07/1.48244 A1 |0 00 OO 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘, | [I

) IO O T 0O

International Bureau

(43) International Publication Date
27 December 2007 (27.12.2007)

(10) International Publication Number

WO 2007/148244 Al

(51) International Patent Classification:
GOG6F 7/58 (2006.01)

(21) International Application Number:
PCT/IB2007/051976

(22) International Filing Date: 25 May 2007 (25.05.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

06115696.4 20 June 2006 (20.06.2006) EP

(71) Applicant (for all designated States except US): NXP B.V.
[NL/NL]; High Tech Campus 60, NL-EINDHOVEN 5656
Ag (NL).

(72) Inventor; and

(75) Inventor/Applicant (for US only): NAGARAJ, Kiran
[IN/IN]; ¢/o NXP Semiconductors Austria GmbH, Intel-
lectual Property Department, Gutheil-Schoder-Gasse 8-12,
A-1102 Vienna (AT).

(74) Agents: ROGGLA, Harald et al.; NXP Semiconductors
Austria GmbH, Intellectual Property Department, Gutheil-
Schoder-Gasse 8-12, A-1102 Vienna (AT).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
7ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
with international search report

[Continued on next page]

(54) Title: RANDOM NUMBER GENERATOR SYSTEM, METHOD FOR GENERATING RANDOM NUMBERS

103 Current Timf;y
Process Id

External
{ Seed)\"wz

e ———
Updates the N i t#li“iw
Internal Seed 101~ IntenaiSeed | " E;?gf; geLEC?
i = ouUtpUL. C tati . :
using the outpu . omputation This is done only
s S — for first time
104 = /
: | 108
we,_ﬁ_ Uninitialised) 07
- , I e < [Veriable
Seed - e
\\\\\ o 1 Updates the
___________ B S a uninitialised
1061 Return W Random Number ;i:?:{;? C)"gg:
Address) Generator e e
""""""""" - 05— - T Invocation |y
T Counter N
110~ Updates the Sl
Internal Seed i STEP #2:
with output. Compute the
. “Randam. Randorn Number
Nurnber 109

Output

& (57) Abstract: According to an exemplary embodiment a random number generator system, comprises a pre-processing unit, and
a random number generation unit, wherein the pre-processing unit is adapted to calculate an internal seed out of an external seed
and/or system variables and/or dynamic variables related to stack, and wherein the random number generation unit is adapted to
generate a random number by using a determined function, wherein the determined function is a function of the internal seed and of

=

at least one dynamic runtime variable related to the stack.

WO 2007/148244 A1 | NININI0 DI 000 0T 00000 00

— before the expiration of the time limit for amending the For two-letter codes and other abbreviations, refer to the "Guid-
claims and to be republished in the event of receipt of ance Notes on Codes and Abbreviations” appearing at the begin-
amendments ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2007/148244 PCT/IB2007/051976

DESCRIPTION

RANDOM NUMBER GENERATOR SYSTEM, METHOD FOR GENERATING
RANDOM NUMBERS

The invention relates to a random number generator system, a method for generating
random numbers, a computer readable medium, and a program element, in particular to

a method for generating a random number.

There exist many algorithms or methods to generate random numbers. Almost always,
these algorithms are based on mathematical functions either directly or otherwise. Since
Mathematics is an “Exact Science”, there is always an element of certainty. Therefore,

these methods can also be called as "Pseudo” Random Number Generators.

Conventionally, the Random Number generating algorithms are constructed around a
single or multiple mathematical functions. Typically, they make use of a so-called
“seed”, which is to be initialized by the application. This seed is used in the function
that computes the next random number. Since a mathematical function is used, the
numbers that are generated by them form a well-defined sequence and the next random
number can be predicted. Therefore, it is actually not a “random” number generation.
The following formula (extracted from one of the random number generation algorithm

in a real-world application) exemplifies this:

random(x;) = (xi; * 31421) + 6927, where 1 <1 <n, and x¢ = 0.

The above function generates the following sequence of numbers:

10

15

20

WO 2007/148244 PCT/IB2007/051976

2
1 [Number of invocation] random(1)
0 6927
1 31421 * random(0) + 6927
2 31421 * random(1) + 6927
3 31421 * random(2) + 6927

Table 1

As can be seen in the above table the subsequent numbers can always be predicted. This

predictability induces a sense of “pseudoness” in the method.

Also, there exist some other methods to generate random numbers, which accept the

inputs from external sources like external hardware, application software etc.

For example, from US 5 778 069 a random number generator is known, which includes
an input device to assemble multiple classes of bits from multiple sources into an input
bit string. The multiple classes of bits include an internal class of bits from at least one
source internal to the random number generator, such as a static bit register, which
maintains the current state of the generator. The input device also gathers one or more
external classes of bits from one or more sources external to the random number
generator, such as a machine class of bits, which relate to operating parameters of the
computer and an application class of bits, which relate to execution of an application
running on the computer. The input device concatenates the three classes of bits into an
arbitrary length input bit string. The random number generator also has a hash
computing device, which computes an m-bit hash value of the input bit string assembled
by the input device. The hash computing device computes the hash value using a
hashing function, such as SHA (secure hash algorithm), whereby it is computationally
infeasible to derive the concatenated input bit string from the output hash value or

intentionally bias the output of the hash function. The SHA is a one-way hash that

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

reduces the 512-bit input bit string to a 160-bit hash value. The hash value becomes the
initializing seed for the random number generator. A stream generator (i.c., a stream
cipher) is coupled to the hash computing device to receive the hash value. The stream
generator uses the hash value as the initializing seed to produce an output bit string of

random (or pseudo random) bits.

Another method and system for generating pseudo-random numbers utilizing techniques
of both the SHA-1 and DES encryption standards is known from W02005/029315,
wherein a pseudo-random number generator is re-keyed periodically using an external
input of physical randomness. In accordance with one embodiment described therein, a
current seed value Sj is loaded from a non-volatile storage. Next, values E,
representative of environmental randomness, and Cm representative of configuration
data are likewise loaded. A new seed value Sj+1, is generated in accordance with the
equation Sj+1=f (Sj; A;C;E), wherein f represents a selected encryption algorithm, and
B is a second constant, and wherein Sj is concatenated with A, which is concatenated
with S which is concatenated with E. The new seed is then written to the non-volatile
storage. Next, a key, K, is generated in accordance with the equation K=f(Sj; B; C; E),
wherein B is a second constant. Lastly, a pseudo-random number putout, Pn, is
generated in accordance with equation Pn=f3DES(K, Pn-1) where f3DES represents the
operation of triple DES encryption hardware, and Pn-1 is the previously generated

pseudo-random number.

It may be desirable to provide a random number generator system, a method for
generating random numbers, a computer readable medium, and a program eclement,
which may generate random numbers in an efficient way without any dependency on

any kind of external hardware specific for this purpose alone.

This desire may be met by a random number generator system, a method for generating
random numbers, a computer readable medium, and a program element according to the

independent claims.

