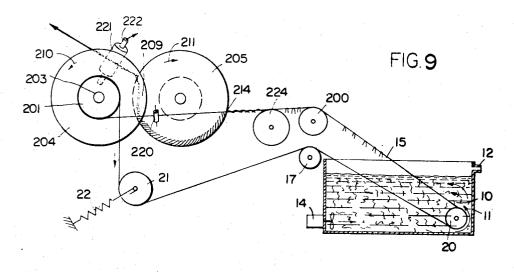
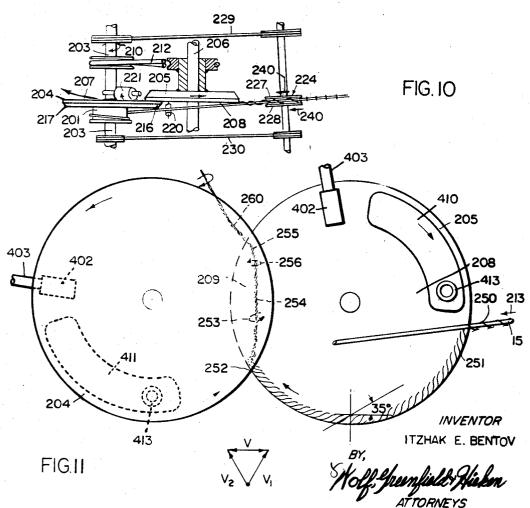

MEANS AND METHOD OF CONVERTING FIBERS INTO YARN

Filed Aug. 18, 1965


4 Sheets-Sheet 1



MEANS AND METHOD OF CONVERTING FIBERS INTO YARN

Filed Aug. 18, 1965

4 Sheets-Sheet 2

MEANS AND METHOD OF CONVERTING FIBERS INTO YARN

Filed Aug. 18, 1965

4 Sheets-Sheet 3

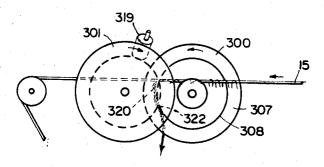


FIG.12

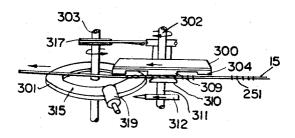
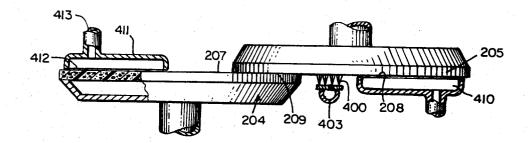


FIG.I3

July 30, 1968

I. E. BENTOV


3,394,540

MEANS AND METHOD OF CONVERTING FIBERS INTO YARN

Filed Aug. 18, 1965

4 Sheets-Sheet 4

FIG. 14

INVENTOR.
ITZHAK E. BENTOV

LANDI A DO OLA

ATTORNEYS

1

3,394,540
MEANS AND METHOD OF CONVERTING
FIBERS INTO YARN
Itzhak E. Bentov, 407 Belmont St.,
Belmont, Mass. 02178
Continuation-in-part of applications Ser. No. 224,077,
Sept. 17, 1962, and Ser. No. 350,939, Mar. 6, 1964.
This application Aug. 18, 1965, Ser. No. 502,788
46 Claims. (Cl. 57—58,95)

This is a continuation-in-part of application Ser. No. 224,077 filed Sept. 17, 1962, now abandoned; and Ser. No. 350,939, filed Mar. 6, 1964, now abandoned. The present invention relates to a means and method for intertwining discrete fibers to produce roving or spun yarn.

Various methods have been used heretofore for converting discrete fibers into roving or spun yarn. Such processes include methods in which discrete or staple fibers are entrained in a stream between pairs of electrodes in such a way as to twist the fibers to yarn. Other processes include immersing staple fibers into a fluid which is then passed through a rotating conduit to twist the fibers suspended therein into roving which is drawn off as a continuous strand and separated from the fluid. These and other processes have certain limitations which are avoided in the present invention.

The present invention provides a means and method of forming roving or spun yarn from discrete fibers of various materials in an inexpensive, rapid and simple operation. The present invention moreover permits the use of relatively inexpensive fiber material, unusually short fibers and scrap fiber material which may not be useful in other processes. In particular the present invention is adapted for use in converting paper particles, strips or fibers as well as other natural and synthetic fibers and metal fibers into a spun yarn. A further object of the present invention is to provide a means and method of converting discrete cellulosic fibers from paper pulp form into a yarn without the necessity of processing the cellulosic fiber or pulp into 40 paper before spinning it into a yarn.

A further object of the present invention is to provide a relatively inexpensive and efficient method of forming blended yarns of various different materials such for example as cotton and wool or combinations of organic and 45 metal materials.

In the present invention an aqueous slurry containing a suspension of discrete fibers which are to form the yarn is provided. A length of wire is passed through the slurry preferably angularly upwardly in such a manner as to 50 cause the fibers in the preferably directionally moving slurry to drape over the wire as it passes from the slurry with the fibers substantially parallel to one another and substantially normal to the length of the wire. The wire moves to means for removing the fibers from the wire and 55 for intertwining the fibers into yarn.

In a preferred form of the invention the means for removing the fibers and intertwining them may comprise a pair of discs having parallel axes with the discs mounted for rotation in opposite directions. These discs have par- 60 allel hydrophillic surfaces with portions in facing contact. The wire moves angularly to and into contact with one disc which wipes the fibers from the wire and lays them on the periphery of the one disc at an angle such that as the laid-on fibers are moved between the discs they are 65 twisted or intertwined to form a continuous length emerging from between the facing portions, from which it may be further twisted and dried by compacting and rolling means. These compacting and rolling means may engage or be used in conjunction with the discs. If desired, means 70 may be used for preorienting the fibers on the wire before removal by engagement of the wire with the disc.

