DOUBLE CROSS-LINKAGE PROCESS TO ENHANCE POST-IMPLANTATION BIOPROSTHETIC TISSUE DURABILITY

Applicant: Edwards Lifesciences Corporation, Irvine, CA (US)

Inventors: Sophie M. Carpentier, Paris (FR); Alain F. Carpentier, Paris (FR)

Filed: May 27, 2016

Related U.S. Application Data

Continuation of application No. 13/297,192, filed on Nov. 15, 2011, now Pat. No. 9,351,829.

Provisional application No. 61/414,726, filed on Nov. 17, 2010.

Publication Classification

Int. Cl.
A61F 2/02 (2006.01)
A61L 27/24 (2006.01)
A61L 27/36 (2006.01)
A61J 1/00 (2006.01)

U.S. Cl.
CPC ... A61F 2/02 (2013.01); A61J 1/00 (2013.01); A61L 27/24 (2013.01); A61L 27/3625 (2013.01); A61L 27/362 (2013.01); A61L 27/3612 (2013.01); A61L 27/3687 (2013.01); A61F 2240/001 (2013.01); A61L 2400/02 (2013.01)

ABSTRACT

Bioprosthetic tissues and methods for making same, comprising fixing bioprosthetic implant tissue by treatment with 0.1 to 10 wt. % glutaraldehyde at elevated temperature, capping said fixed tissue by treatment with a diamine crosslinking agent, and treating said capped tissue with about 0.6 wt. % glutaraldehyde.
Implanted for 3 weeks in rats

Ca μg/mg

n=36

n=36

n=36

0.6% Glut at room temperature

* 0.6% Glut at room temperature

FIG. 1
Implanted for 6 weeks in rats

Ca μg/mg

FIG. 3

n=18
103.1

n=18
74.2

n=18
51.6

0.5M EA

0.5M EA

0.33M JEFF.

0.33M JEFF.
DOUBLE CROSSLINKAGE (SFX) PROCESS

GLUT FIXATION I
0.6% GLUT pH 7.4 (1 month min) ➔ 10

FET: Formol, Ethanol, Tween 80 (2 hrs room temperature)
11

0.6% GLUT pH 7.4 (2 days min)

HEAT TREATMENT
0.6% GLUT pH 5.8 50°C 18 days ➔ 12

0.6% GLUT pH 7.4 (2 days minimum)

CAPPING
0.1± 0.01M JEFFAMINE in DW 37°C 24hrs ➔ 16

0.1± 0.01M JEFFAMINE + 0.25% NaBH₄ in DW 37°C 24hrs ➔ 17

0.6% GLUT pH 7.4 (3 days minimum) ➔ 18

SURFACTANT
FET (9 hrs 32°C) ➔ 18

GLUT FIXATION II
0.6% GLUT pH 7.4 (1 month min) ➔ 14

STORAGE IN GLUT
0.6% GLUT pH 7.4 at 4°C ➔ 20

DRY STORAGE
75% GLYCEROL 25% ALCOHOL (1 hr) + 5-20 hrs to dry ➔ 22

FIG. 7
DOUBLE CROSS-LINKAGE PROCESS TO ENHANCE POST-IMPLANTATION BIOPROSTHETIC TISSUE DURABILITY

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a continuation of U.S. patent application Ser. No. 13/297,192, filed Nov. 15, 2011, now U.S. Pat. No. 9,351,829, which claims the benefit of U.S. Patent Application No. 61/414,726, filed Nov. 17, 2010, the entire disclosures of which are incorporated by reference in their entirety.

FIELD OF THE INVENTION

[0002] The present invention provides methods for making bioprosthetic devices from collagen-containing tissue. More particularly, a double cross-linkage process to enhance post-implantation bioprosthetic tissue durability is described.

BACKGROUND OF THE INVENTION


[0004] As experience grew several limitations became apparent, including tissue calcification and collagen degeneration. Calcium mitigation was obtained by adding a surfactant and gelatin to the glutaraldehyde process. Carpentier A., Nashef A. et al., "Circulation" 70 (3 Pt2): 1165-68; and intensively described in U.S. Pat. No. 4,885,005. Improved glutaraldehyde fixation was obtained by immersing the tissue in a heated glutaraldehyde solution, preferably at a temperature of about 45 to 55 °C, for a period of time ranging from 10 to 12 days, according to the method first proposed by Carpentier S., et al., "Ann. Thorac. Surg." December 66 (6 Suppl.) 3264-6, which is incorporated herein in its entirety.