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

According to an exemplary embodiment a random number generator system comprises
a pre-processing unit and a random number generation unit, wherein the pre-processing
unit is adapted to calculate an internal seed out of an external seed and/or system
variables and/or dynamic variables, and wherein the random number generation unit is
adapted to generate a random number by using a determined function, wherein the
determined function is a function of the internal seed and of at least one dynamic

runtime variable related to the stack.

According to an exemplary embodiment a method for generating a random number by a
random number generation system is provided, the method comprises inputting an
external seed, generating an internal seed by using the external seed and/or system
variables and/or dynamic variables, and generating a random number by using a
predetermined function which is a function of the internal seed and at least one dynamic

runtime variable relating to the stack.

According to an exemplary embodiment a computer readable medium is provided in
which a program for generating a random number is stored, which program, when
executed by a processor, is adapted to control a method comprising inputting an
external seed and/or system variables and/or dynamic variables, generating an internal
seed by using the external seed, and generating a random number by using a
predetermined function which is a function of the internal seed and at least one dynamic

runtime variable relating to the stack.

According to an exemplary embodiment a program element for generating a random
number is stored, which program, when executed by a processor, is adapted to control a
method comprising inputting an external seed, generating an internal seed by using the
external seed and/or system variables and/or dynamic variables, and generating a
random number by using a predetermined function which is a function of the internal

seed and at least one dynamic runtime variable relating to the stack.

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

It may be seen as the gist of an exemplary embodiment of the present invention that a
new, simple and comprehensible method to implement a random number generator may
be provided, different from their conventional counterparts, in the sense that it may not
make use of a mathematical function to generate random numbers. Instead, it exploits
on the dynamic elements (or the run time environment) of a system 1i.e. uses the contents
of the stack of an executing process / task / thread as input parameters for generating
random numbers, since the stack is one of the most dynamic (as it grows and shrinks)
entities of the operating environment, in which this algorithm executes, thereby making
the random number generation more unpredictable and hence more “random”. That is,
according to an exemplary embodiment, it might be exploited that the execution
environment of an application itself provides many dynamic parameters that easily
qualify to be better candidates as inputs for the random number generation algorithm.
One of the most indispensable entities of the execution environment is the stack. The
processor implicitly assumes the existence of a stack while execution. Because of the
multi-tasking abstraction provided by the operating system, it provides a separate stack
for each process / task (in case of a multi-threaded application, each thread has its own
stack). Each process / task uses its stack for its execution. During execution of a
program, the stack grows and shrinks with every function call and return, respectively.

Therefore, the contents of the stack are ever changing.

Compared to the method according to US 5 778 069 a fundamental difference might be
that according to US 5 778 069 for a given input initial seed, the random number
generation sequence will remain the same, in order to facilitate the decryption of the
encrypted text, since US 5 778 069 belongs towards cryptographic applications.
However, according to the above mentioned exemplary embodiment of the present
invention, different random numbers are generated irrespective of the external (initial)

input seed value, the place of invocation of the method, or consecutive invocations.

The term “function” has to be understood in a broad sense and not limited to a

mathematical function. It might as well be that the initial seed, which might represent a

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

string of bits, is formed into the number, which corresponds to this string of bits so that

no further calculation or mathematical operation is necessary.

In the following, further exemplary embodiments of the random number generator
system will be described. However, these embodiments apply also for the method for

generating random numbers, the computer readable medium and the program element.

According to another exemplary embodiment of the random number generator system
the at least one dynamic runtime variable relates to one out of the group consisting of:
return address, program counter, stack pointer, un-initialized local variables,

architecture-specific register values stored on the stack.

All such dynamic runtime variables are more “unreliable” parameters. Thus, it is looked
beyond the usage of a mathematical function, in order for the algorithm to generate a
more “random” value. However, additionally a mathematical function may be also
combined with these parameters to possibly make the random number generator system
more effective. The predetermined (executing) function may use only a part of the stack
called the “Stack Frame”. The stack frame of the executing function is called the
‘Active Stack Frame’. Typically, the contents of the stack frame may be the return
address, some architecture dependant registers, local variables etc. Each function, when
invoked, may create its own stack frame and may revert the same when it returns. By
virtue of the very nature of processor execution, the stack space may be shared between

one or more function, which is at the same level of invocation.

The local variables in the stack frame may be used by that function alone. It may not be
mandatory to initialise these variables. If the local variable is not initialised, then it may
contain the value that existed on the stack as initialised by the previously invoked
functions. Together with the number of functions that the process / task may invoke
(maybe within the same program or external library), it may be almost impossible to

predict the contents of the stack.

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

Also, the return address on the stack may vary when the function is invoked from
various places in the process / task. Therefore, it may also be difficult to predict what
the return address would be from within a given function. The parameters such as the
return address and un-initialised local variables may therefore be used as input
parameters for the random number generation algorithms, because, “unpredictability”

itself is an essential characteristic of a random number generator.

According to one aspect, the random number generation system is adapted to use an
algorithm, which uses the return address and the un-initialised local variables as their
inputs. Along with these, there may be an external seed value supplied by the caller, an

internal seed value and the invocation counter.

According to another exemplary embodiment the random number generator system
further comprises a post-processing unit, wherein the post-processing unit is adapted to

post process the random number.

The post-processing unit operates upon the generated random number and, if necessary,
operates upon the random number to generate a more random value. The output of this
post-processing unit is the final random number output by the system. For example, the
post-processing unit may be adapted to perform bit manipulation of the generated
random number to output a random number that contains almost the same numbers of
Is and 0s. Or perform some other bit manipulations such as XOR, NAND, and NOR

operations and the like.

According to another exemplary embodiment of the random number generator system
the random number generator system is adapted to calculate the internal seed out of the
external seed and a system variable when calculating a first random number. Preferably,
this calculation of an internal seed by using the external seed is only done when the
random number generator is invoked the first time, i.c. to calculate the first random

number of a consecutive row of random numbers. Preferably, the system variable is one

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

out of the group consisting of Process ID, Task ID, Thread ID, Return Address, Un-

initialised local variable, present time, time stamp and system time.

According to another exemplary embodiment of the random number generator system
the random number generator system is adapted to use the first random number as the
internal seed for the generation of a second random number, and possible subsequent
random numbers. Preferably, the second random number is a consecutive random

number of the first random number, i.e. the next generated random number.

By using a first random number as the internal seed for the calculation of the next
random number it may be possible to provide a sequence of random numbers which is
much more random than the sequences of pseudo-random numbers which are generated
by a system according to the prior art. Thus, a sequence of random numbers may be
generated wherein for the generation of a next random number always the directly or
indirectly, e.g. by manipulating the bits of the random number and then copying,

foregoing random number is used as the internal seed.

In the following, further exemplary embodiments of the method for generating random
numbers will be described. However, these embodiments apply also for the random

number generator system, the computer readable medium and the program element.

According to another exemplary embodiment of the method the at least one dynamic
runtime variable relates to one out of the group consisting of: return address, program
counter, stack pointer, un-initialized local variables, architecture-specific register values

stored on the stack.