2

Alternate means for removing and twisting the fibers comprise a pair of coaxially mounted disc-like members having hydrophillic surfaces between which the fiber ladened wire moves. Means are provided for applying a suction through the members for purposes of drawing the fluid from the draped fibers as they are carried by the wire between the surfaces. The surfaces are preferably rotated in the same general direction with one surface moving slightly faster and the other running essentially at the same speed or slightly slower than the movement of the wire. The surfaces engage the ends of the draped fibers so as to reorient them to positions in which they lie substantially longitudinal with respect to the length of the wire with their ends overlapped or partially intertwined with adjacent ends. As the wire continues to move between the surfaces, a blade parallel to and interposed between the surfaces may be used to cause the partially interengaged fibers to separate from the wire. Continued movement of the partially interengaged fibers between the stationary and moving surfaces causes further intertwining and twisting of the fibers into a roving which may then be removed from between the surfaces as a continuous strand or sliver capable of being twisted into a spun yarn by a conventional spinning or twisting ring. Alternative mechanisms contemplate the use of parallel surfaces in the form of pairs of moving endless belts having their axes angular to one another and vertically oriented with respect to the wire. These belts may be mounted each on pairs of parallel axes or on a single axis provided a sufficient surface contacting area may be formed between the pairs of belts.

These and other objects and advantages of the present invention will be more clearly understood when considered in conjunction with the accompanying drawings, in which:

FIG. 1 is a partially schematic elevation of a mechanism embodying the structure of the present invention;

FIG. 2 is a partial cross-section taken along the line 2—2 of FIG. 1;

FIG. 3 is a top view of a detail of the apparatus shown in FIG. 1;

FIGS. 4 and 5 are fragmentary schematic views of modifications of apparatus embodying the present invention; FIG. 6 is a detailed fragmentary cross-sectional view of the embodiment of FIG. 1;

FIG. 7 is a schematic illustration of fibers draped over a wire before being oriented;

FIG. 8 is a schematic illustration of fibers draped over a wire after being oriented;

FIG. 9 is a partially schematic elevation of a preferred mechanism embodying the structure of the present invention;

FIG. 10 is a top view of a detail of the apparatus shown in FIG. 9;

FIG. 11 is an enlarged schematic elevation of a detail shown in FIG. 9;

FIG. 12 is a partially schematic elevation of a modification of the embodiment shown in FIG. 9;

FIG. 13 is a top view of a detail of the apparatus shown in FIG. 12; and

FIG. 14 is a fragmentary top view of the detail shown in FIG. 11.

The present invention is useful in converting natural and synthetic organic and inorganic staple or discrete fibers from a loose random form into roving or spun yarn-like material. A wide variety of fibers may be used in connection with the present invention provided they are sufficiently flexible in nature as to be carried in preferably draped form over a moving wire. A wide variety of textile fibers may be used in the present invention and include such natural and synthetic fibers as cotton, flax, hemp, viscose and acetate, natural and synthetic protein fibers such as wool, silk or lanital and natural and synthet-

3

ic inorganic or silicate fibers such as asbestos and glass fibers. Also contemplated is the use of very finely divided strips of paper. In preferred form the present invention is particularly useful in converting cellulosic paper fibers to a roving or spun yarn. The fibers may vary considerably in size depending upon the particular equipment used. A preferred embodiment of the invention contemplates fibers having a mean length between 1/8 and 5/8 of an inch with the fibers having a diameter of approximately 10 microns, the diameter depending at least in part on the fiber length and its stiffness. The length and diameter of the fibers are also in part dependent and interrelated to the diameter of the wire carrier, hereafter described. It is desirable to provide dimensions which permit a draping of the fiber evenly over the wire. For such purposes the 15 length of the fiber should preferably be greater than half the circumference of the wire but preferably no greater than substantially its circumference. It has been found that if the fibers are substantialy longer than the circumference of the wire or longer than substantially 5% of an 20 inch there is a tendency for the fibers to "ball-up" in the slurry or alternately snag on the carrier wire during the processing.

The slurry 10 is preferably an aqueous slurry comprising a mixture of water with 0.01% to 3% by weight 25 of discrete fibers. As a specific example the slurry may consist of a .05% dispersion of cellulose fibers in water with the fibers having an average length of 1/4". The concentration of fibers in the aqueous slurry may vary depending upon the length of the fiber, the speed at which 30 the slurry is pumped past the wire and the speed at which the wire carrier travels through the slurry and picks up fibers. If desired, various additives may be included in the slurry, such for example as a thickener resin which can be added to make the slurry more viscous and cause 35 a more laminar flow of water. Also contemplated is the addition of a dispersing agent for purposes of keeping the fibers apart and preventing them from balling-up in the slurry. Suitable thickening resins include carboxymethyl-cellulose or acrylic base thickeners which may be 40 added in an amount of between 0.01% and 0.05% by weight of the water. A suitable dispersing agent contemplated is a commercial product known as "Daxad 27" which is a sodium-lignin sulfonate type dispersing agent, produced by Dewey and Almy Chemical Company. Such dispersing agents may be added in the amount of ½% to 2%.

The slurry is contained within a suitable tank or container 11. The tank should be provided with a suitable inlet and drain means 12 and 13 and a suitable agitator 50 14 which might comprise a motor operated impeller adapted to cause a circulating movement of the slurry so as to maximize the impingement of fibers onto the wire or wires 15 which pass into the slurry 10. A set of water jets may also be used.

