2009/055494 A 2 I} 1A 0 00 100 0 YO0 O A

WO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

) IO O T O OO 00

International Bureau

(43) International Publication Date
30 April 2009 (30.04.2009)

(10) International Publication Number

WO 2009/055494 A2

(51) International Patent Classification:
GOGF 9/38 (2006.01)

(21) International Application Number:
PCT/US2008/080825

(22) International Filing Date: 22 October 2008 (22.10.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/977,593 25 October 2007 (25.10.2007) US
(71) Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft

Way, Redmond, WA 98052-6399 (US).

(72) Inventor: CWALINA, Krysztof; One Microsoft Way,
Redmond, WA 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ,DE, DK, DM, DO, DZ, EC, EE,

EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

(54) Title: TECHNIQUES FOR SWITCHING THREADS WITHIN ROUTINES

10"‘

ORIGINATING ROUTINE
12

COROUTINE
CONTROLLER (RETURNS THREAD TO
ROUTINE - RUN ON NEXT TIME
14 EXECUTED)
16
ITERATE
FIG. 1

(57) Abstract: Various technologies and techniques are disclosed for switching threads within routines. A controller routine re-
ceives a request from an originating routine to execute a coroutine, and executes the coroutine on an initial thread. The controller
routine receives a response back from the coroutine when the coroutine exits based upon a return statement. Upon return, the corou-
tine indicates a subsequent thread that the coroutine should be executed on when the coroutine is executed a subsequent time. The
controller routine executes the coroutine the subsequent time on the subsequent thread. The coroutine picks up execution at a line
of code following the return statement. Multiple return statements can be included in the coroutine, and the threads can be switched
multiple times using this same approach. Graphical user interface logic and worker thread logic can be co-mingled into a single

routine.



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

TECHNIQUES FOR SWITCHING THREADS WITHIN ROUTINES
BACKGROUND

[0001] Developers write software applications using one or more software
development programs. Developers write source code that is needed to make the
sottware application perform the desired functionality. Software applications that
have a user interface allow an end user to interact with graphical menus and options
in the completed application to achieve a desired result. Source code generally has
to be written by developers during development of the software application to
handle such user input, and then to perform the proper work in response to the user
input.
[0002] For example, in the case of a completed customer service application, the
end user might be able to select a search operation to search for all customer
records for a given customer name. The software application would then have to
process the search, access a database to find the matching records, and return the
results to the end user. If such a search is processed on the user interface thread of
the software application, then an hourglass may or may not be displayed depending
on the status of the processing. For example, an hourglass may not be displayed if
the application is completely blocked. In such a blocking scenario, all that may be
displayed on the screen is a black rectangle or other indicator which designates that
the user interface thread is blocked. During this blocked period, the user is not able
to do anything else with the program since the user interface thread is totally
occupied in the performance of the search.
[0003] As technology has advanced, multi-threaded applications and multi-
processor computers can now be utilized. In other words, multiple threads of
execution can be started at the same time, sometimes on multiple processors when
available. One thread, for example, may be used to handle user input, and another
thread may be used for performing worker tasks. In order to create multi-threaded
applications, developers are challenged with writing complex source code that
creates and manages the multiple threads. This source code typically needs to
include functionality for passing arguments between the different threads, which

may be running asynchronously over many different locations. Developers often



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

write separate routines for the work that needs performed by separate threads. Due
to the complexity of working with multiple threads, it is common for developers to
use the multiple threads incorrectly or inefficiently, or to not even use multiple
threads at all and just expect that users will be fine with infrequent user interface
blocks.
SUMMARY