According to another exemplary embodiment of the method the predetermined function
comprises the selecting of some bits from the internal seed and of some bits of the at
least one dynamic runtime variable. Alternatively, the predetermined function
comprises the concatenating of all bits from the internal seed and of the at least one

dynamic runtime variable. Further, alternatively predetermined function comprises the

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

mixing of all bits from the internal seed and of all bits of the at least one dynamic

runtime variable.

All the above mentioned methods may be efficient ways to generate a random number,

which is highly random out of the different input parameters.

According to another exemplary embodiment of the method the predetermined function

is a DES encryption algorithm or a Hash-algorithm, ¢.g. the SHA-1 algorithm or alike.

According to another exemplary embodiment the method further comprises up-dating
the internal seed by using the first generated random number. Preferably, the method
further comprises up-dating a local un-initialized variable by using the generated

random number.

Both of these measures may ensure that a random number generated after the first
random number, i.¢. a consecutive random number, may be more random in relation to
the first random number, i.e. the sequence of random numbers generated in such a way
may be more random than a sequence of random numbers generated according to a

method according to the prior art.

According to another exemplary embodiment the method further comprises post-
processing the generated random number by using bit manipulations. Preferably, the bit
manipulating is at least one out of the group consisting of substantially equalizing a

number of 1 and 0 in the generated random number, XOR, NAND, and NOR.

According to another exemplary embodiment of the method the at least one dynamic
runtime variable related to a currently active stack or a and/or valid stack frames of the
calling function(s) that lic below the currently active stack frame and/r unused stack

space that lie above the currently active stack frame.

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

10

According to another exemplary embodiment of the method the return address is de-
referenced to obtain operation code, and the obtained operation code is used as one of

the dynamic runtime variables related to stack.

According to another exemplary embodiment the method further comprises reading a
value in any valid memory location, wherein the value is used as one of the dynamic
runtime variables related to stack. The memory may either be a statically or dynamically

allocated memory.

According to another exemplary embodiment of the method in the pre-processing step
at least one of the dynamic runtime variables related to stack is used; and/or in the

generation step at least one of the system variables is used.

It may be seen as a gist of an exemplary embodiment that a random number generation
method is provided, wherein a random number generator is not built around a
mathematical function to generate the random number. Instead, it makes use of runtime
environment of the generator program (thread or task or process, for example). This
phenomenon may be a key feature of this algorithm. This concept may induce an
element of uncertainty, owing to the dynamic characteristics of the runtime
environment, to the method of generating the random numbers. Such an “uncertainty”
itself is an essential characteristic of a random number generator. At any given point in
time, the runtime environment of a process / task may be represented by the Program
Counter (PC), the Stack Pointer (SP), register contents and the stack contents, and
return address. Also these parameters are really “dynamic” (as their values are ever
changing). These parameters, therefore, may qualify as choices to represent the run time
environment. Also, other dynamic elements such as system timers or any other variable
available in the environment may also be employed in particular for the generation of

the internal seed from an external seed.

Contrary thereto, the method, described in US 5 778 069, is mainly targeted towards
Cryptographic Applications. Whereas the present application is not targeted to any

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

11

particular application. US 5 778 069 also mentions that for a given input initial seed, the
random number generation sequence will remain same (to facilitate the decryption of
the encrypted text). However, the present application is intended to generate different
random numbers irrespective of the initial input seed value, or the place of invocation of
the function, or consecutive invocations et cetera. Apparently, The method described in
US 5 778 069 is intended for PC (or related desktop / server) type computers, since
certain parameters that are listed under the machine class of bits are applicable only in
the PC environment. In contrast, the teaching of the present application can be applied
also in embedded environments. In the method described in US 5 778 069 the
application class of bits is to be supplied by the application using this method.
Therefore, the method described in US 5 778 069 is partly dependent on the client to
provide an input bit string. In case the application provides an input bit string consisting
of say all zeros or all ones the overall randomness of the input bit string would be
reduced. In contrast, according to the present invention although the external seed is
supplied by the client, it is not the only input parameter that is used to calculate the

Internal Seed and consequently the random number itself.

WO 2005/029315 discloses a hardware implementation of the method to generate
pseudo-random numbers. In particular, this method requires special hardware like
triple-DES encryption hardware, external (or on-chip) non-volatile memory, protected
ROM to store constants. In contrast, the present application does not pose any such
constraint. The method of WO 2005/029315 poses certain severely limiting physical
constraints that are assumed — the potential adversaries must not have unsupervised
access to this equipment, especially the off-chip non-volatile memory to be kept secure
from unauthorized access. Further it is assumed that the attacker does not have
unsupervised access to the electrical interface. All of these constraints are not imposed

in a method according to the present invention.

According to one exemplary aspect of this invention, the random number generation
makes use of the above-mentioned dynamic parameters of the operating environment.

The process itself may be categorized into multiple stages: pre-processing, generation,

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

12

and post-processing (optional). It must be noted that this classification, is only for the

purpose of understanding and does not form the essence of this application.

The pre-processing step may accept an external seed and other runtime variables like a
time stamp and uses them to generate an internal seed. The generation step may use the
internal seed and dynamic runtime variables relating to the stack content as input to
generate a random number. The post-processing step may operate upon the generated
random number and, if necessary, operates upon the random number to generate a more
random value. This step is optional. The output of this step may be the final random

number output by the system.

Random numbers are used widely by various applications on a variety of platforms.
These application might include, on the ubiquitous PC platform, the development of
various game programs that involve some sort of random selection like card games etc.,
generating random play lists on the PC based media players, for generating names some
temporarily used objects. That is, 1. generating names for temporary files that are by
product of a bigger process — for example, a C compiler generates a temporary
intermediate file after every stage of compilation, and 2. performing name mangling for
certain symbols during compilation et cetera. Random number generation functions are
also part and parcel of the standard programming libraries (like libc etc.). Further,
application might include making “dynamic and ever changing” web pages involving
rich applets, generating session identifiers in web browsers; computer modelling and
simulations et cetera. Further applications might be on play / gaming stations / kiosks in
casinos that require some sort of random selection, and/or on other embedded platforms,
like the DVD Players / DVD Recorders, the random number generation function to
generate shuffled play lists of media files (MP3 files, Chapters in a DVD Title etc.). It
can also be of use on mobile phone platforms considering the amount of variety and
complexity that is getting into these devices. Or to various other devices. In recent years
the proliferation of security-related applications has increased the need for good random
numbers for example the automatic password generation programs, keys used in

SSL/TLS-enabled web browsers, or random challenges in Kerberos. In cryptographic

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

13

applications, the random number generators are employed to generate the key values
(public / private) or the initial seed values or the message digest. Therefore, the variety

of its applications makes this idea more “fundamental” and the scope of its impact is broad.

These and other aspects of the present invention will become apparent from and
clucidated with reference to the embodiment described hereinafter. It should be noted
that all aspects and embodiments described anywhere in this application may be mixed

and/or combined with each other.

An exemplary embodiment of the present invention will be described in the following,

with reference to the following drawings.

Fig. 1 shows a simplified schematic flowchart of a method for generating random
numbers according to an exemplary embodiment.

Fig. 2 shows a simplified schematic stack frame.