[0005] Although these techniques have proven to be efficient in reducing tissue calcification and enhancing tissue stability, there remains a need for further improvements, in particular to enlarge the use of valvular bioprosthesis in young patients.

[0006] Diamines, including lysine or Jeffamine, have been proposed by others to crosslink free aldehyde groups in bioprosthetic tissues. Jeffamine®, sold by Huntsman International, was first used by Hendricks et al (U.S. Pat. No. 6,166, 184 and U.S. Pat. No. 7,053,051) to avoid treating the tissue with glutaraldehyde, which was said to enhance calcification. The drawbacks in these methods are that amino groups from adjacent collagen molecules and residual amino groups from the diamines were not crosslinked or further modified. As a result, tissue stability was compromised. Thus, there remains a need for improved bioprosthetic tissue with enhanced post-implantation durability.

SUMMARY OF THE INVENTION

[0007] The present invention teaches an improved tissue treatment process which comprises the novel combination of: 1) a heated glutaraldehyde solution at a higher concentration or for an increased time of fixation to durably crosslink free amino groups, and 2) a diamine treatment, to durably crosslink free aldehyde groups.

[0008] One aspect of the present invention is a method for preparing bioprosthetic implant tissue, comprising fixing bioprosthetic implant tissue by treatment with glutaraldehyde at 0.1 to 10 wt. % concentration and at elevated temperature, capping said fixed tissue by treatment with a diamine crosslinking agent, and treating said capped tissue with about 0.6 wt. % glutaraldehyde. The fixing step is conducted at about 50 °C and pH 5.8 for 2 to 25 days, and the capping step is preferably conducted in the presence of a reducing agent, such as sodium borohydride. The diamine crosslinking agent can be Jeffamine®, Jeffamine D, lysine, a multifunctional polymer, or an organic solvent, and can be delivered in water or a buffer solution.

[0009] In one embodiment, the diamine crosslinking agent is Jeffamine® at a concentration of 0.01 M to 1 M, and the capping treatment is done for a period of 1 hour to 7 days at temperatures between 4 °C and 50 °C. At pH between 8 and 13. Preferably, the concentration is 0.1 M and the treatment is done for 48 hours at 37 °C and pH 11.7.

[0010] In one embodiment, the sodium borohydride is used as an adjunct to Jeffamine® at a concentration between 0.05% and 1%, for a period of 1 hr to 3 days, at a temperature between 4 °C and 40 °C. Preferably, the concentration is 0.25% and the treatment is done for 24 hours at 37 °C.

[0011] In one embodiment of the method, during the fixing step, the glutaraldehyde concentration is 0.6 to 10 wt. %, and the treatment is carried out for 1 to 90 days, at a temperature from 37 to 75 °C, at a pH of 5.4 to 6.8. Preferably, the glutaraldehyde concentration is 5%, and the treatment is carried out for a time of 18 days, at a temperature of 52±2.5 °C, at a pH of 5.8. Alternatively, the heat treatment is achieved in a non-Glut solution.

[0012] In yet another embodiment, the fixed tissue is treated in a surfactant solution thereby substantially eliminating phospholipids. The surfactant solution contains formaldehyde, ethanol and Tween 80.

[0013] The tissue being treated can be a heart valve or valve leaflets retrieved from animals, mounted within a stent and used as a treated whole valve. It can be a native valve treated and mounted as a whole valve, and the treated whole valve is stored in a glutaraldehyde solution of 0.1% to 0.6 wt. % concentration, preferably the glutaraldehyde storage solution has a concentration of 0.6%. Alternatively, the treated whole valve can be stored as a dehydrated valve, wherein tissue dehydration is achieved in a glycerol solution. The dehydrated valve can be sterilized in ethylene oxide.

[0014] Another aspect of the present invention is a bioprosthetic implant tissue made by a process comprising fixing bioprosthetic implant tissue by treatment with 0.1 to 10 wt. % glutaraldehyde, at elevated temperature, capping said fixed tissue by treatment with a diamine crosslinking agent, and treating said capped tissue with about 0.6 wt. % glutaraldehyde.

[0015] Another aspect of the present invention is a method of preparing bioprosthetic implant tissue comprising:

[0016] a) treating bioprosthetic implant tissue with at least 0.2 wt. % glutaraldehyde at pH 5-6.8 between 45°-75° C. for 1 to 90 days;

[0017] b) capping said tissue by treatment with a diamine crosslinking agent followed by reduction of Schiff base with NaBH₄.
c) treating said capped tissue with about 0.6 wt. % glutaraldehyde at room temperature, preferably for at least 1 month;

d) treating the tissue with surfactant in an alcohol solution with formamide (FET); and

e) storing the tissue in 0.6% glutaraldehyde at 4°C; wherein steps a), b), c) and d) are performed while stirring.