[0004] Various technologies and techniques are disclosed for switching threads
within routines. A controller routine receives a request from an originating routine
to execute a coroutine, and executes the coroutine on an initial thread. The
controller routine receives a response back from the coroutine when the coroutine
exits based upon a return statement. A subsequent thread is indicated that the
coroutine should be executed on when the coroutine is executed a subsequent time.
The controller routine executes the coroutine the subsequent time on the subsequent
thread that was previously indicated. Multiple return statements can be included in
the coroutine, and these steps can be repeated multiple times to switch threads.
[0005] In one implementation, execution of graphical user interface logic and
worker thread logic can be co-mingled into a single coroutine. Code execution
starts for initial logic contained in a coroutine, with the initial logic being executed
on a first thread to receive user input. The user input is then received. The
coroutine returns partially through to switch to a second thread, with the second
thread being a different thread than the first thread. Code execution resumes in the
coroutine on the second thread to perform work in response to the user input.
[0006] This Summary was provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid in determining the
scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Figure 1 is a diagrammatic view of a thread switching system of one

implementation.



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

[0008] Figure 2 is a diagrammatic view of a computer system of one

implementation.

[0009] Figure 3 is a diagrammatic view of a thread switching controller

application of one implementation.

[0010] Figure 4 is a process flow diagram for one implementation illustrating the

stages involved in using a controller routine to manage execution of a coroutine on

different threads.

[0011] Figure 5 is a process flow diagram for one implementation illustrating the

stages involved in switching threads partially through a routine.

[0012] Figure 6 1s a process flow diagram for one implementation illustrating the

stages involved in enabling graphical user interface logic and worker thread logic to

be co-mingled into a single routine.

[0013] Figure 7 illustrates exemplary source code for an OnClick event associated

with a form of a user interface to show an example of how a controller routine is

started.

[0014] Figure 8 illustrates exemplary source code for a controller routine that

manages the execution of a coroutine on multiple threads.

[0015] Figure 9 illustrates exemplary source code for a coroutine that co-mingles

graphical user interface logic and worker thread logic into a single coroutine.
DETAILED DESCRIPTION

[0016] The technologies and techniques herein may be described in the general

context as techniques that enable switching between threads within a single routine,

but the technologies and techniques also serve other purposes in addition to these.

In one implementation, one or more of the techniques described herein can be

implemented as features within a software development program such as

MICROSOFT® VISUAL STUDIO®, from any type of program or service that 1s

used to write source code for a software application, or from any other type of

program or service that is used to create or manage multi-threaded software

applications.

[0017] In one implementation, coroutines can be used with some or all of the

technologies and techniques described herein to enable code to be written that



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

appears to be sequential and passes arguments with a regular language syntax, but
that also allows for switching between multiple threads that execute the logic
contained in the single routine. In other words, the technologies and techniques
described herein provide mechanisms for co-mingling the usage of logic that is to
be executed on different threads within a same routine. The term “coroutine” as
used herein is meant to include a function, procedure, or other routine that contains
a set of code statements that are co-located within the coroutine and allows multiple
entry points that can be suspended and resumed at later times, with the lifetime of a
particular activation record of the coroutine being independent of the time when
control enters or leaves the coroutine

[0018] Figure 1 is a diagrammatic view of a thread switching system 10 of one
implementation. In one implementation, thread switching system 10 includes an
originating routine 12, a controller routine 14, and a coroutine 16. The term
“routine” as used herein is meant to include a program component, including a
function, procedure, or any other manner of grouping source code into a unit. An
originating routine 12 can be any routine that wants to execute functionality that is
contained in a given coroutine, such as coroutine 16. In one implementation, in
order to call the coroutine, the originating routine goes through a controller routine
14. The controller routine 14 iteratively calls the coroutine 16 multiple times, each
time starting the coroutine 16 on a thread that was indicated by the coroutine when
the coroutine returned. The term “return statement” as used herein is meant to
include a statement or other mechanism for causing a coroutine to return before an
end of the coroutine is reached. In other words, when the coroutine 16 wishes to
switch threads before executing any more lines of code, the return statement is used
to return from the routine temporarily so a different thread can be used to process
the lines of code that follow. There are various ways that the coroutine can indicate
the subsequent thread upon returning. In one implementation, the return statement
can include a return parameter that includes a subsequent thread identifier for the
different thread that should be used next. Various other ways for indicating the
subsequent thread can also be used, such as by the coroutine calling a method to set

the subsequent thread before returning, by setting a property or value in an object



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

with the subsequent thread identifier, by recording the subsequent thread identifier
to a database, etc.