Fig. 3 shows a schematically diagram of a sequence of random numbers generated by a
method according to an exemplary embodiment.

Fig. 4 shows a schematically organization of multiple stack frames.

The illustration in the drawings is schematically. In different drawings, similar or

identical elements are provided with the similar or identical reference signs.

In the following an exemplary embodiment of a random number generation is described
in more detail. The proposed random number generation method makes use of stack
based runtime parameters (like return address, stack contents, seed value, un-initialized
local variables) as input to generate the random number. This process can be
categorized into multiple steps: pre-processing (or internal seed computation),

generation, and post-processing (optional).

The internal seed computation 101 accepts the various stack based runtime input

parameters like external seed 102, current time and/or process ID / Task ID103, and the

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

14

like and uses them to generate the internal seed. The internal seed computation 101
involves selecting some bits from each of the input parameters and combining them in
such a way that the output internal seed 104 is as random as possible. The order of
selection of bits, and/or their positions from various input parameters can vary with
each invocation of the random number generator to make the output much more
unpredictable. The present embodiment may not mandate the way in which the input
parameters are combined. Therefore, it may be up to the implementation to perform an
optimal combination that yields the best possible output value. Alternatively, the
internal seed computation can also involve concatenation of the input parameters to

obtain a longer input value, provided the computing environment and platform supports.

The first part, the internal seed computation, is executed only once when the random
number function is invoked for the first time (i.e., when an invocation count is zero).
The purpose of this step is to compute a value to the internal seed. The internal seed is a
persistent local variable that is used as an input for the second part — to a generate
random number. The external seed, the current process / task id (and also thread id, in
case of a multi-threaded application), and the current time are hashed to obtain the
internal seed. The hash algorithm can be a one-way function that reduces larger input bit
string to a smaller bit string (For example, a diluted variant of a SHA-1 algorithm is
used that converts a 128 bit input string to a 32 bit output string). Alternatively, the
initialization of the internal seed can also be implemented as part of a different function

altogether, which shall be called prior to the actual random number generation algorithm.

In the second step, the actual random number is computed 105. The internal seed 104,
the return address 106, the un-initialized local variable 107 and the invocation counter
111 are hashed to generate a random number. The invocation counter is incremented
every time the function is invoked. The un-initialized variable 107 is then initialized
with the value of the internal seed, indicated by the arrow 108. And the internal seed is
updated with the value of the random number computed 109, so that the value is
retained for subsequent invocations to compute new random numbers. This updating is

indicated in Fig. 1 by the arrow 110. It is evident that the randomness can be improved

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

15

by using more un-initialized local variables — the higher the number, the better the

randomness.

In some rare scenarios, it might be possible that the random number generation
algorithm is invoked from the same place within a loop, in which case the return
address on the stack remains same. Therefore, the return address alone may not suffice.
Also, the contents of the stack are likely to remain same. This scenario appears to an
ultimate test case. Therefore, to retain uniqueness, it is required that the at least one of
the input parameters should vary. Under such circumstances, the invocation counter
(static variable) and the internal seed (static variable) serve the purpose. Also, some
compilers generate code such that the local stack variables are implicitly initialized to a
default value when the stack frame is made. In some other scenarios, especially on PCs,
the consecutive execution of the same program might yield similar results. Therefore, to
ensure the randomness of the random number series, it is required to have a unique
internal seed computation. Therefore, the Process / task 1d (and/or Thread Id), and/or the
current time are used to compute the internal seed. The random number generation
algorithm, if implemented as a shared library (or a DLL) can yield better results, as the

same function is shared across different processes / threads.

Having discussed about the dynamic stack contents like the return address, un-
initialized local variables etc, the description of the stack layout is in order. Most
platforms (processor architecture / operating environment) use the following stack
layout, which is schematically shown in Fig. 2. Also, by default, the compilers generate
code for the same layout. The stack can be viewed as consisting a number of stack
frames, each frame representing a function. The frame that represents the currently

executing function is called the “Active Stack Frame”.

The post-processing step is optional and operates upon the generated random number
and, if necessary, operates upon the random number to generate a more random value.
This step is optional. The output of this step is the final random number output by the

system. Typically, it may be used to perform bit manipulation of the generated random

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

16

value to output a random number that contains of almost even number of 1s and 0s. Or

perform some other bit manipulations such as XOR, NAND, and NOR operations et cetera.

As already mentioned, most platforms (processor architecture/operating environment)
use the following stack layout, which is schematically shown in Fig. 2. Also, by default,
the compilers generate code for the same layout, unless instructed otherwise. The stack
can be viewed as consisting a number of stack frames, each frame representing a

function. A typical stack frame is depicted in Fig. 2.

As indicated in the Fig. 2, the return address 200 is stored on the stack just above the
first argument to the function 201. The parameters are stored in reverse order on the
stack. Therefore, the return address can be retrieved by using a pointer, and pointing it
to the location above the first parameter, and de-referencing the pointer. The stack
frame of each function is stored one above the other, such that the called function’s
stack frame is above the calling function’s stack frame (see Fig. 4). Therefore, all the
stack frames that lie below the current frame are valid and therefore can be used to
retrieve the values randomly. These values can be used as input parameters to the
random number generation too. But the memory that lies above the current stack frame
cannot be accessed as it is not known whether it is valid (see Fig. 4). Perhaps on PC it
can be accessed too, as the invalid memory access results in a page fault, which the
Operating System handles gracefully, by loading the requested page into the address

space of the process / task.

However, it is imperative that the contents of these stack memory remains unaltered.
Therefore, these memory locations on the stack is only read and not modified. As an
enhancement, the following could also be implemented. The return address of a function
indicates the address from where the execution would resume when this function
returns. Since the return address varies depending upon the place of invocation, it
follows that the instruction to be executed next can also be different. Therefore, the

corresponding instruction operation-code (opcode) can also be used as input parameter

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

17

to generate the random number. This opcode can be retrieved by de-referencing the

return address.

As another enhancement to this embodiment, it is interesting to note that randomness
can also be extracted from dynamic memory allocations. It is possible to allocate a
varying size of memory. Depending upon the size (and the algorithm internally
followed by the memory manager), the starting address of the allocated memory might
vary. This can also be a candidate for input parameters to calculate the random number.
The contents of the allocated memory can also be random (but some standard libraries

initialize them with default data).

It is evident that the return address alone might not guarantee a “true randomness”.
Therefore, other parameters that vary contiguously (either autonomously or otherwise)
may also be involved in the computation. For example, the time is one of the parameter
that is varying (autonomously) with every invocation. The time value can be queried
from the system timers, real time clock, or time stamp counters etc. Also, maintaining
anun-initialized stack variable is also possible. Since the stack grows and shrinks during
the executionof the program, the value of the un-initialized stack variable keeps changing
with various functions overwriting the value. However, in such cases as illustrated in
Fig. 2, the value could remain same. This is why the value of the un-initialized variable

is updated, (after it is used) with the Internal Seed after the generation step.

In the following a so-called pseudo code of an exemplary embodiment of the method is

described.