A preferably endless wire 15 is suitably supported so that a portion of it passes into the slurry 10. While a plurality of such wires 15 may be used in tandem the invention is operative with but a single wire. For constood that a plurality of wires and associated mechanisms may be used in practicing this invention but for brevity a single wire and associated mechanism will be described. The wire 15 is suitably supported on a plurality of rolls or pulleys 17, 18, 19 and 20 with one of the rolls 65 20 suitably journaled within the tank 11 beneath the normal upper level of the slurry 10. An idler roll 21 having a suitable tensioning means 22 may be provided in the preferably endless wire 15 arrangement. If desired an elongated but discrete length of wire may be used with 70 suitable roll-up drums at its ends. The wire 15 has a portion 24 which extends down into the slurry beneath the upper surface 25. Interposed between the portion of the wire 15 entering and the portion leaving the slurry 10 is a suitable deflector or damper 26 of a design such 75 4

as to enhance the depositing of fibers onto the wire as it moves in the direction of the arrow A. The wire is moved in the direction of the arrow A at a suitable rate of speed which may be varied at will by a motor 30 suitably connected as schematically illustrated to one of the drive wheels, as for example drive wheel 19. As the wire passes from the slurry it picks up a large quantity of discrete fibers from the slurry. These fibers are draped immediately adjacent one another over the wire 15 as illustrated at 31 in FIG. 7. The fibers lie with their ends at diametrically opposite portions of the wire and with the ends normally parallel to one another and to adjacent ends of adjacent fibers. The wire will normally center these fibers so that approximately one-half lie on either side of a plane passing vertically through the wire. Fibers from the slurry which engage the wire in a substantially lopsided fashion so that one end hangs substantially farther down than the other are normally swept off the wire by the circulating slurry. Most of the very short fibers which may be inadvertently be contained in the slurry will also be swept from the wire. The wire itself may vary in its cross-sectional shape. A circular crosssection is suitable for most purposes, however, a flat, or oval cross-sectioned, with its major cross-sectional axis lying vertically may be suitable for longer fibers.

The fiber loaded wire is passed betwen a pair of preferably hydrophillic surfaces 35 and 36. These surfaces are parallel with one another and are closely spaced, and may if desired be substantially contiguous and touching one another. The surfaces lie in vertically oriented planes and are formed preferably by resilient hydrophillic disclike members 37 and 38 made preferably of a soft sintered porous plastic material or porous metal. These disc members are each supported in hollow disc or cupped shaped chambers 39 and 40. The chambers are formed with vertically oriented parallel walls 41 and 42 interconnected by a transverse wall 43. The disc members 37 and 38 are cemented or otherwise suitably secured to the walls 41 which are perforated as indicated at 45 to permit passage of air and moisture from the foam material to the chamber 46. The suction chambers are supported for rotation on a hub 48, which in turn is journaled on the hollow shaft 49. The surfaces 35 and 36 may be spring tensioned towards one another by a pair of helical springs 50, each coaxially mounted on the shaft and engaging a hub 48 at one end 51 and a set nut or the like 52, at the other end. The hollow shaft 49 is adapted to have one end 55 connected to a vacuum source. Passage means formed through the shaft at 56 interconnect the chamber 46 with the core 61 of the shaft so that a vacuum applied to the shaft 49 will draw moisture from the surfaces 35 and 36. Gears 65 are fixed to each hub 48 and are adapted to rotate the surfaces 35 and 36. Differential drive means which may comprise a set of motors 70 and 71 are con-55 nected respectively to each of the gears 65 by suitable sprocket and chain arrangements 72 and 73. These motors are adapted to rotate the surfaces 35 and 36 about the shaft 49 at different rates of speed. Preferably both surfaces 35 and 36 are rotated in the same direction with one venience in describing the invention it should be under- 60 surface rotating slightly faster and the other rotating at essentially the same velocity as or slightly slower than the rate of speed of the wire 15 as it passes between the surfaces of the wire 15. The wire 15 carrying the fibers 80 draped over it in parallel fashion passes between the surfaces 35 and 36 at substantially a tangential angle near its periphery over a limited arc, as best illustrated in FIGS. 1 and 2. A blade 83 may be supported on a frame 84 by suitable means such as bolts 85 and may lie symmetrical with respect to the surfaces 35 and 36 with portion of the blade 83 projecting between these surfaces. The blade 83 is formed with an upper edge 86 conformed to the cross-sectional shape of the wire 15. One edge 87 of the blade 83 is adapted to direct the wire 15 towards and into one side of disc 38 which is the slower moving disc. At the same time the fibers are pushed from the

wire by disc 38 and pass on to the other side of the blade and between the blade and disc 37. In the embodiment illustrated, disc 37 is rotated at a greater speed than disc 38. This causes the fibers 80 which have been pushed from the wire 15 to the left side of the wire, as viewed in FIG. 5 6, to be twisted between the blade and disc 37. This action occurs after the fibers 80 have passed between the surfaces 35 and 36 for a selected distance as indicated at 88 in FIG. 1. Over the distance indicated at 88, the fibers are reoriented from a position in which their ends lie parallel to one another and to adjacent fibers (FIG. 7) to a position in which the ends of the fiber are substantially nonplanar and lie generally longitudinally with respect to the length of the wire 15 as indicated at 89 (FÎG. 8). In this position the fibers are slightly interengaged or intertwined with adjacent fibers and begin to have a roving configuration. At the time the fibers are separated from the wire they have formed a substantially continuous length. Continued movement of the fibers thus formed in the area indicated at 90 between the sur- 20 face 36 and the blade causes a further twisting and/or interengagement and due to the rotary movement of the fibers along the blade thereby form the fibers into a self supporting continuous length. By proper adjustment of the blade and rotational speed of the discs and by con- 25 trolling the lateral pressure of the discs towards one another a controlled amount of interengagement of the fibers mey be attained. These fibers are then drawn from between the blade and surface 36 and are fed into a conventional textile yarn twisting device which applies 30 a further twist to the continuous length 91 to form a spun yarn 92. The spinning ring or twisting ring may be of conventional design. In such a ring the roving passes between a pair of substantially parallel rollers having concave surfaces. These rollers are normally physically rotated about an axis lying in a plane symmetrical to the rollers with the axis having a center spaced from the rollers as the rollers themselves rotate about their own axis. Such a structure is schematically illustrated in FIG. 1 at 92A. A single eyelet may be used in place of rollers. The yarn 92 may then be further treated by conventional processes for finishing purposes.