[0019] The coroutine 16 is then resumed (on the different thread) at the line of
code following the return statement (one or more lines later), or at another suitable
location. The stages can be repeated until the end of the coroutine 16 is reached, or
another event happens that causes the controller routine 14 to stop iterating through
execution of the coroutine 16 and switching threads. In one implementation, each
time the coroutine 16 is resumed by the controller routine 14, a most recent
subsequent thread that was indicated in a most recent return from the coroutine can
be used to determine the thread to use.

[0020] It should be noted that in another implementation, the functionality of the
originating routine 12 and the controller routine 14 can be combined into the same
routine. In some implementations, the term “routine” as used herein can also
include coroutines. For example, while originating routine 12 and controller
routine 14 are both described as routines, in some implementations, either or both
could be implemented as one or more coroutines. These techniques introduced in
the discussion of Figure 1 will be described in much greater detail in Figures 3-6,
and then with source code examples in Figures 7-9.

[0021] Turning now to Figure 2, an exemplary computer system to use for
implementing one or more parts of the system is shown that includes a computing
device, such as computing device 100. In its most basic configuration, computing
device 100 typically includes at least one processing unit 102 and memory 104.
Depending on the exact configuration and type of computing device, memory 104
may be volatile (such as RAM), non-volatile (such as ROM, flash memory, etc.) or
some combination of the two. This most basic configuration is illustrated in Figure
2 by dashed line 106.

[0022] Additionally, device 100 may also have additional features/functionality.
For example, device 100 may also include additional storage (removable and/or
non-removable) including, but not limited to, magnetic or optical disks or tape.
Such additional storage is illustrated in Figure 2 by removable storage 108 and non-

removable storage 110. Computer storage media includes volatile and nonvolatile,



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

removable and non-removable media implemented in any method or technology for
storage of information such as computer readable instructions, data structures,
program modules or other data. Memory 104, removable storage 108 and non-
removable storage 110 are all examples of computer storage media. Computer
storage media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile disks (DVD) or
other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which can be used to store the
desired information and which can accessed by device 100. Any such computer
storage media may be part of device 100.

[0023] Computing device 100 includes one or more communication connections
114 that allow computing device 100 to communicate with other computers/
applications 115. Device 100 may also have input device(s) 112 such as keyboard,
mouse, pen, voice input device, touch input device, etc. Output device(s) 111 such
as a display, speakers, printer, etc. may also be included. These devices are well
known in the art and need not be discussed at length here. In one implementation,
computing device 100 includes thread switching controller application 200. Thread
switching controller application 200 will be described in further detail in Figure 3.
[0024] Turning now to Figure 3 with continued reference to Figure 2, a thread
switching controller application 200 operating on computing device 100 is
illustrated. Thread switching controller application 200 is one of the application
programs that reside on computing device 100. However, it will be understood that
thread switching controller application 200 can alternatively or additionally be
embodied as computer-executable instructions on one or more computers and/or in
different variations than shown on Figure 2. Alternatively or additionally, one or
more parts of thread switching controller application 200 can be part of system
memory 104, on other computers and/or applications 115, or other such variations
as would occur to one in the computer software art.

[0025] Thread switching controller application 200 includes program logic 204,
which is responsible for carrying out some or all of the techniques described herein.

Program logic 204 includes logic for receiving a request from the originating



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

routine to execute a coroutine 206 (as described below with respect to Figure 4);
logic for executing the coroutine on an initial thread 208 (as described below with
respect to Figure 4); logic for receiving a response back from the coroutine when
the coroutine returns 210 (as described below with respect to Figure 4); logic for
executing the coroutine on a subsequent thread indicated when the coroutine
returned 212 (as described below with respect to Figure 4); logic for enabling
graphical user interface logic and worker thread logic to be co-mingled into a single
routine 214 (as described below with respect to Figure 6); and other logic 220 for
operating the thread switching controller application 200.