GetRandomNumber(ExternalSeed)
{
/* Retrieve the return address */
/* This is as per the stack layout defined in the Fig.2.
It is specific to architecture. */
pRA = ADDRESSOF(ExternalSeed);
pPRA =pRA —I;

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976
18

/* STEP #1: Internal Seed Computation */

IF Nrlnvocations = 0 THEN
/* Get the current process id and time */
Pid = getpid();

Time = time();

InternalSeed = Hash(ExternalSeed, Pid, Time);
ENDIF

/* Increment the invocation counter */

Nrlnvocations = Nrlnvocations + 1;

/* STEP #2: Random Number Generation */

RandomNumber = Hash(InternalSeed,
ReturnAddress,
Uninitialised,

Nrlnvocations);
/* Update the Internal Seed and Uninitialised value */
Uninitialised = InternalSeed,;

InternalSeed = RandomNumber;

return RandomNumber;

The RandomFunction() routine is the actual function that computes the next random

number. It is interesting to note that there can be many implementations possible for the

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

19

RandomFunction() routine. Therefore, it offers a flexibility to choose an optimal

random number generator function depending upon the requirement.

The Hash() routine is any one-way hash algorithm like SHA family of algorithms. It
follows that the randomness of the implementation can be improved by using a better
hash function — the better the hash function, better the randomness. Again, it is not the
only implementation that is possible. The implementation can be improved by using

better hash algorithms and hashing multiple times.

As an exemplary embodiment this method was implemented and executed on MS
Windows (Visual Studio Compiler) and Linux (gcc compiler) platforms both running on
Intel 32-bit Pentium architecture. One of the possible implementation along with the test
data and results are provided here to illustrate the concept. This is a very restrictive
implementation of the proposed algorithm. This is because, the enclosed
implementation, the random number is generated in a loop, which implies that the return
address does remain constant. The randomness can be improved by a real life
application which calls random number generator from various locations / context. On a

64-bit machine this can yield better randomness.

This implementation was tested on an Intel Pentium based 32-bit machine on both
Linux and Windows platforms. The random number generator algorithm generates a 32
bit random number. The results of this test are shown in Fig. 3. The random number
generator was invoked N [=101] number of times. The random number generated is

sampled and the line graph depicting the variations is generated.

Fig. 3 depicts a range of 232 bits (equivalent to an interval 0 — 4294967295). Each dot
represent one generated random number having a value between 0 and 4294967295. 1t
can be noticed that between two consecutive random numbers the sufficient variation
exist and hence the zig-zag curve. Also, the generated random numbers are uniformly

spread across such a huge range of values.

10

15

WO 2007/148244

20

PCT/IB2007/051976

Fig. 4 shows a schematically organization of multiple stack frames. Such a multiple

stack frame comprises several parts. In the middle of Fig. 4 a part is shown which

relates to the currently active stack frame 401. In Fig. 4 above this currently active stack

frame 401 the unused stack space 400 is depicted, while below the currently active stack

frame 401 the part of the stack frame is shown which represents the stack frame valid

for calling function 402.

In the following the random numbers generated by this exemplary embodiment were

tested by the ENT tool, which is available on the web and which performs a variety of

tests on the random sequence. These tests include the Entropy Test, Arithmetic Mean,

Monte-Carlo method etc. Using the above implementation, a large number of random

numbers was generated [N = 10,000,001]. This output was given to the ENT tool. Also,

the same number of random values were generated using the standard library rand()

function, i.e. a standard random number generator, the output of which was also given

to ENT tool. The following table summarizes the result.

Algorithm | Platform | Entropy Arithmetic | Monte Carlo | Serial
Value Mean Value of & Correlation
Coefficient
Libc Rand | Windows | 4.888541 [47.6553 3.957735041 | -0.055975
(Prior art) | Linux 7.954201 | 111.4619 | 3.487414256 |-0.049344
RNGA Windows | 7.997735 | 127.0570 | 3.147828348 |0.010313
(present Linux 7.999964 | 127.4688 | 3.143122428 [0.000059
invention)
Expected Greater 127.5 3.139648438 | Nearer to 0
Value the value,
(Ideal More
Case) random is
the
sequence.

Table 2

10

15

WO 2007/148244 PCT/IB2007/051976
21

From the output of the performed ENT-Test, which is given in table 2, it can be verified

that the proposed method yields a better randomness.

For a further testing of the random number generator according to an exemplary
embodiment, a test of the National Institute of Standards and Technology was used. The
National Institute of Standards and Technology has defined a set of test cases for which
to test the randomness of sequence. It defines tests like Frequency Test, Block
Frequency Test, Universal Test, Limpel-Ziv compression algorithm etc. A large number
of random values were generated [N = 10,000,001] using both the proposed method and
the standard library rand() function. These outputs were provided to the NIST test suite
program that generates a P-Value for each test case for each sequence. According to the
user manual of the test suite, if the P-Value of the random sequence is > 0.01, then the

sequence is considered random. The following table 3 summarizes the result.

Test Libc Rand (P-Value) RNGA (P-Value) Remarks
Linux Windows Linux Windows

Frequency 0.00000 0.00000 0.350485 0.73992

Block m=32

Frequency 0.53415 0.00000 0.911413 0.53415

Cumulative

Sum-

Forward 0.00000 0.00000 0.534146 0.91141

Cumulative

Sum-

Backward 0.00000 0.00000 0.739918 0.53415

Runs 0.00000 0.00000 0.534146 0.0043

Longest

Runs Of

Ones 0.00000 0.00000 0.213309 0.00888

10

15

20

WO 2007/148244 PCT/IB2007/051976

22

Rank 0.00000 0.00000 0.739918 0.99147

FFT 0.00000 0.00000 0.017912 0.73992

Universal L=10,Q=

0.35049 0.00000 0.739918 0.12233 10240

Approximate m=12
Entropy 0.00000 0.00000 0.350485 0.73992

Serial 0.00000 0.00000 0.739918 0.73992 m=12
Lempel-Ziv | 0.12233 0.00000 0.534146 0.91141

Table 3

From the above table 3, it can be seen that the proposed method has better P-Values.
For more information concerning the above-mentioned test it is referred to the URL of

the National Institute of Standards and Technology http://csrc.nist.gov/rng/rng2 . html.

Summarizing, the fundamental intent of the present application may be not to suggest
an implementation (of function), but rather to propose an idea that can be implemented

in multiple ways.

It should be noted that the term “comprising” does not exclude other elements or steps
and the “a” or “an” does not exclude a plurality. Also elements described in association
with different embodiments may be combined. It should also be noted that reference

signs in the claims shall not be construed as limiting the scope of the claims.

In the following as an annex an exemplary implementation of a program code
implementing an exemplary embodiment of a random number generator is given as a
source code of a C-program. This specific source code is given just for illustrative

purpose and the present invention is not limited to this specific implementation.

10

15

20

25

30

35

40

45

WO 2007/148244 PCT/IB2007/051976

23

/***
*

* RANDOM NUMBER GENERATION ALGORITHM

*

* This program is an illustration of the Random Number Generation
* Algorithm that is based on the using the contents of the stack.