An alternate embodiment is illustrated in FIG. 4. In place of the surfaces 35 and 36 and the mechanism previously indicated associated with such surfaces there is provided a pair of rolls 95 and 96. These rolls are suitably supported for rotation by journal means on nonparallel axis 96 and 98. Suitable drive means (not shown) are provided for rotating these rolls at different speeds. Roll 95 may be rotated in a clockwise direction while roll 96 rotates in a counterclockwise direction. Each of these rolls may be formed of a hollow perforated metal drum 99 covered with a relatively thick, resilient, porous foam layer 100. The layers 100 may be formed of the same material used in forming discs 37 and 38. These rolls are positioned with their axes sufficiently close together so as to press against one another and form a continuous surface area 101. Suitable means (not shown but similar to those described in FIG. 1) are provided in journaling these rolls on their axis 97 and 98 and for creating a suction or vacuum within the rolls. A wire 15 is supported and driven in a manner as heretofore explained and passes between the rollers 95 and 96 at a point of tangency. As previously indicated the axes 97 and 98 while lying in parallel vertical planes are not parallel to one another but 65 intersect preferably at the longitudinal center of the rolls. For this reason the surface areas 101 of each roll 95 and 96 move in slightly different directions. The wire 15 passes between the rolls and is fed angularly between them in such a manner as to engage both rolls initially at their initial point of tangential contact. By rotating the rolls at differential speeds the fibers carried in parallel form as indicated at 104 are reoriented longitudinally of the wire as they pass between the surfaces 101 and are interengaged in

however the blade used in separating the wire from the roving in the embodiment of FIG. 1 may be eliminated. This is due to the fact that while the fibers are being oriented longitudinally they are also rolled along the axes of the rolls slightly, due to the lateral component of motion resulting from the angle between the axes of the two rolls. This component also causes the separation of the roving from the wire. The roving thus formed by each of the rows of fibers carried by the wires 15 is then fed from between the rolls as indicated at 106 to a suitable spinning ring or the like.

A further modification of this invention is illustrated in FIG. 5 wherein a pair of endless belts 110 and 111 are mounted respectively on parallel rolls 112 and 113. These rolls 112 and 113 are supported so that adjacent parallel faces of the endless belts 110 and 111 are vertically oriented with the wires 15 extending between the adjacent faces. The wire 15 is passed between the belts 110 and 111 in the same fashion as the wire 15 in the modification illustrated in FIG. 4. The belts 110 and 111 are pressed toward another by suitable spring tensioning means (not shown) so as to engage the sides of the fiber carried by the wires 15. The belts 110 and 111 are driven at differential speeds in the same fashion as the discs illustrated in the embodiment of FIG. 1. The roving 120 which is formed by the fibers 121 carried on the wires 15 is then drawn from between the belts 110 and 111 and is suitably spun into yarn or the like in the manner as hereinbefore

described. In this modification, water may be drained from the fibers by suction means of the type described connected to rolls 112 and 113. In this arrangement the shafts supporting rolls 112 and 113 and rolls 112 and 113 are hollow with perforations in the walls of the shafts and rolls interconnecting the interior of the rolls, the shafts and the inner surfaces of the porous endless belt. A suction applied through the shaft will draw water from the belt as it passes over the rolls.

The preferred embodiment of this invention is illustrated in FIGS. 9 and 10. In this arrangement like numerals refer to similar components to those illustrated in the embodiment of FIG. 1. As illustrated the tank configuration, the wire 15 and the manner of picking up fibers from the aqueous slurry is similar to that as previously described. In this preferred embodiment, however, the wire 15 extends from the tank 11 over idler pulley 200 around pulley 201, under pulley 21 and over pulley 17. Pulley 21 may be suitably tensioned by tensioning means 22 of the type described. The wire may be driven from any suitable source such for example as a motor drive source driving shaft 203 on which pulley 201 is mounted. A pair of discs 204 and 205 are mounted respectively for rotation in opposite directions on shafts 203 and 206. Each of these discs is made with a hydrophillic porous surface and means, not shown in specific detail, for applying suction to the surface of the discs. These means may comprise an arrangement such as shown in connection with FIG. 2 in which suction is applied to the disc surface through a hollow shaft on which the disc and a vacuum chamber are mounted. The outer surface should also have a degree of resilience such as may be attained by the use of a synthetic foam material, sintered porous plastic material, or the like.

The discs are mounted on their respective shafts 203 and 206 so that the facing surfaces 207 and 208 have an overlapping facing portion 209. If desired the discs may be rotated in opposite directions as indicated by arrows 210 and 211 through a common drive source. Thus, for example a pulley and belt drive 212 between shafts 203 and 206 may be used to drive driven shaft 206 from the driving shaft 203 with the driving shaft 203 suitably connected to a power source, not shown.

ferential speeds the fibers carried in parallel form as indicated at 104 are reoriented longitudinally of the wire as they pass between the surfaces 101 and are interengaged in the manner as previously described. In this modification 75 and preferably angular to the surface 208 at 214.

3,30 -,0 -1

The wire continues across and in spaced relation to the surface 208 of disc 205, to a point 216 at which it angularly crosses and is engaged by the peripheral edge of disc 204 at its rear surface 217. The wire 15 is pressed into firm contact with the rear surface of disc 204 at its peripheral edge at point 216 by a roller 220 which is suitably journaled for rotation on an axis extending transverse to the direction of the wire 15 at the point of engagement. As illustrated this roller 220 is positioned between shaft 206 and the peripheral edge of disc 204 with its axis at the upper end of the roll flared slightly outwardly from the plane of the inner surface 208 of disc 205.