BRIEF DESCRIPTION OF THE FIGURES

Experiments were carried out using subcutaneous implantation in rats of treated tissue specimen.

FIG. 1 is a chart showing the calcium mitigation effect of high temperature Glut at different Glut concentrations preceded by treatment of the tissue in 0.6% Glut at room temperature and followed by treatment of the tissue in 0.6% Glut at 4°C. Results show that, contrary to expectation, high concentration Glut at 50°C provides more calcium mitigation than low concentration, provided that it is followed by a low concentration glut treatment.

FIG. 2 is a chart comparing calcification of Glut treated tissue exposed to different amines: Ala: alanine; EA: ethanolamine, LYS: lysine, JEFF: Jefamine.

FIG. 3 is a chart showing the calcium mitigation effect of ethanolamine and Jefamine with different durations of treatment.

FIG. 4 is a chart showing calcium mitigation by Jefamine treatment and Schiff base reduction by NaBH₄ and followed by different storages: glycerol, Glut, Glut then glycerol.

FIG. 5 is a chart showing calcium mitigation by double crosslinking: Heated Glut followed by lysine.

FIG. 6 is a chart showing the very long term—up to 12 months—effect of the double crosslinking process, comprising high temperature Glut, diamine crosslinking and surfactant (FET).

FIG. 7 is a summary of an exemplary double crosslinking process described herein.

DETAILED DESCRIPTION OF THE INVENTION

Heart valve replacement may be indicated for native valve stenosis and when the native valve leaks or regurgitates, such as when the leaflets are calcified. The native valve may be excised and replaced with either a biological or mechanical valve prostheses.

Bioprosthetic valves have biological tissue leaflets supported by a base structure that are implanted into the blood stream. As examples, biological leaflets mounted within a support structure are used in the CARPENTER-EDWARDS® Porcine Heart Valve and in the CARPENTIER-EDWARDS® PERIMOUNT® Pericardial Heart Valve, available from Edwards Lifesciences of Irvine, Calif. Although these valves have been associated with excellent long term function in human, some of them have shown evidence of calcification, particularly in young patients.

The present invention provides an improved bioprosthetic tissue treatment process that greatly reduces the potential for calcification after implantation of glutaraldehyde-treated tissue by using a combination of crosslinking free amino groups, using high temperature, high concentration Glut and crosslinking free aldehyde groups by diamines.

A preferred embodiment uses JEFFAMINE polyetheramines, which are an expanding family of Huntsman products that contain primary amino groups attached to the end of a polyether backbone. The polyether backbone is normally based on either propylene oxide (PO), ethylene oxide (EO), or mixed PO/EO. Thus they are called “polyetheramines.” The JEFFAMINE polyetheramine family comprises monoamines, diamines, and triamines based on this core structure. Recently, the addition of secondary, hindered, high-conversion, and polytetramethylene glycol (PTMPEG) based polyetheramines have become available.

Bioprosthetic tissue includes, without limitation, bovine pericardium and porcine tissue which are commonly used in bioprosthetic heart valves, blood vessels, skin, dura mater, pericardium, small intestinal submucosa (“SIS tissue”), tissue heart valves, ligaments and tendons. In one embodiment, the tissue comprises pre-cut heart valve leaflets mounted and treated in a suitable apparatus. Alternatively, the tissue may be bulk sheets of tissue treated in a suitable apparatus.

“Implants” in the present application refer not only to heart valves, including transcatheter heart valves, but also to vascular prostheses and grafts, tissue grafts, bone grafts, and orbital implant wraps, among others.

A “bioprosthetic heart valve” refers to a fully assembled prosthetic valve made at least partly from bioprosthetic tissue. Some whole porcine valves are used in so-called “sterilized” bioprosthetic valves in which there is very little, if any, synthetic material added for support or anchoring purposes.

A “stented” bioprosthetic valve typically has some kind of synthetic (e.g., polymer or metallic) support for the leaflets, which may be the leaflets of a whole porcine valve or separate bovine pericardial leaflets. Heart valves contemplated herein include surgical heart valves, transapical heart valves, and other types of heart valves.

Implantable biological tissues of the invention can be formed of human tissues preserved by freezing (i.e., cryopreservation) of homograft tissues, or tissues from animal preserved by chemical fixing (i.e., bioprosthetic tissues). These tissues contain connective proteins (i.e., collagen and elastin) which act as the supporting framework.