[0026] Turning now to Figures 4-6 with continued reference to Figures 1-3, the
stages for implementing one or more implementations of thread switching system
10 (of Figure 1) and/or thread switching controller application 200 (of Figure 3) are
described 1n further detail. In some implementations, the processes of Figure 4-6
are at least partially implemented in the operating logic of computing device 100.
[0027] Figure 4 is a process flow diagram 240 that illustrates one implementation
of the stages involved in using controller routine to manage execution of a
coroutine on different threads. In general, Figure 4 describes an exemplary process
involved in having the controller routine call the coroutine multiple times, each
time calling the coroutine on a thread that was specified when the coroutine
returned based upon a return statement.

[0028] When a request is received from an originating routine to execute a
coroutine (stage 242), the controller routine executes the coroutine on an initial
thread (stage 244). In one implementation, before a line of code is encountered in
the coroutine to initiate the switching to a desired thread, the initial thread will
simply be a default thread that is used by the software application when a thread is
not otherwise specified. The coroutine then executes some logic, and the controller
routine receives a response back from the coroutine based upon a return statement
(stage 246). Upon exit, the coroutine had indicated a subsequent thread identifier
to specify what thread the coroutine should be called on the next time the controller
routine calls the coroutine. In one implementation, the response received back

from the coroutine from the return statement contains a parameter with the



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

subsequent thread identifier. In other implementations, the controller routine
accesses the value in an object, database, or other variable that was assigned the
subsequent thread identifier when the coroutine returned.

[0029] The controller routine then executes the coroutine a subsequent time on the
thread that was indicated when the coroutine returned (i.e. indicated in the
subsequent thread identifier) (stage 248). If the coroutine returns again before the
end of the coroutine is reached (i.e. because of another return statement) (decision
point 250), then the controller routine will receive another response back from the
coroutine and will have an indication of the next subsequent thread to start the
coroutine on the next time it is called (stage 246). The controller routine will then
execute the coroutine again on the next subsequent thread (stage 248). Once the
end of the coroutine is reached (decision point 250), the controller routine stops
calling the coroutine (stage 252).

[0030] Figure 5 is a process flow diagram 270 that illustrates one implementation
of the stages involved switching threads partially through a routine. The routine is
started on one thread (stage 272). In one implementation, the routine is a coroutine.
In another implementation, the routine is any type of routine that can be called
multiple times, and that is operable to have execution started at a point in the code
where the prior execution stopped. After executing one or more lines of code in the
routine, the routine encounters a return statement, thereby causing the routine to
return at a point only partially through all the code in the routine (stage 274). Upon
returning, the routine causes a subsequent thread identifier to be indicated (stage
274). There are various ways that the routine can cause the subsequent thread
identifier to be indicated, such as in a return parameter of the return statement itself,
by setting a property or field of an object or type to set the value, by calling a
method that sets the value, by writing the subsequent thread identifier to a database,
or through any other means of communicating the subsequent thread identifier to
the controller routine. Execution of the routine is then resumed on the thread that
was specified in the subsequent thread identifier (stage 276). Code execution 1s
picked up where it left off the last time before return, this time on the subsequent

thread (stage 278).



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

[0031] Figure 6 is a process flow diagram 290 that illustrates one implementation
of the stages involved in enabling graphical user interface thread logic and worker
thread logic to be co-mingled into a single routine. A coroutine is started on a first
thread to receive user input (stage 292). The user input is then received (stage
294). The coroutine returns partially through to switch to a second thread (stage
296), with the second thread being different than the first thread. In one
implementation, the coroutine returns because it encountered a return statement.
Code execution is resumed in the coroutine on the second thread to do work in
response to the user input (stage 298). In one implementation, the first thread is a
graphical user interface thread, and the second thread is a worker thread. Various
thread combinations are possible, instead of or in addition to graphical user
interface threads and/or worker threads. Figure 9 shows exemplary source code of
co-mingling graphical user interface thread logic and worker thread logic into the
same routine.