A compacting roller 221 may be suitably journaled for rotation with its surface in pressing contact with the 15 hydrophilic surface 207 of disc 204. Roller 221 is positioned with its axis substantially normal to the direction of movement of surface 207 at the point of interengagement of the compacting roller 221 and the surface 207. The compacting roller 221 preferably has a 20 hydrophillic surface through which suction is adapted to be applied by suitable means which may include a tubular shaft 222 on which the roller 221 is mounted with performations in the shaft 222 within the roller 221 and with suitable suction mean (not shown) attached to shaft 222.

An optional orienting unit 224 may if desired, be used for preorienting fibers on the wire before their removal on disc 205. This preorienting unit 224 is constructed somewhat similar to the arrangement shown in FIG. 3. In this arrangement a pair of porous hydrophillic discs 227 and 228 are coaxially mounted for rotation in the same direction. Each disc may be provided with suction means of the type previously described in connection with FIG. 2. Each of these disc may be driven from shaft 203 by suitable pulley and belt arrangements 229 and 230. Disc 227 rotates at a speed slightly faster than disc 228 and consequently the pulley and belt 229 will have different ratio than pulley and belt 230.

Disc cleaning means for removing fiber remnants are provided for each of discs 204 and 205. Such disc cleaning means, as shown in FIGS. 11 and 14, are important to minimize the likelihood of yarn breakage on the discs due to fiber remnant build up. These means comprise brushes 400 and 401 suitably supported on a frame (not shown) to secure each in wiping engagement with a surface of discs 204 and 205. Brush 400 is radially positioned with its bristles engaging surface 208 of disc 205 just clockwise of overlapping facing portion 209 while brush 401 is radially positioned with its bristles engaging surface 207 of disc 204, opposite of overlapping facing portion 209. Brushes 400 and 401 have hollow backs 402 and a tubular connection 403 is in turn connected to a suitable water supply (not shown). The hollow backs 402 have apertures adjacent the bristles so that water may be supplied through connections 403 from an appropriate source to the bristles and the surfaces 207 and 208 of the porous material forming discs 204 and 205. Water delivered in this manner is absorbed by these discs 204 and 205 after they have rotated past overlapping portions 209. Positioned immediately counterclockwise of the brush 401 and immediately clockwise of brush 400 and associated with the same surface of each disc, as its adjacent brush, are a pair of vacuum heads 411 and 410, respectively. These heads 410 and 411 are similar in construction and each comprise a hollow member having an open mouth 412 facing and closely adjacent the surface of the adjacent disc. These mouths 412 are arcuate in shape and are also arcuately aligned with the adjacent brush. Each vacuum head is provided with a connection 413 in turn connected to a suitable vacuum source (not shown) of sufficient force to rapidly and efficiently remove the water in the adjacent disc. Thus water passing into discs 204 and 205 will flow under fiber remnants and when withdrawn by the vacuum force

with it the fiber remnants lying on or impacted into the surface of the disc thereby cleaning the surface for subsequent movement into overlapping portions 209.

8

In the operation of the preferred embodiment, the fibers are picked up by the wire 15 from the slurry in drape form in a manner as previously described. The fiber laden wire then moves over pulley or roll 200 into engagement with the orienting means 224 if such means are used. The wire enters between discs 227 and 228 which are rotating in the direction of arrow 240 with disc 227 rotating at a speed faster than the movement of wire 15 and disc 228 rotating at a slower speed. This causes the ends of the fibers adjacent disc 227 to be pulled forward and the other ends retarded. Simultaneously some of the fluid may be drawn from about the fibers by suction on the hydrophillic porous discs 227 and 228. The partially oriented fibers are then carried forward to the disc 205 at which point they are removed. The fibers on the wire 15 will be partially preoriented or not depending upon whether or not preorienting means such as indicated at 224 are used. If the preorienting unit 224 is used the fibers will be picked up by the disc 205 from the wire 15 with slightly more control thon if the unit were not used. FIG. 11 illustrates the position of the draped fibers 250 when the preorienting means is not in use. In this arrangement the peripheral edge of the disc 205 at surface 208 wipes against the wire 15. As the wire moves forwardly in the direction of the arrows 213 angular to the surface 208, successive fibers 250 are engaged at the ends closest to surface 208. These ends 250 are caught by the edge of the disc 205 and the fibers are laid out onto the surface 208 at an angle of approximately 25° to 35° with respect to a line of tangency to the periphery of the disc at the point at which ends 251 are positioned. It is preferable that the angle be within approximately this range and to this end the velocity of speed of disc 205 at its periphery should be greater than the speed of the wire. This speed differential stretches and lays the fibers out on surface 208 into a position illustrated in FIG. 11. The speed differential however should not be so great as to separate adjacent fibers from each other. The residual dampness of the fibers 250 from the aqueous slurry, and the hydrophillic action of the disc 208 causes these fibers to remain on the periphery of the disc 205 as it rotates about its axis to a point at which the twisting action of the fibers is commenced. The fibers may be picked up by disc 205 and laid on the surface 208 in an improved fashion if wire 15 is twisted slightly in a counterclockwise direction as viewed from the right of FIG. 9 at point 214. This effectively raises end 251 into a better position for engagement with the disc 205. This may be accomplished by pressure of roller 220 which presses wire 15 into engagement with rear surface of disc 204. The engagement means that the counterclockwise movement of disc 204 as viewed in FIG. 4 imparts a slight twist to wire 15 along a section of its length including point 214.