Chemical fixation of biological tissues involves exposing them to one or more chemical fixatives (i.e., tanning agents) which form crosslinks between the polypeptide chains of a given collagen molecule (i.e., intramolecular crosslinkages), or between adjacent collagen molecules (i.e., intermolecular crosslinkages). Examples of chemical fixatives that have been used to crosslink collagenous tissues include: formaldehyde, glutaraldehyde, diacrylate starch, bismaleimide disiocyanate and certain polyepony compounds.

An ongoing problem with bioprothetic materials is that the connective tissue proteins, collagen and elastin, can become calcified after long term implantation in the body particularly in young patients. Calcification produces undesirable stiffening or degradation of the bioprosthetics, which may lead to valve failure.

Glutaraldehyde (or “Glut”) has been the most widely used fixative since the discovery of its anti-immunological and anti-degenerative effects. Carpenter, A. et al., J Thorac Cardiovasc Surg. 1969 October; 58(4): 467-83. However, glutaraldehyde treatment does not prevent calcification of the tissue’s potential calcium binding sites on collagen, elastin, ground substance and lipids, which can lead to calci-
fication in vivo. This propensity for calcification can be reduced by applying various chemical treatments as described in U.S. Pat. No. 4,729,139 (Nashif); U.S. Pat. No. 4,885,005 (Nashif et al.); U.S. Pat. No. 4,648,881 (Carpentier et al.); U.S. Pat. No. 5,002,566 (Carpentier); EP Patent No. 103947 (Pollock et al.); U.S. Pat. No. 5,476,516 (Seifert et al.); U.S. Pat. No. 5,215,541 (Nashif et al.) and U.S. Pat. No. 5,862,806 (Cheung).

[0042] U.S. Pat. No. 6,471,723 (Ashworth et al.) and U.S. Pat. No. 4,786,287 (Nashif et al.) describe calcification mitigation by addition of a variety of amines to the aldehyde groups in glutaraldehyde-fixed tissue. U.S. Pat. No. 5,476,516 (Seifert, et al.) teaches the addition of polyols (e.g., glycerol) and alcohols to bioprothetic tissues as a calcification mitigation treatment. U.S. Pat. No. 6,509,145 (Torriani) and U.S. Pat. No. 7,076,163 (Torriani) address oxidation of bioprothetic tissue for calcification mitigation. U.S. Pat. No. 6,630,001 (Duran, et al.) and U.S. Pat. No. 6,277,555 (Duran, et al.) discuss the use of glycerol preservation first proposed by Zerbini and lyophilization of tissue. U.S. Pat. No. 6,352,708 (Duran, et al.) includes glycerol preservation of fresh, “non-fixed” tissue, and treatments with glycerol and heparin.

[0043] A method of calcium mitigation by elevated-temperature fixation of the tissue in glutaraldehyde was described in U.S. Pat. No. 6,561,970 (Carpentier et al.), and in combination with relative tissue/liquid movement in U.S. Pat. No. 5,931,969 (Carpentier et al.). A technique involving adjusting the pH of a glutaraldehyde fixation solution is disclosed in U.S. Pat. No. 6,878,168 (Carpentier et al.).

[0044] Described herein is a method of treating bioprothestic implant tissue to reduce in vivo calcification, comprising: fixing bioprothetic implant tissue with high temperature and high concentration glutaraldehyde, and then treating the fixed tissue with a diamine cross-linking solution to mitigate calcification.

[0045] Tissue treatment with glutaraldehyde, Tween (polyoxyethylene 20 sorbitan monoleate), ethanol, and optionally with formaldehyde, can provide useful fixation of the tissue. However, these compounds will also generate new binding sites capable of interacting with or attracting calcium. Tissues treated with glutaraldehyde contain free aldehyde groups which cause increased toxicity, and higher calcification.

[0046] Thus, described herein is a method to cap these newly formed binding sites prior to implantation into the body. The term “capping” refers to the blocking, removal, or alteration of a functional group that would have an adverse effect on the bioprothesis properties.

[0047] Unlike prior art tissue processing in which the separate goals are merely to fix the tissue with glutaraldehyde at low concentration, or to cap tissue amines with a blocking agent, the present method combines the two processes, i.e., cross-linking free aldehyde groups with a diamine and free amino groups with a high concentration dialdehyde, while at the same time capping free aldehyde groups, preferably under reducing conditions.