[0032] Turning now to Figures 7-9, exemplary source code will be described to
illustrate the stages of Figures 4-6 in further detail. Beginning with Figure 7,
exemplary source code 310 is shown for an OnClick event 312 associated with a
form of a user interface. The OnClick event 312 (originating routine 12 on Figure
1) fires when an end user clicks the BetterButton button on the form. The OnClick
event 312 then calls the controller routine (14 on Figure 1), which is the execute
method 314 in the example shown. In one implementation, the name of the
coroutine that needs to be executed by the controller routine is passed as a
parameter to the controller routine from the originating routine. The controller
routine is then responsible for calling the coroutine multiple times on the proper
threads, as is indicated in Figure 8. In the exemplary controller routine 322 shown
in Figure 8, various lines of source code are included for handling work on multiple
threads. Calls to the coroutine are also included within a loop 324, which is
responsible for calling the coroutine multiple times. Each time the coroutine is
called, the controller routine starts the coroutine on the thread that was specified

previously when the coroutine returned.



10

15

20

25

WO 2009/055494 PCT/US2008/080825

[0033] As shown in Figure 9, the coroutine can include code that is designed to be
executed on different types of threads mixed into a single coroutine. In the
exemplary source code 330 of Figure 9, graphical user interface logic (336 and
344) and worker thread logic (340) are co-mingled together into a single routine,
which is the betterButton1 Clicked routine 332 in this example. In order to switch
between threads, return statements (334, 338, and 342) are used. In this example,
GUI threads and worker threads are used for executing separate parts of work.
Furthermore, in this example, the return statement is a yield statement (for the C#
programming language). Each return statement (334, 338, and 342) signals that the
coroutine should be returned temporarily and then resumed 1n the thread specified
as a parameter to the return statement (e.g. ‘“ThreadRequest.UI” for the GUI thread,
or “ThreadRequest. Worker” for the worker thread). When the controller routine
shown in Figure 8 receives the return response from the coroutine, the execution of
the coroutine is then started again by the controller routine, but on the specified
thread.

[0034] Although the subject matter has been described in language specific to
structural features and/or methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily limited to the specific
features or acts described above. Rather, the specific features and acts described
above are disclosed as example forms of implementing the claims. All equivalents,
changes, and modifications that come within the spirit of the implementations as
described herein and/or by the following claims are desired to be protected.

[0035] For example, a person of ordinary skill in the computer software art will
recognize that the examples discussed herein could be organized differently on one
or more computers to include fewer or additional options or features than as

portrayed in the examples.

10



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

CLAIMS

What is claimed is:
1. A computer-readable medium having computer-executable instructions for causing
a computer to perform steps comprising:

receiving a request from an originating routine to execute a coroutine (206);

executing the coroutine on an initial thread (208);

receiving a response back from the coroutine when the coroutine returns based
upon a return statement (210); and

executing the coroutine a subsequent time on a subsequent thread that was
indicated by the coroutine upon return (212).
2. The computer-readable medium of claim 1, further having computer-executable
instructions for causing a computer to perform steps comprising:

executing the coroutine a plurality of times until an end of the coroutine is reached,
cach time executing the coroutine on a most recent subsequent thread indicated by the
coroutine upon a most recent return (250).
3. The computer-readable medium of claim 1, wherein the subsequent thread is
contained as a parameter to the return statement (246).
4. The computer-readable medium of claim 1, wherein the subsequent thread is used
for processing worker thread logic (296).
5. A method for switching threads partially through a routine comprising the steps of:

starting an execution of a routine on a first thread (272);

exiting the routine at a point partially through the routine due to a first return
statement, with the first return statement having a subsequent thread identifier (274);

resuming code execution of the routine on a subsequent thread specified in the
subsequent thread identifier (276); and

picking up code execution in the routine at a line of code following the first return
statement (278).
6. The method of claim 5, wherein at least one of the first thread and the subsequent
thread is a thread used for processing graphical user interface logic (292).
7. The method of claim 5, wherein at least one of the first thread and the subsequent
thread is a worker thread used for processing worker logic (298).