The oriented fiber mat or train is rotated on disc 205 as best illustrated in FIG. 11 to the lower end 252 of the overlapping portion 209 of discs 204 and 205. Disc 204 is preferably rotated at a speed slightly faster than disc 205. At the lower end 252 of the overlapping portion 209, the velocity vectors of the discs in the overlapping portions which act upon the fiber mat or train may be considered as comprising the vectors V_1 and V_2 and the resultant vector V. The vector V₁ represents the velocity vector of disc 204 while vector V2 represents the velocity vector of disc 205. At the lower end 252 the resultant velocity vector V is in a horizontal direction which creates a shearing movement between the two discs. This resultant movement rotates the fiber mat, in the embodiment illustrated in FIG. 11, in a clockwise direction as indicated by the arrow 253. At the center part of portion 209 in an area generally indicated at applied through vacuum heads 410 and 411 will carry 75 254, the resultant velocity vector V is in a direction paral-

lel to or substantially parallel to the length of the partially twisted fiber mat or train because vectors V1 and V2 are substantially parallel. Consequently, little or no rolling action takes place in the center part or portion 209. In the upper part 255 of portion 209, the twisting and rolling of the fiber train is in a counterclockwise direction as indicated by arrow 256. This is due to the reversal of direction of vectors V₁ and V₂ with a consequent reversal of direction of the resultant vector V in the horizontal plane.

Since the diameter or cross-sectional mass of the fiber mat or train at lower end 252 is relatively large due to retained water and lack of compaction, the amount of twist effected is not too great. However, the mat or train becomes progressively more compact through the loss 15 of water and due to pressure compaction and rolling action of the discs. Thus as the mat or train moves upwardly and begins to assume a continuous integral shape, its effective diameter or cross-sectional area is significantly less at the upper end 255 than at the lower end 252. The number of rotations of the fiber mat or train may be determined by dividing the horizontal component V by the circumference of the fiber mat. This means that effectively the train or mat will be rotated in a counterclockwise direction at the upper end more than it will 25 be rotated in a clockwise direction at the lower end 252. The difference in counterclockwise rotation at the upper end from the clockwise direction at the lower end of the mat or train is a net figure which is related to the net twist effected in the train that thereupon emerges as a 30 partially finished by continuous yarn 260 at the upper end 255 of the overlapping portions 209.

The yarn 260 may then be carried between the surface 207 of disc 204 and the compacting roller 221. Suction applied to roller 221 removes residual water from 35 the yarn and in addition applies further compaction which tightens and strengthens the yarn prior to its final treatment. The yarn may then be wound on any standard textile yarn take up unit such as a spindle rotating pot or spool, and may thereafter be imparted with additional 40 twist during such an operation by means well known in

A modification of the embodiment shown in FIGS. 9 and 10 is illustrated in FIGS. 12 and 13. In this arrangement elements not shown may be similar to those previously 45 described in other embodiments. The discs 300 and 301 are mounted respectively on shafts 302 and 303. Disc 300 is a rigidly backed disc having a vacuum chamber positioned behind a hydrophillic surface member 304 of the type previously described in connection with FIG. 9. 50 Suitable suction means may be applied to the hydrophillic surface 304 which unlike the hydrophillic surfaces of the previously described discs is not uniformly smooth. In this embodiment the surface 304 is provided with an annular shoulder 307 which extends uniformly about 55 the periphery of the disc and which has an inner edge 308. The hub of the hydrophillic disc 304 may be formed with orienting means comprising a facing disc-like hydrophillic projection 309 integral with surface 304 and a facing parallel disc 310 mounted on and driven by 60 shaft 311 by suitable driving means 312. The disc 309 may rotate at a speed slightly greater than the disc 310 so as to orient the fibers in the manner schematically illustrated in FIG. 13 and as described above in connection with similar arrangements.

Disc 301 is preferably formed of a flexible material covered on surface 315 with a porous hydrophillic material. This disc 301 is suitably mounted on and rotated by shaft 303 by suitable drive means which may be driven from shaft 302 by suitable means such as the pulley ar- 70 rangement 317. The upper half of disc 301 is flared backward or away from wire 15 as illustrated in FIG. 13 by roller 319 suitably journaled and secured to flare the upper portion of the flexible disc 301 rearwardly and away from engagement with wire 15. Wire 15 passes in front of the 75

surface of disc 304 and between discs 309 and 310 without engaging disc 304 except at its inner peripheral edge 308 at a point intermediate the shaft 302 and the shaft 303. The fibers 251 are partially oriented as previously described between discs 309 and 310. They are then laid onto the hydrophillic surface 304 at the inner periphery 308 and carried downwardly on rotation of the disc 304 as illustrated at 320 in FIG. 12. A mat or train of fibers is not disturbed by disc 301 until interengagement of the discs 301 and 300 at a point below the axes on which the discs are mounted. Thus there is a shearing action in one direction only in this embodiment in an area indicated at 322 which effects a twist of the overlapped fibers at that point. Preferably disc 301 travels at a slightly faster speed than disc 300 which generates a rolling and compaction action over the lower portion of the facing parts of the discs 301 and 302. The velocity vector is entirely in one direction, not in more than one as is the case in the embodiment described in connection with FIG. 9.

The yarn thus partially formed which emerges from between the overlapping portions of disc 300 and 301 may then be further twisted by suitable or conventional means and may be taken up on conventonal take up means.

What is claimed is:

1. In a method of forming yarn of staple fibers the steps comprising

forming an aqueous slurry with a quantity of said fibers dispersed therein,

drawing a wire through said slurry so that said fibers are draped over the wire as it passes from the slurry, mechanically interengaging adjacent fibers drawn from said slurry,

removing said wire from engagement with said fibers, and thereafter further treating said fibers including twisting said interengaged fibers into yarn.

2. In a method of forming yarn of staple fibers the steps comprising

forming an aqueous slurry with a quantity of said fibers dispersed therein,

drawing a wire through said slurry so that said fibers are draped over the wire substantially parallel to one another as it passes from the slurry,

subjecting opposite ends of said draped fibers to relative movement and into engaging relation with adjacent fibers, and removing said wire from said fibers.

3. In a method of forming yarn of staple fibers the steps comprising,

forming an aqueous slurry with a quantity of said fibers dispersed therein,

drawing a wire through said slurry so that said fibers drape over the wire with their opposite ends substantially parallel to one another and to the ends of adjacent fibers as said wire passes from said slurry,

subjecting said opposite ends of said fibers to relative movement into nonparallel relationship with each other and into interengaging relation with adjacent fibers, and

removing said fibers from said wire.

4. In a process of forming yarn the steps of dispersing staple fibers in a slurry and

drawing a wire through said slurry and angularly to the surface of said slurry so that said fibers drape over the wire with their opposite ends substantially parallel to one another and to the ends of adjacent fibers and forming said fibers into yarn.

5. A process as set forth in claim 4 wherein the mean average fiber length is greater than half the circumference of said wire and less than the circumference of said wire.

6. In a method of forming yarn of staple fibers the steps comprising,

draping said staple fibers over a wire in adjacent relation to one another,

subjecting said fibers for at least a portion of the time while draped on said wire to a reorienting movement whereby said fibers are rearranged from substantial-

ly U-shaped to elongated configurations with said rearranged fibers reoriented into positions generally longitudinal with respect to said wire and in overlapping relation with one another,

11

and thereafter twisting said length into a continuous 5

length of yarn.

7. In a method of forming yarn of staple fibers the steps comprising,

draping said staple fibers over a wire in adjacent relation to one another and with the ends of the fibers 10 generally normal to the length of the wire,

- subjecting said fibers for at least a portion of the time while draped on said wire to a reorienting movement by engaging the ends of each of said fibers and moving them toward opposite longitudinal directions with 15 respect to the length of the wire and with said ends in interengaging relationship with the ends of adjacent fibers.
- and thereafter removing said interengaged fibers from said wire.
- 3. A method as set forth in claim 6 wherein said interengaged fibers are twisted and further interengaged on removal from said wire.
- 9. A method as set forth in claim 6 wherein said fibers are subjected to said reorienting movement by engaging 25 opposite ends of each of said draped fibers and extending them longitudinally of said wire with surfaces having relative movement therebetween.
- 10. In a method of forming fibers into yarn the steps

forming an aqueous slurry with a quantity of discrete fibers dispersed therein,

drawing a wire through said slurry so that said fibers are draped over said wire with their opposite ends substantially parallel to one another and to adjacent 35 fibers as said fibers pass from said slurry,

subjecting said fibers for at least a portion of the time while draped on said wire to a reorienting movement whereby the ends of adjacent fibers are arranged generally longitudinal with respect to the length of 40 said wire and in overlapping relation with one another.

removing said reoriented fibers from said wire, and thereafter twisting said reoriented fibers into a continuous length of yarn.

- 11. A method as set forth in claim 10 wherein said fibers are reoriented as said wire moves in a direction parallel to its axis, and said fibers are reoriented by engaging opposite ends thereof and undraping said fibers by moving said ends towards opposite longitudinal directions of said wire.
- 12. A method as set forth in claim 11 wherein said fibers are at least partially dried as they are engaged by said surfaces.
- 13. A method as set forth in claim 12 wherein said 55 surfaces move in the same general direction as said wire with one surface moving at a faster rate than the other.
- 14. Means for forming staple fibers into yarn comprising,
 - a container adapted to contain an aqueous slurry of 60 discrete fibers,
 - an elongated length of wire, means supporting said wire for movement through and out of said container whereby said fibers will drape over said wire as it moves from said container,
 - means for reorienting fibers draped on said wire to positions substantially longitudinal with respect to said wire and with ends of each fiber extending in opposite directions and with said fibers in overlapping interengaging relation, and
 - means for twisting said fibers into an intertwined continuous length from said overlapping interengaging relation.
 - 15. Means for forming fibers into yarn comprising,

- a container adapted to contain an aqueous slurry of discrete fibers,
- an elongated length of wire, means supporting said wire for movement through and out of said container whereby said fibers will drape over said wire as it moves from said container,
- means forming a pair of parallel adjacent surfaces between at least a portion of which said wire moves with said surfaces adapted to engage fibers on said wire.
- means for moving said surfaces at different relative rates of speed whereby said fibers on said wire are reoriented into a position substantially longitudinal with respect to said wire, and

means for removing said fibers from said wire and for twisting said reoriented fibers into an intertwined continuous length.

16. A means as set forth in claim 15 wherein said surfaces are formed with hydrophillic properties.

17. A means as set forth in claim 16 wherein said surfaces are formed of absorbent resilient material,

shaft means normal to said surfaces, and

means supporting said material on said shaft for rotation in the plane of said surfaces.

18. A means as set forth in claim 16 wherein said surfaces are formed of absorbent resilient material,

at least one pair of shafts parallel to said surfaces, and means supporting said surfaces on said shaft for movement in the planes of said surfaces.

19. A means as set forth in claim 15 wherein said surfaces are formed with porous water absorbent surfaces and with means for applying a suction through said surfaces for removing water absorbed by said surfaces.

20. A device as set forth in claim 19 having cleaning means comprising means for flowing water onto said surfaces at a point adjacent said portion between which said wire moves,

and means for removing said water flowed onto said surface in the same direction in which said water was flowed onto said surface.

- 21. In a means for forming fibers into yarn the combination comprising,
 - a pair of parallel closely spaced hydrophillic planar surfaces, means supporting said surfaces for movement in the planes of said surfaces,

a wire, and

means supporting said wire for movement between said surfaces.

- 22. In a means for forming fibers into yarn the com-50 bination comprising,
 - means forming resilient hydrophillic members having parallel closely spaced surfaces, means supporting said members for movement in the
 - planes of said surfaces,
 - a wire with means supporting said wire for movement between said surfaces,
 - means for draping a plurality of fibers on said wire before movement between said surfaces,
 - means for moving each of said surfaces and said wire at different rates of speed whereby said fibers are twisted into a continuous length between said surfaces, and

blade means interposed between said surfaces for removal and further twisting of fibers from said wire as said surfaces and wire are moved.

- 23. A means as set forth in claim 22 wherein the members are formed as discs, and said supporting means include rigid support means engaging said discs with a shaft extending normal to said planes.
- 24. A means as set forth in claim 23 wherein said rigid support means are hollow with passages interconnecting said discs and vacuum means whereby suction may be applied to said discs.
- 25. A means as set forth in claim 23 wherein said discs 75 are resiliently urged toward one another.

12

- 26. A means as set forth in claim 22 wherein said members are formed of endless belts of absorbent material with each supported on an axis lying in parallel planes but extending angularly with respect to one another.
- 27. A means as set forth in claim 26 wherein said members are each supported on a single shaft.
- 28. A means as set forth in claim 26 wherein said members are each supported on a pair of shafts.
- 29. A means as set forth in claim 26 wherein said 10 members are each supported with said surfaces lying in vertically oriented planes.
- 30. In a method of forming staple fibers into yarn the step comprising draping said staple fibers over an elongated means by moving said means through a moving aqueous slurry of said fibers at a rate different from the rate of motion of said aqueous slurry and out of said slurry through and at an angle to the surface thereof and forming said fibers into yarn.
- 31. In a method of forming staple fibers into yarn the 20 step comprising draping said staple fibers over an elongated means by moving said means through a moving aqueous slurry of said fibers in a direction different from the direction of motion of said aqueous slurry and out of said slurry through and at an angle to the surface thereof 25 and forming said fibers into yarn.
 - Means for forming fibers into yarn comprising,
 a container adapted to contain an aqueous slurry of discrete fibers,
 - an elongated length of wire, means supporting said wire 30 for movement through and out of said container whereby said fibers will drape over said wire as it moves from said container,
 - means for continuously removing said fibers from said wire in a continuous train with said individual fibers extending angular to the length of the train, and means for engaging said train and for intertwining said fibers into a continuous yarn.
- 33. A means as set forth in claim 32 wherein said means for continuously removing said fibers from said wire comprise a disc having a surface with an edge engaging and extending across said wire whereby said fibers on said wire will be transferred to said surface.
- 34. A means as set forth in claim 33 wherein said surface is a hydrophillic surface and said wire extends angular to the plane of said surface.
- 35. A device as set forth in claim 34 having cleaning means comprising
 - means for flowing water onto and subsequently removing said water by suction from said hydrophillic surface with said cleaning means adjacent the portion of said surface on which said fibers are deposited.
- 36. A device as set forth in claim 35 wherein said means for flowing water onto and subsequently removing said water comprises a brush having a tubular connection for passage of water therethrough, and
 - a suction means positioned adjacent said brush for removal of said water and deposited by said brush.
- 37. A means as set forth in claim 34 having means for imparting a twist to said wire at the point of engagement of said wire and said edge.
- 38. A means as set forth in claim 37 wherein said means for imparting a twist comprises,
 - means for rotating said disc in one direction,
 - a second disc parallelly mounted with respect to said first mentioned disc,
 - means for rotating said second disc in a direction opposite to the rotation of said first disc, and
 - means for pressure engaging a portion of said wire with said second disc at a point at which the direction of

- angular movement of said second disc is different from the angular direction of movement of said first disc at the point of engagement of said wire with said first disc.
- 39. A means as set forth in claim 33 wherein said means for intertwining said fibers includes,
 - a second disc parallelly mounted with respect to said first and having a surface closely spaced to said surface of said first disc, said surfaces having common overlapping facing portions,
 - means for rotating said discs in opposite directions whereby the movement of said surfaces will impart a twisting action in said overlapping portions,
 - means for maintaining said surfaces at a sufficient distance such that said removed fibers on one disc will be engaged by the other disc and twisted into a continuous length.
- 40. A means as set forth in claim 39 having a compacting roller adapted to engage twisted fibers as they move from said overlapping portions of said discs.
- 41. A means as set forth in claim 40 wherein said compacting roller comprises a roller having a hydrophillic porous surface.
- 42. A means as set forth in claim 39 having a preorienting means for orienting the fibers on said wire towards a direction substantially longitudinal of said wire.
- 43. A means as set forth in claim 42 wherein said preorienting means includes a pair of coaxially mounted discs having facing hydrophillic surfaces between which said wire moves, and
 - means for rotating said discs at different speeds.
- 44. A means as set forth in claim 43 wherein said second disc is flexible with a portion thereof flexed to a position nonparallel with the said surface of said first disc.
- 45. A means as set forth in claim 39 wherein said edge on said disc is spaced inwardly from its periphery and said second disc engages said first disc at said edge with the resultant velocity vector of the velocity vectors of said discs in said overlapping portion extending in substantially one direction only.
- 46. In a means for forming staple fibers into yarn wherein a plurality of moisture laden fibers are draped over an elongated means,
 - means for removing said fibers from said elongated means into a continuous train of fibers with said fibers angular to the length of the train comprising,
 - means having a surface with an elongated portion positioned to engage said elongated means at a point and means for moving said elongated means and said portion relative to one another at said point whereby said fibers will be removed from said elongated means and deposited in a train onto said elongated portion with said fibers angular to the length of said elongated portion.

References Cited

UNITED STATES PATENTS

	OTITED	DIVIES LUIENIZ
143,020 1,615,392 1,880,056 1,887,959 2,698,972 2,817,947 2,913,365 3,156,084	9/1873 1/1927 9/1932 11/1932 1/1955 12/1957 11/1959 11/1964	Lucas 19—150 Little 162—106 Sherman 162—196 Sherman 162—196 X Keeler 19—150 Strang 57—12 Osborne et al. 19—156
		Van Dijk et al 57—51.6 X
	11/1964	Van Dijk et al 57—51.6 X
2,101,940	14/1904	Stalego 19—.51