[0048] In a preferred embodiment, the glutaraldehyde fixation step is carried out before capping the dialdehyde groups with diamines, preferably using heated Glut at 50°C for 3 to 25 days. The Glut fixation is followed by treatment with a Jefferamine diamine under reducing conditions (e.g., sodium borohydride) in order to cap the aldehyde groups in fixed tissue, and further cross-link proteins in the tissue, thereby enhancing its stability in vivo.

[0049] The present fixing/capping/crosslinking process preferably includes chemical reduction of the tissue, which, when applied in the presence of a polymeric diamine, will permanently connect the crosslinking agent to the target aldehyde groups.

[0050] For example, the addition of a Jefferamine, such as Jefferamine D, to the tissue will simultaneously cap and crosslink the aldehyde groups, while a reducing agent (e.g., sodium borohydride) will reduce any Schiff base created by reaction of the aldehyde with the amine groups. Thus aldehyde groups are ultimately replaced by bridging groups or polymeric amine moieties, which may be beneficial for tissue hydration, flexibility, and cell interactions.

Other diamine capping/crosslinking agents can be used instead of Jefferamine, such as lysine or polymeric molecules. Reducing agents usable in aqueous solution other than sodium borohydride are known by those skilled in the art and are included in the scope of this invention, including potassium borohydride, cyano-borohydride and others.

Glutaraldehyde Treatment

[0052] Glutaraldehyde treatment comprises 3 steps: First, fixation of the tissue in 0.6% Glut at pH 7.4 at room temperature for at least 1 month with stirring (Glut Fixation I 10, FIG. 7); then further fixation in heated Glut at 45-75°C for 1 to 90 days with stirring (Heat Treatment 12, FIG. 7); then further fixation in 0.6% at room temperature for at least 1 month (Glut Fixation II 14, FIG. 7).

Jefferamine Crosslinking and Reduction by Sodium Borohydride

[0053] The glutaraldehyde-fixed tissue is rinsed in PBS buffer solution to remove any excess glutaraldehyde adhering to the tissue. The tissue is then exposed first to a capping/crosslinking solution of Jefferamine diamines in distilled water (DW) at a concentration of 0.1×0.01M under agitation for 24 hours at 37°C, and secondly in Jefferamine and 0.25% sodium borohydride solution at 37°C for another 24 hours under agitation (Capping 16, FIG. 7). The tissue is removed from the solution and rinsed during a few minutes at room temperature in 0.9% NaCl solution.

Surfactant Treatment

[0054] The tissue is then treated in a surfactant solution containing formaldehyde, ethanol and ‘Tween 80 for 9 hours at 32°C. (Surfactant 18, FIG. 7). After rinsing three times in 0.9% NaCl solution, storage is carried out either in Glut or in glycerol according to the following process.

Storage

[0055] 1—Storage in 0.6% Glut at 4°C. Sterilization is achieved by the Glut solution (Storage in Glut 20, FIG. 7)

[0056] 2—Storage in Glycerol (optional). After the tissue has been processed through a standard final bioburden reduction step and then through 0.6% Glut step for at least 1 month, it may undergo a glycerol treatment in a solution of 75 wt. % glycerol and 25 wt. % ethanol. The tissue is soaked in this solution for one hour at room temperature. During this time most of the water molecules present in the pericardial tissue are replaced with glycerol. The tissue is removed from the solution and placed in a clean hood to allow any excess solution to evaporate or drip off the tissue (Dry Storage 22, FIG. 7).
Sterilization

[0057] Sterilization is achieved by ethylene oxide (EO). The dehydrated tissue is packaged in double sterile barrier packaging consisting of a rigid tray (PETG) with a Tyvek lid. The package should be sealed in a cleanroom, and can be sterilized in 100% ethylene oxide.

[0058] In embodiments where the fixed and crosslinked tissue is dehydrated, such as in an ethanol/glycerol solution, the glycerol may include an antioxidant and may contain a water-soluble wax. The tissue is then allowed to dry and then subjected to final sterilization (e.g., ethylene oxide, gamma irradiation, or electron beam irradiation).

[0059] The crosslinking agent is often comprised of a crosslinking agent selected from polymeric diamines, such as Jeffamine D, ED and EDR.

[0060] Polymeric diamines include, for example, diamino acids, such as lysine,

[0061] hydrophilic multifunctional polymers containing at least two amino groups,

[0062] hydrophobic multifunctional polymers containing at least two amino groups.

[0064] The reducing agent may be sodium borohydride, potassium borohydride, cyanoborohydride and the like.

[0065] The reducing agent is desiredly selected from a water soluble antioxidant such as ascorbic acid, a fat soluble antioxidant such as tocopherols, a carbohydrate such as fructose, sucrose, or mannitol, a hindered phenol such as butylated hydroxytoluene (BHT), a hindered amine light stabilizer (HALS) such as p-phenylamine diamine, trimethyl dihydrodiquinoline, or alkylated diphenyl amines, a phosphite/phosphonite such as triphenyl phosphite, and a thiostear such as a thiocinnamate.

[0066] The diamine is desirably delivered in one or a combination of the following solutions:

[0067] an aqueous solution such as an aqueous buffered solution, water, short chain alcohols, glycerol, or plasticizers.

[0068] an organic solvent, and

[0069] an organic buffered solution.

[0070] The diamine crosslinking agents are generally used a) at a concentration of 0.02 M to 1 M, preferably 0.1 M; b) for a period of 1 hour to 4 days, preferably 48 hours; c) at temperatures between 4°C and 50°C, preferably 37°C; and d) at pH between 8 and 13, preferably 11.7.

[0071] The reducing agents, such as sodium borohydride, are generally used a) at a concentration between 0.05% and 1%, preferably 0.25%; b) for a period of 1 hr to 3 days, preferably 24 hr; c) at temperature between 4°C and 40°C, preferably 37°C.

[0072] During the high temperature fixing step, the glutaraldehyde concentration is generally 0.1 to 6 wt. %, preferably 0.6 wt. %, and treated for 1 to 25 days, preferably 18 days at a temperature of from 20 to 70°C, preferably 52°C ± 2.5°C; at a pH between 5.4 to 6.8, preferably 5.8. The other fixing steps preceding or following the high temperature step are generally 0.6% Glut at pH 7.4 at room temperature. In another embodiment, heated Glut can be replaced by heated buffer solution under similar conditions.

[0073] In a preferred embodiment the fixed tissue is treated in a surfactant solution to eliminate phospholipids. For example the surfactant solution may contain formaldehyde, ethanol and Tween 80.

[0074] In one embodiment of the invention the prosthetic tissue is a heart valve or leaflets retrieved from animals, mounted within a stent and used as a treated whole valve. In another embodiment, the tissue is bovine pericardium used to form heart valve leaflets which are used to produce a bioprosthetic heart valve.

[0075] In another embodiment the processed tissue is a native valve treated and mounted as a whole valve. A treated whole valve may be stored in a glutaraldehyde solution at a concentration from 0.1% to 2%, preferably 0.6 wt. %.

[0076] In one embodiment the treated whole valve is stored as a dehydrated valve; preferably tissue dehydration is achieved in a glycerol solution. In another embodiment the dehydrated valve is sterilized in ethylene oxide.

[0077] In one embodiment for preparing a bioprosthetic implant tissue, the glutaraldehyde fixing step is conducted at about 50°C and pH 5.8 for at least 7 days, and with a diamine crosslinking agent is conducted in the presence of a reducing agent, preferably sodium borohydride.

[0078] To better understand the crosslinking properties of the invention, charts are presented in the figures which are based on subcutaneous testing of multiple samples.

[0079] FIG. 1 shows calcium mitigation effect of high temperature Glut at different Glut concentrations. Bovine pericardium tissue was first treated with 0.6% Glut at room temperature. Then the control group was treated with 0.6% Glut for 6 days at 50°C under agitation. The two other groups were treated with 2.4% and 5% Glut for 6 days at 50°C under agitation. Tissues were implanted for 3 weeks in rats. The results show that the calcium mitigation in the 5% Glut group is superior to the 2.4% and 0.6% Glut groups (97.40% vs. 87.00% vs. 72.70 μg/mg), a decrease of 25%.

[0080] FIG. 2 shows tissue calcification of porcine specimens treated with different amines after implantation in rat for 6 weeks. The control samples were fixed with glutaraldehyde only. The test samples were fixed with glutaraldehyde and then capped with saline (ALA), ethanolamine (EA), lysine (LYS) or Jeffamine (JEFF). The results show that the crosslinking agent Jeffamine (55.6 μg/mg) was superior to lysine (90.2 μg/mg); which may also be functioning as a crosslinker, and both were superior to the monoamine compounds ethanolamine (135.5 μg/mL) and alanine (146.5 μg/mg).

[0081] FIG. 3 shows the calcium mitigation of glutaraldehyde-fixed tissue treated with 0.3 M Jeffamine for 24 hours or 48 hours compared to that treated with 0.5 M ethanolamine for the same time, then implanted subcutaneously in rats for 6 weeks. Results show that Jeffamine is superior to ethanolamine.