*

* During run time the stack grows and shrinks with each function
* invocation, respectively. Each function uses the stack as a

* storage for temporary variables. Apart from the local variables,
* the return address, some architecture specific register values,

* function arguments etc. Therefore, these parameters can be

* used to generate random numbers.

*

* Generally, unless the values of the local variables are

* initialised within the function, they hold unknown or spurious

* values left behind on the stack by the previous function.

* Also, since the function can be called from many different

* places in the program, the return address can vary with every

* invocation.

*

* The following program illustrates one of the possible

* implementation of this concept. This is by no means the only

* method to generate the random numbers using this concept.

* The implementation can be improved by using a better hash

* algorithm and with a number of local uninitialised values.

* In the following program, the random random numbers are

* generated in a loop and the values are printed.

* It was executed on a Linux platform running on Intel X86

* Architecture and on Windows platform on Intel X86 Architecture.
**/

/***

* Include Files
***/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef WIN32
#include <process.h>
#else
#include <syscall.h>
#endif
#include <time.h>
#include <sys/timeb.h>

10

15

20

25

30

35

40

45

WO 2007/148244 PCT/IB2007/051976

24

/***

* Data Type Definitions
***/
typedef unsigned char ~ Byte;
typedef unsigned long int Ulnt32;
typedef signed long int Int32;

/***

* Constant values
***/
const Byte CO = 0x67;

const Byte C1 = 0xEF;

const Byte C2 = 0x10;

const Byte C3 = 0x98;

/***

* Prototypes.

***/
/*

* SimpleHash:

* This function implements the reduced / diluted version of the

* SHA-1 algorithm. It accepts an input string of string 128 bits

* (16 bytes) and converts it into an output bit string of 32 bits

* (4 bytes = size of an integer on PC). It acts as a one-way hash

* conversion function that produces almost unique values for

* similar input bit strings.

*/
void SimpleHash(UlInt32 NrBits, Byte InStr[16], Byte OutStr[4]);

/*
* GetRandomNumber:
* This function generates the random numbers.
* It accepts an external seed and returns a random number.
* Along with the external seed, it uses the return address, the
* uninitialised local variables, the internal seed, the
* invocation counter etc to generate the random number.
*/
Ulnt32 GetRandomNumber(UInt32 ExternalSeed);

void ConvertBinary2 Ascii(UInt32 Number, char Str{33]);

int main()

10

15

20

25

30

35

40

45

WO 2007/148244

25

{
Ulnt32 Out = 0;
nt i
char Number[33];

/ x
* Generate 10,00,001 random numbers in a loop.
* Print them.
*/
for (1= 0;1<1000001; i++)
{
/ x
* This is one of the worst case scenarios for this
* algorithm because the return address for the
* GetRandomNumber() function always remains same.
* Hence, one of the variables remains constant.
* Another reason is that the stack space used by the
* GetRandomNumber() function is shared with printf()
* function too. Hence, the uninitialised local variables
* might have predictable values too.
*/
#if defined PURPOSE VIEW
printf("RN#[%3d]:\t%u\n", i, GetRandomNumber(Out));
#elif defined PURPOSE TEST BINARY
Out = GetRandomNumber(Out);
fwrite((void *) &Out, 4, 1, stdout);
Out = 0;
#elif defined PURPOSE TEST ASCII
memset(Number, 0, 33);
Out = GetRandomNumber(Out);
ConvertBinary2 Ascii(Out, Number);
fwrite((void *) Number, 32, 1, stdout);
Out = 0;
#endif
}

return 0;

}

/ *
* GetRandomNumber:
* This function generates the random numbers.
* It accepts an external seed and returns a random number.

* Along with the external seed, it uses the return address, the

* uninitialised local variables, the internal seed, the
* invocation counter etc to generate the random number.

PCT/IB2007/051976

10

15

20

25

30

35

40

45

WO 2007/148244 PCT/IB2007/051976

26

*/

Ulnt32 GetRandomNumber(UInt32 ExternalSeed)

{
/ *
* InternalSeed: One of the input values for the computation of
* the random number generation algorithm. It is persistent and
* 1s constantly updated with every invocation.
*/
static Ulnt32 InternalSeed;

/ *
* Nrlnvocations: One of the input values for the computation of
* the random number generation algorithm. It is persistent and
* is incremented with every invocation. This ensures that the
* atleast one of the input parameters does vary with every
* invocation. This is requried when the more dynamic parameters
* like the return address etc are constant as in the case of
* this program.
*/
static Ulnt32 NrInvocations;

/ *

* Uninitialised: One of the input values for the computation of
* the random number generation algorithm. It is a temporary
* variables that is created when the function is invoked (the
* stack frame is created) and destroyed when the function

* returns (stack frame unwinds). This local variable is used
* without initialising with any value, so that the value is

* as unpredictable (random) as possible.

* The more the number of such uninitialised local variables,
* the better the randomness. However, here we use only one.
* It is also the case that some compilers do generate code
* for each function, that initialises these local variables
* implicitly with some default value when the stack frame is
* created. But this can be ignored as long as one of the input
* parameters are different.
*/

Ulnt32 Uninitialised;

/ %
* RandomNumber: The value that will be returned to the caller.
*/

Ulnt32 RandomNumber;

/ *
* pRA: Pointer to the Return Address on the stack.

10

15

20

25

30

35

40

45

WO 2007/148244 PCT/IB2007/051976

27

* The contents of this pointer i.c., *pRA is the actual
* return address.

*/

Ulnt32 *pRA;

/*

* Input: The input bit string 128 bits long.
*/

Byte Input[16];
/*

* Out: Holds the output value of the hash function.
*/
Ulnt32 Out;

/*

* Pid: Holds the current process identifier.
*/

Int32 Pid;

/*

* cur_time: The current time structure.

*/

struct timeb cur time;

/ *
* Retrieve the return address from the stack.
* On a standard stack layout the return address is stored
* on the stack after the parameters are pushed in the reverse
* order. Therefore, the return address is stored above the

* first parameter.
*/

/ *
* Get the address of the first parameter
* and decrement the same to point to the return address on

* the stack. On a PC, the stack grows towards lesser addresses.
*/

pRA = (Ulnt32 *) &ExternalSeed;
PRA--;

/*
* Since some compilers, do initialise the stack variables
* implicitly with some default value and also if no other

10

15

20

25

30

35

40

45

WO 2007/148244
28

* program is executing currently, then successive execution
* of this program might result in same output. Therefore,

* we can use the Processld (and also Threadld in case of

* multiple threaded applications) and/or also the current

* time, at the point when the program is started, to compute
* the initial value of the Internal Seed, for the first time.

* This problem should not occur when this function is

* implemented as a separate dynamic link library

* or shared library that is shared across multiple processes.
*/

if (NrInvocations == Ou)

{
Pid = getpid();

ftime(&cur_time);

//printf(""Pid: %d\n", Pid);
//printf("Millisecond: %u\n", cur_time.millitm);

/*

* Compute the internal seed by hashing the External Seed,
* Processld and the Millisecond part of the current time,

* ag this varies faster than the hour, minute, second etc.

*/

memset(Input, 0, 16);

memcpy(&Input[0], (Byte *) &ExternalSeed, 4);
memcpy(&Input[4], (Byte *) &Pid, 4);
memepy(&Input[8], (Byte *) &cur time.millitm, 4);
SimpleHash(64, Input, (Byte *) &Out);

InternalSeed = Out;

}

/ %

* Increment the Invocation counter.
*/

Nrlnvocations++;

/ %

* Computer the actual random number.

* 1t is the hash value of InternalSeed, Return Address,
* Uninitialised local value and the Invocation counter.
*/

memset(Input, 0, 16);

memcpy(&Input[0], (Byte *) &InternalSeed, 4);
memcpy(&Input[4], (Byte *) pRA, 4);
memcpy(&Input[8], (Byte *) &Uninitialised, 4);

PCT/IB2007/051976

WO 2007/148244 PCT/IB2007/051976
29

memcpy(&Input[12], (Byte *) &Nrlnvocations, 4);
SimpleHash(128, Input, (Byte *) &Out);
RandomNumber = Out;

5 /*
* Update the uninitialised value.
*/
Uninitialised = InternalSeed;

10 /*
* Update the persistent internal seed value with the
* generated random number, so that the next invocation
* there is more randomness.
*/
15 InternalSeed = RandomNumber;

return RandomNumber;

}

20 /*
* SimpleHash:
* This function implements the reduced / diluted version of the
* SHA-1 algorithm. It accepts an input string of string 128 bits
* (16 bytes) and converts it into an output bit string of 32 bits
25 * (4 bytes = size of an integer on PC). It acts as a one-way hash
* conversion function that produces almost unique values for
* similar input bit strings.
* This algorithm is similar to that of SHA-1 algorithm.
*/
30 void SimpleHash(UInt32 NrBits, Byte InStr[16], Byte OutStr[4])
{
Byte ProcStr[64];
Byte InputStr[16];
int 1
35 Byte Temp, k, g;
UlInt32 n;

memset(InputStr, 0, 16);
memcpy(InputStr, InStr, NrBits / 8);

40
/*
* Input string size is byte aligned or not.
*/
n = NrBits % &;
45

/*

10

15

20

25

30

35

40

45

WO 2007/148244

30

* In case the number of bits is < 96, then

* concatenate the input bit string with

*a'l' followed by '0's until the last 32 bits.

* In the last 32 bits, store the length of the string.

*/
if (NrBits <= 95)
{
/*
* Input string size is not byte aligned.
*/
if (n!=0)
{
InputStr[(NrBits / 8)] |= (1 << n);
}
else
{
InputStr{(NrBits / 8)] |= 1;
}
/*
* Append the size of string in the last 32 bits.
*/

*((UInt32 *) (InputStr + 12)) = NrBits;

/*
* Copy the input string into a process string.
*/

memset(ProcStr, 0, 64);

memcpy(ProcStr, InputStr, 16);

for 1= 16;1< 64; i++)
{

ProcStr[i] = (ProcStr[i-3]"ProcStr[i-7]"ProcStr[i-12]"ProcStr[i-16]) << 1;
}

OutStr[0] = CO;
OutStr[1] = Cl1;
OutStr[2] = C2;
OutStr[3] = C3;

for 1=0;1<64; i++)
{
if (1>=0) && (1< 16))
{
g = (OutStr[1] & OutStr[2]) | (~OutStr[1] & OutStr[3]);
k = 0x5A;

PCT/IB2007/051976

10

15

20

25

30

35

WO

2007/148244
31

}

else if (1 >= 16) && (1 < 32))

{
g = (OutStr[1]~ OutStr[2] * OutStr[3]);
k = Ox6E;

}

else if ((1 >= 32) && (i < 48))

{

g = (OutStr[1] & OutStr[2]) |\
(OutStr[3] & OutStr[2]) | \
(OutStr[1] & OutStr[3]);

k = Ox8F;

}

else

{
g = (OutStr[1]~ OutStr[2] * OutStr[3]);
k=0xCA;

}

Temp = (OutStr[0] << 2) + g + k + OutStr[3] + ProcStr[i];

OutStr[3] = (OutStr[2] >> 2) | (OutStr[3] << 6);
OutStr[2] = (OutStr[1] << 3) | (OutStr[1] >> 5);
OutStr[1] = OutStr[0];

OutStr[0] = Temp;

}
}
void ConvertBinary2 Ascii(UInt32 Number, char Str[33])
{

Int32 1,

Str[32] ="\0";

for 1=31;1>=0; i--)

{

Str[31 - 1] = (Number & (1 <<1)) ?'1': '0";
}

}

PCT/IB2007/051976

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

32

CLAIMS

1. Random number generator system, comprising:

a pre-processing unit; and

a random number generation unit;

wherein the pre-processing unit is adapted to calculate an internal seed out of an
external seed and/or system variables and/or dynamic variables related to the stack; and

wherein the random number generation unit is adapted to generate a random
number by using a determined function, wherein the determined function is a function

of the internal seed and of at least one dynamic runtime variable related to the stack.

2. The random number generator system according claim 1,

wherein at least one dynamic runtime variable related to stack is one out of the
group consisting of:

return address;

program counter;

stack pointer;

un-initialized local variables; and

architecture-specific register values stored on stack.

3. The random number generator system according claim 1 or 2, further comprising:
a post-processing unit,

wherein the post-processing unit is adapted to post process the random number.

4. The random number generator system according anyone of the preceding claims,
wherein, when calculating a first random number the at least one system variable
is one out of the group consisting of:
system time;
Process 1D;
Task ID, and
Thread ID.

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

33

5. The random number generator system according to claim 4, wherein the random
number generator system is adapted to use the first random number as the internal seed

for the generation of a second random number either directly or indirectly.

6. Method for generating a random number by a random number generation system, the
method comprising:

inputting an external seed;

generating an internal seed by using the external seed and / or a system variable
and/or a dynamic variable related to stack; and

generating a random number by using a predetermined function which is a
function of the internal seed and at least one dynamic runtime variable relating to the

stack.

7. The method according to claim 6,
wherein the at least one dynamic runtime variable related to the stack one out of the
group consisting of:

return address;

program counter;

stack pointer;

un-initialized local variables; and

architecture-specific register values stored on stack.

8. The method according to claim 6 or 7,

wherein, when calculating a first random number the at least one system variable
is one out of the group consisting of:

system time;

Process 1D;

Task ID, and

Thread ID.

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

34

9. The method according to anyone of the claims 6 to 8,
wherein the predetermined function comprises selecting some bits from the

internal seed and of some bits of the at least one dynamic runtime variable.

10. The method according to anyone of the claims 6 to &,
wherein the predetermined function comprises concatenating of all bits from the

internal seed and of the at least one dynamic runtime variable.

11. The method according to anyone of the claims 6 to &,
wherein the predetermined function comprises mixing of all bits from the

internal seed and of all bits of the at least one dynamic runtime variable.