8. The method of claim 5, wherein the routine is a coroutine (272).

11



10

15

20

25

30

WO 2009/055494 PCT/US2008/080825

9. The method of claim §, wherein the first thread is used to handle a different type of
operation than the second thread (298).
10.  The method of claim 5, wherein the subsequent thread identifier is contained as a
parameter in the return statement (274).
11. The method of claim 5, further comprising:

repeating the exiting, resuming, and picking up steps a plurality of times until an
end of the routine is reached (250).
12. The method of claim 5, wherein a first line of code contained in the routine 1s the
first return statement (334).
13. The method of claim 12, wherein the first return statement is located at the first
line of code so that a first desired thread for execution can be specified in the subsequent
thread identifier before further code in the routine is processed (334).
14. A method for co-mingling graphical user interface logic and worker thread logic in
a single routine comprising the steps of:

starting code execution of initial logic contained in a coroutine, the initial logic
being executed on a first thread to receive user input (292);

receiving the user input (294);

exiting the coroutine partially through to switch to a second thread, the second
thread being a different thread than the first thread (296); and

resuming code execution in the coroutine on the second thread to perform work in
response to the user input (298).
15. The method of claim 14, wherein the exiting step is performed when a return
statement is reached (296).
16. The method of claim 15, wherein the return statement contains a thread identifier
as a parameter to specify a next thread that execution should be resumed on (274).
17. The method of claim 16, wherein a plurality of return statements are contained in
the routine to indicate when thread switching should occur (16).
18.  The method of claim 14, wherein the coroutine is called a plurality of times by a
controller routine that is responsible for calling the coroutine on a proper thread (14).
19.  The method of claim 18, wherein the controller routine is called by an originating
routine (12).
20.  The method of claim 19, wherein the originating routine contains a request to call

the coroutine (12).

12



PCT/US2008/080825

WO 2009/055494

119

| "Old

EINAEN
9
(@3Lnoax3 i
JNILIXANNONNY | INILNOY
OL Qv3IYHL SNYNLIY) Y3 TI0HYLINOD
ANILNOYOD

4
ANILNOY ONILVYNIOIHO

ol




PCT/US2008/080825

WO 2009/055494

2/9

SNOILYOITddV
/SY3LNdINOD
d3H.L0

801

(SINOILO3INNOD
NOILYOINNWINOD
y Y3HLO

(S)301A3a LNdNI

(S)301A3a 1NdLNO

3OVHO01S
J19VAONTY-NON

h

JOVHOLS
J19VAONTY

/_

NOILVIIlddV
d3TI0HLNOD

ONIHOLIMS dVIdHL

LINN ONISS3004d

311LVI1OA-NON

FLYTOA

AHOWIN INTLSAS




PCT/US2008/080825

WO 2009/055494

3/9

¢ old

02C
NOILVOITddY FHL ONILVH3d0 404 J190T H3IHLO

vic
ANILNOY FTONIS V OLNI A3TONIN
-00 39 01 JI901 AVIHHL 4INHOM ANV J19071 IOV4HILNI H3SN TVOIHAYHO ONINFYN 404 D190

ZIZ SNYNL3Y
ANILNOYOD NIHM A3LVIIANI AvIHHL INJNOISENS ¥V NO INILNOYO0I IHL ONILNOIXT Y04 D901

01g
SNYNL3Y INILNOYOD NFHM ANILNOYOD WOHL ¥OVE ISNOJSTY ONIAIFOFY 404 D901

80¢C
AVIHHL TVILINI NO ANILNOYOI ONILNI3X3 04 90T

902
ANILNOHOI V 31NO3X3 OL INILNOY ONILYNIOIHO WOHL 1S3N0IH ONIAIFOFH H04 J1901

v0C
21907 AVdO0dd

002
NOILVIITddV 43T1041INOD ONIHOLIMS AV3dHL




WO 2009/055494 PCT/US2008/080825

479

240 '\*

RECEIVE REQUEST FROM ORIGINATING ROUTINE TO EXECUTE
A COROUTINE
242

!