[0082] FIG. 4 shows the calcium mitigation of glutaraldehyde-fixed tissue treated with Jeffamine and borohydride, then post-treated with glutaraldehyde. After implantation for 3 months in rats, a decrease of 99.6% calcium was observed (144.5 vs. 0.6 μg/mg) in Jeffamine and NaBH₄ treated tissue. Different conditions of storage: Glut or 75% glycerol/25% ethanol were analysed.

[0083] FIG. 5 shows high calcium mitigation of Glut tissue treated by lysine for 16 hours preceded by heat Glut treatment. Compared to the control group without lysine, the group with lysine shows a 99.2% calcium decrease after implantation for 5 weeks in rats.

[0084] FIG. 6 shows the calcium mitigation effect of a treatment comprising heated Glut, lysine and surfactant. First the tissue was exposed to a concentrated (5%) glutaraldehyde solution at pH 5.8 at 50°C for 6 days under agitation, then to 0.6% Glut at room temperature for at least 3 days. Capping/
crosslinking with 0.5 M lysine in distilled water (DW) for 24 hours at 37°C, was followed by treatment with 0.6% Glut at pH 7.4 for 24 hrs. Surfactant treatment (FET) for 9 hrs at 32°C was done either before or after lysine treatment. Storage is done in 0.6% Glut at 4°C.

[0085] FIG. 7 is a flow chart showing an embodiment of the inventive process. The tissue is exposed to a 0.6% glutaraldehyde solution at pH 5.8 at 50°C for 18 days, then 0.6% Glut at room temperature for at least 2 days. Capping/crosslinking with 0.1±0.01 M Jeffamine in distilled water (DW) for 24 hours at 37°C, is followed by further exposure to Jeffamine under reducing conditions with sodium borohydride for 24 hours at 37°C. This step is followed by treatment with 0.6% Glut at pH 7.4 for at least 2-3 days and then Surfactant (FET) for 9 hrs at 32°C. Storage is done in 0.6% Glut at 4°C, or optionally in a solution of 75% glycerol/25% ethanol.

EXAMPLES

Example 1
Calcification Mitigation—Rat Model

[0086] In order to evaluate the calcification mitigation properties of pericardial tissue treated in accordance with the method described herein (“SFX-treated”), animal feasibility studies were conducted. After rinsing of the samples in 0.9% NaCl to eliminate excess Glut, 18 samples/treatment (n=4/ rat) were implanted subcutaneously on the back of 12 day old rats for 6 weeks (Fig. 3). These studies demonstrated that Jeffamine crosslinking/sodium borohydride treatment is superior to ethanolamine/sodium borohydride which is superior to the control group (Glut only) in mitigating the occurrence of calcification in tissue. In all studies in rats, SFX-treated tissue demonstrated reduced variability in calcification data when compared to control tissue. Data from intramuscular implantation in mabts were discarded because they were associated with too many variations.

Example 2
Aldehyde Crosslinking Using Jeffamine and Sodium Borohydride of Glutaraldehyde-Fixed Tissue

[0087] Bioprosthetic tissue was removed from 0.625% glutaraldehyde just after a heat treatment step, and stored in 0.6% Glut (pH 7.4) for 2 days. One litre of crosslinking solution was prepared containing 333 mM Jeffamine (Polv clickable) and 0.25% sodium borohydride in DW. The capping solution was placed on an orbital shaker, then tissues (leaflet, pericardium) were placed in the solution with a ratio of 3 leaflets per 100 mL. The container was not completely sealed because hydrogen gas liberated by the chemical reaction with water could cause the container to explode. The orbital shaker was operated at between 60-80 rpm for 24 hours at 37°C. The tissue was removed and stored in 0.6% Glut solution for 3-3 days and then treated in the FET solution (formaldehyde, ethanol, Tween-80) for 9 hours at 32°C before being stored in 0.6% Glut solution until implantation.

Example 3
Amino Group Crosslinking Using a High Concentration of Dialdehydes at High Temperature

[0088] As shown in FIG. 6, tissues were treated first at 50°C for 6 days, then in 0.5 M lysine for 24 hours at 37°C with agitation. The FET treatment was applied either before or after lysine treatment.

[0089] The effect of lysine treatment is cumulative to the heat treatment, and FET further improves results. The place of FET could play a role with a preference when FET is after lysine treatment.