12. The method according to anyone of the claims 6 to 11,
wherein the predetermined function is a DES encryption algorithm or a Hash-

algorithm, in particular SHA - 1.

13. The method according to anyone of the claims 6 to 12, further comprising:
up-dating the internal seed by using a first generated random number directly or

indirectly.

14. The method according to anyone of the claims 6 to 13, further comprising:

post-processing the generated random number by using bit manipulations.

15. The method according to claim 14,
wherein the bit manipulating is at least one out of the group consisting of:
substantially equalizing a number of 1 and 0 in the generated random number;
XOR;
NAND; and
NOR.

10

15

20

25

30

WO 2007/148244 PCT/IB2007/051976

35

16. The method according to anyone of the claims 6 to 15,

wherein the at least one dynamic runtime variable related to a currently active
stack or an and/or valid stack frames of the calling function(s) that lic below the
currently active stack frame and/r unused stack space that lie above the currently active

stack frame.

17. The method according to anyone of the claims 6 to 16,
wherein the return address is de-referenced to obtain operation code, and
wherein the obtained operation code is used as one of the dynamic runtime

variables related to stack.

18. The method according to anyone of the claims 6 to 17, further comprising:
reading a value in any valid memory location,
wherein the value is used as one of the dynamic runtime variables related to

stack.

19. The method according to anyone of the claims 6 to 18,
wherein in the pre-processing step at least one of the dynamic runtime variables
related to stack is used; and/or

wherein in the generation step at least one of the system variables is used.

20. A computer readable medium in which a program for generating a random number
is stored, which program, when executed by a processor, is adapted to control a method
comprising:
inputting an external seed;

generating an internal seed by using the external seed and/or a system variable
and/or a dynamic variable related to stack; and

generating a random number by using a predetermined function which is a
function of the internal seed and at least one dynamic runtime variable relating to the

stack.

WO 2007/148244 PCT/IB2007/051976
36

21. A program clement for generating a random number, which program, when
executed by a processor, is adapted to control a method comprising;:
inputting an external seed;

generating an internal seed by using the external seed and/or a system variable
and/or a dynamic variable related to stack; and

generating a random number by using a predetermined function which is a
function of the internal seed and at least one dynamic runtime variable relating to the

stack.

PCT/IB2007/051976

1/4

T 'Ol

JCUUNN WopUEy
U Induwion
#4315

Cmunoy

i | uopesoAu] |

DORS [eUISIU
YA DIGRLIBA

60T

ncing
IBGLUNN

_ wopuey)

&

P
X
%
*
<
A

JORIRUen
IOQUINN WOpUBY

TRAING L
NS9G RUIEIU]

31 saepdn (011

ssau POy

R

LISy

posHRIIUIN ;
su) seepdny L /
P . o~ ol EE B
{ sjgeuepn | e [RUEU]
L0 -"pesieriuiun |~ | N
e < MWGM - ww@.m
LR 354y 10j
AJUC 2UCP 51 S ™
omas oot | voneindwo) ndino sy Buisn
. . 9og |l
a1 BIndwon DTG JRUIDIUT 101 nmﬁmmw“mmm%
T# d3LS —C

WO 2007/148244

paD
feUISIXY

\E S52004d
‘BUL BN

201 o1

WO 2007/148244

Growth

2/4

focal 2

local 1

return address

—

param 1

param {n-1)

param n

PCT/IB2007/051976

STACK
FRAME

— 200
—~201

FIG. 2

PCT/IB2007/051976

3/4

¢ DI
wQW«w?oN%HM& M%QQQSE
UL Tl TRAT e A UPUAT *LE | ooonoocone
J»E wr« mhw &.ﬁ mxﬁ i th w - 0000000008

2. f \ 0 HM ’ Q.M Lo o : >t 000000000

WO 2007/148244

WO 2007/148244

Growth

4/4

Unused Stack
Space

—— 400

Currently Active
Stack Frame

— 401

Valid Stack Frame
of Calling Function

—— 402

FIG. 4

PCT/IB2007/051976

INTERNATIONAL SEARCH REPORT

International application No

PCT/IB2007/051976

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F7/58

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

XP015041913
ISSN: 0000-0003

Section 5.2, page 18
Section 6.2.1, page 25
Section 6.3, pages 27-28
Section 7.1.1, page 28

FORCE, IETF, CH, June 2005 (2005-06),

Section 2, page 6, last paragraph

X EASTLAKE D ET AL: "Randomness 1,3-6,
Requirements for Security (RFC 4086)" 8-15,20,
IETF STANDARD, INTERNET ENGINEERING TASK 21

m Further documents are listed in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited 1o understand the principle or theory underlying the
invention

X document of particutar relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the ant.

*&" document member of the same patent family

Date of the actual completion of the international search

18 October 2007

Date of mailing of the intemational search report

25/10/2007

Name and mailing address of the ISA/
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Prins, Leendert

Form PCT/ISA/210 (second sheet) (April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/1B2007/051976

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X

THE REGENTS OF THE UNIVERSITY OF
CALIFORNIA: "Random.C source code from
the FreeBSD distribution”

INTERNET CITATION, [Onlinel]

27 January 2000 (2000-01-27), XP007903192
Retrieved from the Internet:
URL:http://ninna.tom.sfc.keio.ac.jp/sa/sou
rces/gawk-3.1.4/random.c>

[retrieved on 2007-10-11]

function srandomdev on pages 7 and 9
GOLAND MICROSOFT E WHITEHEAD UC IRVINE A
FAIZI NETSCAPE S CARTER NOVELL D JENSEN
NOVELL Y: "HTTP Extensions for
Distributed Authoring —— WEBDAV"

IETF STANDARD, INTERNET ENGINEERING TASK
FORCE, IETF, CH, February 1999 (1999-02),
XP015009179

ISSN: 0000-0003

Section 6.4.1 starting on page 17

BRUCE SCHNEIER ED - SCHNEIER B: "Applied
Cryptography Second Edition”

APPLIED CRYPTOGRAPHY. PROTOCOLS,
ALGORITHMS, AND SOURCE CODE IN C, NEW
YORK, JOHN WILEY & SONS, US, 1996, pages
421-428, XP002260802

ISBN: 0-471-11709-9

the whole document

US 5 778 069 A (THOMLINSON MATTHEW W [US]
ET AL) 7 July 1998 (1998-07-07)

cited in the application

figures 3-5; table 1

WO 2005/029315 A (GLOBESPAN VIRATA INC
[US]; NOWSHADI FARSHID [GB]; MOORE MARK
[GB]) 31 March 2005 (2005-03-31)

cited in the application

the whole document

US 5 832 207 A (LITTLE WENDELL [US] ET AL)
3 November 1998 (1998-11-03)

column 17, line 54 - line 67

1,3-6,
8-15,20,

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/1B2007/051976
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 5778069 A 07-07-1998 NONE
WO 2005029315 A 31-03-2005 US 2004162864 Al 19-08-2004
US 5832207 A 03-11-1998 US 6219789 B1 17-04-2001

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - wo-search-report
	Page 44 - wo-search-report
	Page 45 - wo-search-report

