
Such embodiments include clients 102, 102’ hosting a communication client able to establish
the user session with a client or module executing on the server 106.

[0326] The server 106 can in many embodiments comprise any of the computing
elements described herein. Further, the server 106 can be any of the servers 106 described
herein. While a single server 106 is depicted, the user sessions 2001, 2002 or any of the
modules executing on the server 106 can be executed on any number of servers 106 within a
farm 38.

[0327] In one embodiment, the server 106 includes a runtime object table 2012 that stores
information about the runtime objects on the server 106. While a runtime object table 2012 is
depicted, alternative embodiments can include a runtime object list, a runtime object group, a
runtime object database, or any other listing or storage method able to record information
about the runtime objects on the server 106. In one embodiment, the runtime object table
2021 stores information about the runtime objects, and in one particular embodiment, the
runtime object table 2021 stores information about the isolation environments 2004, 2006,
2008 or the launch modules 2018, 2020, 2022. When the application delivery service 2010,
the run module 2014, 2016 or any other process or application instantiates or otherwise
causes a launch module or an instance of a launch module to execute within an isolation
environment, that launch module can register in the runtime object table 2012. During
registration, a dynamically generated identifier associated with the launch module is inserted
into the runtime object table 2012. This identifier is representative in part of the location of
the launch module and can be used by other objects, applications or processes executing on
the server 106 to locate and access the launch module. In some embodiments, the run module
2014, 2016 generates an instance of a launch module within a created isolation environment,
and sends requests to the launch module to execute applications. The runtime object table
2012, in some embodiments, can be searched by objects, applications or processes executing
on the server 106. In response to query requests by the objects, applications or processes, the
runtime object table 2012 can return: information about an object, process or application
executing on the server 106; location information about an object, process or application
executing on the server 106; configuration information about an object, process or application

executing on the server 106; or any other runtime information or other information associated

Page 83 of 102

WO 2010/129135 PCT/US2010/030515

with objects, processes or applications executing on the server 106. Thus in many
embodiments, each of the applications, objects or processes on the server 106 can
communicate with the runtime object table 2012 and can receive responses and data from the
runtime object table 2012.

[0328] The runtime object table 2012 can in most embodiments communicate with the
application delivery service 2010 executing on the server 106. While the application delivery
service 2010 is depicted as executing on the same machine as the user sessions 2001, 2002, in
some embodiments the application delivery service 2010 may execute on a second server 106
located remotely from the first server 106, and in communication with the first server 106 via
a network 104 or other communication link. The application delivery service 2010 can
comprise any of the application delivery methods and systems described herein. In some
embodiments, the application delivery service 2010 can be included within the management
service 504, while in other embodiments the application delivery service 2010 can be
included within the application management subsystem 506. In other embodiments, the
application delivery service 2010 can execute on the content server 106, on an application
server 106”, or within the policy engine 406. The application delivery service 2010 can in
some embodiments expose remote procedure call interfaces of isolation environments so that
the isolation environments can return an identifier when the name of the isolation
environment is known. Exposing a remote procedure call interface can be accomplished
during the creation of an isolation environment. In one embodiment, the application delivery
service 2010 can generate isolation environments and assign them an identifier or a process
identifier. Once the isolation environment is generated, the isolation environment can
register with the operating system of the computing machine on which the isolation
environment executes, as a server. Thus, substantially immediately after generating the
isolation environment, a server begins executing within the isolation environment such that
the server can expose a communication interface. The application delivery service 2010 can
in some embodiments store a list, table or other enumeration of isolation environments
executing or active on the server 106. In some embodiments this enumeration can include the
names of the active, inactive or suspended isolation environments, in other embodiments this
enumeration can include the names of the active inactive or suspended isolation environments
as well as an identifier associated with each environment. In still other embodiments, the
enumeration can include the location of each isolation environment, or can include a path

associated with each isolation environment. In some embodiments the application delivery

Page 84 of 102

WO 2010/129135 PCT/US2010/030515

service 2010 can be referred to as the RADE service, while in other embodiments the
application delivery service 2010 can be referred to as a rapid application delivery service.
[0329] In one embodiment, the application delivery service 2010 communicates with run
module 2014, 2016 such that the application delivery service 2010 receives requests for
information regarding an application profile. Once a request is received, the application
delivery service 2010 can query a table, list or database to identify isolation environments
associated with the profile request. Upon identifying the isolation environments, the
application delivery service 2010 can transmit a response to the run module 2014, 2016 that
includes an enumeration of isolation environments associated with the profile. In
embodiments where a single isolation environment is associated with the requested profile,
the application delivery service 2010 can return a response that includes the name of the
isolation environment associated with the requested profile. When the request is made while
the server 106 is not connected to a network or cannot access a network, the application
delivery service 2010 can facilitate the identification of the profile and by proxy the
applications by determining whether the requested profile was previously downloaded. If the
profile exists, then the application delivery service 2010 can make an entry into the server’s
106 registry indicating that the applications associated with the profile are offline or
otherwise unavailable to the run module or user. When no isolation environment exists for a
particular profile, the application delivery service 2010 can facilitate the creation of an
isolation environment by responding to isolation requests by creating an isolation
environment encompassing the requested application.

[0330] Both the runtime object table 2012 and the application delivery service 2010 can
communicate with one or more, or a plurality of run modules 2014, 2016. In one
embodiment, each run module is an instance of a run module that executes within a user
session 2001, 2002. The run module can be referred as a RADE run module, a run client, a
run component, a run object, or a run application. The run modules 2014, 2016, in most
embodiments can communicate with any one of: a launch module 2018, 2020, 2022; an
application 2024, 2026, 2028, 2030; an application delivery service 2010; or a runtime object
table 2012. Each time a user via a client computing machine 102 requests execution of an
application, the run module associated with that user launches and intercepts the request. For
example, a user inputs commands into client 102 which translates to a request for an
application. The request is transmitted to the server 106 where it is intercepted by the run
module executing in that user’s user session. Once a run module 2014, 2016 intercepts the

application execution request, the run module 2014, 2016 queries the application delivery

Page 85 of 102

WO 2010/129135 PCT/US2010/030515

service 2010 to determine whether an isolation environment exists that corresponds to a
profile associated with the requested application. The run module 2014, 2016 then uses the
application delivery service’s 2010 response to determine whether to instruct the application
to launch into a pre-existing isolation environment or to create a new isolation environment
for the requested application.

[0331] In embodiments where the run module 2014, 2016 determines that an existing
isolation environment exists for a particular profile, the run module 2014, 2016 identifies the
isolation environment by obtaining the path or address of the isolation environment and
makes a call to the launch module inside the isolation environment. This call can in some
embodiments include a request to launch or execute an application requested by the user. In
other embodiments, the call can include a request to generate an additional instance of an
application already executing within the isolation environment. Still other embodiments
include a request to launch or execute the application that includes an address or virtual path
of the application such that the launch module can use the address or path to access and
launch or execute the application. In most embodiments, the run module 2014, 2016 can
access only those launch modules 2018, 2020, 2022 within their user session. For example, a
first run module 2014 executes within a first user session 2001, therefore the first run module
2014 can only access the launch modules 2018, 2020 within the first user session 2001. In
other embodiments, the run module can access any launch module on the server 106.

[0332] In embodiments where the run module 2014, 2016 determines that no isolation
environment exists for a particular profile, the run module 2014, 2016 launches a launch
module in a suspended mode and then issues a call to the application delivery service 2010.
This call can include a request to isolate the suspended launch module by creating an
isolation environment for the launch module and for the requested application. In one
embodiment, the resulting isolation environment is associated with the profile further
associated with the requested application. Once the isolation environment is created, the run
module can in some embodiments insert a hook dynamic link library into the launch module
and then permit the launch module to become active such that the launch module or launch
module instance executes on the server 106. The hook dynamic link library can in some
embodiments hook any calls made to the launch module or can intercept any requests made
to the launch module and any responses issued by the launch module.

[0333] Within each isolation environment, instances of a launch module or launch
modules 2018, 2020, 2022 can exist. Each launch module can interact with the applications

executing in an isolation environment and can respond to requests or calls issued or generated

Page 86 0of 102

WO 2010/129135 PCT/US2010/030515

by a run module executing within the same user session within which the launch module(s)
executes. The launch modules 2018, 2020, 2022 can be referred to as launchers, launching
applications, launch clients, launch module instances or by any other label descriptive of the
launch modules 2018, 2020, 2022 functionality. When an isolation environment is created, a
launch module or launch module instance can be created within that isolation environment.
Following creation of the isolation environment, the launch module can register with the
runtime object table 2012 as a runtime object and can register with a dynamic GUID or
identifier that comprises an identifier associated with the isolation environment within which
the launch module executes. In some embodiments, the dynamic identifier used by the
launch module to register with the runtime object table 2012 can include an identifier that
comprises a unique combination of the isolation environment identifier, an identifier
associated with the launch module and an identifier associated with the user session. When a
run module or other object or process requests a launch module to execute an application or
application instance, that run module or object can identify the launch module instance within
the runtime object table 2012, and use the dynamic identifier associated with the launch
module to transmit a request to the launch module instance to launch or execute a particular
application(s). In other embodiments, the launch module includes a communication interface
that can receive application paths, addresses or other application location data, and uses the
location data to execute the application’s executable file. In some embodiments, one
isolation environment may be able to execute an application in another isolation environment
by issuing an execution request to a communication interface on a launch module. The
isolation environments in this embodiments can either be within the same user session or can
be in a first and second user session.

[0334] In addition to exposing a communication interface through which application
execution requests can be serviced, the launch modules 2018, 2020, 2022 can in some
embodiments execute pre-launch and post-exit scripts. These pre-launch and post-exit scripts
may be executed within or outside of an isolation environment. In some embodiments, a pre-
launch script may be any application or set of instructions executing on a communication
machine prior to the launch of an application, while a post-exit script can be any application
or set of instructions executing on a communication machine after an application exits. In
one embodiment, a pre-launch script can be any script used to map to a remote share, or to
install software components unable to be isolated (e.g. PDF soft printer.) Post-exit scripts, in

some embodiments, can be used to cleanup tasks executed by the pre-launch scripts.

Page 87 0of 102

WO 2010/129135 PCT/US2010/030515

[0335] In some embodiments the launch modules 2018, 2020, 2022 may execute a post-
exit once the launch module 2018, 2020, 2022 detects or determines that the number of
processes executing within the isolation environment has dropped to one process. The launch
modules 2018, 2020, 2022 in other embodiments register with an isolation environment
monitoring module that tracks the number of processes running within an isolation
environment. When the isolation environment monitoring module informs the launch module
2018, 2020, 2022 that there is only one process running within the isolation environment, the
launch module responsively executes an post-exit scripts associated with either the isolation
environment, a profile associated with the isolation environment, the launch module or the
run module. The launch module 2018, 2020, 2022, in some embodiments, may wait a
predetermined period of time after detecting that the number of processes has dropped to one
before executing the post-exit script(s). Other embodiments include launch modules 2018,
2020, 2022 that wait a predetermined period of time after executing a post-exit script or after
determining that the number of processes within an isolation environment dropped to one,
before deconstructing, destroying or otherwise causing the isolation environment to die.
Should the launch module(s) 2018, 2020, 2022 receive a request to launch an application
after the execution of post-exit scripts but before the destruction of the isolation environment,
the launch module(s) 2018, 2020, 2022 can execute any pre-launch scripts and launch the
requested application. In this embodiment, the isolation environment remains alive and intact
and does not die or otherwise deconstruct.

[0336] In one embodiment, the launch module(s) 2018, 2020, 2022 can function
substantially similar to a server such that each launch module can expose a communication
interface able to receive application launch requests. Thus, in one example a launch module
can receive a request or command issued by a run module, where the request or command
can in some embodiments be a command to launch an application. Exposing a
communication interface can in some embodiments be facilitated by inter-process
mechanisms executing on the server 106. In one embodiment, the inter-process mechanisms
can be any mechanism that uses remote procedure calls or that creates communication
interfaces that can receive and transmit information via remote procedure calls. The inter-
process mechanisms can in some embodiments be inter-process mechanisms associated with
an operating system executing on the computing machine. Inter-process mechanisms can in
some embodiments create communication interfaces by generating a communication
interface within the launch module such that the launch module can receive remote procedure

calls from other objects executing on the server 106. In one embodiment, the launch module

Page 88 0f 102

WO 2010/129135 PCT/US2010/030515

shares the address of the isolation environment within which the launch module executes
such that objects can communicate with the launch module using the isolation environment
address. For example, if a run module wishes to transmit a command to a launch module to
launch an application at a particular address, the run module can transmit the application’s
address along with a launch command to an address of an isolation environment within which
the launch module executes.

[0337] In one embodiment, the applications 2024, 2026, 2028, 2030 can be any
application described herein or any application able to execute within an isolation
environment.

[0338] The user sessions 2001, 2002 can be any user session described herein. In one
embodiment a user session 2001, 2002 is created when a user of a client 102, 102’ establishes
a connection with a server 106. The user may access a profile associated with that user. The
user session 2001, 2002 can in some embodiments describe the period of time during which a
user connects the server 106. In other embodiments, the user session 2001, 2002 can be
defined by the period of time during which a client computer 102, 102’ accesses a user
profile. User sessions 2001, 2002 can in some embodiments encompass, comprise or include
isolation environments or run modules. In other embodiments, user sessions 2001, 2002 can
include isolation environments and communicate with run modules located outside of the
user session.

[0339] In one embodiment, isolation environments 2004, 2006, 2008 are included within
user sessions. In other embodiments isolation environments 2004, 2006, 2008 can exist
outside of user sessions. The isolation environments 2004, 2006, 2008 can be any of the
isolation environments described herein. In one embodiment launching or launch modules
2018, 2020, 2022 execute within the isolation environments 2004, 2006, 2008; while in other
embodiments applications execute within the isolation environments 2004, 2006, 2008 such
that the applications are isolated. In some embodiments, a simplified label of the isolation
environments 2004, 2006, 2008 can comprise sandbox.

[0340] lustrated in Figure 18 is a detailed view of the system described in Figure 17. A
user session 2001 on a server 106 includes two isolation environments 2004, 2006 and a run
module 2014. Isolation environment A can include an instance of a first application 2024 and
a second application 2026 and a launch module instance 2018. Isolation environment B can
include an instance of a third application 2028 and a launch module instance 2020. In one
embodiment, a runtime object table 2012 and an application delivery service 2010

communicate with the run module 2014.

Page 89 of 102

WO 2010/129135 PCT/US2010/030515

[0341] Further referring to Figure 18, and in more detail, in one embodiment the user
session 2001 can comprise any of the user session components or functionalities described
herein. In another embodiment, the launch modules 2018, 2020 can be any of the launch
modules described herein and can comprise any of the launch module components or
functionalities described herein.

[0342] Executing within the user session 2001 is isolation environment A 2004 that can
encompass or isolate a first application 2024 and a second application 2026. Isolation
environment A 2004 can in some embodiments be associated with a particular profile or a
particular identifier. For example, Figure 18 depicts isolation environment A 2004 associated
with the MICROSOFT OFFICE profile and having the identifier “1234.” While isolation
environment A 2004 is depicted as having the above-mentioned profile and identifier,
isolation environment A 2004 can be associated with any profile or identifier according to the
methods and systems described herein. Similar to isolation environment A 2004, isolation
environment B 2006 can be associated with the ADOBE profile and can have the identifier
“5678.” A profile can include any set of native resources, services, files or other
configuration or environmental settings required for an application, a group of applications or
an application suite. For example, the MICROSOFT OFFICE profile may include the native
resources, files, settings or other configuration or application information specific to a
MICROSOFT OFFICE application. Similarly, the ADOBE profile may include the native
resources, files, settings or other configuration or application information specific to an
ADOBE application. While Figure 18 depicts isolation environments associated with a
MICROSOFT OFFICE or ADOBE profile, isolation environments may be associated with
any number of different profiles.

[0343] In one embodiment, an isolation environment 2004, 2006 can be associated with
an identifier. This identifier can be in any number of embodiments: an ID; a tag; identifying
metadata; an identifying file; or any other identification means by which an application,
system or service can identify the isolation environment 2004, 2006. In some embodiments
the identifier can be numeric while in other embodiments the identifier can be alphabetic or
alpha-numeric. The identifier can also comprise a series of symbols, hieroglyphs, markings,
pictures, numeric combinations or any other identifying mark able to identify an isolation
environment. In one embodiment the identifier is stored in a registry setting associated with
the isolation environment, while in another embodiment the identifier is stored in the runtime
object table 2012 or application delivery service 2010 and associated with a particular

memory address. In some embodiments, the identifier associated with an isolation

Page 90 of 102

WO 2010/129135 PCT/US2010/030515

environment 2004, 2006 can comprise any combination of an identifier associated with the
isolation environment 2004, 2006 and an identifier associated with the user session 2001.
The identifier can comprise, in other embodiments, any combination of the following: an
identifier associated with the server 106; an identifier associated with the user of the client
102; and identifier associated with the applications executing within the isolation
environment; an identifier associated with the run module; or any other identifier able to
uniquely distinguish one isolation environment from another. In other embodiments, the
identifier associated with the isolation environment can be a path indicating the location of
the isolation environment. In still other embodiments, each isolation environment can be
uniquely named using any of the following: a randomly generated name; a name comprising
the isolation environment ID; a name comprising a name of a profile associated with the
isolation environment; a name comprising the location of the isolation environment; a name
comprising an identifier or name associated with the user session within which the isolation
environment executes or is located; or a name comprising identifying information associated
with the server 106.

[0344] The runtime object table 2012 can be any runtime object table 2012 described
herein. In one embodiment the runtime object table 2012 stores identifying information
about the isolation environments on a computer. This identifying information can include an
identifier associated with the isolation environments, the isolation environment location, a
path of where the isolation environment can be found, a profile associated with the isolation
environment, or any other information that can be used to characterize the contents of an
isolation environment or the location of an isolation environment. In some embodiments,
when a launch module 2018, 2020 initially executes within an isolation environment, that
launch module 2018, 2020 can register with the runtime object table 2012 and either insert an
entry into the runtime object table 2012 or cause the runtime object table 2012 to generate an
entry that includes identification information associated with the isolation environment and
that includes information about the profile associated with the isolation environment. The
runtime object table 2012 can store isolation environment information in a repository, a list, a
table, a database or in any other storage mechanism able to be searched and sorted. When
queried, the runtime object table 2012 can return information about a profile, an isolation
environment or about any information stored in the runtime object table 2012.

[0345] In some embodiments, the application delivery service 2010 can be any
application delivery service 2010 described herein. Like the runtime object table 2012, the

application delivery service 2010 can also store information about isolation environments. In

Page 91 of 102

WO 2010/129135 PCT/US2010/030515

one embodiment, the application delivery service 2010 tracks the name of each active
isolation environment. In another embodiment, the application delivery service 2010 or an
isolation environment management module or manager (Not Shown) tracks the name of each
active, suspended, inactive or dead isolation environment. The application delivery service
2010 or the isolation environment management module can track an identifier or location of
cach isolation environment. In still other embodiments, the application delivery service 2010
or the isolation environment management module can track a profile associated with each
isolation environment. For example, the application delivery service 2010 can in one
embodiment contain a table, list or other tracking mechanism that lists the profiles active in
cach user session. Thus, searching for the profiles active in a particular user session can
produce a listing of the profiles and therefore the isolation environments active within a
particular user session. The information returned by the application delivery service 2010
can be any identifier associated with either the profile or the isolation environment and can be
used to determine the location of the isolation environment.

[0346] In one embodiment, the run module 2014 can be any run module 2014 described
herein. The run module 2014 can respond to user requests for applications by querying the
application delivery service 2010 to determine if a profile associated with the requested
application exists or is active within the requesting user’s session. The application delivery
service 2010 returns to the run module 2014 information regarding the name of the isolation
environment encompassing or isolating the profile associated with the requested application.
The run module 2014 can use this information to query the runtime object table 2012 to
determine the location or the path of the isolation environment isolating the profile associated
with the requested application. In one embodiment, the run module 2014 can further
communicate with the launch modules 2018, 2020 to return to the appropriate launch module
2018, 2020 a request to launch the application requested by the user. For example, if the user
were to request to launch MICROSOFT ACCESS, an application that is part of the
MICROSOFT OFFICE profile, the run module 2014 would query the application delivery
service 2010 to determine if a MICROSOFT OFFICE profile exists in the first user session
2001. The application delivery service 2010 would process the request and return to the run
module 2014 information associated with isolation environment A 2004. The run module
2014 would then use the information transmitted by the application delivery service 2010 to
query the runtime object table 2012 for information regarding the location of isolation
environment A 2004, and in some embodiments for information regarding launch module A

2018. The runtime object table 2012 can in some embodiments return the location of

Page 92 of 102

WO 2010/129135 PCT/US2010/030515

isolation environment A 2004, and in some embodiments can return information regarding
launch module A 2018. The run module 2014 can use the information returned by the
runtime object table 2012 to send a request to launch module A 2018 to launch MICROSOFT
ACCESS into isolation environment A 2004.

[0347] The applications executing within the isolation environments 2004, 2006 can
belong to a profile such that the isolation environments 2004, 2006 are associated with that
particular profile. In one embodiment the first application 2024 is MICROSOFT EXCEL,
while the second application 2026 is MICROSOFT WORD. This embodiment is merely
illustrative of how two MICROSOFT OFFICE applications can be isolated within an
isolation environment 2004 associated with a MICROSOFT OFFICE profile. Similarly, a
third application 2028 can be ADOBE READER which illustrates how an ADOBE
application can be isolated within an isolation environment 2006 associated with an ADOBE
profile.

[0348] lustrated in Figure 19 is one embodiment of a method 2104 for launching
applications into existing isolation environments. In one embodiment, a run module or other
module or component intercepts a request to launch an application (Step 2106). The run
module identifies a profile associated with the requested application (Step 2108) and
determines whether an application delivery service has profile information associated with
the identified profile (Step 2110). If it is determined that the application delivery service has
profile information associated with the identified profile (Step 2110) then the application
delivery service returns information associated with the isolation environment further
associated with the profile (Step 2112). Once the run module receives the isolation
environment information, the run module queries the runtime object table to determine the
address of the identified isolation environment (Step 2114). If the runtime object table has
address information associated with the identified isolation environment, then the runtime
object table returns the address information to the run module which uses the address
information to instruct a launch module to launch the application into the identified isolation
environment (Step 2116). When it is determined that the application delivery service does
not have profile information for the determined profile (Step 2110), the run module may then
implement the method 2140 described in Figure 20 (Step 2118). Similarly, when it is
determined that the runtime object table does not contain an address for the isolation
environment (Step 2114), the run module may then implement the method 2140 described in

Figure 20 (Step 2118).

Page 93 of 102

WO 2010/129135 PCT/US2010/030515

[0349] Referring to Figure 19 and in more detail, in one embodiment the method 2104 is
carried out by a run module 2014, 2016 executing on a computing machine. In another
embodiment, the method 2104 is carried out by an isolation environment manager executing
on a computing machine. The run module 2014, 2016 can in one embodiment carry out the
method 2104 within a user session and in another embodiment can carry out the method 2104
outside of the user session. In some embodiments, the run module 2014, 2016 and the user
session may execute on a first computing machine, while in other embodiments the run
module 2014, 2016 may execute on a second computing machine remotely located from the
first computing machine on which the user session executes.

[0350] The run module, in some embodiments, intercepts requests generated by a client
102 to launch a first application (Step 2106). In one embodiment, the run module can
intercept any number of client 102 generated requests to launch any number of different or
substantially similar applications. Thus, in one embodiment the run module can intercept a
request to launch or execute a first application and can intercept a second request to launch or
execute a second application; while in another embodiment, the run module can intercept a
first request to launch or execute a first application and a second request to launch or execute
the first application. In an embodiment where more than one request to execute the same
application is intercepted, the run module can either instantiate multiple instances of the
application or can ignore subsequent requests to execute the same application. In some
embodiments another client or module executing within the user session can intercept client
generated requests to launch applications and further forward these intercepted requests to the
run module. The client generated requests can, in most embodiments, be generated by the
client 102 responsive to input from a user of the client. This input can indicate a command to
execute a selected application.

[0351] Once the run module intercepts and/or receives the request to execute an
application, the run module can use information about the application to identify a profile
associated with the application (Step 2108). In one embodiment, the run module can use the
application name to lookup in a table the name or identifier of a profile associated with the
requested application. In another embodiment, the client request can include metadata
identifying a profile associated with the requested application. Still other embodiments can
include identifying a profile having the same name as the application, while in another
embodiment identifying the profile can include querying an application delivery service 2010
to determine the name of a profile associated with the requested application. In some

embodiments, the run module may forward the application executing request to another client

Page 94 of 102

WO 2010/129135 PCT/US2010/030515

or module or to the application delivery service 2010 and request that the module, client or
service return to the run module the name of a profile associated with the requested
application.

[0352] The run module can, in most embodiments, use the name of the profile associated
with the requested application to query the application delivery service for profile
information. In one embodiment the run module can request an enumeration of all the active
profiles within a particular user session, while in another embodiment the run module can
request an enumeration of all the active profiles within a particular user session and
compatible with the requested application. The run module can in some embodiments
request the application delivery service to return the name of an isolation environment within
the user session and associated with the identified profile. In such an embodiment, the
application delivery service can query an internal list, table or database using the identified
profile and user session information contained in the run module’s request, and can in some
embodiments return to the run module a name of a profile associated with the requested
application.

[0353] The application delivery service can receive a query from the run module to
determine whether an active profile associated with the requested application exists within
the user session (Step 2110). In one embodiment, the application delivery service makes a
determination as to whether a profile or profile information exists by further querying an
internal list of active profiles as described above. Other embodiments include an application
delivery service that determines whether an active profile exists within the user session by
enumerating a list of each active profile within the user session, and searching through the
enumeration to identify a profile matching the description of the profile included in the run
module’s request or query. When it is determined that an active profile exists in the user
session or that the application delivery service has information pertaining to a profile
associated with the requested application, the application delivery service can return isolation
environment information (Step 2112). However, when it is determined that an active profile
does not exist or that the application delivery service does not have information pertaining to
a profile associated with the requested application, the application delivery service can then
call up method 2140 described in Figure 20 (Step 2118).

[0354] When it is determined that the profile exists, the application delivery service can
in some embodiments return to the run module isolation environment information (Step
2112). In one embodiment, the isolation environment information returned to the run module

relates to an active profile associated with the requested application such that the isolation

Page 95 of 102

WO 2010/129135 PCT/US2010/030515

environment isolates applications belonging to that active profile. Thus, the isolation
environment information relates to an isolation environment that isolates applications
substantially similar to the requested application. The application delivery service can in
some embodiments return the name of the isolation environment, while in other embodiments
the application delivery service can return an address or path associated with the isolation
environment. In other embodiments, the application delivery service can return the name of
the profile or the location of the profile rather than return the name or address of the isolation
environment. In still other embodiments, the application delivery service can return
information about launch modules within the isolation environment.

[0355] Once the run module receives the information regarding the isolation
environment, the run module can then query the runtime object table to determine whether
the runtime object table has an address associated with the identified isolation environment
(Step 2114). In one embodiment, the method 2104 may not include this step as the
application delivery service may provide the run module with information regarding the
location of the isolation environment. In embodiments where the run module seeks
information from the runtime object table, the run module may construct a query including
the name of the isolation environment identified by the application delivery service and may
issue this query to the runtime object table. In response, the runtime object table may locate
an address or path associated with the isolation environment and forward this information to
the run module. In other embodiments, the runtime object table may respond to a query for
isolation environment location information with information regarding an executable or
function within a launch module executing within the isolation environment. The run module
may then use this path information to pass an argument to the executable or function
indicating the path of the requested application. The launch module may then use the
application path information to launch the requested application within the isolation
environment.

[0356] Once the run module receives the address or path information for either the
isolation environment or for a launch module within the isolation environment, the run
module then issues a command to the launch module to launch the requested application in
the isolation environment (Step 2116). In response the launch module identifies an
executable associated with the requested application and executes the application within the
isolation environment.

[0357] When ecither the profile information cannot be found within the application

delivery service, or the isolation environment location information cannot be found within the

Page 96 of 102

WO 2010/129135 PCT/US2010/030515

runtime object table, the run module may then call the method 2140 illustrated in Figure 20.
This method 2140 describes a process for creating an isolation environment and can be used
by the run module to create an isolation environment with it appears that no isolation
environment exists for a particular profile. In other embodiments, the run module may either
return an error message or otherwise stop executing whether it is determined that either the
runtime object table does not include location information associated with the profile or the
application delivery service cannot identify a profile associated with the requested
application.

[0358] [lustrated in Figure 20 is an embodiment of a method 2140 for generating an
isolation environment. In response to a determination that an isolation environment should
be created for a particular profile or application, a run module launches a launch module
associated with the particular profile or application in a suspended mode (Step 2142). The
run module can then request an application delivery service to isolate the launch module
(Step 2144) and once the launch module is isolated, the run module can pass the application
information to the launch module (Step 2146). Once the launch module is isolated and has
the application information, the run module can permit the launch module to resume
execution (Step 2148).

[0359] Further referring to Figure 20, and in more detail, in one embodiment the run
module launches the launch module in a suspended mode (Step 2142). In some
embodiments, the run module can launch and instance of a launch module in a suspended
mode. The launch module instance can in some embodiments have characteristics or
attributes associated with a particular profile or application. Launching the launch module in
a suspended mode can comprise creating an instance of a launch module and directing the
launch module instance to execute a timer mechanism that prevents all processes from
executing until a particular command is received or state is achieved. In other embodiments,
launching a launch module instance in a suspended mode could comprise designing a launch
module instance but failing to execute the launch module instance.

[0360] The run module can then request that an application delivery service isolate the
launch module (Step 2144). Isolating a launch module can comprise generating one or more
isolation scopes having a set of native resources directed towards a particular profile. For
instance, a particular profile may require a particular set of dynamic link library (dll) files. In
such a situation, isolating the launch module may include generating an isolation scope that
comprises a set of native resources including the required set of dll files. In other

embodiments, isolating the launch module may include generating an application and user

Page 97 of 102

WO 2010/129135 PCT/US2010/030515

isolation layer having attributes specific to a particular user and a particular profile or
application. Generating the application and user isolation layer can further include
generating a user isolation scope and an application isolation scope having native resources
that are specifically used by the particular user and the particular profile or application. In
still other embodiments, isolating the launch module can include creating an isolation
environment within which the launch module can execute.

[0361] Once the launch module is isolated by the application delivery service, the run
module can then pass application information to the launch module (Step 2146). In one
embodiment, passing application information to the launch module can comprise passing one
of either an application executable file path, an application executable file network address,
application executable file stub, application executable file or other application information
able to be used by the launch module to launch the application. In still other embodiments,
the run module may pass the launch module a memory address storing the path or location of
an application. In still other embodiments, the run module may pass the launch module an
argument having a path, location or address of the application.

[0362] In one embodiment, the run module permits the launch module to resume
execution once the run module has passed the application information to the launch module
(Step 2148). Permitting the launch module to resume execution can comprise sending a
command to the launch module to execute. In other embodiments, permitting the launch
module to resume execution can comprise sending a command to the launch module to cease
executing delay modules within the launch module and resume ordinary execution of the
launch module functions.

[0363] The methods and systems described herein may be provided as one or more
computer-readable programs embodied on or in one or more articles of manufacture. The
article of manufacture may be a floppy disk, a hard disk, a compact disc, a digital versatile
disc, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the
computer-readable programs may be implemented in any programming language. Some
examples of languages that can be used include C, C++, C#, or JAVA. The software
programs may be stored on or in one or more articles of manufacture as object code.

[0364] While the present disclosure has described multiple embodiments of systems and
methods for launching an application into an existing isolation environment, it should be
understood by those skilled in the art that various changes in form and detail may be made
therein without departing from the spirit and scope of the invention as defined by the

following claims.

Page 98 0of 102

WO 2010/129135 PCT/US2010/030515

CLAIMS

What 1s claimed is:

1. A method for launching applications into existing isolation environments, the method
comprising:

receiving, by a run module executing on a computing machine, a request to execute an
application on the computing machine, the request generated by a user of a client;

identifying, by the run module, a profile associated with the application;

querying, by the run module, an application delivery service executing on the
computing machine to identify at least one isolation environment corresponding to the
profile;

receiving, by the run module from the application delivery service, a response
identifying a first isolation environment associated with the application; and

issuing, by the run module, a command to a launch module executing on the

computing machine to launch the application into the first isolation environment.

2. The method of claim 1, wherein receiving the response from the application delivery
service identifying the first isolation environment further comprises receiving an identifier

associated with the first isolation environment.

3. The method of claim 2, wherein receiving an identifier further comprises receiving a name

of the first isolation environment.

4. The method of claim 2, further comprising querying, by the run module responsive to
receiving the first isolation environment identifier, a runtime object table for an address of the
first isolation environment, wherein the run module queries the runtime object table using the

first isolation environment identifier.

5. The method of claim 1, further comprising:
exposing, by the first isolation environment, a communication interface for
communicating with components executing on the computing machine, the communication

interface generated by an inter-process mechanism.

Page 99 of 102

WO 2010/129135 PCT/US2010/030515

6. The method of claim 5, wherein launching further comprises transmitting a location of the

application to the communication interface.

7. The method of claim 1, wherein identifying a first isolation environment further comprises

identifying an address associated with the first isolation environment.

8. The method of claim 7, wherein identifying an address further comprises identifying a
first isolation environment address comprising a profile version associated with the first

isolation environment.

9. The method of claim 7, wherein identifying an address further comprises identifying a
first isolation environment address comprising a user session identifier associated with the

first isolation environment.

10. The method of claim 1, further comprising:

failing to identify an isolation environment corresponding to the profile;

launching, by the run module responsive to failing to identify an isolation
environment, a lunch module in a suspended mode;

issuing, by the run module, a command to the application delivery service to isolate
the launch module;

sending, by the run module, application information to the launch module; and

issuing, by the run module, a command to the launch module to resume execution.

11. A system for launching applications into existing isolation environments, the system
comprising:
a computing machine communicating with a client generating a request to execute an
application on the computing machine, the application associated with a profile;
an application delivery service executing on the computing machine;
a launch module executing on the computing machine; and
a run module executing on the computing machine, the run module:
receiving the client request,
querying the application delivery service to identify at least one isolation

environment corresponding to the profile,

Page 100 of 102

WO 2010/129135 PCT/US2010/030515

receiving, from the application delivery service, a response identifying a first
isolation environment associated with the application, and
issuing a command to the launch module to launch the application into the

first isolation environment.

12. The system of claim 11, wherein the application delivery service transmits an identifier

associated with the first isolation environment to the run module.

13. The system of claim 12, wherein the identifier comprises a name of the first isolation

environment.

14. The system of claim 12, further comprising a runtime object table responding to a query
generated by the run module and comprising the first isolation environment identifier, with an

address of the first isolation environment.
15. The system of claim 11, wherein the first isolation environment further comprises a
communication interface for communicating with components executing on the computing

machine, the communication interface generated by an inter-process mechanism.

16. The system of claim 15, wherein the run module transmits a location of the application to

the communication interface.

17. The system of claim 11, wherein the application delivery service identifies an address

associated with the first isolation environment.

18. The system of claim 17, wherein the first isolation environment address further

comprises a profile version number.

19. The system of claim 17, wherein the first isolation environment address further

comprises a user session identifier.

Page 101 of 102

PCT/US2010/030515

WO 2010/129135

1/29

3
-

o

Vi Ol

YL A8

ey
ARy

%%

D70 WA

\«.ﬁ.@\\\\ I
EA

%,

.y A3,

S VI e |

WO 2010/129135

PCT/US2010/030515

2/29

o

| Softwars

Clisnd
Agent

e
] {:/}"E
Lot

Peplay 1 e

.

s

Device(s) instaliation
: : Esvine

8

124811 I
ERER

Metwork

3
b

ERES

WO 2010/129135 PCT/US2010/030515
3/29

Main |
Famory |

Rlarmiory |
Port

3
3

.:§ ; E:\.

3,

£, 3
i

i
A
Lk

’E

s
%

o §
o,
//j

M
%

Davice |~ 108

FIG. 1C

PCT/US2010/030515

WO 2010/129135

4/29

dalL 9ld

i e i T T

v

ssmoIq v |

“““““““““““

[L7 WASARGNS
pooyIoqyBiou

wimafosd

nn.@o M

WO 2010/129135

5/29

PCT/US2010/030515

160

- Web
F Browser
Y

W

A
\/ 150

FIG. 1E

Chent 13 1 L T A

IR

Publishing

165

Web Server 106’

Server Plug-in {*

Application
Rerver 106"

B
-

i

Persistant
Mass
Storgge

Pt

PCT/US2010/030515

WO 2010/129135

6/29

{BOE) PouAEw
UBBNAE% 1D YIDeRS

jern g diby <7

¢ Ol

- AR .
g - %
g 4 ﬁ@_wm«én_uwﬂm mm@u&@
o N 3

ar
-

s

e

orray; —
: S 3 %

3 ...t.t......:..lu.rrl.liqlnlua!au.l\\\...\ R TR £EE RS AT, B AED A A RS KL, Nl Al M il
: ¥ 3 =

LRGP, SEROOY

e mamies
uonERz ddy

i it RIS @ﬁ» WME e o, e .\\».\mm.
- | uonswnu ddy

e | -

{2007} UORBIBLTY
Ay 103 Wanbey

\\\Mm

a

£

wngnaaxy ddy

e 2 5 | 5
A wimioafurdaydmpor s A B SN ¢ W | S

dCiBIBwng g dey yagh
. vemImuauT ddy

.

s

i

e garns.

BT PDSG BT ; &&wm AER

chdly s} 13anbay

Viganbey

{zoE) vonessmIngg

;ouwm{

ddy oy jsanbay »‘

greeeresnrin

LanlE GRns

T A

_]\\\“\\\\-.4.\\\-.«

“‘)‘
o)

AaEp] Aty

PCT/US2010/030515

WO 2010/129135

7/29

Ve Ol

NEINELS

901

88

abed

98

¥8

NEINELS

901

abed

T

| _
_
| MOPUIA suoneol|ddy _
|| PoouloqubieN 45|
_ welboid _
I| 8S _
| |
_ obed TINLH |
\ o __ |
Jasmoug

asM 08
c0l usIio

Josmoug gapn

08

c0l usIio

PCT/US2010/030515

WO 2010/129135

8/29

[ss¢ dag]
313 WEUEA]

¥

fzee dag]
ﬁw gﬁﬁ

fnge mﬁﬁ

ALs 4vS SUIIaCY

a@mmwum_mmﬁ .m&m\.ﬁ

““““““““““““ &

fo9t daig many

uonEspddy Govney

faye %ﬁ BALRg

......... ¥

[spg deg)
%35& onBY

N

901 PARS PP

G, Wog

X s&ﬁ%&.ﬁ aarbyy

2

| VS e

foge duig)

{ste aﬁmm
mﬁm Basa3eY

ls7¢ 4015}

o ..Hmwm nﬂww
Eaz Erﬁm bmsmu

______________ T

ANy 3a1adTy

foze dong) doug

MG YSHA]

CO T SUIYPRBIA JURI[)

00 AJOIOSH]

[S1E dmg)
wanbry Bungiang
SBEAFIE WHLng

01£ doig)
Anug NEM wog

.................. $

[eo% daig]
%%qm msﬁ lang

oot dng gmumg&&

- nonssyddy anmay

PCT/US2010/030515

WO 2010/129135

9/29

901 [1ensg uoneorddy

aseqele(
Korjod

<=

90t

901

uonewlojuy)

wer)
Ty

ouIsuy Ad1j04

8¢

wiej

1sonbay

\l;

Olv

Uy
uonsd[0)

01

WO 2010/129135

10/29

PCT/US2010/030515

Poliey Engine 4{}6

f irst Cnmgm&m 424

T

- Logon
- Agent
424

im‘mmﬁ

i}i} 422

e L CRYRRERRRVERAINEVRRRS q%

Pala
Set 426

%umﬁﬁ Companent
430

 Policy
DI_% 432

Reopbve (n@mrwd lnmmgmn
abowt Local Mook

ne

Generale Efis»ata Sad Based
e Ra&&m@ mf;;rf"

wahion

Eif_s.wmcm f’n ailable o Lol
Machine

PCT/US2010/030515

WO 2010/129135

11/29

w901
(494

oseqele(q

>

QUIYOBJA 9J0WY

901
8T

oseqele(

A

QUIYORIA 9JOWY

uonednddy

0z JOAIDS UOISSIS

(447
ada

P2101S

601

oseqeleJ
uonIpuo)

ouIsSuy Ad1j0d

90t

dv 9ld

A

1sanbay ITe)
—>
81y 01
A
y
UOIJRWIOJU JUdTY
Jus1L) uond9o)
iy vov
1sonbayy
—> ULt
0l¥ 01

WO 2010/129135 PCT/US2010/030515
12/29

[Policy Engine 406 Transmits Access Control Decision to Session]

Server 420
L~

480

(Session Server 420 Generates Enumeration of Associated Application)

482

(Session Server 420 Connects Client 102 to Associated Application)

484

FIG. 4E

WO 2010/129135

13/29

PCT/US2010/030515

MTEOK 518

3

. N
Aocass Hudie Sooaedy
forde] §

N

N
&

W bty 258

Fastaassssstesssst s

k! >

LR
LR

{ ubaysiam

a3

Server 106"

| Paskeging Reckanis e S

Inolation
Envirorymant $32

J g,

Server 106"~
Seanion
Ransgerent
Bereunr $62

" A

|
l
L

O O

e

CRend Agead B

U dpaseaten Rrssming
i Chent 652

A AR AR AR R,

birpaming Service
554

Hbae Briver 884 |

Emnvironmean

Isolation
: Bs&

.“—.~.\—.—1.—<.—.—.—.—. ——————— e S,
{ "z
{ Server 106' i
Pl sepewt bl §
§ B

Sppdeasty Shaam

WO 2010/129135 PCT/US2010/030515
14/29

e
XML &
AL i
femdiee 8
i

Application Eromeration, Application
Resolution, Heartbea: Messages

i N
e e TN
- 8 T
e e, . SO,
N o

s
5 e

| Maragement Presentaticon
| Architerture Server
| Services

o

Angiicaiion

o rrs s s s

,

o i

SE:
T A e

PCT/US2010/030515

WO 2010/129135

15/29

BEUSN sanhoy ¢

.<
o

o rE
F E

. o1 7) sabesanyy

L Old

{ul 2y sabessap

v

... 045} Sa0Rasay

I

i

R

Py

iEdgyean

E i
FEE TN Y TV 0. NN 08 OO WP LS REE R ESOTE

WP5E

y §

HrEE Y

o
o

{75 w_ m,.w

LRI R R IR T YRS NI T AT SRE FUR PO PP FrRRETTLY..

I Eageal;

................

AZLE) mmcmu_

rosnaoon
N

BOAIG WK

»

R I IRTEN

REYWEIN

SRR R T T

yur)

WO 2010/129135 PCT/US2010/030515
16/29

S2d0i<

$2204+

FIG. 8A

PCT/US2010/030515
17/29

WO 2010/129135

; | 7715
sl § sl | sty w1

wrrpapres,

A

&m&\“ AL

B |5 v o e vy <o e s .

UL LG L TE2 L L 8 HEL T

.-

ana b @.\\

HLZT

i i& 2828

it

WO 2010/129135 PCT/US2010/030515
18/29

i_&umb DRGEsE i
a8 ammm stale

____________ v R84

| Aweplynle tovitualies |
| asoess o requested tes0urCe

FIG. 8C

WO 2010/129135 PCT/US2010/030515
19/29

Receiving, by a Client, a File Including Access Information for
Accessing a Plurality of Application Files and for Executing a First
Client Capable of Receiving an Application Stream

! L/‘ 902

[Retrieving an Identification of the Plurality of Application Files, j

Responsive to the File
A 4

Retrieving at Least One Characteristic Required for Execution of the
Plurality of Application Files, Responsive to the File

[Determmmg Whether the Client Includes at Least One Characterlstlc]

Executing a Second Client, the Second Client Requesting Execution of
the Plurality of Application Files on a Remote Machine Responsive to
a Determination that the Local Machine Lacks the At Least One

Characterisic

910

906

FIG. 9

WO 2010/129135 PCT/US2010/030515

20/29
File :
Server | Package | Deploymentrules
i ASCH rules
Office Suite? Program names Word Excel
Files Target 1 Target 2 Target 3
Registry data
?‘Sfem@e W2K, EN WXP, EN | W2K3, IN|
ack, {
Language
Word Word Word
Excel Excel Excel

FIG. 10

Receiving, from a Server, (i) a Directory Structure Representing an
Application Program Stored by the Remote Machine and (i1) Metadata
Associated with Each File Comprising the Stored Application Program

L/\ 1102
y
(Storing the Directory Structure and the Metadata)
v 1104

Receiving At Least One Request to Access Metadata Associated with a
Specific Filed in the Directory Structure

~

1106

y

[Responding to the at Least One Request Using the Stored Metadata

1108

FIG. 11

PCT/US2010/030515
21/29

WO 2010/129135

| | pac
welBosy | | 3 fast

Gps i

S| ¥73 aEAg
fr AR

gysl |
wiedy 5151

| g ger || At3E
i s s b I

o

Y e A
U 3N}

TEHEIEIDY ey
\\N\\!W& R

Grcl
daonsodany |
asuanyy |

MEISEN 901 JoAIOS

PCT/US2010/030515

WO 2010/129135

22/29

DEELIREY IR

AUNRYIBL
FHPABE
IBAIDY

2EUINY

¢l 9Old

HONIHUO)
FEOMIIN

POy
] “ditagy
““““““ shssllliii W W

KhEynYg
BAIBE
Buprng

TG ERE AT
WYY 250

i

By AR g

MR AL

WO 2010/129135 PCT/US2010/030515
23/29

w2
(¢}
=
<
a
=
—
j)
(o)

, o Bession Management :
Wely Jerver Bubmysten 510 “Ey*‘i?aiﬂ"ﬁ Store 240!

b A

| i i
AL 3 i

Galisense
{1303

Geﬂ rengs {1FEE

W —ay

k9 ; s . . | .
e Warihs Ticksi #Gel Licease (3704)

qg"?x.\lﬁﬁ ghiﬂ Q_T § \;

H:} Laich R&ARE applwﬁuw §234)

(PR S
Blan8pE (1708 ‘
ShartApp (1708) { 1
. o = I S o |
; o e & Verdly guid (1788
i 1 Cremte Bession (1710}
Resuli (71 | Fissult {$712) | Resul {1712)
B o s s s R s s s s s S et] Bt e s o e e)

Heatheal {(3¥)

Heatbast {2185)

Heartbuat &‘(espamaﬂ"m N Heatheat Rﬁpﬁ"%ﬂ W

Closadog (1718}

I g
- Helpase Licanss if necessary (1718}
e
Remawe el 13 :‘flmtm““ﬂ]
S k 1 E
W L L_$
i T P ‘

FIG. 14

WO 2010/129135 PCT/US2010/030515
24/29

rerersersss.

‘v&\ap S

First RARE

4

il eceer

*

. 3
& RERARS Y *wm*mg\ kg B Yoanse %’L

P

",
F
¥
é
v

RADE Session . |
Smt an ; B ﬁ atﬂ Arkveiinlinnosas |
collector |

WO 2010/129135

25/29

PCT/US2010/030515

| Start AlE providing mmaltg&d |

ew @f ﬁpemt ng systm‘t

~ 2602

A

E‘,aé\

Hook APIs relating o system | 2604
reboot
,,,,,,,,,,,,,,

Execute application installer |
redwe&tmg F i&s

2606

,,

Qaﬁ hooked version of AP
when installer attempls
{o rebootino reboot

2608

..nm-h

- Post-install ;}mc:&ssm module

g}erfmms at:tmm ihai

2610

o

,,,

 Application runs in AIE

koo

FIG. 16

-

2612

PCT/US2010/030515

WO 2010/129135

26/29

L1 "DIA

7 UOISSog [UOISSAS
I9s) — I 01 I9s) — 1)
— 01 \/\
\ 2
0 A
901 JOAIOS
cloz 9[qe], 192[qQ swnuny
9107 '
- " |H|||w|_ e |<|||%N|V||||J
_ Sl _ _
[S[NPON Uy

_ _ | > 7 S[NPOJAN uny . _
_ % _ 90IAIOG _ % - |
| v | b.oﬁmﬁoa I Toooz e 00T _
_ _ Vv _ y L _

_ _ _
_ Nmow SINPOJAl Youne] | 010T | € 9|NPOJN youne| V 9[nPOJA youne| _
| _ | | lozoz 8102 1.

dd _ _ |

_ 8002 Y NG _ 820t ~\ | € 94V | zaay | | raav T T
_ _ _ 9goT _
_ D) JUSWUOIIAUY UONR[OST _ _ g JUSWUOIIAUH UOIIR[OS] V JUSWUOIIAUY UONB[OST _
_ _ _ _
| z00z cuowsses | _ 1002 [UOISSaS _
L e — — = |_ , ooz~~~]

v

Run Module 1

WO 2010/129135 PCT/US2010/030515
27/29
_______________________________ 1
: Session 1 2001 :
| |
| |Isolation Environment A 2004 Isolation Environment B 2006 |
| | Profile: MS Office Profile: Adobe |
| 1D: 1234 ID: 5678 |
| |
| 2024 2026 5008 |
MS Excel MS Word
| Adobe Reader |
| |
| I
I 2018 2020 |
| Launch Module A Launch Module B |
| |
| * A |
| |
| |
| I
| |

Session 1

Runtime Object Table

- Profile: MS Office
- Location: ##H###-1234
- Profile: Adobe
- Location: ##H#-5678

2012

App. Delivery Service

Session 1

- Active Profiles:
- MS Office
- Adobe

2010

FIG. 18

WO 2010/129135 PCT/US2010/030515
28/29

2104

(Intercept a Request to Launch an Application)

2106

A
(Identify a Profile Associated with the Application)

~

2108

Does App. Delivery Service
Have Profile Information
for Identified Profile?

No

2110
Goto
Method (Return Isolation Environment Information)
2140

A

)18 2112

Does Runtime Object Table
Have Address of Identified
Isolation Environment?

No

2114

(Issue Command to Launch Application in Isolation)

Environment

2116

FIG. 19

WO 2010/129135

29/29

PCT/US2010/030515

2140

Launch Launch Module in Suspended Mode

2142

A

Request App. Delivery Service to Isolate Launch Module

)

2144
A

Pass Application Information to Launch Module

2146

Y

Permit Launch Module to Resume Execution

2148

FIG. 20

INTERNATIONAL SEARCH REPORT

international application No

PCT/US2010/030515

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/445
ADD. GO6F21/00

According 1o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base.consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2009/052346 Al (CITRIX SYSTEMS INC 1-19
[US]; NORD JOSEPH [US]; CHINTA MADHAV
[US]; HOY DAV) 23 April 2009 (2009-04-23)
figures 2A, 2B, 2C, 21A, 21B

paragraph [0079] - paragraph [0087]
paragraph [0327] - paragraph [0329]

X US 2006/174223 A1 (MUIR JEFFREY D [AU] ET 1-19
AL) 3 August 2006 (2006-08-03)
paragraph [0075] - paragraph [0089]

_____ "

m Further documents are listed in the continuation of Box C. E See patent family annex.

* Special categories of cited documents : . . . -

. “T* later document published after the international filing date

or priority date and not in conflict with the application but

cited to understand the principle or theory underlying the
invention

A document defining the general state of the art which is not
considered to be of particular relevance

‘E" earlier document but published on or after the international *X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
L document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is C“elg to estaphlsh the pubhcatlon"q:ée of another *Y* document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
0O document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
P document published prior 1o the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report
6 July 2010 27/07/2010
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, s :
Fax: (+31-70) 340-3016 Michel, Thierry

INTERNATIONAL SEARCH REPORT

international application No

PCT/US2010/030515

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A

S. Jain et al: "Application-Level
Isolation and Recovery with Solitude"
EuroSys’08

1 April 2008 (2008-04-01), pages 95-107,
XP002590442

Glasgow, UK

Retrieved from the Internet:
URL:http://delivery.acm.org/10.1145/136000
0/1352603/p95-jain.pdf?keyl=1352603&key2=6
2970487214co11=GUIDE&d1=GUIDE&CFID=9604036
8&CFTOKEN=21285090

[retrieved on 2010-07-05]

the whole document

1-19

INTERNATIONAL SEARCH REPORT

information on patent family members

International application No

PCT/US2010/030515
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 2009052346 Al 23-04-2009 AU 2008312367 Al 23-04-2009
CA 2695653 Al 23-04-2009
EP 2201453 Al 30-06-2010
US 2009106780 Al 23-04-2009
US 2006174223 Al 03-08-2006 NONE

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - claims
	Page 102 - claims
	Page 103 - claims
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - wo-search-report
	Page 134 - wo-search-report
	Page 135 - wo-search-report