Example 4
Storage

[0090] Two storage processes have been developed:

1.—Low Concentration Glutaraldehyde Storage:

[0091] This is the preferred storage process for valves prepared using tissue treated according to the method described herein. Provided that certain conditions are respected, storage in glut does not enhance calcium mitigation. These conditions are storage in 0.6% Glut for at least 2 months and thorough rinsing before implantation.

2.—No Glutaraldehyde Storage: Glycerol

[0092] An alternative to avoid glutaraldehyde as a storage solution is to dehydrate the bioprosthetic tissue in a glycerol/ethanol mixture, sterilize with ethylene oxide, and package the final product “dry.” This process is said to circumvent the potential toxicity and calcification effects of glutaraldehyde as a sterilant and storage solution. There have been several methods proposed to use glicerine, alcohols, and combinations thereof as post-glut processing methods so that the resulting tissue is in a “dry” state. The storage of heart valve tissue in glycerol was described by Parker et al. (Thorax 1978 33:638), but does not include any calcification mitigation techniques and does not describe any advantages. Also, U.S. Pat. No. 6,534,004 (Chen et al.) describes the storage of bioprosthetic tissue in polyhydric alcohols such as glycerol. However, neither of these methods addresses mitigating potential oxidation of the tissue. The recommended process was described in Edwards U.S. Patent Publication no. 2009/0164005. While the invention has been described in terms of exemplary embodiments, it is to be understood that these examples are descriptive and are not meant to be limiting. Therefore, changes may be made within the appended claims without departing from the true scope of the invention.

What is claimed is:

1. A packaged bioprosthetic device comprising:
a dry collagenous tissue comprising at least first and second sets of crosslinkages, wherein the first set of crosslinkages is provided between free amine functional groups on the collagenous tissue, wherein the second set of crosslinkages is provided between free aldehyde functional groups, and wherein at least a portion of the water initially present in the dry collagenous tissue has been replaced with glycerol; and
a packaging containing the dry collagenous tissue.

2. The packaged bioprosthetic device of claim 1, wherein the first set of crosslinkages is provided by reaction of a first dialdehyde with the free amine functional groups.
3. The packaged bioprosthetic device of claim 2, wherein the first dialdehyde is glutaraldehyde.

4. The packaged bioprosthetic device of claim 1, wherein the second set of crosslinkages is provided by reaction of a diamine with the free aldehyde functional groups.

5. The packaged bioprosthetic device of claim 4, wherein the diamine is one or more selected from the group consisting of: polyethyleneamine and lysine.

6. The packaged bioprosthetic device of claim 4, wherein the second set of crosslinkages includes Schiff bases.

7. The packaged bioprosthetic device of claim 6, wherein the Schiff bases are reduced by a reducing agent.

8. The packaged bioprosthetic device of claim 7, wherein the reducing agent is borohydride.

9. The packaged bioprosthetic device of claim 8, wherein the borohydride is one or more selected from the group consisting of: sodium borohydride, potassium borohydride and cyanoborohydride.

10. The packaged bioprosthetic device of claim 4, further comprising a third set of crosslinkages.

11. The packaged bioprosthetic device of claim 10, wherein the third set of crosslinkages is provided between free amine functional groups on the collagenous tissue, free amine functional groups of the diamine, or free amine functional groups on the collagenous tissue and the diamine.

12. The packaged bioprosthetic device of claim 11, wherein the third set of crosslinkages is provided by reaction of a second dialdehyde with the free amine functional groups on the collagenous tissue, the free amine functional groups of the diamine, or both.

13. The packaged bioprosthetic device of claim 12, wherein the second dialdehyde is glutaraldehyde.

14. The packaged bioprosthetic device of claim 1, wherein the second set of crosslinkages is provided between free aldehyde functional groups on the collagenous tissue.

15. The packaged bioprosthetic device of claim 1, wherein the collagenous tissue is selected from the group consisting of: bovine pericardium, porcine tissue, blood vessels, skin, dura mater, pericardium, small intestinal submucosa, tissue heart valves, ligaments, and tendons.

16. The packaged bioprosthetic device of claim 15, wherein the collagenous tissue is a native valve treated and mounted as a whole valve.

17. The packaged bioprosthetic device of claim 1, wherein the bioprosthetic device is a bioprosthetic heart valve and the dry collagenous tissue form leaflets of the bioprosthetic heart valve.

18. The packaged bioprosthetic device of claim 17, wherein the packaged dry collagenous tissue is sterilized.

19. The packaged bioprosthetic device of claim 18, wherein the packaged dry collagenous tissue is sterilized with ethylene oxide.

20. The packaged bioprosthetic device of claim 19, wherein the packaging comprises a double sterile barrier packaging.