EXECUTE COROUTINE ON AN INITIAL THREAD, AND INDICATE
SUBSEQUENT THREAD ON EXIT
244

!

RECEIVE RESPONSE BACK FROM COROUTINE BASED UPON
—> RETURN (YIELD) STATEMENT
246

!

EXECUTE COROUTINE A SUBSEQUENT TIME ON THE THREAD
RETURNED IN THE RESPONSE
248

NO

END OF COROUTINE REACHED?
250

YES

FINISH
252

FIG. 4



WO 2009/055494 PCT/US2008/080825

5/9

270

START A ROUTINE ON ONE THREAD
272

!

EXIT THE ROUTINE AT A POINT ONLY PARTIALLY THROUGH THE
ROUTINE, WITH THE RETURN CAUSING A SUBSEQUENT THREAD
IDENTIFIER TO BE INDICATED
274

!

RESUME THE ROUTINE ON A THREAD SPECIFIED IN THE
SUBSEQUENT THREAD IDENTIFIER
276

'

PICK UP CODE EXECUTION WHERE LEFT OFF LAST TIME BEFORE
EXITING, THIS TIME ON THE SUBSEQUENT THREAD
278

FIG. 5



WO 2009/055494 PCT/US2008/080825

6/9

290
T‘

START A COROUTINE ON A FIRST THREAD TO RECEIVE USER
INPUT
292

!

RECEIVE THE USER INPUT
294

l

EXIT THE COROUTINE PARTIALLY THROUGH TO SWITCH TO A
SECOND THREAD
296

Y

RESUME CODE EXECUTION IN THE COROUTINE ON THE SECOND
THREAD TO DO WORK IN RESPONSE TO USER INPUT
298

FIG. 6



WO 2009/055494 PCT/US2008/080825

719

310 ’1

public class BetterButton : System.Windows.Forms.Button {
public BetterButton() { }

public event BackgroundJobHandler Clicked; (_ 319
protected override void OnClick(EventArgs e) {
base.OnClick(e);
BackgroundJobHandler h = Clicked;
if (h = null) {
EXECUTE (h, this,true);
}

}
}

314

FIG. 7



WO 2009/055494 PCT/US2008/080825

8/9

320 .)

( 322

private static void Execute(Tuple<BackgroundJobHandler,
ISynchronizelnvoke> t) {
|[Enumerable<ThreadRequest> workEnumerable = t.value1();
|[Enumerator<ThreadRequest> workEnumerator =
workEnumerable.GetEnumerator();
Func<bool> work = workEnumerator.MoveNext;
bool moreWork = work();
while (moreWork) {
ThreadRequest requestedThread = 194
workEnumerator.Current; r
if (requestedThread == ThreadRequest.Ul) {
moreWork = BetterThreadPool.InvokeValue
<bool>(work, t.value2);
}else {
moreWork = work();

}
}

)

FIG. 8



WO 2009/055494 PCT/US2008/080825

9/9

330 ‘1

public partial class MainForm : Form {

(‘ 332

|[Enumerable<ThreadRequest> betterButton1_Clicked() {
/ this runs on Ul thread

yield return ThreadRequest.Ul;
string input1 = this.inputTextBox.Text;
this.inputTextBox.Enabled = false;
this.betterButton1.Enabled = false;

_— 334

— 336

// this runs on a worker thread 338
yield return ThreadRequest.Worker; e
string result1 = ExpensiveFunction(input1);— 340

/] this runs on Ul thread

yield return ThreadRequest.Ul; o
this.resultTextBox.Text = result1;
this.inputTextBox.Enabled = true; 344
this.betterButton1.Enabled = true;

}

private string ExpensiveFunction(string input) {
System.Threading.Thread.Sleep(5000);
return input.Replace(input[0], '#);
}
}

FIG.9



	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - claims
	Page 13 - claims
	Page 14 - drawings
	Page 15 - drawings
	Page 16 - drawings
	Page 17 - drawings
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings

