wo 2012/071283 A1 [N 000 0O OO O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

31 May 2012 (31.05.2012)

WIPOIPCT

(10) International Publication Number

WO 2012/071283 Al

(51

eay)

(22)

(25)
(26)
(30)

(72)
1

74

31

International Patent Classification:
HO4W 28/02 (2009.01) HO4W 74/06 (2009.01)
HO4W 76/02 (2009.01) HO04W 52/02 (2009.01)

International Application Number:
PCT/US2011/061512

International Filing Date:
18 November 2011 (18.11.2011)

Filing Language: English
Publication Language: English
Priority Data:

61/416,033 22 November 2010 (22.11.2010) US
61/416,020 22 November 2010 (22.11.2010) US
61/430,828 7 January 2011 (07.01.2011) US
61/533,007 9 September 2011 (09.09.2011) US

Inventors; and

Applicants : LUNA, Michael [US/US]; 519 Curie Drive,
San Jose, CA 94123 (US). TERVAHAUTA, Mikko
[FI/US]; 2015 Castro, San Francisco, CA 94131 (US).

Agents: FU, Yenyun et al.; Perking Coie LLP, P.O. Box
1208, Seattle, WA 98111-1208 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(84)

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: ALIGNING DATA TRANSFER TO OPTIMIZE CONNECTIONS ESTABLISHED FOR TRANSMISSION OVER A
WIRELESS NETWORK

Application Behavior Detector 236

Prioritization
Engine
1z

Application State Categorizer
241¢

{ ” 1
Foreground | | B

Detaction
Engine
241b

Application Traffic Categorizer ?
241d N

Interactive
Traffic

Poll Interval
Detector

alignment || e
Module

256 }

Critical
Application
Detector
258h

FIG. 2K

(57) Abstract: Systems and methods for aligning
data transfer to optimize connections established for
transmission over a wireless network are disclosed.
In one aspect, embodiments of the present disclosure
include a method, which may be implemented on a
system, for aligning data transfer to a mobile device
to optimize connections made by the mobile device
in a cellular network. The method includes batching
data received in multiple transactions directed to a
mobile device for transmission to the mobile device
over the cellular network such that a wireless con-
nection need not be established with the mobile
device every time each of the multiple transactions
occurs. For example, the data received in the mul-
tiple transactions for the mobile device can be sent to
the mobile device, in a single transaction over a
single instantiation of wireless network connectivity
at the mobile device.

WO 2012/071283 PCT/US2011/061512

ALIGNING DATA TRANSFER TO OPTIMIZE CONNECTIONS ESTABLISHED FOR
TRANSMISSION OVER A WIRELESS NETWORK

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No.
61/416,020 entitled “ALIGNING BURSTS FROM SERVER TO CLIENT”, which was filed on
November 22, 2010, U.S. Provisional Patent Application No. 61/416,033 entitled “POLLING
INTERVAL FUNCTIONS”, which was filed on November 22, 2010, U.S. Provisional Patent
Application No. 61/430,828 entitled “DOMAIN NAME SYSTEM WITH NETWORK
TRAFFIC HARMONIZATION”, which was filed on January 7, 2011, U.S. Provisional Patent
Application No. 61/533,007 [Attorney Docket No. 76443-8138.US00] entitled “DISTRIBUTED
CACHING IN A WIRELESS NETWORK OF CONTENT DELIVERED FOR A MOBILE
APPLICATION OVER A LONG-HELD REQUEST”, which was filed on September 9, 2011,

the contents of which are all incorporated by reference herein.

[0002] This application is related to U.S. Patent Application No. 13/178,598 [Attorney Docket
No. 76443-8102.US01] entitled “CONTEXT AWARE TRAFFIC MANAGEMENT FOR
RESOURCE CONSERVATION IN A WIRELESS NETWORK,” which was filed on July 8,

2011, the contents of which are herein incorporated by reference.

[0003] This application is related to U.S. Patent Application No. 13/188,553 [Attorney Docket
No. 76443-8103.US01] entitled “MOBILE APPLICATION TRAFFIC OPTIMIZATION,”

which was filed on July 22, 2011, the contents of which are herein incorporated by reference.

[0004] This application is related to U.S. Patent Application No. 13/115,631 [Attorney Docket
No. 76443-8104.US01] entitled “MOBILE NETWORK TRAFFIC COORDINATION
ACROSS MULTIPLE APPLICATIONS,” which was filed on May 25, 2011, the contents of

which are herein incorporated by reference.

[0005] This application is related to U.S. Patent Application No. 13/115,740 [Attorney Docket
No. 76443-8105.US01] entitled “PREDICTION OF ACTIVITY SESSION FOR MOBILE
NETWORK USE OPTIMIZATION AND USER EXPERIENCE ENHANCEMENT,” which

was filed on May 25, 2011, the contents of which are herein incorporated by reference.

WO 2012/071283 PCT/US2011/061512

[0006] This application is related to U.S. Patent Application No. 13/178,675 [Attorney Docket
No. 76443-8106.US01] entitled “DISTRIBUTED IMPLEMENTATION OF DYNAMIC
WIRELESS TRAFFIC POLICY,” which was filed on July 8, 2011, the contents of which are

herein incorporated by reference.

[0007] This application is related to U.S. Patent Application No. 13/176,537 [Attorney
Docket No. 76443-8107.US01] entitled “DISTRIBUTED CACHING AND RESOURCE AND
MOBILE NETWORK TRAFFIC MANAGEMENT,” which was filed on July 5, 2011, the

contents of which are herein incorporated by reference.

[0008] This application is related to U.S. Patent Application No. 13/274,265 [Attorney
Docket No. 76443-8134.US01] entitled “Caching Adapted for Mobile Application Behavior and
Network Conditions,” which was filed on October 14, 2011, the contents of which are herein

incorporated by reference.

[0009] This application is related to U.S. Patent Application No. 13/274,501 [Attorney
Docket No. 76443-8134.US02] entitled “Request and Response Characteristics based
Adaptation of Distributed Caching in a Mobile Network,” which was filed on October 17, 2011,

the contents of which are herein incorporated by reference.

[0010] This application is related to U.S. Patent Application No. 13/274,250 [Attorney
Docket No. 76443-8138.US01] entitled “Distributed Caching In A Wireless Network Of
Content Delivered For A Mobile Application Over A Long-Held Request,” which was filed on

October 14, 2011, the contents of which are herein incorporated by reference.

[0011] This application is related to U.S. Patent Application No. 13/274,248 [Attorney
Docket No. 76443-8139.US01] entitled “APPLICATION AND NETWORK-BASED LONG
POLL REQUEST DETECTION AND CACHEABILITY ASSESSMENT THEREFOR”, which

was filed on October 14, 2011, and the contents of which are herein incorporated by reference.

[0012] This application is related to U.S. Patent Application No. 13/257 (72 [Attorney Docket
No. 76443-8108.US02] entitled “Cache Defeat Detection and Caching of Content Addressed by
Identifiers Intended to Defeat Cache,” which was filed on November 1, 2011, the contents of

which are herein incorporated by reference.

WO 2012/071283 PCT/US2011/061512

[0013] This application is related to U.S. Patent Application No. 13/257,085 [Attorney Docket
No. 76443-8108.US03] entitled “Distributed System for Cache Defeat Detection and Caching of
Content Addressed by Identifiers Intended to Defeat Cache,” which was filed on November 1,

2011, the contents of which are herein incorporated by reference.

[0014] This application is related to U.S. Patent Application No. 13/287,046 [Attorney Docket
No. 76443-8109.US01] entitled “Distributed Management of Keep-Alive Message Signaling for
Mobile Network Resource Conservation and Optimization,” which was filed on November 1,

2011, the contents of which are herein incorporated by reference.

[0015] This application is related to U.S. Patent Application No. 13/287,058 [Attorney Docket
No. 76443-8110.US01] entitled “Mobile Traffic Categorization and Policy for Network Use
Optimization While Preserving User Experience,” which was filed on November 1, 2011, the

contents of which are herein incorporated by reference.

[0016] This application is related to U.S. Patent Application No. [Attorney

Docket No. 76443-8112.US01] entitled “Optimization of Resource Polling Intervals To Satisfy
Mobile Device Requests,” filedon ___ | and the contents of which are herein incorporated

by reference.

BACKGROUND

[0017] The constant connections and disconnections increase the amount of signaling
network traffic, which lowers the performance of the network overall, and passes the torch onto
the network operators and forcing them to increase bandwidth and network access. To date,
carriers have been able to invest in 4G and LTE networks to boost network capacity in hotspots.
However, these solutions are reaching their limit. L'TE and 4G are also showing that the
perceived capacity of added bandwidth is causing users and applications to increase usage and

data consumption. In the long run, it might add to the congestion problem rather than help.

[0018] Furthermore, in most cases, a mobile device may be receiving data from multiple
sources (e.g., servers, web-sites, nodes of a network, etc.) in the service network. The
router/communication network between the services and the client ensures that all services can
communicate changes to the client over a single physical connection. However, a problem that

may occur is that different services (without knowing of each other’s actions) trigger the client

WO 2012/071283 PCT/US2011/061512

to create that connection at different times, and there may be a lack of an efficient or optimal
alignment of data transfer from the services to the client. Hence efficient utilization of the
shared connection is lacking (or at least minimal or sub-optimal) and at times the single
connection may in reality only provide an adequate or a realistic level of service for a single

service or source of data.

[0019] While mobile or broadband networks may be designed for high-throughput of large
amounts of data, they were not necessarily tailored to service the mobile applications that
require frequent, low-throughput requests of small amounts of data. Existing networks also do
not take into account different types of mobile traffic and priorities of the different types of

traffic, for example, from a user experience perspective.

[0020] Such transactions put the mobile device radio in a high-power mode for a
considerable length of time — typically between 15-30 seconds. As the high-power mode can
consume as much as 100x the power as an idle mode, these network-initiated applications are
power hungry and can quickly drain battery. The issue has been exacerbated by the rapid
increase of the popularity of applications with network-initiated functionalities, such as push
email, news feeds, status updates, multimedia content sharing and other mobile applications, etc.
Furthermore, the problem with constant polling is that mobile phones also rely on signaling to
send and receive calls and SMS messages and sometimes these basic mobile functions are

forced to take a backseat to unruly applications and other mobile clients.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1A illustrates an example diagram of a system where a host server facilitates
management of traffic, content caching, and/or resource conservation between mobile devices
(e.g., wireless devices) and an application server or content provider in a wireless network (or
broadband network) for resource conservation. The host server can further categorize mobile
traffic and/or implement delivery policies based on application behavior, content priority, user
activity, and/or user expectations, for further use in aligning data transfer to optimize

connections established for wireless transmission.

[0022] FIG. 1B illustrates an example diagram of a proxy and cache system distributed
between the host server and device which facilitates network traffic management between a
device and an application server/content provider for resource conservation and content caching.

The proxy system distributed among the host server and the device can further categorize mobile

4

WO 2012/071283 PCT/US2011/061512

traffic and/or implement delivery policies based on application behavior, content priority, user
activity, and/or user expectations, for example, for further use in aligning data transfer to

optimize connections established for wireless transmission.

[0023] FIG. 2A depicts a block diagram illustrating an example of client-side components
in a distributed proxy and cache system residing on a mobile device (e.g., wireless device) that
manages traffic in a wireless network (or broadband network) for resource conservation, content
caching, and/or traffic management. The client-side proxy (or local proxy) can further categorize
mobile traffic and/or implement delivery policies based on application behavior, content
priority, user activity, and/or user expectations, for example, for further use in facilitating

aligned data transfer to optimize connections established at the mobile device.

[0024] FIG. 2B depicts a block diagram illustrating a further example of components in the
cache system shown in the example of FIG. 2A which is capable of caching and adapting
caching strategies for mobile application behavior and/or network conditions. Components

capable of detecting long poll requests and managing caching of long polls are also illustrated.

[0025] FIG. 2C depicts a block diagram illustrating additional components in the
application behavior detector and the caching policy manager in the cache system shown in the
example of FIG. 2A which is further capable of detecting cache defeat and perform caching of

content addressed by identifiers intended to defeat cache.

[0026] FIG. 2D depicts a block diagram illustrating examples of additional components in
the local cache shown in the example of FIG. 2A which is further capable of performing mobile
traffic categorization and policy implementation based on application behavior and/or user

activity.

[0027] FIG. 2E depicts a block diagram illustrating examples of additional components in
the traffic shaping engine and the application behavior detector shown in the example of FIG.
2A which are further capable of facilitating alignment of incoming data transfer to a mobile or
broadband device, or its user, to optimize the number of connections that need to be established

for receiving data over the wireless network or broadband network.

[0028] FIG. 3A depicts a block diagram illustrating an example of server-side components
in a distributed proxy and cache system that manages traffic in a wireless network (or broadband

network) for resource conservation, content caching, and/or traffic management. The server-side

WO 2012/071283 PCT/US2011/061512

proxy (or proxy server) can further categorize mobile traffic and/or implement delivery policies
based on application behavior, content priority, user activity, and/or user expectations, for
example, for further use in aligning data transfer to optimize connections established for wireless

transmission to a mobile device.

[0029] FIG. 3B depicts a block diagram illustrating a further example of components in the
caching policy manager in the cache system shown in the example of FIG. 3A which is capable
of caching and adapting caching strategies for mobile application behavior and/or network
conditions. Components capable of detecting long poll requests and managing caching of long

polls are also illustrated.

[0030] FIG. 3C depicts a block diagram illustrating another example of components in the
proxy system shown in the example of FIG. 3A which is further capable of managing and

detecting cache defeating mechanisms and monitoring content sources.

[0031] FIG. 3D depicts a block diagram illustrating examples of additional components in
proxy server shown in the example of FIG. 3A which is further capable of performing mobile
traffic categorization and policy implementation based on application behavior and/or traffic

priority.

[0032] FIG. 3E depicts a block diagram illustrating examples of additional components in
the traffic shaping engine of the example of FIG. 3A which is further capable of aligning data
transfer to a mobile or broadband device, or other recipient, to optimize connections established

for transmission in a wireless network or broadband network.

[0033] FIG. 4 depicts a timing diagram showing how data requests from a mobile device
(e.g., any wireless device) to an application server/content provider in a wireless network (or
broadband network) can be coordinated by a distributed proxy system in a manner such that
network and battery resources are conserved through using content caching and monitoring

performed by the distributed proxy system.

[0034] FIG. § depicts a diagram showing one example process for implementing a hybrid
IP and SMS power saving mode on a mobile device (e.g., any wireless device) using a
distributed proxy and cache system (e.g., such as the distributed system shown in the example of

FIG. 1B).

WO 2012/071283 PCT/US2011/061512

[0035] FIG. 6 depicts a flow diagram illustrating an example process for distributed
content caching between a mobile device (e.g., any wireless device) and remote proxy and the

distributed management of content caching.

[0036] FIG. 7 depicts an interaction diagram showing cache management by a distributed
proxy system of content delivered to a mobile application over a long-held request while

ensuring freshness of content delivered.

[0037] FIG. 8 depicts a timing diagram showing hunting mode behavior in a long poll

request and a timing diagram showing timing characteristics when the long poll has settled.

[0038] FIG. 9 depicts an interaction diagram showing how polls having data requests from
a mobile device (e.g., any wireless device)to an application server/content provider over a
wireless network (or broadband network) can be can be cached on the local proxy and managed

by the distributed caching system.

[0039] FIG. 10 depicts an interaction diagram showing how polls for content from an
application server/content provider which employs cache-defeating mechanisms in identifiers
(e.g., identifiers intended to defeat caching) over a wireless network (or broadband network) can

be detected and locally cached.

[0040] FIG. 11 depicts a flow chart illustrating an example process for collecting
information about a request and the associated response to identify cacheability and caching the

response.

[0041] FIG. 12 depicts a flow chart illustrating an example process showing decision flows

to determine whether a response to a request can be cached.

[0042] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[0043] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[0044] FIG. 15 depicts a flow diagram illustrating an example process for using request
intervals to determine and to set a polling interval or rate at which a proxy server is to monitor

an application server/content host on behalf of the mobile device (e.g., any wireless device).

WO 2012/071283 PCT/US2011/061512

[0045] FIG. 16 depicts example timing diagrams showing timing characteristics for various

types of request-response sequences.

[0046] FIG. 17A depicts an example of a timing diagram showing timing characteristics

for request-response sequences.

[0047] FIG. 17B depicts an example of a timing diagram showing timing characteristics for

request-response sequences characteristic of a long poll.

[0048] FIG. 18 depicts a data timing diagram showing an example of detection of periodic

request which may be suitable for caching.

[0049] FIG. 19 depicts a data timing diagram showing an example of detection of change

in request intervals and updating of server polling rate in response thereto.

[0050] FIG. 20 depicts a data timing diagram showing an example of serving foreground

requests with cached entries.

[0051] FIG. 21 depicts a data timing diagram showing an example of the possible effect of
cache invalidation that occurs after outdated content has been served once again to a requesting

application.

[0052] FIG. 22 depicts a data timing diagram showing cache management and response

taking into account the time-to-live (T'TL) set for cache entries.

[0053] FIG. 23 depicts a diagram of an example of the component API layer for the cache

store.

[0054] FIG. 24 depicts a diagram showing one example of the data model for the cache

store.

[0055] FIG. 25 depicts a conceptual diagram of one example of the data model of a cache

entry in the cache store.

[0056] FIG. 26A-B depicts example request-response pairs showing cacheable responses

addressed by identifiers with changing parameters.

[0057] FIG. 27A depicts an example list of default or initial polling intervals for

applications or clients at a mobile device. .

WO 2012/071283 PCT/US2011/061512

[0058] FIG. 27B depicts an example list of adjusted polling intervals for applications or

clients at a mobile device.

[0059] FIG. 28 depicts a flow chart illustrating example processes performed for multiple
mobile devices or mobile device users to batch data received over multiple transactions for
transmission to a given mobile device such that the mobile device need not establish or power

on the radio each time a transaction occurs.

[0060] FIG. 29 depicts a flow chart illustrating example processes for managing data

transfer to a mobile device in a wireless network by manipulating polling intervals.

[0061] FIG. 30 depicts a flow chart illustrating an example process for generating an
adjusted polling interval for a first service based on intervals of other services on the same

device.

[0062] FIG. 31 depicts a flow chart illustrating an example process for aligning data

transfer to optimize connections established for transmission over a wireless network.

[0063] FIG. 32 shows a diagrammatic representation of a machine in the example form of a
computer system within which a set of instructions, for causing the machine to perform any one

or more of the methodologies discussed herein, may be executed.

DETAILED DESCRIPTION

[0064] The following description and drawings are illustrative and are not to be construed
as limiting. Numerous specific details are described to provide a thorough understanding of the
disclosure. However, in certain instances, well-known or conventional details are not described
in order to avoid obscuring the description. References to “one embodiment” or “an
embodiment” in the present disclosure can be, but not necessarily are, references to the same

embodiment and such references mean at least one of the embodiments.

[0065] Reference in this specification to “one embodiment” or “an embodiment” means
that a particular feature, structure, or characteristic described in connection with the embodiment
is included in at least one embodiment of the disclosure. The appearances of the phrase “in one
embodiment” in various places in the specification are not necessarily all referring to the same
embodiment, nor are separate or alternative embodiments mutually exclusive of other

embodiments. Moreover, various features are described which may be exhibited by some

WO 2012/071283 PCT/US2011/061512

embodiments and not by others. Similarly, various requirements are described which may be

requirements for some embodiments but not other embodiments.

[0066] The terms used in this specification generally have their ordinary meanings in the
art, within the context of the disclosure, and in the specific context where each term is used.
Certain terms that are used to describe the disclosure are discussed below, or elsewhere in the
specification, to provide additional guidance to the practitioner regarding the description of the
disclosure. For convenience, certain terms may be highlighted, for example using italics and/or
quotation marks. The use of highlighting has no influence on the scope and meaning of a term;
the scope and meaning of a term is the same, in the same context, whether or not it is

highlighted. It will be appreciated that same thing can be said in more than one way.

[0067] Consequently, alternative language and synonyms may be used for any one or more
of the terms discussed herein, nor is any special significance to be placed upon whether or not a
term is elaborated or discussed herein. Synonyms for certain terms are provided. A recital of
one or more synonyms does not exclude the use of other synonyms. The use of examples
anywhere in this specification, including examples of any terms discussed herein, is illustrative
only, and is not intended to further limit the scope and meaning of the disclosure or of any
exemplified term. Likewise, the disclosure is not limited to various embodiments given in this

specification.

[0068] Without intent to limit the scope of the disclosure, examples of instruments,
apparatus, methods and their related results according to the embodiments of the present
disclosure are given below. Note that titles or subtitles may be used in the examples for
convenience of a reader, which in no way should limit the scope of the disclosure. Unless
otherwise defined, all technical and scientific terms used herein have the same meaning as
commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the

case of conflict, the present document, including definitions, will control.

[0069] Embodiments of the present disclosure include systems and methods for aligning
data transfer to optimize connections established for transmission over a wireless network,
cellular network, or broadband network. To facilitate the alignment of data bursts (and hence the
transfer of data from multiple sources), embodiments of the present disclosure aligns the data
transfer processes to be closer (in a temporal or other relevant sense) to the sources of data. In

other words, in one embodiment, rather than fetching the data at random times and buffering it,

10

WO 2012/071283 PCT/US2011/061512

the system can attempt to align some or all services to poll the data at aligned intervals and/or
receive new content at aligned intervals so that minimal in-memory buffering is required, and

that the number of connections needed to be established at the mobile device can be decreased.

[0070] There are multiple factors that contribute to the proliferation of data: the end-user,
mobile devices, wireless devices, mobile applications, and the network. As mobile devices
evolve, so do the various elements associated with them-availability, applications, user behavior,

location thus changing the way the network interacts with the device and the application.

[0071] The disclosed technology provides a comprehensive and end-to-end solution that is
able to address each element for operators and devices manufacturers to support both the shift in
mobile or wireless devices and the surge in data by leveraging the premise that mobile content
has a definable or relevant “freshness” value. The “freshness” of mobile content can be
determined, either with certainty, or with some heuristics having a tolerance within which the
user experience is enhanced, or not negatively impacted, or negatively impacted but is either not

perceptible to the user or within a tolerable threshold level.

[0072] The disclosed innovation transparently determines such “freshness” by monitoring,
analyzing, and applying rules (which may be heuristically determined) the transactions
(requests/responses) between applications (e.g., mobile applications) and the peers
(corresponding server or other clients). Moreover, the technology is further able to effectively
cache content which may be marked by its originating/host server as being “non-cacheable” and
identify some “freshness” value which can then be used in implementing application-specific
caching. In general, the “freshness” value has an approximate minimum value which is typically
determined using the update interval (e.g., interval with which requests are sent) between the

application and its corresponding server/host.

[0073] One embodiment of the disclosed technology includes a system that optimizes
multiple aspects of the connection with wired and wireless networks and devices through a
comprehensive view of device and application activity including: loading, current application
needs on a device, controlling the type of access (push vs. pull or hybrid), location,
concentration of users in a single area, time of day, how often the user interacts with the
application, content or device, and using this information to shape traffic to a cooperative
client/server or simultaneously mobile devices without a cooperative client. Because the

disclosed server is not tied to any specific network provider it has visibility into the network

11

WO 2012/071283 PCT/US2011/061512

performance across all service providers. This enables optimizations to be applied to devices
regardless of the operator or service provider, thereby enhancing the user experience and
managing network utilization while roaming. Bandwidth has been considered a major issue in
wireless networks today. More and more research has been done related to the need for
additional bandwidth to solve access problems. Many of the performance enhancing solutions
and next generation standards, such as those commonly referred to as 3.5G, LTE, 4G, and
WiMAX, are focused on providing increased bandwidth. Although partially addressed by the
standards, a key problem that remains is lack of bandwidth on the signaling channel more so

than the data channel and the standard does not address battery life very well.

[0074] Embodiments of the disclosed technology includes, for example, alignment of
requests from multiple applications to minimize the need for several polling requests; leverage
specific content types to determine how to proxy/manage a connection/content; and applying
specific heuristics associated with device, user behavioral patterns (how often they interact with

the device/application) and/or network parameters.

[0075] Embodiments of the present technology can further include, moving recurring
HTTP polls performed by various widgets, RSS readers, etc., to remote network node (e.g.,
Network Operation Center (NOC)), thus considerably lowering device battery/power
consumption, radio channel signaling and bandwidth usage. Additionally, the offloading can be

performed transparently so that existing applications do not need to be changed.

[0076] In some embodiments, this can be implemented using a local proxy on the mobile
device (e.g., any wireless device) which automatically detects recurring requests for the same
content (RSS feed, Widget data set) that matches a specific rule (e.g., happens every 15
minutes). The local proxy can automatically cache the content on the mobile device while
delegating the polling to the server (e.g., a proxy server operated as an element of a
communications network). The server can then notify the mobile/client proxy if the content
changes, and if content has not changed (or not changed sufficiently, or in an identified manner
or amount) the mobile proxy provides the latest version in its cache to the user (without need to
utilize the radio at all). This way the mobile or wireless device (e.g., a mobile phone, smart
phone, M2M module/MODEM, or any other wireless devices, etc.) does not need to open (e.g.,
thus powering on the radio) or use a data connection if the request is for content that is

monitored and that has been not flagged as new/changed.

12

WO 2012/071283 PCT/US2011/061512

[0077] The logic for automatically adding content sources/application servers (e.g.,
including URLs/content) to be monitored can also check for various factors like how often the
content is the same, how often the same request is made (is there a fixed interval/pattern?),
which application is requesting the data, etc. Similar rules to decide between using the cache
and request the data from the original source may also be implemented and executed by the local

proxy and/or server.

[0078] For example, when the request comes at an unscheduled/unexpected time (user
initiated check), or after every (n) consecutive times the response has been provided from the
cache, etc., or if the application is running in the background vs. in a more interactive mode of
the foreground. As more and more mobile applications or wireless enabled applications base
their features on resources available in the network, this becomes increasingly important. In
addition, the disclosed technology allows elimination of unnecessary chatter from the network,

benefiting the operators trying to optimize the wireless spectrum usage.

Aligning Data Bursts From Server to Recipient

[0079] In some cases, a mobile device or mobile client (e.g., a local proxy 175 or 275 of
FIG. 1B and FIG. 2A-2E) can receive data from multiple sources (e.g., different services,
different servers, web-sites, various nodes of a network, etc.) in a wireless or broadband
network. The router/communication network between the services and the mobile client or
mobile device enables multiple services, including different services hosted by different servers
or content hosts, to communicate changes to the client over a single physical connection, or less
connections than otherwise would needed. However, since different services (without knowing
of each other’s actions) hosted by different servers, can trigger their respective clients/mobile
applications on the mobile device to create that connection at different times, there is generally a
lack of an efficient or optimal alignment of data transfer from the services to the mobile device
to communicate with the corresponding mobile client or application. Hence efficient utilization
of the shared connection is lacking (or at least minimal or sub-optimal) and at times the single
connection may in reality only provide an adequate or a realistic level of service for a single

service or source of data.

[0080] Embodiments of the present disclosure enable the alignment of data bursts and thus
further enabling the transfer of data from multiple sources or servers to a mobile device to be

more efficient. For example, embodiments of the disclosure align the data transfer process(es) to

13

WO 2012/071283 PCT/US2011/061512

be closer (in a temporal or other relevant sense) to the source(s) of data. In other words, rather
than fetching the data at random times and buffering it, the system aligns some or all services to
fetch the data at aligned intervals so that minimal in-memory buffering is required and/or to

enable batching of data sent to the mobile client/device.

[0081] For example, consider an example where mobile device user has subscribed to, or

otherwise registered/signed up for the following services:

[0082] 1) Email from Yahoo!: service polls in the background every 30 minutes and when

new notification is received;

[0083] 2) Email from generic IMAP: service every 13 minutes, no notifications are
available;
[0084] 3) Smart proxying for Twitter: service polls every 4 minutes;

[0085] 4) Smart proxying for RSS client: service polls every 10 minutes; and
[0086] 5) Smart proxying for ESPN sports feed: service polls every 3 minutes.

[0087] If some of all of these above services/mobile clients are initialized at the mobile or
wireless broadband device at random times with their original polling intervals, the polls will
spread fairly evenly across every hour, with minimal or little alignment or correspondence to
one another. As these services do not necessarily know of each other on the server side (and
such dependencies should not/would not be built between them), the mobile device (e.g. the
local proxy 175 or 275 of the mobile device) can obtain the information from the mobile

applications in aligning these efforts and hence in better optimizing the data transfer(s).

[0088] In some embodiments, the mobile device (e.g., the local proxy 175 or 275) performs
the computations and analyses to drive alignment across these polling intervals of mobile
applications at the mobile device. Since the local proxy works in conjunction with the remote
proxy server 125 of the host server 100 in the disclosed distributed system to poll the originating
application server/content provider (e.g., app server/content provider 110), the local proxy 125
can specify a polling interval for one or more mobile applications or clients to the remote proxy
125 for polling. When all services (e.g., mobile clients or mobile applications) communicate
their polling intervals to the client (not to each other) the local proxy 175 or 275 will see the

overall picture.

14

WO 2012/071283 PCT/US2011/061512

[0089]

or 275 has about the individual applications, the user, the mobile device, the OS or platform,

Using the individual polling intervals and additional information the local proxy 175

network conditions, application priority/criticality of the traffic or content, the local proxy 175
can adjust the polling intervals for each mobile client or application in an intelligent manner to
minimize the number of data transfers that are needed, to meet user expectations and application

needs so as to not cause the application to malfunction.

[0090]

the mobile applications, the polls, after adjustment of the intervals, can coincide at least partially

One disclosed strategy is to adjust the polling intervals such that at least for some of

temporally. For example, one approach is to adjust and set the intervals to be a multiple of a
common factor or denominator of the original or default polling intervals of a set of mobile
applications. In the above example, this denominator used could be 3 minutes and the polling
intervals can be adjusted to be multiples of 3 min. where needed, can in one example, yield the

following adjusted intervals:

Service/Mobile application | Original polling interval Adjusted polling interval
Yahoo! 30s. 30s.
IMAP 13 s. 15s.
Twitter 4s. 6s.
RSS 10 s. 12 s.
ESPN 3s. 3s.
[0091] Note further that the mobile device or local proxy can determine the urgency of each

service and can make a decision between rounding 4 minutes up to 6 for Twitter or compressing
it down to 3 to guarantee delivery time, based on application type or time criticality, or other
settings such as user preferences. The local proxy can also make sure that the common intervals
are based on, not necessarily the smallest interval (here 3 minutes), but on the smallest hard
interval (meaning the smallest interval that cannot be extended, e.g., based again on user
preferences, or application type/behavior, or other priority/criticality parameters). In this
example, the delivery time requirement on Twitter or another application with time critical
content or high priority application, can cause the local proxy to set all intervals based on 4
minutes to ensure the Twitter requirement is met while other intervals are rounded up rather than

dOWl’l, to conserve resources.

15

WO 2012/071283 PCT/US2011/061512

[0092] In addition, the local proxy can determine a value for (tp), or a mutual starting point
for each poll among various services. When the local proxy communicates this data back to the
services, there may be delays in that data arriving and the delays can vary among the services.

To maintain synchronization, the local proxy cannot use (tp) as the present time and instead can

anchor the start time to the same absolute point in time across the services.

[0093] The servers are typically in UTC and can use N'TP to stay at the same time, which
provides one way of solving this problem. For example, the local proxy can pick a minute mark
and communicate this to the remote proxy (proxy server). This minute mark can be random, and
the selected mark can be the base that all the services can use in the next occurrence of this
minute mark (say: 13). The minute mark could be up to 59 minutes away in the future, and to
avoid the delay or inefficiency of not polling for 59 minutes, the services may calculate any

necessary polling intervals back from t, as well.

[0094] Once the local proxy has communicated the data burst schedule (e.g., adjusted
interval and/or starting point) to the services on the remote proxy in the disclosed distributed
system, it is up to the remote proxy to make sure that the received data is also sent back to the
mobile device at specified intervals, not just starting the poll on behalf of the mobile clients at
specified intervals. The service can use average polling times from the past to make sure it is
ready to send data in the aligned burst at least some of the times. The logic described herein can
significantly improve the probability of multiple services aligning their communication to the

mobile device (local proxy) in cases where they find new data to send to a client within a poll.
[0095] Additional examples:

[0096] Notification based services: Yahoo! or other mobile clients which include real time
notification may receive a notification at any point in time. There are additional ways of

handling notifications:

[0097] Application polls and sends data immediately to meet the requirements of real time
notification and can align the next background poll according to plan using an adjusted polling

interval and further aligning the received response with other data.

[0098] Local proxy communicates to all services the common basis of the intervals (in the

above example, 3 minutes) such that the application poller can schedule polling for the new

16

WO 2012/071283 PCT/US2011/061512

email and sending it to the client at the earliest shared interval (this can be calculated, for

example, by going back from the default/original polling interval one 3 minute step at a time).

Traffic Categorization and Policy

[0099] In some embodiments, the disclosed proxy system is able to establish policies for
choosing traffic (data, content, messages, updates, etc.) to cache and/or shape. Additionally, by
combining information from observing the application making the network requests, getting
explicit information from the application, or knowing the network destination the application is
reaching, the disclosed technology can determine or infer what category the transmitted traffic

belongs to.

[00100] For example, in one embodiment, mobile or wireless traffic can be categorized as:
(al) interactive traffic or (a2) background traffic. The difference is that in (al) a user is actively
waiting for a response, while in (2) a user is not expecting a response. This categorization can be
used in conjunction with or in lieu of a second type of categorization of traffic: (b1) immediate,

(b2) low priority, (b3) immediate if the requesting application is in the foreground and active.

[00101] For example, a new update, message or email may be in the (b1) category to be
delivered immediately, but it still is (a2) background traffic — a user is not actively waiting for
it. A similar categorization applies to instant messages when they come outside of an active chat
session. During an active chat session a user is expecting a response faster. Such user
expectations are determined or inferred and factored into when optimizing network use and

device resources in performing traffic categorization and policy implementation.

[00102] Some examples of the applications of the described categorization scheme, include
the following: (al) interactive traffic can be categorized as (b1) immediate — but (a2)
background traffic may also be (b2) or (b3). An example of a low priority transfer is email or
message maintenance transaction such as deleting email or other messages or marking email as
read at the mail or application server. Such a transfer can typically occur at the earlier of (a)
timer exceeding a timeout value (for example, 2 minutes), and (b) data being sent for other

purposes.

[00103] Anexample of (b3) is IM presence updates, stock ticker updates, weather updates,
status updates, news feeds. When the UI of the application is in the foreground and/or active

(for example, as indicated by the backlight of the device/phone being lit or as determined or

17

WO 2012/071283 PCT/US2011/061512

inferred from the status of other sensors), updates can be considered immediate whenever server
has something to push to the device. When the application is not in the foreground or not active,

such updates can be suppressed until the application comes to foreground and is active.

[00104] With some embodiments, networks can be selected or optimized simultaneously for

(al) interactive traffic and (a2) background traffic.

[00105] Insome embodiments, as the wireless device or mobile device proxy (separately or
in conjunction with the server proxy) is able to categorize the traffic as (for example) (al)
interactive traffic or (a2) background traffic, it can apply different policies to different types of
traffic. This means that it can internally operate differently for (al) and (a2) traffic (for example,
by allowing interactive traffic to go through to the network in whole or in part, and apply stricter
traffic control to background traffic; or the device side only allows a request to activate the radio

if it has received information from the server that the content at the host has been updated, etc.).

[00106] When the request does require access over the wireless network, the disclosed
technology can request the radio layer to apply different network configurations to different

traffic. Depending on the type of traffic and network this may be achieved by different means:
[00107] (1) Using 3G/4G for (al) and 2G/2.5G for (a2);

[00108] (2) Explicitly specifying network configuration for different data sets (e.g. in terms
of use of FACH (forward access channel) vs. DCH (dedicated channel), or otherwise requesting

lower/more network efficient data rates for background traffic); or

[00109] (3) Utilizing different network access points for different data sets (access points

which would be configured to use network resources differently similar to (1) and (2) above).

[00110] Additionally, 3GPP Fast Dormancy calls for improvements so that applications,
operating systems or the mobile device would have awareness of the traffic type to be more
efficient in the future. Embodiments of the disclosed system, having the knowledge of the
traffic category and being able to utilize Fast Dormancy appropriately may solve the problem
identified in Fast Dormancy. This way the mobile or broadband network does not need to be
configured with a compromised configuration that adversely impacts both battery consumption

and network signaling resources.

18

WO 2012/071283 PCT/US2011/061512

Polling schedule

[00111] Detecting (or determining) a polling schedule allows the proxy server (server-side of
the distributed cache system) to be as close as possible with its polls to the application polls.
Many applications employ scheduled interval polling (e.g., every 4 hours or every 30 seconds, at
another time interval). The client side proxy can detect automatic polls based on time
measurements and create a automatic polling profile for an application. As an example, the
local proxy attempts to detect the time interval between requests and after 2, 3, 4, or more polls,
determines an automatic rate if the time intervals are all within 1 second (or another measure of
relative closeness) of each other. If not, the client may collect data from a greater number of
polling events (e.g., 10-12 polls) and apply a statistical analysis to determine, compute, or
estimate a value for the average interval that is used. The polling profile is delivered to the
server where it is used. If it is a frequent manual request, the locally proxy can substitute it with

a default interval for this application taken from a profile for non-critical applications.

[00112] In some embodiments, the local proxy (e.g., device side proxy) may keep
monitoring the application/client polls and update the polling interval. If it changes by more
than 30% (or another predetermined/dynamic/conditional value) from the current value, it is
communicated to the proxy server (e.g., server-side proxy). This approach can be referred to as
the scenario of “lost interest.” In some instances, the local proxy can recognize requests made

outside of this schedule, consider them “manual,” and treat them accordingly.

Application classes/Modes of caching

[00113] In some embodiments, applications can be organized into three groups or modes of
caching. Each mobile client/application can be categorized to be treated as one of these modes,

or treated using multiple modes, depending on one or more conditions.

[00114] A) Fully cached — local proxy updates (e.g., sends application requests directly
over the network to be serviced by the application server/content host) only when the proxy
server tells the local proxy to update. In this mode, the local proxy can ignore manual requests
and the proxy server uses the detected automatic profile (e.g., sports score applets, Facebook,

every 10, 15, 30, or more polls) to poll the application server/content provider.

19

WO 2012/071283 PCT/US2011/061512

[00115] B) Partially cached — the local proxy uses the local or internal cache for automatic
requests (e.g., application automatic refreshes), other scheduled requests but passes through

some manual requests (e.g., email download, Ebay or some Facebook requests); and

[00116] C) Never cached (e.g., real-time stock ticker, sports scores/statuses; however, in
some instances, 15 minutes delayed quotes can be safely placed on 30 seconds schedules — B or

even A).

[00117] The actual application or caching mode classification can be determined based on
the rate of content change and critical character of data. Unclassified applications by default can

be set as class C.

Backlight and active applications

[00118] Insome embodiments, the local proxy starts by detecting the device backlight status.
Requests made with the screen light ‘off” can be allowed to use the local cache if a request with
identical signature is registered with the proxy server, which is polling the original host
server/content server(s) to which the requests are directed. If the screen light is ‘on’, further
detection can be made to determine whether it is a background application or for other indicators
that local cache entries can or cannot be used to satisfy the request. When identified, the
requests for which local entries can be used may be processed identically to the screen light off
situation. Foreground requests can use the aforementioned application classification to assess

when cached data is safe to use to process requests.

[00119] FIG. 1A illustrates an example diagram of a system where a host server 100
facilitates management of traffic, content caching, and/or resource conservation between clients
(e.g., mobile devices, any wireless device or clients/applications on client devices 150) and an
application server or content provider 110 in a wireless network (or broad band network) 106 or
108 for resource conservation. The host server 100 can further categorize mobile traffic and/or
implement delivery policies based on application behavior, content priority, user activity, and/or

user expectations.

[00120] The client devices 150 can be any system and/or device, and/or any combination of
devices/systems that is able to establish a connection, including wired, wireless, cellular
connections with another device, a server and/or other systems such as host server 100 and/or

application server/content provider 110. Client devices 150 will typically include a display

20

WO 2012/071283 PCT/US2011/061512

and/or other output functionalities to present information and data exchanged between among

the devices 150 and/or the host server 100 and/or application server/content provider 110.

[00121] For example, the client devices 150 can include mobile, hand held or portable
devices, wireless devices, or non-portable devices and can be any of, but not limited to, a server
desktop, a desktop computer, a computer cluster, or portable devices, including a notebook, a
laptop computer, a handheld computer, a palmtop computer, a mobile phone, a cell phone, a
smart phone, a PDA, a Blackberry device, a Palm device, a handheld tablet (e.g., an iPad or any
other tablet), a hand held console, a hand held gaming device or console, any SuperPhone such
as the iPhone, and/or any other portable, mobile, hand held devices, or fixed wireless interface
such as a M2M device, etc. In one embodiment, the client devices 150, host server 100, and
application server 110 are coupled via a network 106 and/or a network 108. In some

embodiments, the devices 150 and host server 100 may be directly connected to one another.

[00122] The input mechanism on client devices 150 can include touch screen keypad
(including single touch, multi-touch, gesture sensing in 2D or 3D, etc.), a physical keypad, a
mouse, a pointer, a track pad, motion detector (e.g., including 1-axis, 2-axis, 3-axis
accelerometer, etc.), a light sensor, capacitance sensor, resistance sensor, temperature sensor,
proximity sensor, a piezoelectric device, device orientation detector (e.g., electronic compass,

tilt sensor, rotation sensor, gyroscope, accelerometer), or a combination of the above.

[00123] Signals received or detected indicating user activity at client devices 150 through
one or more of the above input mechanism, or others, can be used in the disclosed technology in
acquiring context awareness at the client device 150. Context awareness at client devices 150
generally includes, by way of example but not limitation, client device 150 operation or state
acknowledgement, management, user activity/behavior/interaction awareness, detection,
sensing, tracking, trending, and/or application (e.g., mobile applications) type, behavior, activity,

operating state, etc.

[00124] Context awareness in the present disclosure also includes knowledge and detection
of network side contextual data and can include network information such as network capacity,
bandwidth, traffic, type of network/connectivity, and/or any other operational state data.
Network side contextual data can be received from and/or queried from network service
providers (e.g., cell provider 112 and/or Internet service providers) of the network 106 and/or

network 108 (e.g., by the host server and/or devices 150). In addition to application context

21

WO 2012/071283 PCT/US2011/061512

awareness as determined from the client 150 side, the application context awareness may also be
received from or obtained/queried from the respective application/service providers 110 (by the

host 100 and/or client devices 150).

[00125] The host server 100 can use, for example, contextual information obtained for client
devices 150, networks 106/108, applications (e.g., mobile applications), application
server/provider 110, or any combination of the above, to manage the traffic in the system to
satisfy data needs of the client devices 150 (e.g., to satisfy application or any other request
including HT'TP request). In one embodiment, the traffic is managed by the host server 100 to
satisfy data requests made in response to explicit or non-explicit user 103 requests and/or
device/application maintenance tasks. The traffic can be managed such that network
consumption, for example, use of the cellular network is conserved for effective and efficient
bandwidth utilization. In addition, the host server 100 can manage and coordinate such traffic in
the system such that use of device 150 side resources (e.g., including but not limited to battery
power consumption, radio use, processor/memory use) are optimized with a general philosophy

for resource conservation while still optimizing performance and user experience.

[00126] For example, in context of battery conservation, the device 150 can observe user
activity (for example, by observing user keystrokes, backlight status, or other signals via one or
more input mechanisms, etc.) and alters device 150 behaviors. The device 150 can also request
the host server 100 to alter the behavior for network resource consumption based on user activity

or behavior.

[00127] In one embodiment, the traffic management for resource conservation is performed
using a distributed system between the host server 100 and client device 150. The distributed
system can include proxy server and cache components on the server side 100 and on the
device/client side , for example, as shown by the server cache 135 on the server 100 side and the

local cache 185 on the client 150 side.

[00128] Functions and techniques disclosed for context aware traffic management for
resource conservation in networks (e.g., network 106 and/or 108) and devices 150, reside in a
distributed proxy and cache system. The proxy and cache system can be distributed between,
and reside on, a given client device 150 in part or in whole and/or host server 100 in part or in
whole. The distributed proxy and cache system are illustrated with further reference to the

example diagram shown in FIG. 1B. Functions and techniques performed by the proxy and

22

WO 2012/071283 PCT/US2011/061512

cache components in the client device 150, the host server 100, and the related components

therein are described, respectively, in detail with further reference to the examples of FIG. 2-3.

[00129] In one embodiment, client devices 150 communicate with the host server 100 and/or
the application server 110 over network 106, which can be a cellular network and/or a
broadband network. To facilitate overall traffic management between devices 150 and various
application servers/content providers 110 to implement network (bandwidth utilization) and
device resource (e.g., battery consumption), the host server 100 can communicate with the
application server/providers 110 over the network 108, which can include the Internet (e.g., a

broadband network).

[00130] In general, the networks 106 and/or 108, over which the client devices 150, the host
server 100, and/or application server 110 communicate, may be a cellular network, a broadband
network, a telephonic network, an open network, such as the Internet, or a private network, such
as an intranet and/or the extranet, or any combination thereof. For example, the Internet can
provide file transfer, remote log in, email, news, RSS, cloud-based services, instant messaging,
visual voicemail, push mail, VoIP, and other services through any known or convenient
protocol, such as, but is not limited to the TCP/IP protocol, UDP, HI'TP, DNS, FTP, UPnP,
NSF, ISDN, PDH, RS-232, SDH, SONET, etc.

[00131] The networks 106 and/or 108 can be any collection of distinct networks operating
wholly or partially in conjunction to provide connectivity to the client devices 150 and the host
server 100 and may appear as one or more networks to the serviced systems and devices. In one
embodiment, communications to and from the client devices 150 can be achieved by, an open
network, such as the Internet, or a private network, broadband network, such as an intranet
and/or the extranet. In one embodiment, communications can be achieved by a secure

communications protocol, such as secure sockets layer (SSL), or transport layer security (TLS).

[00132] In addition, communications can be achieved via one or more networks, such as, but
are not limited to, one or more of WiMax, a Local Area Network (LAN), Wireless Local Area
Network (WLAN), a Personal area network (PAN), a Campus area network (CAN), a
Metropolitan area network (MAN), a Wide area network (WAN), a Wireless wide area network
(WWAN), or any broadband network, and further enabled with technologies such as, by way of
example, Global System for Mobile Communications (GSM), Personal Communications Service

(PCS), Bluetooth, WiFi, Fixed Wireless Data, 2G, 2.5G, 3G, 4G, IMT-Advanced, pre-4G, LTE

23

WO 2012/071283 PCT/US2011/061512

Advanced, mobile WiMax, WiMax 2, WirelessMAN-Advanced networks, enhanced data rates
for GSM evolution (EDGE), General packet radio service (GPRS), enhanced GPRS, iBurst,
UMTS, HSPDA, HSUPA, HSPA, UMTS-TDD, 1xRTT, EV-DO, messaging protocols such as,
TCP/IP, SMS, MMS, extensible messaging and presence protocol (XMPP), real time messaging
protocol (RTMP), instant messaging and presence protocol (IMPP), instant messaging, USSD,

IRC, or any other wireless data networks, broadband networks, or messaging protocols.

[00133] FIG. 1B illustrates an example diagram of a proxy and cache system distributed
between the host server 100 and device 150 which facilitates network traffic management
between the device 150 and an application server/content provider 100 (e.g., a source server) for
resource conservation and content caching. The proxy system distributed among the host server
100 and the device 150 can further categorize mobile traffic and/or implement delivery policies

based on application behavior, content priority, user activity, and/or user expectations.

[00134] The distributed proxy and cache system can include, for example, the proxy server
125 (e.g., remote proxy) and the server cache, 135 components on the server side. The server-
side proxy 125 and cache 135 can, as illustrated, reside internal to the host server 100. In
addition, the proxy server 125 and cache 135 on the server-side can be partially or wholly
external to the host server 100 and in communication via one or more of the networks 106 and
108. For example, the proxy server 125 may be external to the host server and the server cache
135 may be maintained at the host server 100. Alternatively, the proxy server 125 may be
within the host server 100 while the server cache is external to the host server 100. In addition,
each of the proxy server 125 and the cache 135 may be partially internal to the host server 100

and partially external to the host server 100.

[00135] The distributed system can also, include, in one embodiment, client-side
components, including by way of example but not limitation, a local proxy 175 (e.g., a mobile
client on a mobile device) and/or a local cache 185, which can, as illustrated, reside internal to

the device 150 (e.g., a mobile device).

[00136] In addition, the client-side proxy 175 and local cache 185 can be partially or wholly
external to the device 150 and in communication via one or more of the networks 106 and 108.
For example, the local proxy 175 may be external to the device 150 and the local cache 185 may
be maintained at the device 150. Alternatively, the local proxy 175 may be within the device

150 while the local cache 185 is external to the device 150. In addition, each of the proxy 175

24

WO 2012/071283 PCT/US2011/061512

and the cache 185 may be partially internal to the host server 100 and partially external to the

host server 100.

[00137] In one embodiment, the distributed system can include an optional caching proxy
server 199. The caching proxy server 199 can be a component which is operated by the
application server/content provider 110, the host server 100, or a network service provider 112,
and or any combination of the above to facilitate network traffic management for network and
device resource conservation. Proxy server 199 can be used, for example, for caching content to
be provided to the device 150, for example, from one or more of, the application server/provider
110, host server 100, and/or a network service provider 112. Content caching can also be
entirely or partially performed by the remote proxy 125 to satisfy application requests or other

data requests at the device 150.

[00138] In context aware traffic management and optimization for resource conservation in a
network (e.g., cellular or other wireless networks), characteristics of user activity/behavior
and/or application behavior at a mobile device (e.g., any wireless device) 150 can be tracked by
the local proxy 175 and communicated, over the network 106 to the proxy server 125
component in the host server 100, for example, as connection metadata. The proxy server 125
which in turn is coupled to the application server/provider 110 provides content and data to

satisfy requests made at the device 150.

[00139] In addition, the local proxy 175 can identify and retrieve mobile device properties,
including one or more of, battery level, network that the device is registered on, radio state, or
whether the mobile device is being used (e.g., interacted with by a user). In some instances, the
local proxy 175 can delay, expedite (prefetch), and/or modify data prior to transmission to the
proxy server 125, when appropriate, as will be further detailed with references to the description

associated with the examples of FIG. 2-3.

[00140] The local database 185 can be included in the local proxy 175 or coupled to the local
proxy 175 and can be queried for a locally stored response to the data request prior to the data
request being forwarded on to the proxy server 125. Locally cached responses can be used by
the local proxy 175 to satisfy certain application requests of the mobile device 150, by retrieving

cached content stored in the cache storage 185, when the cached content is still valid.

[00141] Similarly, the proxy server 125 of the host server 100 can also delay, expedite, or

modify data from the local proxy prior to transmission to the content sources (e.g., the

25

WO 2012/071283 PCT/US2011/061512

application server/content provider 110). In addition, the proxy server 125 uses device
properties and connection metadata to generate rules for satisfying request of applications on the
mobile device 150. The proxy server 125 can gather real time traffic information about requests
of applications for later use in optimizing similar connections with the mobile device 150 or

other mobile devices.

[00142] In general, the local proxy 175 and the proxy server 125 are transparent to the
multiple applications executing on the mobile device. The local proxy 175 is generally
transparent to the operating system or platform of the mobile device and may or may not be
specific to device manufacturers. In some instances, the local proxy 175 is optionally
customizable in part or in whole to be device specific. In some embodiments, the local proxy

175 may be bundled into a wireless model, a firewall, and/or a router.

[00143] In one embodiment, the host server 100 can in some instances, utilize the store and
forward functions of a short message service center (SMSC) 112, such as that provided by the
network service provider, in communicating with the device 150 in achieving network traffic
management. Note that 112 can also utilize any other type of alternative channel including
USSD or other network control mechanisms. As will be further described with reference to the
example of FIG. 3, the host server 100 can forward content or HT'TP responses to the SMSC
112 such that it is automatically forwarded to the device 150 if available, and for subsequent

forwarding if the device 150 is not currently available.

[00144] In general, the disclosed distributed proxy and cache system allows optimization of
network usage, for example, by serving requests from the local cache 185, the local proxy 175
reduces the number of requests that need to be satisfied over the network 106. Further, the local
proxy 175 and the proxy server 125 may filter irrelevant data from the communicated data. In
addition, the local proxy 175 and the proxy server 125 can also accumulate low priority data and
send it in batches to avoid the protocol overhead of sending individual data fragments. The local
proxy 175 and the proxy server 125 can also compress or transcode the traffic, reducing the
amount of data sent over the network 106 and/or 108. The signaling traffic in the network 106
and/or 108 can be reduced, as the networks are now used less often and the network traffic can

be synchronized among individual applications.

[00145] With respect to the battery life of the mobile device 150, by serving application or

content requests from the local cache 185, the local proxy 175 can reduce the number of times

26

WO 2012/071283 PCT/US2011/061512

the radio module is powered up. The local proxy 175 and the proxy server 125 can work in
conjunction to accumulate low priority data and send it in batches to reduce the number of times
and/or amount of time when the radio is powered up. The local proxy 175 can synchronize the

network use by performing the batched data transfer for all connections simultaneously.

[00146] FIG. 2A depicts a block diagram illustrating an example of client-side components
in a distributed proxy and cache system residing on a device 250 that manages traffic in a
wireless network for resource conservation, content caching, and/or traffic management. The
client-side proxy (or local proxy 275) can further categorize mobile traffic and/or implement
delivery policies based on application behavior, content priority, user activity, and/or user

expectations.

[00147] The device 250, which can be a portable or mobile device (e.g., any wireless
device), such as a portable phone, generally includes, for example, a network interface 208 an
operating system 204, a context API 206, and mobile applications which may be proxy-unaware
210 or proxy-aware 220. Note that the device 250 is specifically illustrated in the example of
FIG. 2 as a mobile device, such is not a limitation and that device 250 may be any wireless,
broadband, portable/mobile or non-portable device able to receive, transmit signals to satisfy
data requests over a network including wired or wireless networks (e.g., WiFi, cellular,

Bluetooth, LAN, WAN, etc.).

[00148] The network interface 208 can be a networking module that enables the device 250
to mediate data in a network with an entity that is external to the host server 250, through any
known and/or convenient communications protocol supported by the host and the external
entity. The network interface 208 can include one or more of a network adaptor card, a wireless
network interface card (e.g., SMS interface, WiFi interface, interfaces for various generations of
mobile communication standards including but not limited to 2G, 3G, 3.5G, 4G, LTE, etc.,),
Bluetooth, or whether or not the connection is via a router, an access point, a wireless router, a
switch, a multilayer switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a

digital media receiver, and/or a repeater.

[00149] Device 250 can further include, client-side components of the distributed proxy and
cache system which can include, a local proxy 275 (e.g., a mobile client of a mobile device) and
a cache 285. In one embodiment, the local proxy 275 includes a user activity module 215, a

proxy API 225, a request/transaction manager 235, a caching policy manager 245 having an

27

WO 2012/071283 PCT/US2011/061512

application protocol module 248, a traffic shaping engine 255, and/or a connection manager 265.
The traffic shaping engine 255 may further include an alignment module 256 and/or a batching
module 257, the connection manager 265 may further include a radio controller 266. The
request/transaction manager 235 can further include an application behavior detector 236 and/or
a prioritization engine 241, the application behavior detector 236 may further include a pattern
detector 237 and/or and application profile generator 239. Additional or less
components/modules/engines can be included in the local proxy 275 and each illustrated

component.

[00150] As used herein, a “module,” “a manager,” a “handler,” a “detector,” an “interface,”
a “controller,” a “normalizer,” a “generator,” an “invalidator,” or an “engine” includes a general
purpose, dedicated or shared processor and, typically, firmware or software modules that are
executed by the processor. Depending upon implementation-specific or other considerations,
the module, manager, handler, detector, interface, controller, normalizer, generator, invalidator,
or engine can be centralized or its functionality distributed. The module, manager, handler,
detector, interface, controller, normalizer, generator, invalidator, or engine can include general
or special purpose hardware, firmware, or software embodied in a computer-readable (storage)

medium for execution by the processor.

[00151] As used herein, a computer-readable medium or computer-readable storage medium
is intended to include all mediums that are statutory (e.g., in the United States, under 35 U.S.C.
101), and to specifically exclude all mediums that are non-statutory in nature to the extent that
the exclusion is necessary for a claim that includes the computer-readable (storage) medium to
be valid. Known statutory computer-readable mediums include hardware (e.g., registers,
random access memory (RAM), non-volatile (NV) storage, to name a few), but may or may not

be limited to hardware.

[00152] In one embodiment, a portion of the distributed proxy and cache system for network
traffic management resides in or is in communication with device 250, including local proxy 275
(mobile client) and/or cache 285. The local proxy 275 can provide an interface on the device
250 for users to access device applications and services including email, IM, voice mail, visual

voicemail, feeds, Internet, games, productivity tools, or other applications, etc.

[00153] The proxy 275 is generally application independent and can be used by applications

(e.g., both proxy-aware and proxy-unaware applications 210 and 220 or mobile applications) to

28

WO 2012/071283 PCT/US2011/061512

open TCP connections to a remote server (e.g., the server 100 in the examples of FIG. 1A-1B
and/or server proxy 125/325 shown in the examples of FIG. 1B and FIG. 3A). In some
instances, the local proxy 275 includes a proxy API 225 which can be optionally used to
interface with proxy-aware applications 220 (or applications (e.g., mobile applications) on a

mobile device (e.g., any wireless device)).

[00154] The applications 210 and 220 can generally include any user application, widgets,
software, H1'TP-based application, web browsers, video or other multimedia streaming or
downloading application, video games, social network applications, email clients, RSS
management applications, application stores, document management applications, productivity
enhancement applications, etc. The applications can be provided with the device OS, by the
device manufacturer, by the network service provider, downloaded by the user, or provided by

others.

[00155] One embodiment of the local proxy 275 includes or is coupled to a context API 206,
as shown. The context API 206 may be a part of the operating system 204 or device platform or
independent of the operating system 204, as illustrated. The operating system 204 can include
any operating system including but not limited to, any previous, current, and/or future
versions/releases of, Windows Mobile, iOS, Android, Symbian, Palm OS, Brew MP, Java 2
Micro Edition (J2ME), Blackberry, etc.

[00156] The context API 206 may be a plug-in to the operating system 204 or a particular
client/application on the device 250. The context API 206 can detect signals indicative of user
or device activity, for example, sensing motion, gesture, device location, changes in device
location, device backlight, keystrokes, clicks,, activated touch screen, mouse click or detection
of other pointer devices. The context API 206 can be coupled to input devices or sensors on the
device 250 to identify these signals. Such signals can generally include input received in
response to explicit user input at an input device/mechanism at the device 250 and/or collected
from ambient signals/contextual cues detected at or in the vicinity of the device 250 (e.g., light,

motion, piezoelectric, etc.).

[00157] In one embodiment, the user activity module 215 interacts with the context API 206
to identify, determine, infer, detect, compute, predict, and/or anticipate, characteristics of user
activity on the device 250. Various inputs collected by the context API 206 can be aggregated

by the user activity module 215 to generate a profile for characteristics of user activity. Such a

29

WO 2012/071283 PCT/US2011/061512

profile can be generated by the user activity module 215 with various temporal characteristics.
For instance, user activity profile can be generated in real-time for a given instant to provide a
view of what the user is doing or not doing at a given time (e.g., defined by a time window, in
the last minute, in the last 30 seconds, etc.), a user activity profile can also be generated for a
‘session’ defined by an application or web page that describes the characteristics of user
behavior with respect to a specific task they are engaged in on the device 250, or for a specific

time period (e.g., for the last 2 hours, for the last 5 hours).

[00158] Additionally, characteristic profiles can be generated by the user activity module
215 to depict a historical trend for user activity and behavior (e.g., 1 week, 1 mo., 2 mo., etc.).
Such historical profiles can also be used to deduce trends of user behavior, for example, access
frequency at different times of day, trends for certain days of the week (weekends or week days),
user activity trends based on location data (e.g., [P address, GPS, or cell tower coordinate data)
or changes in location data (e.g., user activity based on user location, or user activity based on
whether the user is on the go, or traveling outside a home region, etc.) to obtain user activity

characteristics.

[00159] Inone embodiment, user activity module 215 can detect and track user activity with
respect to applications, documents, files, windows, icons, and folders on the device 250. For
example, the user activity module 215 can detect when an application or window (e.g., a web
browser or any other type of application) has been exited, closed, minimized, maximized,

opened, moved into the foreground, or into the background, multimedia content playback, etc.

[00160] In one embodiment, characteristics of the user activity on the device 250 can be
used to locally adjust behavior of the device (e.g., mobile device or any wireless device) to
optimize its resource consumption such as battery/power consumption and more generally,
consumption of other device resources including memory, storage, and processing power. In
one embodiment, the use of a radio on a device can be adjusted based on characteristics of user
behavior (e.g., by the radio controller 266 of the connection manager 265) coupled to the user
activity module 215. For example, the radio controller 266 can turn the radio on or off, based on
characteristics of the user activity on the device 250. In addition, the radio controller 266 can
adjust the power mode of the radio (e.g., to be in a higher power mode or lower power mode)

depending on characteristics of user activity.

30

WO 2012/071283 PCT/US2011/061512

[00161] In one embodiment, characteristics of the user activity on device 250 can also be
used to cause another device (e.g., other computers, a mobile device, a wireless device, or a non-
portable device) or server (e.g., host server 100 and 300 in the examples of FIG. 1A-B and FIG.
3A) which can communicate (e.g., via a cellular or other network) with the device 250 to modify
its communication frequency with the device 250. The local proxy 275 can use the
characteristics information of user behavior determined by the user activity module 215 to
instruct the remote device as to how to modulate its communication frequency (e.g., decreasing
communication frequency, such as data push frequency if the user is idle, requesting that the
remote device notify the device 250 if new data, changed, data, or data of a certain level of

importance becomes available, etc.).

[00162] In one embodiment, the user activity module 215 can, in response to determining
that user activity characteristics indicate that a user is active after a period of inactivity, request
that a remote device (e.g., server host server 100 and 300 in the examples of FIG. 1A-B and
FIG. 3A) send the data that was buffered as a result of the previously decreased communication

frequency.

[00163] In addition, or in alternative, the local proxy 275 can communicate the
characteristics of user activity at the device 250 to the remote device (e.g., host server 100 and
300 in the examples of FIG. 1A-B and FIG. 3A) and the remote device determines how to alter
its own communication frequency with the device 250 for network resource conservation and

conservation of device 250 resources..

[00164] One embodiment of the local proxy 275 further includes a request/transaction
manager 235, which can detect, identify, intercept, process, manage, data requests initiated on
the device 250, for example, by applications 210 and/or 220, and/or directly/indirectly by a user
request. 'The request/transaction manager 235 can determine how and when to process a given

request or transaction, or a set of requests/transactions, based on transaction characteristics.

[00165] The request/transaction manager 235 can prioritize requests or transactions made by
applications and/or users at the device 250, for example by the prioritization engine 241.
Importance or priority of requests/transactions can be determined by the request/transaction
manager 235 by applying a rule set, for example, according to time sensitivity of the transaction,

time sensitivity of the content in the transaction, time criticality of the transaction, time

31

WO 2012/071283 PCT/US2011/061512

criticality of the data transmitted in the transaction, and/or time criticality or importance of an

application making the request.

[00166] In addition, transaction characteristics can also depend on whether the transaction
was a result of user-interaction or other user-initiated action on the device (e.g., user interaction
with a application (e.g., a mobile application)). In general, a time critical transaction can include
a transaction resulting from a user-initiated data transfer, and can be prioritized as such.
Transaction characteristics can also depend on the amount of data that will be transferred or is
anticipated to be transferred as a result of the requested transaction. For example, the
connection manager 265, can adjust the radio mode (e.g., high power or low power mode via the

radio controller 266) based on the amount of data that will need to be transferred.

[00167] In addition, the radio controller 266/connection manager 265 can adjust the radio
power mode (high or low) based on time criticality/sensitivity of the transaction. The radio
controller 266 can trigger the use of high power radio mode when a time-critical transaction
(e.g., a transaction resulting from a user-initiated data transfer, an application running in the

foreground, any other event meeting a certain criteria) is initiated or detected.

[00168] In general, the priorities can be set by default, for example, based on device
platform, device manufacturer, operating system, etc. Priorities can alternatively or in
additionally be set by the particular application; for example, the Facebook application (e.g., a
mobile application) can set its own priorities for various transactions (e.g., a status update can be
of higher priority than an add friend request or a poke request, a message send request can be of
higher priority than a message delete request, for example), an email client or IM chat client may
have its own configurations for priority. The prioritization engine 241 may include set of rules

for assigning priority.

[00169] The prioritization engine 241 can also track network provider limitations or
specifications on application or transaction priority in determining an overall priority status for a
request/transaction. Furthermore, priority can in part or in whole be determined by user
preferences, either explicit or implicit. A user, can in general, set priorities at different tiers,
such as, specific priorities for sessions, or types, or applications (e.g., a browsing session, a
gaming session, versus an IM chat session, the user may set a gaming session to always have
higher priority than an IM chat session, which may have higher priority than web-browsing

session). A user can set application-specific priorities, (e.g., a user may set Facebook-related

32

WO 2012/071283 PCT/US2011/061512

transactions to have a higher priority than LinkedIn-related transactions), for specific transaction
types (e.g., for all send message requests across all applications to have higher priority than
message delete requests, for all calendar-related events to have a high priority, etc.), and/or for

specific folders.

[00170] The prioritization engine 241 can track and resolve conflicts in priorities set by
different entities. For example, manual settings specified by the user may take precedence over
device OS settings, network provider parameters/limitations (e.g., set in default for a network
service area, geographic locale, set for a specific time of day, or set based on service/fee type)
may limit any user-specified settings and/or application-set priorities. In some instances, a
manual synchronization request received from a user can override some, most, or all priority
settings in that the requested synchronization is performed when requested, regardless of the

individually assigned priority or an overall priority ranking for the requested action.

[00171] Priority can be specified and tracked internally in any known and/or convenient
manner, including but not limited to, a binary representation, a multi-valued representation, a

graded representation and all are considered to be within the scope of the disclosed technology.

Change Priority Change Priority
(initiated on device) (initiated on server)
Send email High Receive email High
Delete email Low Edit email Often not possible to sync
. (Low if possible)
(Un)read email Low
Move message Low New email in deleted items Low
Read more High
Download High Delete an email Low
attachment (Un)Read an email Low
New Calendar event High Move messages Low
Edit/change Calendar event High Any calendar change High
Any contact change High
Add a contact High Wipe/lock device High
Edit a contact High Settings change High
Search contacts High Any folder change High
Change a setting High Connector restart High (if no changes nothing is
sent)
Manual send/receive High

33

WO 2012/071283 PCT/US2011/061512

Change Priority Change Priority

(initiated on device) (initiated on server)

IM status change Medium Social Network Status Updates ~ Medium

Auction outbid or change High Sever Weather Alerts High

notification

Weather Updates Low News Updates Low
Table I

[00172] Table I above shows, for illustration purposes, some examples of transactions with
examples of assigned priorities in a binary representation scheme. Additional assignments are
possible for additional types of events, requests, transactions, and as previously described,

priority assignments can be made at more or less granular levels, e.g., at the session level or at

the application level, etc.

[00173] Asshown by way of example in the above table, in general, lower priority
requests/transactions can include, updating message status as being read, unread, deleting of
messages, deletion of contacts; higher priority requests/transactions, can in some instances
include, status updates, new IM chat message, new email, calendar event
update/cancellation/deletion, an event in a mobile gaming session, or other entertainment related
events, a purchase confirmation through a web purchase or online, request to load additional or
download content, contact book related events, a transaction to change a device setting, location-
aware or location-based events/transactions, or any other events/request/transactions initiated by
a user or where the user is known to be, expected to be, or suspected to be waiting for a

response, etc.

[00174] Inbox pruning events (e.g., email, or any other types of messages), are generally
considered low priority and absent other impending events, generally will not trigger use of the
radio on the device 250. Specifically, pruning events to remove old email or other content can
be ‘piggy backed’ with other communications if the radio is not otherwise on, at the time of a
scheduled pruning event. For example, if the user has preferences set to ‘keep messages for 7
days old,” then instead of powering on the device radio to initiate a message delete from the
device 250 the moment that the message has exceeded 7 days old, the message is deleted when
the radio is powered on next. If the radio is already on, then pruning may occur as regularly

scheduled.

34

WO 2012/071283 PCT/US2011/061512

[00175] The request/transaction manager 235, can use the priorities for requests (e.g., by the
prioritization engine 241) to manage outgoing traffic from the device 250 for resource
optimization (e.g., to utilize the device radio more efficiently for battery conservation). For
example, transactions/requests below a certain priority ranking may not trigger use of the radio
on the device 250 if the radio is not already switched on, as controlled by the connection
manager 265. In contrast, the radio controller 266 can turn on the radio such a request can be

sent when a request for a transaction is detected to be over a certain priority level.

[00176] In one embodiment, priority assignments (such as that determined by the local proxy
275 or another device/entity) can be used cause a remote device to modify its communication
with the frequency with the mobile device or wireless device. For example, the remote device
can be configured to send notifications to the device 250 when data of higher importance is

available to be sent to the mobile device or wireless device.

[00177] Inone embodiment, transaction priority can be used in conjunction with
characteristics of user activity in shaping or managing traffic, for example, by the traffic shaping
engine 255. For example, the traffic shaping engine 255 can, in response to detecting that a user
is dormant or inactive, wait to send low priority transactions from the device 250, for a period of
time. In addition, the traffic shaping engine 255 can allow multiple low priority transactions to
accumulate for batch transferring from the device 250 (e.g., via the batching module 257).In one
embodiment, the priorities can be set, configured, or readjusted by a user. For example, content
depicted in Table I in the same or similar form can be accessible in a user interface on the device

250 and for example , used by the user to adjust or view the priorities.

[00178] The batching module 257 can initiate batch transfer based on certain criteria. For
example, batch transfer (e.g., of multiple occurrences of events, some of which occurred at
different instances in time) may occur after a certain number of low priority events have been
detected, or after an amount of time elapsed after the first of the low priority event was initiated.
In addition, the batching module 257 can initiate batch transfer of the cumulated low priority
events when a higher priority event is initiated or detected at the device 250. Batch transfer can
otherwise be initiated when radio use is triggered for another reason (e.g., to receive data from a
remote device such as host server 100 or 300). In one embodiment, an impending pruning event
(pruning of an inbox), or any other low priority events, can be executed when a batch transfer

occurs.

35

WO 2012/071283 PCT/US2011/061512

[00179] In general, the batching capability can be disabled or enabled at the
event/transaction level, application level, or session level, based on any one or combination of
the following: user configuration, device limitations/settings, manufacturer specification,
network provider parameters/limitations, platform-specific limitations/settings, device OS
settings, etc. In one embodiment, batch transfer can be initiated when an
application/window/file is closed out, exited, or moved into the background; users can
optionally be prompted before initiating a batch transfer; users can also manually trigger batch

transfers.

[00180] In one embodiment, the local proxy 275 locally adjusts radio use on the device 250
by caching data in the cache 285. When requests or transactions from the device 250 can be
satisfied by content stored in the cache 285, the radio controller 266 need not activate the radio
to send the request to a remote entity (e.g., the host server 100, 300, as shown in FIG. 1A and
FIG. 3A or a content provider/application server such as the server/provider 110 shown in the
examples of FIG. 1A and FIG. 1B). As such, the local proxy 275 can use the local cache 285
and the cache policy manager 245 to locally store data for satisfying data requests to eliminate or
reduce the use of the device radio for conservation of network resources and device battery

consumption.

[00181] Inleveraging the local cache, once the request/transaction manager 225 intercepts a
data request by an application on the device 250, the local repository 285 can be queried to
determine if there is any locally stored response, and also determine whether the response is
valid. When a valid response is available in the local cache 285, the response can be provided to
the application on the device 250 without the device 250 needing to access the cellular network

or wireless broadband network.

[00182] If a valid response is not available, the local proxy 275 can query a remote proxy
(e.g., the server proxy 325 of FIG. 3A) to determine whether a remotely stored response is valid.
If so, the remotely stored response (e.g., which may be stored on the server cache 135 or
optional caching server 199 shown in the example of FIG. 1B) can be provided to the mobile
device, possibly without the mobile device 250 needing to access the cellular network, thus

relieving consumption of network resources.

[00183] If a valid cache response is not available, or if cache responses are unavailable for

the intercepted data request, the local proxy 275, for example, the caching policy manager 245,

36

WO 2012/071283 PCT/US2011/061512

can send the data request to a remote proxy (e.g., server proxy 325 of FIG. 3A) which forwards
the data request to a content source (e.g., application server/content provider 110 of FIG. 1A)
and a response from the content source can be provided through the remote proxy, as will be
further described in the description associated with the example host server 300 of FIG. 3A.
The cache policy manager 245 can manage or process requests that use a variety of protocols,
including but not limited to HTTP, HTTPS, IMAP, POP, SMTP, XMPP, and/or ActiveSync.
The caching policy manager 245 can locally store responses for data requests in the local

database 285 as cache entries, for subsequent use in satisfying same or similar data requests.

[00184] The caching policy manager 245 can request that the remote proxy monitor
responses for the data request and the remote proxy can notify the device 250 when an
unexpected response to the data request is detected. In such an event, the cache policy manager
245 can erase or replace the locally stored response(s) on the device 250 when notified of the
unexpected response (e.g., new data, changed data, additional data, etc.) to the data request. In
one embodiment, the caching policy manager 245 is able to detect or identify the protocol used
for a specific request, including but not limited to HT'TP, HT'TPS, IMAP, POP, SMTP, XMPP,
and/or ActiveSync. In one embodiment, application specific handlers (e.g., via the application
protocol module 246 of the caching policy manager 245) on the local proxy 275 allows for
optimization of any protocol that can be port mapped to a handler in the distributed proxy (e.g.,

port mapped on the proxy server 325 in the example of FIG. 3A).

[00185] In one embodiment, the local proxy 275 notifies the remote proxy such that the
remote proxy can monitor responses received for the data request from the content source for
changed results prior to returning the result to the device 250, for example, when the data
request to the content source has yielded same results to be returned to the mobile device. In
general, the local proxy 275 can simulate application server responses for applications on the
device 250, using locally cached content. This can prevent utilization of the cellular network for
transactions where new/changed data is not available, thus freeing up network resources and

preventing network congestion.

[00186] In one embodiment, the local proxy 275 includes an application behavior detector
236 to track, detect, observe, monitor, applications (e.g., proxy-aware and/or unaware
applications 210 and 220) accessed or installed on the device 250. Application behaviors, or

patterns in detected behaviors (e.g., via the pattern detector 237) of one or more applications

37

WO 2012/071283 PCT/US2011/061512

accessed on the device 250 can be used by the local proxy 275 to optimize traffic in a wireless

network needed to satisfy the data needs of these applications.

[00187] For example, based on detected behavior of multiple applications, the traffic shaping
engine 255 can align content requests made by at least some of the applications over the network
(wireless network) (e.g., via the alignment module 256). The alignment module 256 can delay
or expedite some earlier received requests to achieve alignment. When requests are aligned, the
traffic shaping engine 255 can utilize the connection manager to poll over the network to satisfy
application data requests. Content requests for multiple applications can be aligned based on
behavior patterns or rules/settings including, for example, content types requested by the
multiple applications (audio, video, text, etc.), device (e.g., mobile or wireless device)
parameters, and/or network parameters/traffic conditions, network service provider

constraints/specifications, etc.

[00188] In one embodiment, the pattern detector 237 can detect recurrences in application
requests made by the multiple applications, for example, by tracking patterns in application
behavior. A tracked pattern can include, detecting that certain applications, as a background
process, poll an application server regularly, at certain times of day, on certain days of the week,
periodically in a predictable fashion, with a certain frequency, with a certain frequency in
response to a certain type of event, in response to a certain type user query, frequency that
requested content is the same, frequency with which a same request is made, interval between

requests, applications making a request, or any combination of the above, for example.

[00189] Such recurrences can be used by traffic shaping engine 255 to offload polling of
content from a content source (e.g., from an application server/content provider 110 of FIG. 1A)
that would result from the application requests that would be performed at the mobile device or
wireless device 250 to be performed instead, by a proxy server (e.g., proxy server 125 of FIG.
1B or proxy server 325 of FIG. 3A) remote from the device 250. Traffic shaping engine 255
can decide to offload the polling when the recurrences match a rule. For example, there are
multiple occurrences or requests for the same resource that have exactly the same content, or
returned value, or based on detection of repeatable time periods between requests and responses
such as a resource that is requested at specific times during the day. The offloading of the
polling can decrease the amount of bandwidth consumption needed by the mobile device 250 to
establish a wireless (cellular or other wireless broadband) connection with the content source for

repetitive content polls.

38

WO 2012/071283 PCT/US2011/061512

[00190] As aresult of the offloading of the polling, locally cached content stored in the local
cache 285 can be provided to satisfy data requests at the device 250, when content change is not
detected in the polling of the content sources. As such, when data has not changed, application
data needs can be satisfied without needing to enable radio use or occupying cellular bandwidth
in a wireless network. When data has changed and/or new data has been received, the remote
entity to which polling is offloaded, can notify the device 250. The remote entity may be the

host server 300 as shown in the example of FIG. 3A.

[00191] In one embodiment, the local proxy 275 can mitigate the need/use of periodic keep-
alive messages (heartbeat messages) to maintain TCP/IP connections, which can consume
significant amounts of power thus having detrimental impacts on mobile device battery life. The
connection manager 265 in the local proxy (e.g., the heartbeat manager 267) can detect, identify,

and intercept any or all heartbeat (keep-alive) messages being sent from applications.

[00192] The heartbeat manager 267 can prevent any or all of these heartbeat messages from
being sent over the cellular, or other network, and instead rely on the server component of the
distributed proxy system (e.g., shown in FIG. 1B) to generate the and send the heartbeat
messages to maintain a connection with the backend (e.g., application server/provider 110 in the

example of FIG. 1A).

[00193] The local proxy 275 generally represents any one or a portion of the functions
described for the individual managers, modules, and/or engines. The local proxy 275 and device
250 can include additional or less components; more or less functions can be included, in whole

or in part, without deviating from the novel art of the disclosure.

[00194] FIG. 2B depicts a block diagram illustrating a further example of components in the
cache system shown in the example of FIG. 2A which is capable of caching and adapting

caching strategies for mobile application behavior and/or network conditions.

[00195] In one embodiment, the caching policy manager 245 includes a metadata generator
203, a cache look-up engine 205, a cache appropriateness decision engine 246, a poll schedule
generator 247, an application protocol module 248, a cache or connect selection engine 249
and/or a local cache invalidator 244. The cache appropriateness decision engine 246 can further
include a timing predictor 246a,a content predictor 246b, a request analyzer 246¢, and/or a

response analyzer 246d, and the cache or connect selection engine 249 includes a response

39

WO 2012/071283 PCT/US2011/061512

scheduler 249a. The metadata generator 203 and/or the cache look-up engine 205 are coupled to

the cache 285 (or local cache) for modification or addition to cache entries or querying thereof.

[00196] The cache look-up engine 205 may further include an ID or URI filter 205a, the
local cache invalidator 244 may further include a TTL manager 244a, and the poll schedule
generator 247 may further include a schedule update engine 247a and/or a time adjustment
engine 247b. One embodiment of caching policy manager 245 includes an application cache
policy repository 243. In one embodiment, the application behavior detector 236 includes a
pattern detector 237, a poll interval detector 238, an application profile generator 239, and/or a
priority engine 241. The poll interval detector 238 may further include a long poll detector 238a
having a response/request tracking engine 238b. The poll interval detector 238 may further
include a long poll hunting detector 238c. The application profile generator 239 can further

include a response delay interval tracker 239a.

[00197] The pattern detector 237, application profile generator 239, and the priority engine
241 were also described in association with the description of the pattern detector shown in the
example of FIG. 2A. One embodiment further includes an application profile repository 242
which can be used by the local proxy 275 to store information or metadata regarding application

profiles (e.g., behavior, patterns, type of HI'TP requests, etc.)

[00198] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250 interacts and has content that may be
suitable for caching. For example, the decision engine 246 can use information about a request
and/or a response received for the request initiated at the mobile device 250 to determine
cacheability, potential cacheability, or non-cacheability. In some instances, the decision engine
246 can initially verify whether a request is directed to a blacklisted destination or whether the
request itself originates from a blacklisted client or application. If so, additional processing and
analysis may not be performed by the decision engine 246 and the request may be allowed to be
sent over the air to the server to satisfy the request. The black listed destinations or
applications/clients (e.g., mobile applications) can be maintained locally in the local proxy (e.g.,
in the application profile repository 242) or remotely (e.g., in the proxy server 325 or another

entity).

40

WO 2012/071283 PCT/US2011/061512

[00199] In one embodiment, the decision engine 246, for example, via the request analyzer
246c¢, collects information about an application or client request generated at the mobile device
250. The request information can include request characteristics information including, for
example, request method. For example, the request method can indicate the type of HT'TP
request generated by the mobile application or client. In one embodiment, response to a request
can be identified as cacheable or potentially cacheable if the request method is a GET request or
POST request. Other types of requests (e.g., OPTIONS, HEAD, PUT, DELETE, TRACE, or
CONNECT) may or may not be cached. In general, HI'TP requests with uncacheable request

methods will not be cached.

[00200] Request characteristics information can further include information regarding
request size, for example. Responses to requests (e.g., HI'TP requests) with body size exceeding
a certain size will not be cached. For example, cacheability can be determined if the information
about the request indicates that a request body size of the request does not exceed a certain size.
In some instances, the maximum cacheable request body size can be set to 8092 bytes. In other
instances, different values may be used, dependent on network capacity or network operator

specific settings, for example.

[00201] In some instances, content from a given application server/content provider (e.g., the
server/content provider 110 of FIG. 1B) is determined to be suitable for caching based on a set
of criteria, for example, criteria specifying time criticality of the content that is being requested
from the content source. In one embodiment, the local proxy (e.g., the local proxy 175 or 275 of
FIG. 1B and FIG. 2A) applies a selection criteria to store the content from the host server which
is requested by an application as cached elements in a local cache on the mobile device to satisfy

subsequent requests made by the application.

[00202] The cache appropriateness decision engine 246, further based on detected patterns of
requests sent from the mobile device 250 (e.g., by a mobile application or other types of clients
on the device 250) and/or patterns of received responses, can detect predictability in requests
and/or responses. For example, the request characteristics information collected by the decision
engine 246, (e.g., the request analyzer 246c) can further include periodicity information between
a request and other requests generated by a same client on the mobile device or other requests

directed to the same host (e.g., with similar or same identifier parameters).

41

WO 2012/071283 PCT/US2011/061512

[00203] Periodicity can be detected, by the decision engine 246 or the request analyzer 246c,
when the request and the other requests generated by the same client occur at a fixed rate or
nearly fixed rate, or at a dynamic rate with some identifiable or partially or wholly reproducible
changing pattern. If the requests are made with some identifiable pattern (e.g., regular intervals,
intervals having a detectable pattern, or trend (e.g., increasing, decreasing, constant, etc.) the
timing predictor 246a can determine that the requests made by a given application on a device is
predictable and identify it to be potentially appropriate for caching, at least from a timing

standpoint.

[00204] An identifiable pattern or trend can generally include any application or client
behavior which may be simulated either locally, for example, on the local proxy 275 on the
mobile device 250 or simulated remotely, for example, by the proxy server 325 on the host 300,

or a combination of local and remote simulation to emulate application behavior.

[00205] In one embodiment, the decision engine 246, for example, via the response analyzer
246d, can collect information about a response to an application or client request generated at
the mobile device 250. The response is typically received from a server or the host of the
application (e.g., mobile application) or client which sent the request at the mobile device 250.
In some instances, the mobile client or application can be the mobile version of an application
(e.g., social networking, search, travel management, voicemail, contact manager, email) or a

web site accessed via a web browser or via a desktop client.

[00206] For example, response characteristics information can include an indication of
whether transfer encoding or chunked transfer encoding is used in sending the response. In
some instances, responses to HT'TP requests with transfer encoding or chunked transfer
encoding are not cached, and therefore are also removed from further analysis. The rationale
here is that chunked responses are usually large and non-optimal for caching, since the
processing of these transactions may likely slow down the overall performance. Therefore, in
one embodiment, cacheability or potential for cacheability can be determined when transfer

encoding is not used in sending the response.

[00207] In addition, the response characteristics information can include an associated status
code of the response which can be identified by the response analyzer 246d. In some instances,
HTTP responses with uncacheable status codes are typically not cached. The response analyzer

246d can extract the status code from the response and determine whether it matches a status

42

WO 2012/071283 PCT/US2011/061512

code which is cacheable or uncacheable. Some cacheable status codes include by way of
example: 200-OK, 301-Redirect, 302-Found, 303-See other, 304 - Not Modified,
307Temporary Redirect, or 500 — Internal server error. Some uncacheable status codes can

include, for example, 403 — Forbidden or 404 — Not found.

[00208] In one embodiment, cacheability or potential for cacheability can be determined if
the information about the response does not indicate an uncacheable status code or indicates a
cacheable status code. If the response analyzer 246d detects an uncacheable status code
associated with a given response, the specific transaction (request/response pair) may be
eliminated from further processing and determined to be uncacheable on a temporary basis, a
semi-permanent, or a permanent basis. If the status code indicates cacheability, the transaction
(e.g., request and/or response pair) may be subject to further processing and analysis to confirm

cacheability, as shown in the example flow charts of FIG. 9-13.

[00209] Response characteristics information can also include response size information. In
general, responses can be cached locally at the mobile device 250 if the responses do not exceed
a certain size. In some instances, the default maximum cached response size is set to 128 KB.
In other instances, the max cacheable response size may be different and/or dynamically
adjusted based on operating conditions, network conditions, network capacity, user preferences,
network operator requirements, or other application-specific, user specific, and/or device-
specific reasons. In one embodiment, the response analyzer 246d can identify the size of the
response, and cacheability or potential for cacheability can be determined if a given threshold or

max value is not exceeded by the response size.

[00210] Furthermore, response characteristics information can include response body
information for the response to the request and other response to other requests generated by a
same client on the mobile device, or directed to a same content host or application server. The
response body information for the response and the other responses can be compared, for
example, by the response analyzer 246d, to prevent the caching of dynamic content (or
responses with content that changes frequently and cannot be efficiently served with cache
entries, such as financial data, stock quotes, news feeds, real-time sporting event activities, etc.),

such as content that would no longer be relevant or up-to-date if served from cached entries.

[00211] The cache appropriateness decision engine 246 (e.g., the content predictor 246b) can

definitively identify repeatability or identify indications of repeatability, potential repeatability,

43

WO 2012/071283 PCT/US2011/061512

or predictability in responses received from a content source (e.g., the content host/application
server 110 shown in the example of FIG. 1A-B). Repeatability can be detected by, for example,
tracking at least two responses received from the content source and determines if the two
responses are the same. For example, cacheability can be determined, by the response analyzer
246d, if the response body information for the response and the other responses sent by the same
mobile client or directed to the same host/server are same or substantially the same. The two
responses may or may not be responses sent in response to consecutive requests. In one
embodiment, hash values of the responses received for requests from a given application are
used to determine repeatability of content (with or without heuristics) for the application in
general and/or for the specific request. Additional same responses may be required for some

applications or under certain circumstances.

[00212] Repeatability in received content need not be 100% ascertained. For example,
responses can be determined to be repeatable if a certain number or a certain percentage of
responses are the same, or similar. The certain number or certain percentage of same/similar
responses can be tracked over a select period of time, set by default or set based on the
application generating the requests (e.g., whether the application is highly dynamic with
constant updates or less dynamic with infrequent updates). Any indicated predictability or
repeatability, or possible repeatability, can be utilized by the distributed system in caching

content to be provided to a requesting application or client on the mobile device 250.

[00213] In one embodiment, for a long poll type request, the local proxy 175 can begin to
cache responses on a third request when the response delay times for the first two responses are
the same, substantially the same, or detected to be increasing in intervals. In general, the
received responses for the first two responses should be the same, and upon verifying that the
third response received for the third request is the same (e.g., if RO = R1 = R2), the third
response can be locally cached on the mobile device. Less or more same responses may be
required to begin caching, depending on the type of application, type of data, type of content,

user preferences, or carrier/network operator specifications.

[00214] Increasing response delays with same responses for long polls can indicate a hunting
period (e.g., a period in which the application/client on the mobile device is seeking the longest
time between a request and response that a given network will allow, a timing diagram showing
timing characteristics is illustrated in FIG. 8), as detected by the long poll hunting detector 238¢c

of the application behavior detector 236.

44

WO 2012/071283 PCT/US2011/061512

[00215] An example can be described below using TO, T1, T2, where T indicates the delay
time between when a request is sent and when a response (e.g., the response header) is

detected/received for consecutive requests:

TO = Response((t) — RequestO(t) = 180 s. (+/- tolerance)
T1 = Responsel(t) — Requestl(t) = 240 s. (+/- tolerance)
T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)

[00216] In the example timing sequence shown above, TO < T1 < T2, this may indicate a
hunting pattern for a long poll when network timeout has not yet been reached or exceeded.
Furthermore, if the responses RO, R1, and R2 received for the three requests are the same, R2
can be cached. In this example, R2 is cached during the long poll hunting period without
waiting for the long poll to settle, thus expediting response caching (e.g., this is optional

accelerated caching behavior which can be implemented for all or select applications).

[00217] As such, the local proxy 275 can specify information that can be extracted from the
timing sequence shown above (e.g., polling schedule, polling interval, polling type) to the proxy
server and begin caching and to request the proxy server to begin polling and monitoring the
source (e.g., using any of TO, T1, T2 as polling intervals but typically T2, or the largest detected
interval without timing out, and for which responses from the source is received will be sent to
the proxy server 325 of FIG. 3A for use in polling the content source (e.g., application

server/service provider 310)).

[00218] However, if the time intervals are detected to be getting shorter, the application
(e.g., mobile application)/client may still be hunting for a time interval for which a response can
be reliably received from the content source (e.g., application/server server/provider 110 or 310),
and as such caching typically should not begin until the request/response intervals indicate the

same time interval or an increasing time interval, for example, for a long poll type request.

[00219] An example of handling a detected decreasing delay can be described below using
TO, T1, T2, T3, and T4 where T indicates the delay time between when a request is sent and

when a response (e.g., the response header) is detected/received for consecutive requests:

TO = Response((t) — RequestO(t) = 160 s. (+/- tolerance)
T1 = Responsel(t) — Requestl(t) = 240 s. (+/- tolerance)
T2 = Response2(t) — Request2(t) = 500 s. (+/- tolerance)

45

WO 2012/071283 PCT/US2011/061512

T3 = Time out at 700 s. (+/- tolerance)
T4 = Response4(t) — Requestd(t) = 600 (+/- tolerance)

[00220] If a pattern for response delays T1 < T2 < T3 > T4 is detected, as shown in the
above timing sequence (e.g., detected by the long poll hunting detector 238c of the application
behavior detector 236), it can be determined that T3 likely exceeded the network time out during
a long poll hunting period. In Request 3, a response likely was not received since the connection
was terminated by the network, application, server, or other reason before a response was sent or
available. On Request 4 (after T4), if a response (e.g., Response 4) is detected or received, the
local proxy 275 can then use the response for caching (if the content repeatability condition is
met). The local proxy can also use T4 as the poll interval in the polling schedule set for the

proxy server to monitor/poll the content source.

[00221] Note that the above description shows that caching can begin while long polls are in
hunting mode in the event of detecting increasing response delays, as long as responses are
received and not timed out for a given request. This can be referred to as the optional
accelerated caching during long poll hunting. Caching can also begin after the hunting mode
(e.g., after the poll requests have settled to a constant or near constant delay value) has
completed. Note that hunting may or may not occur for long polls and when hunting occurs; the
proxy 275 can generally detect this and determine whether to begin to cache during the hunting

period (increasing intervals with same responses) or wait until the hunt settles to a stable value.

[00222] In one embodiment, the timing predictor 246a of the cache appropriateness decision
engine 246 can track timing of responses received from outgoing requests from an application
(e.g., mobile application) or client to detect any identifiable patterns which can be partially
wholly reproducible, such that locally cached responses can be provided to the requesting client
on the mobile device 250 in a manner that simulates content source (e.g., application
server/content provider 110 or 310) behavior. For example, the manner in which (e.g., from a
timing standpoint) responses or content would be delivered to the requesting application/client
on the device 250. This ensures preservation of user experience when responses to application
or mobile client requests are served from a local and/or remote cache instead of being
retrieved/received directly from the content source (e.g., application, content provider 110 or

310).

46

WO 2012/071283 PCT/US2011/061512

[00223] In one embodiment, the decision engine 246 or the timing predictor 246a determines
the timing characteristics a given application (e.g., mobile application) or client from, for
example, the request/response tracking engine 238b and/or the application profile generator 239
(e.g., the response delay interval tracker 239a). Using the timing characteristics, the timing
predictor 246a determines whether the content received in response to the requests are suitable
or are potentially suitable for caching. For example, poll request intervals between two
consecutive requests from a given application can be used to determine whether request intervals
are repeatable (e.g., constant, near constant, increasing with a pattern, decreasing with a pattern,
etc.) and can be predicted and thus reproduced at least some of the times either exactly or

approximated within a tolerance level.

[00224] In some instances, the timing characteristics of a given request type for a specific
application, for multiple requests of an application, or for multiple applications can be stored in
the application profile repository 242. The application profile repository 242 can generally store
any type of information or metadata regarding application request/response characteristics

including timing patterns, timing repeatability, content repeatability, etc.

[00225] The application profile repository 242 can also store metadata indicating the type of
request used by a given application (e.g., long polls, long-held HT'TP requests, HI'TP streaming,
push, COMET push, etc.) Application profiles indicating request type by applications can be
used when subsequent same/similar requests are detected, or when requests are detected from an
application which has already been categorized. In this manner, timing characteristics for the
given request type or for requests of a specific application which has been tracked and/or

analyzed, need not be reanalyzed.

[00226] Application profiles can be associated with a time-to-live (e.g., or a default
expiration time). The use of an expiration time for application profiles, or for various aspects of
an application or request’s profile can be used on a case by case basis. The time-to-live or actual
expiration time of application profile entries can be set to a default value or determined
individually, or a combination thereof. Application profiles can also be specific to wireless

networks, physical networks, network operators, or specific carriers.

[00227] One embodiment includes an application blacklist manager 201. The application
blacklist manager 201 can be coupled to the application cache policy repository 243 and can be

partially or wholly internal to local proxy or the caching policy manager 245. Similarly, the

47

WO 2012/071283 PCT/US2011/061512

blacklist manager 201 can be partially or wholly internal to local proxy or the application
behavior detector 236. The blacklist manager 201 can aggregate, track, update, manage, adjust,
or dynamically monitor a list of destinations of servers/host that are ‘blacklisted,” or identified as
not cached, on a permanent or temporary basis. The blacklist of destinations, when identified in
a request, can potentially be used to allow the request to be sent over the (cellular) network for
servicing. Additional processing on the request may not be performed since it is detected to be

directed to a blacklisted destination.

[00228] Blacklisted destinations can be identified in the application cache policy repository
243 by address identifiers including specific URIs or patterns of identifiers including URI
patterns. In general, blacklisted destinations can be set by or modified for any reason by any
party including the user (owner/user of mobile device 250), operating system/mobile platform of
device 250, the destination itself, network operator (of cellular network), Internet service
provider, other third parties, or according to a list of destinations for applications known to be
uncacheable/not suited for caching. Some entries in the blacklisted destinations may include
destinations aggregated based on the analysis or processing performed by the local proxy (e.g.,

cache appropriateness decision engine 246).

[00229] For example, applications or mobile clients on the mobile device for which
responses have been identified as non-suitable for caching can be added to the blacklist. Their
corresponding hosts/servers may be added in addition to or in lieu of an identification of the
requesting application/client on the mobile device 250. Some or all of such clients identified by
the proxy system can be added to the blacklist. For example, for all application clients or
applications that are temporarily identified as not being suitable for caching, only those with
certain detected characteristics (based on timing, periodicity, frequency of response content

change, content predictability, size, etc.) can be blacklisted.

[00230] The blacklisted entries may include a list of requesting applications or requesting
clients on the mobile device (rather than destinations) such that, when a request is detected from
a given application or given client, it may be sent through the network for a response, since

responses for blacklisted clients/applications are in most circumstances not cached.

[00231] A given application profile may also be treated or processed differently (e.g.,
different behavior of the local proxy 275 and the remote proxy 325) depending on the mobile

account associated with a mobile device from which the application is being accessed. For

48

WO 2012/071283 PCT/US2011/061512

example, a higher paying account, or a premier account may allow more frequent access of the
wireless network or higher bandwidth allowance thus affecting the caching policies
implemented between the local proxy 275 and proxy server 325 with an emphasis on better
performance compared to conservation of resources. A given application profile may also be
treated or processed differently under different wireless network conditions (e.g., based on

congestion or network outage, etc.).

[00232] Note that cache appropriateness can be determined, tracked, and managed for
multiple clients or applications on the mobile device 250. Cache appropriateness can also be
determined for different requests or request types initiated by a given client or application on the
mobile device 250. The caching policy manager 245, along with the timing predictor 246a
and/or the content predictor 246b which heuristically determines or estimates predictability or
potential predictability, can track, manage and store cacheability information for various
application or various requests for a given application. Cacheability information may also
include conditions (e.g., an application can be cached at certain times of the day, or certain days
of the week, or certain requests of a given application can be cached, or all requests with a given
destination address can be cached) under which caching is appropriate which can be determined
and/or tracked by the cache appropriateness decision engine 246 and stored and/or updated when
appropriate in the application cache policy repository 243 coupled to the cache appropriateness

decision engine 246.

[00233] The information in the application cache policy repository 243 regarding
cacheability of requests, applications, and/or associated conditions can be used later on when
same requests are detected. In this manner, the decision engine 246 and/or the timing and
content predictors 246a/b need not track and reanalyze request/response timing and content
characteristics to make an assessment regarding cacheability. In addition, the cacheability
information can in some instances be shared with local proxies of other mobile devices by way

of direct communication or via the host server (e.g., proxy server 325 of host server 300).

[00234] For example, cacheability information detected by the local proxy 275 on various
mobile devices can be sent to a remote host server or a proxy server 325 on the host server (e.g.,
host server 300 or proxy server 325 shown in the example of FIG. 3A, host 100 and proxy
server 125 in the example of FIG. 1A-B). The remote host or proxy server can then distribute
the information regarding application-specific, request-specific cacheability information and/or

any associated conditions to various mobile devices or their local proxies in a wireless network

49

WO 2012/071283 PCT/US2011/061512

or across multiple wireless networks (same service provider or multiple wireless service

providers) for their use.

[00235] In general, the selection criteria for caching can further include, by way of example
but not limitation, the state of the mobile device indicating whether the mobile device is active
or inactive, network conditions, and/or radio coverage statistics. The cache appropriateness
decision engine 246 can in any one or any combination of the criteria, and in any order,

identifying sources for which caching may be suitable.

[00236] Once application servers/content providers having identified or detected content that
is potentially suitable for local caching on the mobile device 250, the cache policy manager 245
can proceed to cache the associated content received from the identified sources by storing
content received from the content source as cache elements in a local cache (e.g., local cache
185 or 285 shown in the examples of FIG. 1B and FIG. 2A, respectively) on the mobile device
250.

[00237] The response can be stored in the cache 285 (e.g., also referred as the local cache) as
a cache entry. In addition to the response to a request, the cached entry can include response
metadata having additional information regarding caching of the response. The metadata may
be generated by the metadata generator 203 and can include, for example, timing data such as
the access time of the cache entry or creation time of the cache entry. Metadata can include
additional information, such as any information suited for use in determining whether the
response stored as the cached entry is used to satisfy the subsequent response. For example,
metadata information can further include, request timing history (e.g., including request time,
request start time, request end time), hash of the request and/or response, time intervals or

changes in time intervals, etc.

[00238] The cache entry is typically stored in the cache 285 in association with a time-to-live
(TTL), which for example may be assigned or determined by the TTL manager 244a of the
cache invalidator 244. The time-to-live of a cache entry is the amount of time the entry is
persisted in the cache 285 regardless of whether the response is still valid or relevant for a given
request or client/application on the mobile device 250. For example, if the time-to-live of a
given cache entry is set to 12 hours, the cache entry is purged, removed, or otherwise indicated
as having exceeded the time-to-live, even if the response body contained in the cache entry is

still current and applicable for the associated request.

50

WO 2012/071283 PCT/US2011/061512

[00239] A default time-to-live can be automatically used for all entries unless otherwise
specified (e.g., by the TTL manager 244a), or each cache entry can be created with its individual
TTL (e.g., determined by the TTL manager 244a based on various dynamic or static criteria).
Note that each entry can have a single time-to-live associated with both the response data and
any associated metadata. In some instances, the associated metadata may have a different time-
to-live (e.g., a longer time-to-live) than the response data. Examples of representations of a data

model of a cache entry are illustrated in FIG. 24 and FIG. 25.

[00240] The content source having content for caching can, in addition or in alternate, be
identified to a proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B
and FIG. 3A, respectively) remote from and in wireless communication with the mobile device
250 such that the proxy server can monitor the content source (e.g., application server/content
provider 110) for new or changed data. Similarly, the local proxy (e.g., the local proxy 175 or
275 of FIG. 1B and FIG. 2A, respectively) can identify to the proxy server that content received
from a specific application server/content provider is being stored as cached elements in the

local cache 285.

[00241] Once content has been locally cached, the cache policy manager 245, upon receiving
future polling requests to contact the application server/content host (e.g., 110 or 310), can
retrieve the cached elements from the local cache to respond to the polling request made at the
mobile device 250 such that a radio of the mobile device is not activated to service the polling
request. For example, the cache look-up engine 205 can query the cache 285 to identify the
response to be served to a response. The response can be served from the cache in response to
identifying a matching cache entry and also using any metadata stored with the response in the
cache entry. The cache entries can be queried by the cache look-up engine using a URI of the
request or another type of identifier (e.g., via the ID or URI filter 205a). The cache-lookup
engine 205 can further use the metadata (e.g., extract any timing information or other relevant
information) stored with the matching cache entry to determine whether response is still suited

for use in being served to a current request.

[00242] Note that the cache-look-up can be performed by the engine 205 using one or more
of various multiple strategies. In one embodiment, multiple cook-up strategies can be executed
sequentially on each entry store din the cache 285, until at least one strategy identifies a

matching cache entry. The strategy employed to performing cache look-up can include a strict

matching criteria or a matching criteria which allows for non-matching parameters.

51

WO 2012/071283 PCT/US2011/061512

[00243] For example, the look-up engine 205 can perform a strict matching strategy which

searches for an exact match between an identifier (e.g., a URI for a host or resource) referenced
in a present request for which the proxy is attempting to identify a cache entry and an identifier
stored with the cache entries. In the case where identifiers include URIs or URLs, the matching
algorithm for strict matching will search for a cache entry where all the parameters in the URLs

match. For example:

Example 1.

1. Cache contains entry for http://test.com/products/
2. Request is being made to URI http://test.com/products/

Strict strategy will find a match, since both URIs are same.
Example 2.

1. Cache contains entry for http://test.com/products/?query=all
2. Request is being made to URI http://test.com/products/?query=sub
[00244] Under the strict strategy outlined above, a match will not be found since the URIs

differ in the query parameter.

[00245] In another example strategy, the look-up engine 205 looks for a cache entry with an
identifier that partially matches the identifier references in a present request for which the proxy
is attempting to identify a matching cache entry. For example, the look-up engine 205 may look
for a cache entry with an identifier which differs from the request identifier by a query parameter
value. In utilizing this strategy, the look-up engine 205 can collect information collected for
multiple previous requests (e.g., a list of arbitrary parameters in an identifier) to be later checked
with the detected arbitrary parameter in the current request. For example, in the case where
cache entries are stored with URI or URL identifiers, the look-up engine searches for a cache
entry with a URI differing by a query parameter. If found, the engine 205 can examine the
cache entry for information collected during previous requests (e.g. a list of arbitrary
parameters) and checked whether the arbitrary parameter detected in or extracted from the

current URI/URL belongs to the arbitrary parameters list.

Example 1.
1. Cache contains entry for http://test.com/products/?query=all, where query is marked

as arbitrary.
2. Request is being made to URI http://text.com/products/?query=sub

52

WO 2012/071283 PCT/US2011/061512

Match will be found, since query parameter is marked as arbitrary.
Example 2.

1. Cache contains entry for http://test.com/products/?query=all, where query is marked
as arbitrary.
2. Request is being made to URI http://test.com/products/?query=sub&sort=asc

Match will not be found, since current request contains sort parameter which is not marked as
arbitrary in the cache entry.

[00246] Additional strategies for detecting cache hit may be employed. These strategies can
be implemented singly or in any combination thereof. A cache-hit can be determined when any
one of these strategies determines a match. A cache miss may be indicated when the look-up
engine 205 determines that the requested data cannot be served from the cache 285, for any
reason. lor example, a cache miss may be determined when no cache entries are identified for

any or all utilized look-up strategies.

[00247] Cache miss may also be determined when a matching cache entry exists but
determined to be invalid or irrelevant for the current request. For example, the look-up engine
205 may further analyze metadata (e.g., which may include timing data of the cache entry)
associated with the matching cache entry to determine whether it is still suitable for use in

responding to the present request.

[00248] When the look-up engine 205 has identified a cache hit (e.g., an event indicating
that the requested data can be served from the cache), the stored response in the matching cache

entry can be served from the cache to satisfy the request of an application/client.

[00249] By servicing requests using cache entries stored in cache 285, network bandwidth
and other resources need not be used to request/receive poll responses which may have not
changed from a response that has already been received at the mobile device 250. Such
servicing and fulfilling application (e.g., mobile application) requests locally via cache entries in
the local cache 285 allows for more efficient resource and mobile network traffic utilization and
management since the request need not be sent over the wireless network further consuming
bandwidth. In general, the cache 285 can be persisted between power on/off of the mobile

device 250, and persisted across application/client refreshes and restarts.

53

WO 2012/071283 PCT/US2011/061512

[00250] For example, the local proxy 275, upon receipt of an outgoing request from its
mobile device 250 or from an application or other type of client on the mobile device 250, can
intercept the request and determine whether a cached response is available in the local cache 285
of the mobile device 250. If so, the outgoing request is responded to by the local proxy 275
using the cached response on the cache of the mobile device. As such, the outgoing request can
be filled or satisfied without a need to send the outgoing request over the wireless network, thus

conserving network resources and battery consumption.

[00251] In one embodiment, the responding to the requesting application/client on the device
250 is timed to correspond to a manner in which the content server would have responded to the
outgoing request over a persistent connection (e.g., over the persistent connection, or long-held
HTTP connection, long poll type connection, that would have been established absent
interception by the local proxy). The timing of the response can be emulated or simulated by the
local proxy 275 to preserve application behavior such that end user experience is not affected, or
minimally affected by serving stored content from the local cache 285 rather than fresh content
received from the intended content source (e.g., content host/application server 110 of FIG. 1A-
B). The timing can be replicated exactly or estimated within a tolerance parameter, which may
go unnoticed by the user or treated similarly by the application so as to not cause operation

issues.

[00252] For example, the outgoing request can be a request for a persistent connection
intended for the content server (e.g., application server/content provider of examples of FIG.
1A-1B). In a persistent connection (e.g., long poll, COMET-style push or any other push
simulation in asynchronous HT'TP requests, long-held HT'TP request, HI'TP streaming, or
others) with a content source (server), the connection is held for some time after a request is
sent. The connection can typically be persisted between the mobile device and the server until
content is available at the server to be sent to the mobile device. Thus, there typically can be
some delay in time between when a long poll request is sent and when a response is received
from the content source. If a response is not provided by the content source for a certain amount
of time, the connection may also terminate due to network reasons (e.g., socket closure) if a

response is not sent.

[00253] Thus, to emulate a response from a content server sent over a persistent connection
(e.g., a long poll style connection), the manner of response of the content server can be

simulated by allowing a time interval to elapse before responding to the outgoing request with

54

WO 2012/071283 PCT/US2011/061512

the cached response. The length of the time interval can be determined on a request by request

basis or on an application by application (client by client basis), for example.

[00254] In one embodiment, the time interval is determined based on request characteristics
(e.g., timing characteristics) of an application on the mobile device from which the outgoing
request originates. For example, poll request intervals (e.g., which can be tracked, detected, and
determined by the long poll detector 238a of the poll interval detector 238) can be used to
determine the time interval to wait before responding to a request with a local cache entry and

managed by the response scheduler 249a.

[00255] One embodiment of the cache policy manager 245 includes a poll schedule
generator 247 which can generate a polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling interval that can be employed by an
entity which is physically distinct and/or separate from the mobile device 250 in monitoring the
content source for one or more applications (such that cached responses can be verified
periodically by polling a host server (host server 110 or 310) to which the request is directed) on
behalf of the mobile device. One example of such an external entity which can monitor the
content at the source for the mobile device 250 is a proxy server (e.g., proxy server 125 or 325

shown in the examples of FIG. 1B and FIG. 3A-C).

[00256] The polling schedule (e.g., including a rate/frequency of polling) can be determined,
for example, based on the interval between the polling requests directed to the content source
from the mobile device. The polling schedule or rate of polling may be determined at the
mobile device 250 (by the local proxy). In one embodiment, the poll interval detector 238 of the
application behavior detector 236 can monitor polling requests directed to a content source from
the mobile device 250 in order to determine an interval between the polling requests made from

any or all application (e.g., mobile application).

[00257] For example, the poll interval detector 238 can track requests and responses for
applications or clients on the device 250. In one embodiment, consecutive requests are tracked
prior to detection of an outgoing request initiated from the application (e.g., mobile application)
on the mobile device 250 by the same mobile client or application (e.g., mobile application).
The polling rate can be determined using request information collected for the request for which
the response is cached. In one embodiment, the rate is determined from averages of time

intervals between previous requests generated by the same client which generated the request.

55

WO 2012/071283 PCT/US2011/061512

For example, a first interval may be computed between the current request and a previous
request, and a second interval can be computed between the two previous requests. The polling
rate can be set from the average of the first interval and the second interval and sent to the proxy

server in setting up the caching strategy.

[00258] Alternate intervals may be computed in generating an average; for example,
multiple previous requests in addition to two previous requests may be used, and more than two
intervals may be used in computing an average. In general, in computing intervals, a given
request need not have resulted in a response to be received from the host server/content source in
order to use it for interval computation. In other words, the timing characteristics of a given
request may be used in interval computation, as long as the request has been detected, even if the

request failed in sending, or if the response retrieval failed.

[00259] One embodiment of the poll schedule generator 247 includes a schedule update
engine 247a and/or a time adjustment engine 247b. The schedule update engine 247a can
determine a need to update a rate or polling interval with which a given application
server/content host from a previously set value, based on a detected interval change in the actual
requests generated from a client or application (e.g., mobile application) on the mobile device

250.

[00260] For example, a request for which a monitoring rate was determined may now be sent
from the application (e.g., mobile application) or client at a different request interval. The
scheduled update engine 247a can determine the updated polling interval of the actual requests
and generate a new rate, different from the previously set rate to poll the host at on behalf of the
mobile device 250. The updated polling rate can be communicated to the remote proxy (proxy
server 325) over the cellular network for the remote proxy to monitor the given host. In some
instances, the updated polling rate may be determined at the remote proxy or remote entity

which monitors the host.

[00261] In one embodiment, the time adjustment engine 247b can further optimize the poll
schedule generated to monitor the application server/content source (110 or 310). For example,
the time adjustment engine 247b can optionally specify a time to start polling to the proxy
server. For example, in addition to setting the polling interval at which the proxy server is to
monitor the application, server/content host can also specify the time at which an actual request

was generated at the mobile client/application.

56

WO 2012/071283 PCT/US2011/061512

[00262] However, in some cases, due to inherent transmission delay or added network delays
or other types of latencies, the remote proxy server receives the poll setup from the local proxy
with some delay (e.g., a few minutes, or a few seconds). This has the effect of detecting
response change at the source after a request is generated by the mobile client/application
causing the invalidate of the cached response to occur after it has once again been served to the
application after the response is no longer current or valid. This discrepancy is further illustrated

diagrammatically in the data timing diagram of FIG. 21.

[00263] To resolve this non-optimal result of serving the out-dated content once again before
invalidating it, the time adjustment engine 247b can specify the time (t0) at which polling should
begin in addition to the rate, where the specified initial time t0 can be specified to the proxy
server 325 as a time that is less than the actual time when the request was generated by the
mobile app/client. This way, the server polls the resource slightly before the generation of an
actual request by the mobile client such that any content change can be detected prior to an
actual application request. This prevents invalid or irrelevant out-dated content/response from

being served once again before fresh content is served.

[00264] In one embodiment, an outgoing request from a mobile device 250 is detected to be
for a persistent connection (e.g., a long poll, COMET style push, and long-held (HT'TP) request)
based on timing characteristics of prior requests from the same application or client on the
mobile device 250. For example, requests and/or corresponding responses can be tracked by the
request/response tracking engine 238b of the long poll detector 238a of the poll interval detector
238.

[00265] The timing characteristics of the consecutive requests can be determined to set up a
polling schedule for the application or client. The polling schedule can be used to monitor the
content source (content source/application server) for content changes such that cached content
stored on the local cache in the mobile device 250 can be appropriately managed (e.g., updated
or discarded). In one embodiment, the timing characteristics can include, for example, a

response delay time (‘D’) and/or an idle time (‘IT").

[00266] The response delay time and idle time typical of a long poll are illustrated in the
timing diagram shown below and also described further in detail with references to FIG. 17A-B.
In one embodiment, the response/request tracking engine 238b can track requests and responses

to determine, compute, and/or estimate, the timing diagrams for applicant or client requests.

57

WO 2012/071283 PCT/US2011/061512

[00267] For example, the response/request tracking engine 238b detects a first request
(Request 0) initiated by a client on the mobile device and a second request (Request 1) initiated
by the client on the mobile device after a response is received at the mobile device responsive to
the first request. The second request is one that is subsequent to the first request. The

relationship between requests can be seen in the timing diagrams of FIG. 17A-B.

[00268] In one embodiment, the response/request tracking engine 238b can track requests
and responses to determine, compute, and/or estimate the timing diagrams for applicant or client
requests. The response/request tracking engine 238b can detect a first request initiated by a
client on the mobile device and a second request initiated by the client on the mobile device after
a response is received at the mobile device responsive to the first request. The second request is

one that is subsequent to the first request.

[00269] The response/request tracking engine 238b further determines relative timings
between the first, second requests, and the response received in response to the first request. In
general, the relative timings can be used by the long poll detector 238a to determine whether

requests generated by the application are long poll requests.

[00270] Note that in general, the first and second requests that are used by the
response/request tracking engine 238b in computing the relative timings are selected for use
after a long poll hunting period has settled or in the event when long poll hunting does not occur.
Timing characteristics that are typical of a long poll hunting period is illustrated in the example
of FIG. 8 and can be, for example, detected by the long poll hunting detector 238c. In other
words, the requests tracked by the response/request tracking engine 238b and used for
determining whether a given request is a long poll occurs after the long poll has settled (e.g.,

shown in 810 of FIG. 8 after the hunting mode 805 has completed).

[00271] In one embodiment, the long poll hunting detector 238c can identify or detect
hunting mode, by identifying increasing request intervals (e.g., increasing delays). The long poll
hunting detector 238a can also detect hunting mode by detecting increasing request intervals,
followed by a request with no response (e.g., connection timed out), or by detecting increasing
request intervals followed by a decrease in the interval. In addition, the long poll hunting
detector 238c can apply a filter value or a threshold value to request-response time delay value
(e.g., an absolute value) above which the detected delay can be considered to be a long poll

request-response delay. The filter value can be any suitable value characteristic of long polls

58

WO 2012/071283 PCT/US2011/061512

and/or network conditions (e.g., 2 s, 5s, 10s, 15 s, 20s., etc.) and can be used as a filter or

threshold value.

[00272] The response delay time ('D') refers to the start time to receive a response after a
request has been sent and the idle refers to time to send a subsequent request after the response
has been received. In one embodiment, the outgoing request is detected to be for a persistent
connection based on a comparison (e.g., performed by the tracking engine 238b) of the response
delay time relative ('D") or average of ('D’) (e.g., any average over any period of time) to the idle
time (I'T"), for example, by the long poll detector 238a. The number of averages used can be
fixed, dynamically adjusted, or changed over a longer period of time. For example, the requests
initiated by the client are determined to be long poll requests if the response delay time interval
is greater than the idle time interval (D >IT or D>>IT). In one embodiment, the tracking engine
238b of the long poll detector computes, determines, or estimates the response delay time
interval as the amount of time elapsed between time of the first request and initial detection or

full receipt of the response.

[00273] In one embodiment, a request is detected to be for a persistent connection when the
idle time (‘I'T”) is short since persistent connections, established in response to long poll requests
or long poll HTTP requests for example, can also be characterized in detecting immediate or
near-immediate issuance of a subsequent request after receipt of a response to a previous request
(e.g., IT ~0). As such, the idle time (‘I'T") can also be used to detect such immediate or near-
immediate re-request to identify long poll requests. The absolute or relative timings determined
by the tracking engine 238b are used to determine whether the second request is immediately or
near-immediately re-requested after the response to the first request is received. For example, a
request may be categorized as a long poll request if D + RT + I'T ~ D + RT since IT is small for
this to hold true. I'T may be determined to be small if it is less than a threshold value. Note that
the threshold value could be fixed or calculated over a limited time period (a session, a day, a
month, etc.), or calculated over a longer time period (e.g., several months or the life of the
analysis). For example, for every request, the average I'T can be determined, and the threshold
can be determined using this average I'T (e.g., the average IT less a certain percentage may be
used as the threshold). This can allow the threshold to automatically adapt over time to network
conditions and changes in server capability, resource availability or server response. A fixed
threshold can take upon any value including by way of example but not limitation (e.g., 1 s. 2 s.

3s.....etc.).

59

WO 2012/071283 PCT/US2011/061512

[00274] In one embodiment, the long poll detector 238a can compare the relative timings
(e.g., determined by the tracker engine 238b) to request-response timing characteristics for other
applications to determine whether the requests of the application are long poll requests. For
example, the requests initiated by a client or application can be determined to be long poll
requests if the response delay interval time (‘D’) or the average response delay interval time
(e.g., averaged over x number of requests or any number of delay interval times averaged over x

amount of time) is greater than a threshold value.

[00275] The threshold value can be determined using response delay interval times for
requests generated by other clients, for example by the request/response tracking engine 238b
and/or by the application profile generator 239 (e.g., the response delay interval tracker 239a).
The other clients may reside on the same mobile device and the threshold value is determined
locally by components on the mobile device. The threshold value can be determined for all
requests over all resources server over all networks, for example. The threshold value can be set
to a specific constant value (e.g., 30 seconds, for example) to be used for all requests, or any
request which does not have an applicable threshold value (e.g., long poll is detected if D > 30

seconds).

[00276] In some instances, the other clients reside on different mobile devices and the
threshold can be determined by a proxy server (e.g., proxy server 325 of the host 300 shown in
the example of FIG. 3A-B) which is external to the mobile device and able to communicate over
a wireless network with the multiple different mobile devices, as will be further described with

reference to FIG. 3B.

[00277] In one embodiment, the cache policy manager 245 sends the polling schedule to the
proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B and FIG. 3A) and
can be used by the proxy server in monitoring the content source, for example, for changed or
new content (updated response different from the cached response associated with a request or
application). A polling schedule sent to the proxy can include multiple timing parameters
including but not limited to interval (time from request 1 to request 2) or a time out interval
(time to wait for response, used in long polls, for example). Referring to the timing diagram of a
request/response timing sequence shown in the example of FIG. 17A-B, the timing intervals
‘RI°, ‘D, ‘RT’, and/or ‘I'T’, or some statistical manipulation of the above values (e.g., average,

standard deviation, etc.) may all or in part be sent to the proxy server.

60

WO 2012/071283 PCT/US2011/061512

[00278] For example, in the case when the local proxy 275 detects a long poll, the various
timing intervals in a request/response timing sequence (e.g., ‘D’, ‘RT”, and/or ‘I'1”) can be sent
to the proxy server 325 for use in polling the content source (e.g., application server/content host
110). The local proxy 275 can also identify to the proxy server 325 that a given application or
request to be monitored is a long poll request (e.g., instructing the proxy server to set a ‘long
poll flag’, for example). In addition, the proxy server uses the various timing intervals to

determine when to send keep-alive indications on behalf of mobile devices.

[00279] The local cache invalidator 244 of the caching policy manager 245 can invalidate
cache elements in the local cache (e.g., cache 185 or 285) when new or changed data (e.g.,
updated response) is detected from the application server/content source for a given request.
The cached response can be determined to be invalid for the outgoing request based on a
notification received from the proxy server (e.g., proxy 325 or the host server 300). The source
which provides responses to requests of the mobile client can be monitored to determine
relevancy of the cached response stored in the cache of the mobile device 250 for the request.
For example, the cache invalidator 244 can further remove/delete the cached response from the
cache of the mobile device when the cached response is no longer valid for a given request or a

given application.

[00280] In one embodiment, the cached response is removed from the cache after it is
provided once again to an application which generated the outgoing request after determining
that the cached response is no longer valid. The cached response can be provided again without
waiting for the time interval or provided again after waiting for a time interval (e.g., the time
interval determined to be specific to emulate the response delay in a long poll). In one
embodiment, the time interval is the response delay ‘D’ or an average value of the response

delay ‘D’ over two or more values.

[00281] The new or changed data can be, for example, detected by the proxy server (e.g.,
proxy server 125 or 325 shown in the examples of FIG. 1B and FIG. 3A). When a cache entry
for a given request/poll has been invalidated, the use of the radio on the mobile device 250 can
be enabled (e.g., by the local proxy 2750r the cache policy manager 245) to satisfy the
subsequent polling requests, as further described with reference to the interaction diagram of

FIG. 4B.

61

WO 2012/071283 PCT/US2011/061512

[00282] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a
poll/content request generated at the mobile device 250 by an application or widget. For
example, the local proxy 275 or the cache policy manger 245 can intercept a polling request,
made by an application (e.g., mobile application) on the mobile device, to contact the application
server/content provider. The selection engine 249 can determine whether the content received
for the intercepted request has been locally stored as cache elements for deciding whether the
radio of the mobile device needs to be activated to satisfy the request made by the application
(e.g., mobile application) and also determine whether the cached response is still valid for the

outgoing request prior to responding to the outgoing request using the cached response.

[00283] In one embodiment, the local proxy 275, in response to determining that relevant
cached content exists and is still valid, can retrieve the cached elements from the local cache to
provide a response to the application (e.g., mobile application) which made the polling request
such that a radio of the mobile device is not activated to provide the response to the application
(e.g., mobile application). In general, the local proxy 275 continues to provide the cached
response each time the outgoing request is received until the updated response different from the

cached response is detected.

[00284] When it is determined that the cached response is no longer valid, a new request for
a given request is transmitted over the wireless network for an updated response. The request
can be transmitted to the application server/content provider (e.g., server/host 110) or the proxy
server on the host server (e.g., proxy 325 on the host 300) for a new and updated response. In
one embodiment the cached response can be provided again as a response to the outgoing
request if a new response is not received within the time interval, prior to removal of the cached

response from the cache on the mobile device.

[00285] FIG. 2C depicts a block diagram illustrating another example of components in the
application behavior detector 236 and the caching policy manager 245 in the local proxy 275 on
the client-side of the distributed proxy system shown in the example of FIG. 2A. The illustrated
application behavior detector 236 and the caching policy manager 245 can, for example, enable
the local proxy 275 to detect cache defeat and perform caching of content addressed by

identifiers intended to defeat cache.

62

WO 2012/071283 PCT/US2011/061512

[00286] In one embodiment, the caching policy manager 245 includes a cache defeat
resolution engine 221, an identifier formalizer 211, a cache appropriateness decision engine 246,
a poll schedule generator 247, an application protocol module 248, a cache or connect selection
engine 249 having a cache query module 229, and/or a local cache invalidator 244. The cache
defeat resolution engine 221 can further include a pattern extraction module 222 and/or a cache
defeat parameter detector 223. The cache defeat parameter detector 223 can further include a
random parameter detector 224 and/or a time/date parameter detector 226. One embodiment

further includes an application cache policy repository 243 coupled to the decision engine 246.

[00287] In one embodiment, the application behavior detector 236 includes a pattern detector
237, a poll interval detector 238, an application profile generator 239, and/or a priority engine
241. The pattern detector 237 can further include a cache defeat parameter detector 223 having
also, for example, a random parameter detector 233 and/or a time/date parameter detector 234.
One embodiment further includes an application profile repository 242 coupled to the
application profile generator 239. The application profile generator 239, and the priority engine
241 have been described in association with the description of the application behavior detector

236 in the example of FIG. 2A.

[00288] The cache defeat resolution engine 221 can detect, identify, track, manage, and/or
monitor content or content sources (e.g., servers or hosts) which employ identifiers and/or are
addressed by identifiers (e.g., resource identifiers such as URLs and/or URIs) with one or more
mechanisms that defeat cache or are intended to defeat cache. The cache defeat resolution
engine 221 can, for example, detect from a given data request generated by an application or
client that the identifier defeats or potentially defeats cache, where the data request otherwise
addresses content or responses from a host or server (e.g., application server/content host 110 or

310) that is cacheable.

[00289] In one embodiment, the cache defeat resolution engine 221 detects or identifies
cache defeat mechanisms used by content sources (e.g., application server/content host 110 or
310) using the identifier of a data request detected at the mobile device 250. The cache defeat
resolution engine 221 can detect or identify a parameter in the identifier which can indicate that
cache defeat mechanism is used. For example, a format, syntax, or pattern of the parameter can
be used to identify cache defeat (e.g., a pattern, format, or syntax as determined or extracted by

the pattern extraction module 222).

63

WO 2012/071283 PCT/US2011/061512

[00290] The pattern extraction module 222 can parse an identifier into multiple parameters
or components and perform a matching algorithm on each parameter to identify any of which
match one or more predetermined formats (e.g., a date and/or time format, as illustrated in
parameters 702 shown in FIG. 7). For example, the results of the matching or the parsed out
parameters from an identifier can be used (e.g., by the cache defeat parameter detector 223) to

identify cache defeating parameters which can include one or more changing parameters.

[00291] The cache defeat parameter detector 223, in one embodiment can detect random
parameters (e.g., by the random parameter detector 224) and/or time and/or date parameters
which are typically used for cache defeat. The cache defeat parameter detector 223 can detect
random parameters (e.g., as illustrated in parameters 752 shown in FIG. 7) and/or time/dates
using commonly employed formats for these parameters and performing pattern matching

algorithms and tests.

[00292] In addition to detecting patterns, formats, and/or syntaxes, the cache defeat
parameter detector 223 further determines or confirms whether a given parameter is defeating
cache and whether the addressed content can be cached by the distributed caching system. The
cache defeat parameter detector 223 can detect this by analyzing responses received for the
identifiers utilized by a given data request. In general, a changing parameter in the identifier is
identified to indicate cache defeat when responses corresponding to multiple data requests are
the same even when the multiple data requests uses identifiers with the changing parameter
being different for each of the multiple data requests. For example, the request/response pairs
shown in the examples of FIG. 7 illustrate that the responses (704 and 754 in FIG. 7) received
are the same, even though the resource identifier includes a parameter (702 and 752 in FIG. 7)

that changes with each request.

[00293] For example, at least two same responses may be required to identify the changing
parameter as indicating cache defeat. In some instances, at least three same responses may be
required. The requirement for the number of same responses needed to determine that a given
parameter with a varying value between requests is cache defeating may be application specific,
context dependent, and/or user dependent/user specified, or a combination of the above. Such a
requirement may also be static or dynamically adjusted by the distributed cache system to meet
certain performance thresholds and/or either explicit/implicit feedback regarding user experience
(e.g., whether the user or application is receiving relevant/fresh content responsive to requests).

More of the same responses may be required to confirm cache defeat, or for the system to treat a

64

WO 2012/071283 PCT/US2011/061512

given parameter as intended for cache defeat if an application begins to malfunction due to
response caching and/or if the user expresses dissatisfaction (explicit user feedback) or the

system detects user frustration (implicit user cues).

[00294] The cache appropriateness decision engine 246 can detect, assess, or determine
whether content from a content source (e.g., application server/content provider 110 in the
example of FIG. 1B) with which a mobile device 250 interacts, has content that may be suitable
for caching. In some instances, content from a given application server/content provider (e.g.,
the server/provider 110 of FIG. 1B) is determined to be suitable for caching based on a set of
criteria (for example, criteria specifying time criticality of the content that is being requested
from the content source). In one embodiment, the local proxy (e.g., the local proxy 175 or 275
of FIG. 1B and FIG. 2A) applies a selection criteria to store the content from the host server
which is requested by an application as cached elements in a local cache on the mobile device to

satisfy subsequent requests made by the application.

[00295] The selection criteria can also include, by way of example, but not limitation, state
of the mobile device indicating whether the mobile device is active or inactive, network
conditions, and/or radio coverage statistics. The cache appropriateness decision engine 246 can
any one or any combination of the criteria, and in any order, in identifying sources for which

caching may be suitable.

[00296] Once application servers/content providers having identified or detected content that
is potentially suitable for local caching on the mobile device 250, the cache policy manager 245
can proceed to cache the associated content received from the identified sources by storing
content received from the content source as cache elements in a local cache (e.g., local cache
185 or 285 shown in the examples of FIG. 1B and FIG. 2A, respectively) on the mobile device
250. The content source can also be identified to a proxy server (e.g., proxy server 125 or 325
shown in the examples of FIG. 1B and FIG. 3A, respectively) remote from and in wireless
communication with the mobile device 250 such that the proxy server can monitor the content
source (e.g., application server/content provider 110) for new or changed data. Similarly, the
local proxy (e.g., the local proxy 175 or 275 of FIG. 1B and FIG. 2A, respectively) can identify
to the proxy server that content received from a specific application server/content provider is

being stored as cached elements in the local cache.

65

WO 2012/071283 PCT/US2011/061512

[00297] In one embodiment, cache elements are stored in the local cache 285 as being
associated with a normalized version of an identifier for an identifier employing one or more
parameters intended to defeat cache. The identifier can be normalized by the identifier
normalizer module 211 and the normalization process can include, by way of example, one or
more of: converting the URI scheme and host to lower-case, capitalizing letters in percent-

encoded escape sequences, removing a default port, and removing duplicate slashes.

[00298] In another embodiment, the identifier is normalized by removing the parameter for
cache defeat and/or replacing the parameter with a static value which can be used to address or
be associated with the cached response received responsive to a request utilizing the identifier by
the normalizer 211 or the cache defeat parameter handler 212. For example, the cached
elements stored in the local cache 285 (shown in FIG. 2A) can be identified using the
normalized version of the identifier or a hash value of the normalized version of the identifier.
The hash value of an identifier or of the normalized identifier may be generated by the hash

engine 213.

[00299] Once content has been locally cached, the cache policy manager 245 can, upon
receiving future polling requests to contact the content server, retrieve the cached elements from
the local cache to respond to the polling request made at the mobile device 250 such that a radio
of the mobile device is not activated to service the polling request. Such servicing and fulfilling
application (e.g., mobile application) requests locally via local cache entries allow for more
efficient resource and mobile network traffic utilization and management since network
bandwidth and other resources need not be used to request/receive poll responses which may

have not changed from a response that has already been received at the mobile device 250.

[00300] One embodiment of the cache policy manager 245 includes a poll schedule
generator 247 which can generate a polling schedule for one or more applications on the mobile
device 250. The polling schedule can specify a polling interval that can be employed by the
proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B and FIG. 3A) in
monitoring the content source for one or more applications. The polling schedule can be
determined, for example, based on the interval between the polling requests directed to the
content source from the mobile device. In one embodiment, the poll interval detector 238 of the
application behavior detector can monitor polling requests directed to a content source from the
mobile device 250 in order to determine an interval between the polling requests made from any

or all application (e.g., mobile application).

66

WO 2012/071283 PCT/US2011/061512

[00301] In one embodiment, the cache policy manager 245 sends the polling schedule is sent
to the proxy server (e.g., proxy server 125 or 325 shown in the examples of FIG. 1B and FIG.
3A) and can be used by the proxy server in monitoring the content source, for example, for
changed or new content. The local cache invalidator 244 of the caching policy manager 245 can
invalidate cache elements in the local cache (e.g., cache 185 or 285) when new or changed data
is detected from the application server/content source for a given request. The new or changed
data can be, for example, detected by the proxy server. When a cache entry for a given
request/poll has been invalidated and/or removed (e.g., deleted from cache) after invalidation,
the use of the radio on the mobile device 250 can be enabled (e.g., by the local proxy or the
cache policy manager 245) to satisfy the subsequent polling requests, as further described with

reference to the interaction diagram of FIG. 4B.

[00302] In another embodiment, the proxy server (e.g., proxy server 125 or 325 shown in the
examples of FIG. 1B and FIG. 3A) uses a modified version of a resource identifier used in a
data request to monitor a given content source (the application server/content host 110 of FIG.
1A and FIG. 1B to which the data request is addressed) for new or changed data. For example,
in the instance where the content source or identifier is detected to employ cache defeat
mechanisms, a modified (e.g., normalized) identifier can be used instead to poll the content
source. The modified or normalized version of the identifier can be communicated to the proxy
server by the caching policy manager 245, or more specifically the cache defeat parameter

handler 212 of the identifier normalizer 211.

[00303] The modified identifier used by the proxy server to poll the content source on behalf
of the mobile device/application (e.g., mobile application) may or may not be the same as the
normalized identifier. For example, the normalized identifier may be the original identifier with
the changing cache defeating parameter removed whereas the modified identifier uses a
substitute parameter in place of the parameter that is used to defeat cache (e.g., the changing
parameter replaced with a static value or other predetermined value known to the local proxy
and/or proxy server). The modified parameter can be determined by the local proxy 275 and
communicated to the proxy server. The modified parameter may also be generated by the proxy

server (e.g., by the identifier modifier module 353 shown in the example of FIG. 3C).

[00304] One embodiment of the cache policy manager 245 includes a cache or connect
selection engine 249 which can decide whether to use a locally cached entry to satisfy a

poll/content request generated at the mobile device 250 by an application or widget. For

67

WO 2012/071283 PCT/US2011/061512

example, the local proxy 275 or the cache policy manger 245 can intercept a polling request
made by an application (e.g., mobile application) on the mobile device, to contact the application
server/content provider. The selection engine 249 can determine whether the content received
for the intercepted request has been locally stored as cache elements for deciding whether the a
radio of the mobile device needs to be activated to satisfy the request made by the application
(e.g., mobile application). In one embodiment, the local proxy 275, in response to determining
that relevant cached content exists and is still valid, can retrieve the cached elements from the
local cache to provide a response to the application (e.g., mobile application) which made the
polling request such that a radio of the mobile device is not activated to provide the response to

the application (e.g., mobile application).

[00305] In one embodiment, the cached elements stored in the local cache 285 (shown in
FIG. 2A) can be identified using a normalized version of the identifier or a hash value of the
normalized version of the identifier, for example, using the cache query module 229. Cached
elements can be stored with normalized identifiers which have cache defeating parameters
removed or otherwise replaced such that the relevant cached elements can be identified and
retrieved in the future to satisfy other requests employing the same type of cache defeat. For
example, when an identifier utilized in a subsequent request is determined to be utilizing the
same cache defeating parameter, the normalized version of this identifier can be generated and
used to identify a cached response stored in the mobile device cache to satisfy the data request.
The hash value of an identifier or of the normalized identifier may be generated by the hash

engine 213 of the identifier normalizer 211.

[00306] FIG. 2D depicts a block diagram illustrating examples of additional components in
the local proxy 275 shown in the example of FIG. 2A which is further capable of performing
mobile traffic categorization and policy implementation based on application behavior and/or

user activity.

[00307] In this embodiment of the local proxy 275, the user activity module 215 further
includes one or more of, a user activity tracker 215a, a user activity prediction engine 215b,
and/or a user expectation manager 215c¢. The application behavior detect 236 can further include
a prioritization engine 241a, a time criticality detection engine 241b, an application state
categorizer 241c, and/or an application traffic categorizer 241d. The local proxy 275 can further
include a backlight detector 219 and/or a network configuration selection engine 251. The

network configuration selection engine 251 can further include, one or more of, a wireless

68

WO 2012/071283 PCT/US2011/061512

generation standard selector 251a, a data rate specifier 251b, an access channel selection engine

251c, and/or an access point selector.

[00308] In one embodiment, the application behavior detector 236 is able to detect,
determined, identify, or infer, the activity state of an application on the mobile device 250 to
which traffic has originated from or is directed to, for example, via the application state
categorizer 241c and/or the traffic categorizer 241d. The activity state can be determined by
whether the application is in a foreground or background state on the mobile device (via the
application state categorizer 241c¢) since the traffic for a foreground application vs. a background

application may be handled differently.

[00309] In one embodiment, the activity state can be determined, detected, identified, or
inferred with a level of certainty of heuristics, based on the backlight status of the mobile device
250 (e.g., by the backlight detector 219) or other software agents or hardware sensors on the
mobile device, including but not limited to, resistive sensors, capacitive sensors, ambient light
sensors, motion sensors, touch sensors, etc. In general, if the backlight is on, the traffic can be
treated as being or determined to be generated from an application that is active or in the
foreground, or the traffic is interactive. In addition, if the backlight is on, the traffic can be
treated as being or determined to be traffic from user interaction or user activity, or traffic

containing data that the user is expecting within some time frame.

[00310] In one embodiment, the activity state is determined based on whether the traffic is
interactive traffic or maintenance traffic. Interactive traffic can include transactions from
responses and requests generated directly from user activity/interaction with an application and
can include content or data that a user is waiting or expecting to receive. Maintenance traffic
may be used to support the functionality of an application which is not directly detected by a
user. Maintenance traffic can also include actions or transactions that may take place in response

to a user action, but the user is not actively waiting for or expecting a response.

[00311] For example, a mail or message delete action at a mobile device 250 generates a
request to delete the corresponding mail or message at the server, but the user typically is not
waiting for a response. Thus, such a request may be categorized as maintenance traffic, or traffic
having a lower priority (e.g., by the prioritization engine 241a) and/or is not time-critical (e.g.,

by the time criticality detection engine 214b).

69

WO 2012/071283 PCT/US2011/061512

[00312] Contrastingly, a mail ‘read’ or message ‘read’ request initiated by a user a the
mobile device 250, can be categorized as ‘interactive traffic’ since the user generally is waiting
to access content or data when they request to read a message or mail. Similarly, such a request
can be categorized as having higher priority (e.g., by the prioritization engine 241a) and/or as

being time critical/time sensitive (e.g., by the time criticality detection engine 241b).

[00313] The time criticality detection engine 241b can generally determine, identify, infer
the time sensitivity of data contained in traffic sent from the mobile device 250 or to the mobile
device from a host server (e.g., host 300) or application server (e.g., app server/content source
110). For example, time sensitive data can include, status updates, stock information updates,
IM presence information, email messages or other messages, actions generated from mobile
gaming applications, webpage requests, location updates, etc. Data that is not time sensitive or
time critical, by nature of the content or request, can include requests to delete messages, mark-
as-read or edited actions, application-specific actions such as a add-friend or delete-friend
request, certain types of messages, or other information which does not frequently changing by
nature, etc. In some instances when the data is not time critical, the timing with which to allow
the traffic to pass through is set based on when additional data needs to be sent from the mobile
device 250. For example, traffic shaping engine 255 can align the traffic with one or more
subsequent transactions to be sent together in a single power-on event of the mobile device radio
(e.g, using the alignment module 256 and/or the batching module 257). The alignment module
256 can also align polling requests occurring close in time directed to the same host server, since

these request are likely to be responded to with the same data.

[00314] In the alternate or in combination, the activity state can be determined from
assessing, determining, evaluating, inferring, identifying user activity at the mobile device 250
(e.g., via the user activity module 215). For example, user activity can be directly detected and
tracked using the user activity tracker 215a. The traffic resulting therefrom can then be
categorized appropriately for subsequent processing to determine the policy for handling.
Furthermore, user activity can be predicted or anticipated by the user activity prediction engine
215b. By predicting user activity or anticipating user activity, the traffic thus occurring after the
prediction can be treated as resulting from user activity and categorized appropriately to

determine the transmission policy.

[00315] In addition, the user activity module 215 can also manage user expectations (e.g.,

via the user expectation manager 215¢ and/or in conjunction with the activity tracker 215 and/or

70

WO 2012/071283 PCT/US2011/061512

the prediction engine 215b) to ensure that traffic is categorized appropriately such that user
expectations are generally met. For example, a user-initiated action should be analyzed (e.g., by
the expectation manager 215) to determine or infer whether the user would be waiting for a
response. If so, such traffic should be handled under a policy such that the user does not

experience an unpleasant delay in receiving such a response or action.

[00316] In one embodiment, an advanced generation wireless standard network is selected
for use in sending traffic between a mobile device and a host server in the wireless network
based on the activity state of the application on the mobile device for which traffic is originated
from or directed to. An advanced technology standards such as the 3G, 3.5G, 3G+, 4G, or LTE
network can be selected for handling traffic generated as a result of user interaction, user
activity, or traffic containing data that the user is expecting or waiting for. Advanced generation
wireless standard network can also be selected for to transmit data contained in traffic directed

to the mobile device which responds to foreground activities.

[00317] In categorizing traffic and defining a transmission policy for mobile traffic, a
network configuration can be selected for use (e.g., by the network configuration selection
engine 251) on the mobile device 250 in sending traffic between the mobile device and a proxy
server (325) and/or an application server (e.g., app server/host 110). The network configuration
that is selected can be determined based on information gathered by the application behavior
module 236 regarding application activity state (e.g., background or foreground traffic),
application traffic category (e.g., interactive or maintenance traffic), any priorities of the

data/content, time sensitivity/criticality.

[00318] The network configuration selection engine 2510 can select or specify one or more
of, a generation standard (e.g., via wireless generation standard selector 251a), a data rate (e.g.,
via data rate specifier 251b), an access channel (e.g., access channel selection engine 251c),

and/or an access point (e.g., vai the access point selector 251d), in any combination.

[00319] For example, a more advanced generation (e.g, 3G, L'TE, or 4G or later) can be
selected or specified for traffic when the activity state is in interaction with a user or in a
foreground on the mobile device. Contrastingly, an older generation standard (e.g., 2G, 2.5G, or
3G or older) can be specified for traffic when one or more of the following is detected, the

application is not interacting with the user, the application is running in the background on the

71

WO 2012/071283 PCT/US2011/061512

mobile device, or the data contained in the traffic is not time critical, or is otherwise determined

to have lower priority.

[00320] Similarly, a network configuration with a slower data rate can be specified for traffic
when one or more of the following is detected, the application is not interacting with the user,
the application is running in the background on the mobile device, or the data contained in the
traffic is not time critical. The access channel (e.g., Forward access channel or dedicated

channel) can be specified.

[00321] FIG. 2E depicts a block diagram illustrating examples of additional components in
the traffic shaping engine 255 and the application behavior detector 236 shown in the example
of FIG. 2A which are further capable of facilitating alignment of incoming data transfer to a
mobile or broadband device, or its user, to optimize the number of connections that need to be

established for receiving data over the wireless network or broadband network.

[00322] In one embodiment of the local proxy 275, the traffic shaping engine 255, in
addition to the alignment module 256, batching module 257, further includes a poll interval
adjuster 258. The poll interval adjuster 258 can include a factor or denominator detection engine
258a, a critical application detector 258b, a critical interval identifier 258c, and/or a polling
interval setting engine 258d. Further in one embodiment, the application behavior detector 236

of the local proxy 275 further includes a poll interval detector 238.

[00323] In facilitating alignment of data bursts across various services or hosts to the mobile
device 250, the local proxy 275 can initially determine, detect, identify, compute, infer, extract
the an original or default polling interval for applications or mobile clients on the mobile device
250 (e.g., by the poll interval detector 238). The original or default polling interval is typically
that characteristic of the mobile application itself and/or its host (e.g., its corresponding
application server/content host 110 shown in FIG. 1A-1B). The poll interval detector 238 can
detect the original or default poll interval for any number or all of the mobile applications which
regularly poll their application servers or hosts for use by the proxy 275 in generating or
adjusting the polling intervals suitable for use for the device 250 based on the applications

installed thereon and their respective poll timing characteristics.

[00324] For example, the poll intervals (original or default) of the mobile clients or
applications on device 250 can be used by the poll interval adjuster 258. In general, an adjusted

polling interval for a first service is generated based on a polling interval of a second service,

72

WO 2012/071283 PCT/US2011/061512

which may be serviced by a distinct host from the first service (e.g., Twitter = service 1;
ESPN.com = service 2). The adjusted polling interval computed for the first service and/or the
second service, can be used in aligning at least some traffic received from the distinct hosts due

to access on a mobile device of first and second services.

[00325] For example, in one embodiment, the adjusted polling interval of the first service
can be a factor or denominator that the original polling interval of the first service has in
common with the original polling interval of the second service (e.g., as determined by the
factor or denominator detection engine 258a), and can further be determined based on an
original polling interval of the first service. Note that the adjusted polling interval of the first
service need not be different from the original polling interval of the first service when the
original polling interval of the first service and the polling interval of the second service are

factors or denominators of each other.

[00326] In one embodiment, the detection engine 258a is able to further determine multiples
of a factor or denominator of the polling interval of the second service and the adjusted polling
interval of the first service is a multiple of a factor or a multiple of a denominator of the polling
interval of the second service. In addition, the engine 258a can determine multiples of a common
factor or a common denominator of a majority number of the default polling intervals for

multiple applications on the device 250.

[00327] In addition, the adjusted polling interval of the first service can be further
determined, adjusted, or reconfigured (e.g., by the polling interval setting engine 258d), based
on time criticality of traffic from the first service relative to time criticality of traffic from the
second service, or additional services on the mobile device 250. For example, the critical
application detector 258b can identify, detect, or receive input identifying or specifying one or
more applications on the device 250 as being more critical than others (e.g., higher priority, time
sensitive content/traffic, user preferred application, OS sponsored application, operator-
sponsored content, etc.) and further adjust the polling intervals of the first and/or second services

if need.

[00328] For example, the critical application detector 258b can identify a critical application
as being the most time critical of all applications on the mobile device, or a set of applications
for which data burst alignment is being applied or attempted on. For the critical application (s),

the polling interval of the critical application is identified as a minimum critical interval (e.g., by

73

WO 2012/071283 PCT/US2011/061512

the critical interval identifier 258c), which is not to be exceeded in assigning an updated polling
interval for the critical application such that the priority in data needs (e.g., whether it is a user-
need, device-need, or application-need) for prompt and timely delivery of data from the

application server or content host.

[00329] High priority information/data or application can include, for example, financial
data, sporting data or other data constantly changing in nature, any data whose previous values
have little to no relevancy, any data (e.g., subscriptions or feeds) that a user wishes to be
immediately notified of in real time or near real time, any specific feature indicated as a real
time or near real time feature by the application server/content host (e.g., real-time status
updates, or real-time notifications, high priority email or other messages, IM messages, etc.) or

applications servicing any type of high priority/time sensitive content.

[00330] Once the polling intervals of one or more applications on the mobile device 250
have been set, the local proxy 275 communicates a polling schedule including the adjusted
polling interval (s) to a proxy server (eg., remote proxy 325 of FIG. 3A-3E) for use in aligning,
in time, at least some traffic received from the distinct hosts due to access on the mobile device

of first and second services, and any additional services.

[00331] In one embodiment, the poll interval setting engine 258d also selecting a common
starting point in time for an initial poll of the content hosts servicing the multiple applications.
The poll interval setting engine 258d can set the start time to be anchored to the same absolute
point in time across the multiple applications on the device 250. In general, the application
servers/content hosts are typically in UTC and use NTP to stay at the same time. For
example, the interval setting engine 258d can pick any minute mark, second mark, hour
mark, or other time indicators, and communicate this to the remote proxy server (e.g., proxy
325) as part of the adjusted polling parameter. The mark can be selected randomly used by

all applications as the common ‘initial time t0.”

[00332] Note that while the above description uses an example of two applications, the same
process can be performed for any number of applications or all applications/clients on the
mobile device 250. In some instances, some or all of the functions performed by one or more
of the components poll interval adjustor 258 can be performed remotely, for example, at a
remote proxy server (e.g., proxy 325) using the poll intervals detected locally at the mobile

device 250 (e.g., by the poll interval detector 238). Note that the remote proxy (e.g., proxy

74

WO 2012/071283 PCT/US2011/061512

325) can receive poll intervals for applications across multiple devices and track adjusted
intervals for applications on multiple devices, as will be further described with the example

of FIG. 3E.

[00333] FIG. 3A depicts a block diagram illustrating an example of server-side components
in a distributed proxy and cache system residing on a host server 300 that manages traffic in a
wireless network for resource conservation. The server-side proxy (or proxy server 325) can
further categorize mobile traffic and/or implement delivery policies based on application

behavior, content priority, user activity, and/or user expectations.

[00334] The host server 300 generally includes, for example, a network interface 308 and/or
one or more repositories 312, 314, and 316. Note that server 300 may be any portable/mobile or
non-portable device, server, cluster of computers and/or other types of processing units (e.g.,
any number of a machine shown in the example of FIG. 11) able to receive or transmit signals
to satisfy data requests over a network including any wired or wireless networks (e.g., Wil'i,

cellular, Bluetooth, etc.).

[00335] The network interface 308 can include networking module(s) or devices(s) that
enable the server 300 to mediate data in a network with an entity that is external to the host
server 300, through any known and/or convenient communications protocol supported by the
host and the external entity. Specifically, the network interface 308 allows the server 300 to
communicate with multiple devices including mobile phone devices 350 and/or one or more

application servers/content providers 310.

[00336] The host server 300 can store information about connections (e.g., network
characteristics, conditions, types of connections, etc.) with devices in the connection metadata
repository 312. Additionally, any information about third party application or content providers
can also be stored in the repository 312. The host server 300 can store information about
devices (e.g., hardware capability, properties, device settings, device language, network
capability, manufacturer, device model, OS, OS version, etc.) in the device information
repository 314. Additionally, the host server 300 can store information about network providers

and the various network service areas in the network service provider repository 316.

[00337] The communication enabled by network interface 308 allows for simultaneous
connections (e.g., including cellular connections) with devices 350 and/or connections (e.g.,

including wired/wireless, HI'TP, Internet connections, LAN, WiHi, etc.) with content

75

WO 2012/071283 PCT/US2011/061512

servers/providers 310 to manage the traffic between devices 350 and content providers 310, for
optimizing network resource utilization and/or to conserver power (battery) consumption on the
serviced devices 350. The host server 300 can communicate with mobile devices 350 serviced
by different network service providers and/or in the same/different network service areas. The
host server 300 can operate and is compatible with devices 350 with varying types or levels of
mobile capabilities, including by way of example but not limitation, 1G, 2G, 2G transitional

(2.5G, 2.75G), 3G (IMT-2000), 3G transitional (3.5G, 3.75G, 3.9G), 4G (IMT-advanced), etc.

[00338] In general, the network interface 308 can include one or more of a network adaptor
card, a wireless network interface card (e.g., SMS interface, WiFi interface, interfaces for
various generations of mobile communication standards including but not limited to 1G, 2G, 3G,
3.5G, 4G type networks such as LTE, WiMAX, etc.), Bluetooth, WiFi, or any other network
whether or not connected via a router, an access point, a wireless router, a switch, a multilayer
switch, a protocol converter, a gateway, a bridge, a bridge router, a hub, a digital media receiver,

and/or a repeater.

[00339] The host server 300 can further include server-side components of the distributed
proxy and cache system which can include a proxy server 325 and a server cache 335. In one
embodiment, the proxy server 325 can include an HT'TP access engine 345, a caching policy
manager 355, a proxy controller 365, a traffic shaping engine 375, a new data detector 347

and/or a connection manager 395.

[00340] The HTTP access engine 345 may further include a heartbeat manager 398; the
proxy controller 365 may further include a data invalidator module 368; the traffic shaping
engine 375 may further include a control protocol 376 and a batching module 377. Additional
or less components/modules/engines can be included in the proxy server 325 and each illustrated

component.

[00341] As used herein, a “module,” a “manager,” a “handler,” a “detector,” an “interface,”
a “controller,” a “normalizer,” a “generator,” an “invalidator,” or an “engine” includes a general
purpose, dedicated or shared processor and, typically, firmware or software modules that are
executed by the processor. Depending upon implementation-specific or other considerations,
the module, manager, handler, detector, interface, controller, normalizer, generator, invalidator,
or engine can be centralized or its functionality distributed. The module, manager, handler,

detector, interface, controller, normalizer, generator, invalidator, or engine can include general

76

WO 2012/071283 PCT/US2011/061512

or special purpose hardware, firmware, or software embodied in a computer-readable (storage)
medium for execution by the processor. As used herein, a computer-readable medium or
computer-readable storage medium is intended to include all mediums that are statutory (e.g., in
the United States, under 35 U.S.C. 101), and to specifically exclude all mediums that are non-
statutory in nature to the extent that the exclusion is necessary for a claim that includes the
computer-readable (storage) medium to be valid. Known statutory computer-readable mediums
include hardware (e.g., registers, random access memory (RAM), non-volatile (NV) storage, to

name a few), but may or may not be limited to hardware.

[00342] In the example of a device (e.g., mobile device 350) making an application or
content request to an application server or content provider 310, the request may be intercepted
and routed to the proxy server 325 which is coupled to the device 350 and the application
server/content provider 310. Specifically, the proxy server is able to communicate with the local
proxy (e.g., proxy 175 and 275 of the examples of FIG. 1 and FIG. 2 respectively) of the mobile
device 350, the local proxy forwards the data request to the proxy server 325 in some instances
for further processing and, if needed, for transmission to the application server/content server

310 for a response to the data request.

[00343] Insuch a configuration, the host 300, or the proxy server 325 in the host server 300
can utilize intelligent information provided by the local proxy in adjusting its communication
with the device in such a manner that optimizes use of network and device resources. For
example, the proxy server 325 can identify characteristics of user activity on the device 350 to
modify its communication frequency. The characteristics of user activity can be determined by,
for example, the activity/behavior awareness module 366 in the proxy controller 365 via

information collected by the local proxy on the device 350.

[00344] In one embodiment, communication frequency can be controlled by the connection
manager 395 of the proxy server 325, for example, to adjust push frequency of content or
updates to the device 350. For instance, push frequency can be decreased by the connection
manager 395 when characteristics of the user activity indicate that the user is inactive. In one
embodiment, when the characteristics of the user activity indicate that the user is subsequently
active after a period of inactivity, the connection manager 395 can adjust the communication
frequency with the device 350 to send data that was buffered as a result of decreased

communication frequency to the device 350.

77

WO 2012/071283 PCT/US2011/061512

[00345] In addition, the proxy server 325 includes priority awareness of various requests,
transactions, sessions, applications, and/or specific events. Such awareness can be determined
by the local proxy on the device 350 and provided to the proxy server 325. The priority
awareness module 367 of the proxy server 325 can generally assess the priority (e.g., including
time-criticality, time-sensitivity, etc.) of various events or applications; additionally, the priority

awareness module 367 can track priorities determined by local proxies of devices 350.

[00346] In one embodiment, through priority awareness, the connection manager 395 can
further modify communication frequency (e.g., use or radio as controlled by the radio controller
396) of the server 300 with the devices 350. For example, the server 300 can notify the device
350, thus requesting use of the radio if it is not already in use when data or updates of an

importance/priority level which meets a criteria becomes available to be sent.

[00347] In one embodiment, the proxy server 325 can detect multiple occurrences of events
(e.g., transactions, content, data received from server/provider 310) and allow the events to
accumulate for batch transfer to device 350. Batch transfer can be cumulated and transfer of
events can be delayed based on priority awareness and/or user activity/application behavior
awareness as tracked by modules 367 and/or 366. For example, batch transfer of multiple events
(of a lower priority) to the device 350 can be initiated by the batching module 377 when an
event of a higher priority (meeting a threshold or criteria) is detected at the server 300. In
addition, batch transfer from the server 300 can be triggered when the server receives data from
the device 350, indicating that the device radio is already in use and is thus on. In one
embodiment, the proxy server 325 can order the each messages/packets in a batch for
transmission based on event/transaction priority such that higher priority content can be sent first

in case connection is lost or the battery dies, etc.

[00348] In one embodiment, the server 300 caches data (e.g., as managed by the caching
policy manager 355) such that communication frequency over a network (e.g., cellular network)
with the device 350 can be modified (e.g., decreased). The data can be cached, for example, in
the server cache 335 for subsequent retrieval or batch sending to the device 350 to potentially
decrease the need to turn on the device 350 radio. The server cache 335 can be partially or
wholly internal to the host server 300, although in the example of FIG. 3A it is shown as being
external to the host 300. In some instances, the server cache 335 may be the same as and/or

integrated in part or in whole with another cache managed by another entity (e.g., the optional

78

WO 2012/071283 PCT/US2011/061512

caching proxy server 199 shown in the example of FIG. 1B), such as being managed by an

application server/content provider 310, a network service provider, or another third party.

[00349] In one embodiment, content caching is performed locally on the device 350 with the
assistance of host server 300. For example, proxy server 325 in the host server 300 can query
the application server/provider 310 with requests and monitor changes in responses. When
changed or new responses are detected (e.g., by the new data detector 347), the proxy server 325
can notify the mobile device 350 such that the local proxy on the device 350 can make the
decision to invalidate (e.g., indicated as out-dated) the relevant cache entries stored as any
responses in its local cache. Alternatively, the data invalidator module 368 can automatically
instruct the local proxy of the device 350 to invalidate certain cached data, based on received
responses from the application server/provider 310. The cached data is marked as invalid, and

can get replaced or deleted when new content is received from the content server 310.

[00350] Note that data change can be detected by the detector 347 in one or more ways. For
example, the server/provider 310 can notify the host server 300 upon a change. The change can
also be detected at the host server 300 in response to a direct poll of the source server/provider
310. In some instances, the proxy server 325 can in addition, pre-load the local cache on the
device 350 with the new/updated data. This can be performed when the host server 300 detects
that the radio on the mobile device is already in use, or when the server 300 has additional

content/data to be sent to the device 350.

[00351] One or more the above mechanisms can be implemented simultaneously or
adjusted/configured based on application (e.g., different policies for different servers/providers
310). In some instances, the source provider/server 310 may notify the host 300 for certain
types of events (e.g., events meeting a priority threshold level). In addition, the provider/server
310 may be configured to notify the host 300 at specific time intervals, regardless of event

priority.

[00352] In one embodiment, the proxy server 325 of the host 300 can monitor/track
responses received for the data request from the content source for changed results prior to
returning the result to the mobile device, such monitoring may be suitable when data request to
the content source has yielded same results to be returned to the mobile device, thus preventing
network/power consumption from being used when no new changes are made to a particular

requested. The local proxy of the device 350 can instruct the proxy server 325 to perform such

79

WO 2012/071283 PCT/US2011/061512

monitoring or the proxy server 325 can automatically initiate such a process upon receiving a
certain number of the same responses (e.g., or a number of the same responses in a period of

time) for a particular request.

[00353] In one embodiment, the server 300, through the activity/behavior awareness module
366, is able to identify or detect user activity at a device that is separate from the mobile device
350. For example, the module 366 may detect that a user’s message inbox (e.g., email or types
of inbox) is being accessed. This can indicate that the user is interacting with his/her application

using a device other than the mobile device 350 and may not need frequent updates, if at all.

[00354] The server 300, in this instance, can thus decrease the frequency with which new or
updated content is sent to the mobile device 350, or eliminate all communication for as long as
the user is detected to be using another device for access. Such frequency decrease may be
application specific (e.g., for the application with which the user is interacting with on another
device), or it may be a general frequency decrease (E.g., since the user is detected to be
interacting with one server or one application via another device, he/she could also use it to

access other services.) to the mobile device 350.

[00355] In one embodiment, the host server 300 is able to poll content sources 310 on behalf
of devices 350 to conserve power or battery consumption on devices 350. For example, certain
applications on the mobile device 350 can poll its respective server 310 in a predictable
recurring fashion. Such recurrence or other types of application behaviors can be tracked by the
activity/behavior module 366 in the proxy controller 365. The host server 300 can thus poll
content sources 310 for applications on the mobile device 350 that would otherwise be
performed by the device 350 through a wireless (e.g., including cellular connectivity). The host
server can poll the sources 310 for new or changed data by way of the HI'TP access engine 345
to establish HT'TP connection or by way of radio controller 396 to connect to the source 310
over the cellular network. When new or changed data is detected, the new data detector 347 can
notify the device 350 that such data is available and/or provide the new/changed data to the
device 350.

[00356] In one embodiment, the connection manager 395 determines that the mobile device
350 is unavailable (e.g., the radio is turned off) and utilizes SMS to transmit content to the
device 350, for instance, via the SMSC shown in the example of FIG. 1B. SMS is used to

transmit invalidation messages, batches of invalidation messages, or even content in the case

80

WO 2012/071283 PCT/US2011/061512

where the content is small enough to fit into just a few (usually one or two) SMS messages.

This avoids the need to access the radio channel to send overhead information. The host server
300 can use SMS for certain transactions or responses having a priority level above a threshold
or otherwise meeting a criteria. The server 300 can also utilize SMS as an out-of-band trigger to
maintain or wake-up an IP connection as an alternative to maintaining an always-on IP

connection.

[00357] In one embodiment, the connection manager 395 in the proxy server 325 (e.g., the
heartbeat manager 398) can generate and/or transmit heartbeat messages on behalf of connected
devices 350 to maintain a backend connection with a provider 310 for applications running on

devices 350.

[00358] For example, in the distributed proxy system, local cache on the device 350 can
prevent any or all heartbeat messages needed to maintain TCP/IP connections required for
applications from being sent over the cellular, or other, network and instead rely on the proxy
server 325 on the host server 300 to generate and/or send the heartbeat messages to maintain a
connection with the backend (e.g., application server/provider 110 in the example of FIG. 1A).
The proxy server can generate the keep-alive (heartbeat) messages independent of the operations

of the local proxy on the mobile device.

[00359] The repositories 312, 314, and/or 316 can additionally store software, descriptive
data, images, system information, drivers, and/or any other data item utilized by other
components of the host server 300 and/or any other servers for operation. The repositories may
be managed by a database management system (DBMS), for example, which may be but is not
limited to Oracle, DB2, Microsoft Access, Microsoft SQL Server, PostgreSQL, MySQL,
FileMaker, etc.

[00360] The repositories can be implemented via object-oriented technology and/or via text
files and can be managed by a distributed database management system, an object-oriented
database management system (OODBMS) (e.g., ConceptBase, FastDB Main Memory Database
Management System, JDOInstruments, ObjectDB, etc.), an object-relational database
management system (ORDBMS) (e.g., Informix, OpenLink Virtuoso, VMDS, etc.), a file

system, and/or any other convenient or known database management package.

[00361] FIG. 3B depicts a block diagram illustrating a further example of components in the

caching policy manager 355 in the cache system shown in the example of FIG. 3A which is

81

WO 2012/071283 PCT/US2011/061512

capable of caching and adapting caching strategies for application (e.g., mobile application)

behavior and/or network conditions.

[00362] The caching policy manager 355, in one embodiment, can further include a metadata
generator 303, a cache look-up engine 305, an application protocol module 356, a content source
monitoring engine 357 having a poll schedule manager 358, a response analyzer 361, and/or an
updated or new content detector 359. In one embodiment, the poll schedule manager 358 further
includes a host timing simulator 358a, a long poll request detector/manager 358b, a schedule
update engine 358c, and/or a time adjustment engine 358d. The metadata generator 303 and/or
the cache look-up engine 305 can be coupled to the cache 335 (or, server cache) for modification

or addition to cache entries or querying thereof.

[00363] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the
examples of FIG. 1B and FIG. 3A) can monitor a content source for new or changed data via
the monitoring engine 357. The proxy server, as shown, is an entity external to the mobile
device 250 of FIG. 2A-B. The content source (e.g., application server/content provider 110 of
FIG. 1B) can be one that has been identified to the proxy server (e.g., by the local proxy) as
having content that is being locally cached on a mobile device (e.g., mobile device 150 or 250).
The content source can be monitored, for example, by the monitoring engine 357 at a frequency
that is based on polling frequency of the content source at the mobile device. The poll schedule
can be generated, for example, by the local proxy and sent to the proxy server. The poll

frequency can be tracked and/or managed by the poll schedule manager 358.

[00364] For example, the proxy server can poll the host (e.g., content provider/application
server) on behalf of the mobile device and simulate the polling behavior of the client to the host
via the host timing simulator 358a. The polling behavior can be simulated to include
characteristics of a long poll request-response sequences experienced in a persistent connection
with the host (e.g., by the long poll request detector/manager 358b). Note that once a polling
interval/behavior is set, the local proxy 275 on the device-side and/or the proxy server 325 on
the server-side can verify whether application and application server/content host behavior
match or can be represented by this predicted pattern. In general, the local proxy and/or the
proxy server can detect deviations and, when appropriate, re-evaluate and compute, determine,

or estimate another polling interval.

82

WO 2012/071283 PCT/US2011/061512

[00365] In one embodiment, the caching policy manager 355 on the server-side of the
distribute proxy can, in conjunction with or independent of the proxy server 275 on the mobile
device, identify or detect long poll requests. For example, the caching policy manager 355 can
determine a threshold value to be used in comparison with a response delay interval time
(interval time ‘D’ shown in the example timing diagram of FIG. 17A-B) in a request-response
sequence for an application request to identify or detect long poll requests, possible long poll
requests (e.g., requests for a persistent connection with a host with which the client
communicates including, but not limited to, a long-held HT'TP request, a persistent connection
enabling COMET style push, request for HI'TP streaming,etc.), or other requests which can

otherwise be treated as a long poll request.

[00366] For example, the threshold value can be determined by the proxy 325 using response
delay interval times for requests generated by clients/applications across mobile devices which
may be serviced by multiple different cellular or wireless networks. Since the proxy 325 resides
on host 300 is able to communicate with multiple mobile devices via multiple networks, the
caching policy manager 355 has access to application/client information at a global level which

can be used in setting threshold values to categorize and detect long polls.

[00367] By tracking response delay interval times across applications across devices over
different or same networks, the caching policy manager 355 can set one or more threshold
values to be used in comparison with response delay interval times for long poll detection.
Threshold values set by the proxy server 325 can be static or dynamic, and can be associated

with conditions and/or a time-to-live (an expiration time/date in relative or absolute terms).

[00368] In addition, the caching policy manager 355 of the proxy 325 can further determine
the threshold value, in whole or in part, based on network delays of a given wireless network,
networks serviced by a given carrier (service provider), or multiple wireless networks. The
proxy 325 can also determine the threshold value for identification of long poll requests based
on delays of one or more application server/content provider (e.g., 110) to which application

(e.g., mobile application) or mobile client requests are directed.

[00369] The proxy server can detect new or changed data at a monitored content source and
transmits a message to the mobile device notifying it of such a change such that the mobile
device (or the local proxy on the mobile device) can take appropriate action (e.g., to invalidate

the cache elements in the local cache). In some instances, the proxy server (e.g., the caching

83

WO 2012/071283 PCT/US2011/061512

policy manager 355) upon detecting new or changed data can also store the new or changed data
in its cache (e.g., the server cache 135 or 335 of the examples of FIG. 1B and FIG. 3A,
respectively). The new/updated data stored in the server cache 335 can be used in some
instances to satisfy content requests at the mobile device; for example, it can be used after the
proxy server has notified the mobile device of the new/changed content and that the locally

cached content has been invalidated.

[00370] The metadata generator 303, similar to the metadata generator 203 shown in the
example of FIG. 2B, can generate metadata for responses cached for requests at the mobile
device 250. The metadata generator 303 can generate metadata for cache entries stored in the
server cache 335. Similarly, the cache look-up engine 305 can include the same or similar
functions are those described for the cache look-up engine 205 shown in the example of FIG.

2B.

[00371] The response analyzer 361 can perform any or all of the functionalities related to
analyzing responses received for requests generated at the mobile device 250 in the same or
similar fashion to the response analyzer 246d of the local proxy shown in the example of FIG.
2B. Since the proxy server 325 is able to receive responses from the application server/content
source 310 directed to the mobile device 250, the proxy server 325 (e.g., the response analyzer
361) can perform similar response analysis steps to determine cacheability, as described for the
response analyzer of the local proxy. Examples of response analysis procedures are also
described in conjunction with the flow charts shown in the examples of FIG. 11-13. The
responses can be analyzed in addition to or in lieu of the analysis that can be performed at the

local proxy 275 on the mobile device 250.

[00372] Furthermore, the schedule update engine 358c can update the polling interval of a
given application server/content host based on application request interval changes of the
application at the mobile device 250 as described for the schedule update engine in the local
proxy 275. The time adjustment engine 358d can set an initial time at which polls of the
application server/content host is to begin to prevent the serving of out of date content once
again before serving fresh content as described for the schedule update engine in the local proxy
275. Both the schedule updating and the time adjustment algorithms can be performed in
conjunction with or in lieu of the similar processes performed at the local proxy 275 on the

mobile device 250.

84

WO 2012/071283 PCT/US2011/061512

[00373] FIG. 3C depicts a block diagram illustrating another example of components in the
caching policy manager 355 in the proxy server 375 on the server-side of the distributed proxy
system shown in the example of FIG. 3A which is capable of managing and detecting cache

defeating mechanisms and monitoring content sources.

[00374] The caching policy manager 355, in one embodiment, can further include a cache
defeating source manager 352, a content source monitoring engine 357 having a poll schedule
manager 358, and/or an updated or new content detector 359. The cache defeating source

manager 352 can further include an identifier modifier module 353 and/or an identifier pattern

tracking module 354.

[00375] In one embodiment, the proxy server (e.g., the proxy server 125 or 325 of the
examples of FIG. 1B and FIG. 3A) can monitor a content source for new or changed data via
the monitoring engine 357. The content source (e.g., application server/content provider 110 of
FIG. 1B or 310 of FIG. 3A) can be one that has been identified to the proxy server (e.g., by the
local proxy) as having content that is being locally cached on a mobile device (e.g., mobile
device 150 or 250). The content source 310 can be monitored, for example, by the monitoring
engine 357 at a frequency that is based on polling frequency of the content source at the mobile
device. The poll schedule can be generated, for example, by the local proxy and sent to the
proxy server 325. The poll frequency can be tracked and/or managed by the poll schedule

manager 358.

[00376] In one embodiment, the proxy server 325 uses a normalized identifier or modified
identifier in polling the content source 310 to detect new or changed data (responses). The
normalized identifier or modified identifier can also be used by the proxy server 325 in storing
responses on the server cache 335. In general, the normalized or modified identifiers can be
used when cache defeat mechanisms are employed for cacheable content. Cache defeat
mechanisms can be in the form of a changing parameter in an identifier such as a URI or URL
and can include a changing time/data parameter, a randomly varying parameter, or other types

parameters.

[00377] The normalized identifier or modified identifier removes or otherwise replaces the
changing parameter for association with subsequent requests and identification of associated
responses and can also be used to poll the content source. In one embodiment, the modified

identifier is generated by the cache defeating source manager 352 (e.g., the identifier modifier

85

WO 2012/071283 PCT/US2011/061512

module 353) of the caching policy manager 355 on the proxy server 325 (server-side component
of the distributed proxy system). The modified identifier can utilize a substitute parameter
(which is generally static over a period of time) in place of the changing parameter that is used

to defeat cache.

[00378] The cache defeating source manager 352 optionally includes the identifier pattern
tracking module 354 to track, store, and monitor the various modifications of an identifier or
identifiers that address content for one or more content sources (e.g., application server/content
host 110 or 310) to continuously verify that the modified identifiers and/or normalized
identifiers used by the proxy server 325 to poll the content sources work as predicted or intended
(e.g., receive the same responses or responses that are otherwise still relevant compared to the

original, unmodified identifier).

[00379] In the event that the pattern tracking module 354 detects a modification or
normalization of an identifier that causes erratic or unpredictable behavior (e.g., unexpected
responses to be sent) on the content source, the tracking module 354 can log the modification
and instruct the cache defeating source manager 352 to generate another
modification/normalization, or notify the local proxy (e.g., local proxy 275) to generate another
modification/normalization for use in polling the content source. In the alternative or in parallel,
the requests from the given mobile application/client on the mobile device (e.g., mobile device
250) can temporarily be sent across the network to the content source for direct responses to be
provided to the mobile device and/or until a modification of an identifier which works can be

generated.

[00380] In one embodiment, responses are stored as server cache elements in the server
cache when new or changed data is detected for a response that is already stored on a local cache
(e.g., cache 285) of the mobile device (e.g., mobile device 250). Therefore, the mobile device or
local proxy 275 can connect to the proxy server 325 to retrieve the new or changed data for a
response to a request which was previously cached locally in the local cache 285 (now invalid,

out-dated, or otherwise determined to be irrelevant).

[00381] The proxy server 325 can detect new or changed data at a monitored application
server/content host 310 and transmits a message to the mobile device notifying it of such a
change such that the mobile device (or the local proxy on the mobile device) can take

appropriate action (e.g., to invalidate the cache elements in the local cache). In some instances,

86

WO 2012/071283 PCT/US2011/061512

the proxy server (e.g., the caching policy manager 355), upon detecting new or changed data,
can also store the new or changed data in its cache (e.g., the server cache 135 or 335 of the
examples of FIG. 1B and FIG. 3A, respectively). The updated/new data stored in the server
cache can be used, in some instances, to satisfy content requests at the mobile device; for
example, it can be used after the proxy server has notified the mobile device of the new/changed

content and that the locally cached content has been invalidated.

[00382] FIG. 3D depicts a block diagram illustrating examples of additional components in
proxy server 325 shown in the example of FIG. 3A which is further capable of performing
mobile traffic categorization and policy implementation based on application behavior and/or

traffic priority.

[00383] In one embodiment of the proxy server 325, the traffic shaping engine 375 is further
coupled to a traffic analyzer 336 for categorizing mobile traffic for policy definition and
implementation for mobile traffic and transactions directed to one or more mobile devices (e.g.,
mobile device 250 of FIG. 2A-2D) or to an application server/content host (e.g., 110 of FIG.
1A-1B). In general, the proxy server 325 is remote from the mobile devices and remote from the
host server, as shown in the examples of FIG. 1A-1B. The proxy server 325 or the host server
300 can monitor the traffic for multiple mobile devices and is capable of categorizing traffic and

devising traffic policies for different mobile devices.

[00384] In addition, the proxy server 325 or host server 300 can operate with multiple
carriers or network operators and can implement carrier-specific policies relating to
categorization of traffic and implementation of traffic policies for the various categories. For
example, the traffic analyzer 336 of the proxy server 325 or host server 300 can include one or
more of, a prioritization engine 341a, a time criticality detection engine 341b, an application

state categorizer 341c, and/or an application traffic categorizer 341d.

[00385] Each of these engines or modules can track different criterion for what is considered
priority, time critical, background/foreground, or interactive/maintenance based on different
wireless carriers. Different criterion may also exist for different mobile device types (e.g., device
model, manufacturer, operating system, etc.). In some instances, the user of the mobile devices
can adjust the settings or criterion regarding traffic category and the proxy server 325 is able to

track and implement these user adjusted/configured settings.

87

WO 2012/071283 PCT/US2011/061512

[00386] In one embodiment, the traffic analyzer 336 is able to detect, determined, identify,
or infer, the activity state of an application on one or more mobile devices (e.g., mobile device
150 or 250) which traffic has originated from or is directed to, for example, via the application
state categorizer 341c and/or the traffic categorizer 341d. The activity state can be determined
based on whether the application is in a foreground or background state on one or more of the

mobile devices (via the application state categorizer 341c) since the traffic for a foreground

application vs. a background application may be handled differently to optimize network use.

[00387] In the alternate or in combination, the activity state of an application can be
determined by the wirelessly connected mobile devices (e.g, via the application behavior
detectors in the local proxies) and communicated to the proxy server 325. For eample, the
activity state can be determined, detected, identified, or inferred with a level of certainty of
heuristics, based on the backlight status at mobile devices (e.g., by a backlight detector) or other
software agents or hardware sensors on the mobile device, including but not limited to, resistive
sensors, capacitive sensors, ambient light sensors, motion sensors, touch sensors, etc. In general,
if the backlight is on, the traffic can be treated as being or determined to be generated from an
application that is active or in the foreground, or the traffic is interactive. In addition, if the
backlight is on, the traffic can be treated as being or determined to be traffic from user
interaction or user activity, or traffic containing data that the user is expecting within some time

frame.

[00388] The activity state can be determined from assessing, determining, evaluating,
inferring, identifying user activity at the mobile device 250 (e.g., via the user activity module
215) and communicated to the proxy server 325. In one embodiment, the activity state is
determined based on whether the traffic is interactive traffic or maintenance traffic. Interactive
traffic can include transactions from responses and requests generated directly from user
activity/interaction with an application and can include content or data that a user is waiting or
expecting to receive. Maintenance traffic may be used to support the functionality of an
application which is not directly detected by a user. Maintenance traffic can also include actions
or transactions that may take place in response to a user action, but the user is not actively

waiting for or expecting a response.

[00389] The time criticality detection engine 341b can generally determine, identify, infer
the time sensitivity of data contained in traffic sent from the mobile device 250 or to the mobile

device from the host server 300 or proxy server 325, or the application server (e.g., app

88

WO 2012/071283 PCT/US2011/061512

server/content source 110). For example, time sensitive data can include, status updates, stock
information updates, IM presence information, email messages or other messages, actions

generated from mobile gaming applications, webpage requests, location updates, etc.

[00390] Data that is not time sensitive or time critical, by nature of the content or request,
can include requests to delete messages, mark-as-read or edited actions, application-specific
actions such as a add-friend or delete-friend request, certain types of messages, or other
information which does not frequently changing by nature, etc. In some instances when the data
is not time critical, the timing with which to allow the traffic to be sent to a mobile device is
based on when there is additional data that needs to the sent to the same mobile device. For
example, traffic shaping engine 375 can align the traffic with one or more subsequent
transactions to be sent together in a single power-on event of the mobile device radio (e.g, using
the alignment module 378 and/or the batching module 377). The alignment module 378 can also
align polling requests occurring close in time directed to the same host server, since these

request are likely to be responded to with the same data.

[00391] In general, whether new or changed data is sent from a host server to a mobile
device can be determined based on whether an application on the mobile device to which the
new or changed data is relevant, is running in a foreground (e.g., by the application state
categorizer 341c), or the priority or time criticality of the new or changed data. The proxy server
325 can send the new or changed data to the mobile device if the application is in the foreground
on the mobile device, or if the application is in the foreground and in an active state interacting
with a user on the mobile device, and/or whether a user is waiting for a response that would be
provided in the new or changed data. The proxy server 325 (or traffic shaping engine 375) can

send the new or changed data that is of a high priority or is time critical.

[00392] Similarly, the proxy server 325 (or the traffic shaping engine 375) can suppressing
the sending of the new or changed data if the application is in the background on the mobile
device. The proxy server 325 can also suppress the sending of the new or changed data if the
user is not waiting for the response provided in the new or changed data; wherein the
suppressing is performed by a proxy server coupled to the host server and able to wirelessly

connect to the mobile device.

89

WO 2012/071283 PCT/US2011/061512

[00393] In general, if data, including new or change data is of a low priority or is not time
critical, the proxy server can waiting to transfer the data until after a time period, or until there is

additional data to be sent (e.g. via the alignment module 378 and/or the batching module 377).

[00394] FIG. 3E depicts a block diagram illustrating examples of additional components in
the traffic shaping engine 375 of the example of FIG. 3A which is further capable of aligning
data transfer to a mobile or broadband device, or other recipient, to optimize connections

established for transmission in a wireless network or broadband network.

[00395] In one embodiment of the proxy server 325, the traffic shaping engine 375 further
includes a notification engine 379 and the alignment module 378 includes an adjusted poll

tracker 378a and the batching module 377 further includes a connection trigger 377a.

[00396] In one embodiment, the proxy server 325 is able to poll distinct hosts servicing
various applications (e.g., first and second services) on a given mobile device at a schedule. The
polling schedule can be set by the local proxy (e.g., proxy 275 of FIG. 2A-2E) and can include
assigned polling intervals for applications on a mobile device (e.g., device 250) which may have
been adjusted. The polling schedules can be tracked by the adjusted poll tracker 378a in the
alignment module 378 of the traffic shaping engine 375 in the proxy server 325, for example.
The adjusted polling intervals of one service/one application can be determined based on the
polling interval of another service on the mobile device, such that data received at the remote
proxy 325 can be provided to the mobile device in batch, for example, by the batching module

377.

[00397] The polling schedule can also include an initial start time (tO) to start polling on
behalf of multiple applications on a given mobile device. The initial start time (e.g., a mutual
starting point in time) of a first poll of the distinct hosts servicing the first and second services
can be selected, for example, by the local proxy 275 (e.g., proxy 275 of FIG. 2A-2E), and in
some instances, by the proxy server 325. When determined by the local proxy, the local proxy
communicates the mutual starting point in time for polls to the proxy server 325. In one
embodiment, the mutual starting point in time is set to be in the future to compensate for

communication delay.

[00398] In one embodiment, if a given mobile client/mobile application is not on or active,
or if a given mobile device 250 is not connected to the wireless network, the connection trigger

377a can send a trigger (e.g., out of band) trigger to the mobile device or the local proxy on the

90

WO 2012/071283 PCT/US2011/061512

mobile device to request that the radio be powered and/or to activate one or more relevant
applications. For example, the batching module 377 may have batched various content or data to
be sent for multiple applications on a given mobile device and if the mobile clients/applications
are not on or active, the connection trigger 377a can send a trigger requesting the application to
activate. Alternatively, the notification engine 379 can send the mobile device 250 an indication
that there is data ready to be sent, requesting the mobile device 250 to power on the radio if

currently in off-mode.

[00399] Note that the proxy server 325 monitors multiple mobile devices and tracks
application characteristics and user behavior/characteristics across multiple devices, users, and
networks. Thus, the above described features pertaining to adjusted poll interval trackers,
although drawn to an example directed to multiple applications on a given device, note that the
same is tracked for multiple devices, having installed thereon its own other set of applications,
for which adjusted poll intervals or polling schedules are computed based on applications on
each mobile device by, for example the local proxy residing there on (e.g., the components
illustrated in FIG. 2E of a local proxy 275 which may be installed on one or more of the

multiple mobile devices serviced by the proxy server 325).

[00400] Note that since the proxy server 325 manages the traffic to/from multiple mobile
devices, in one network, across networks, in one geographical locale, across multiple
geographical locales, for one network operator, or across multiple network operators, the proxy
server 325 can align traffic and batch transfer of data based on overview or aggregate data of
traffic conditions or network conditions. The proxy server 325 can prioritize data transfer to
mobile devices, for example, when network congestion is detected. For example, the proxy
server 325 can transfer data to mobile devices where the type or level of subscription of the
device user, tiered or staggered based on highest priority of content to be transferred to be the
mobile devices (e.g., a batch of data may be transferred first to mobile device A, compared to

mobile device B, when the highest priority data for device A is of higher priority than device B).

[00401] Note that there may be one proxy server 325 for a geographical locale, or for a
specific network operator, for a type of web service, or any combination of the above, for
example. Based on the different servicing entities, the proxy server 325 can aggregate different
types of information pertaining to network traffic, operator settings, application
preferences/requirements, user preferences, subscription-related parameters, various

combination of the above can be used by the proxy 325 in optimizing connections need to be

91

WO 2012/071283 PCT/US2011/061512

established by receiving mobile devices. Multiple proxy servers 325 servicing different
networks in a geographical locale, different operators can share traffic, subscription, user, or
application level information there between, to further facilitate network resource utilization,
traffic management, and in some instances to facilitate alignment of data transfer to mobile

devices.

[00402] FIG. 4 depicts a diagram showing how data requests from a mobile device 450 to an
application server/content provider 495 in a wireless network can be coordinated by a distributed
proxy system 460 in a manner such that network and battery resources are conserved through

using content caching and monitoring performed by the distributed proxy system 460.

[00403] In satisfying application or client requests on a mobile device 450 without the
distributed proxy system 460, the mobile device 450, or the software widget executing on the
device 450, performs a data request 402 (e.g., an HI'TP GET, POST, or other request) directly to
the application server 495 and receives a response 404 directly from the server/provider 495. If
the data has been updated, the widget 455 on the mobile device 450 can refreshes itself to reflect
the update and waits for small period of time and initiates another data request to the

server/provider 495.

[00404] In one embodiment, the requesting client or software widget 455 on the device 450
can utilize the distributed proxy system 460 in handling the data request made to server/provider
495. In general, the distributed proxy system 460 can include a local proxy 465 (which is
typically considered a client-side component of the system 460 and can reside on the mobile
device 450), a caching proxy 475 (considered a server-side component 470 of the system 460
and can reside on the host server 485 or be wholly or partially external to the host server 485),
and a host server 485. The local proxy 465 can be connected to the caching proxy 475 and host

server 485 via any network or combination of networks.

[00405] When the distributed proxy system 460 is used for data/application requests, the
widget 455 can perform the data request 406 via the local proxy 465. The local proxy 465, can
intercept the requests made by device applications, and can identify the connection type of the
request (e.g., an HT'TP get request or other types of requests). The local proxy 465 can then
query the local cache for any previous information about the request (e.g., to determine whether
a locally stored response is available and/or still valid). If a locally stored response is not

available or if there is an invalid response stored, the local proxy 465 can update or store

92

WO 2012/071283 PCT/US2011/061512

information about the request, the time it was made, and any additional data, in the local cache.

The information can be updated for use in potentially satisfying subsequent requests.

[00406] The local proxy 465 can then send the request to the host server 485 and the host
server 485 can perform the request 406 and returns the results in response 408. The local proxy
465 can store the result and, in addition, information about the result and returns the result to the

requesting widget 455.

[00407] In one embodiment, if the same request has occurred multiple times (within a certain
time period) and it has often yielded same results, the local proxy 465 can notify 410 the server
485 that the request should be monitored (e.g., steps 412 and 414) for result changes prior to

returning a result to the local proxy 465 or requesting widget 455.

[00408] In one embodiment, if a request is marked for monitoring, the local proxy 465 can
now store the results into the local cache. Now, when the data request 416, for which a locally
response is available, is made by the widget 455 and intercepted at the local proxy 465, the local
proxy 465 can return the response 418 from the local cache without needing to establish a

connection communication over the wireless network.

[00409] In addition, the server proxy performs the requests marked for monitoring 420 to
determine whether the response 422 for the given request has changed. In general, the host
server 485 can perform this monitoring independently of the widget 455 or local proxy 465
operations. Whenever an unexpected response 422 is received for a request, the server 485 can
notify the local proxy 465 that the response has changed (e.g., the invalidate notification in step
424) and that the locally stored response on the client should be erased or replaced with a new

response.

[00410] In this case, a subsequent data request 426 by the widget 455 from the device 450
results in the data being returned from host server 485 (e.g., via the caching proxy 475), and in
step 428, the request is satisfied from the caching proxy 475. Thus, through utilizing the
distributed proxy system 460, the wireless (cellular) network is intelligently used when the
content/data for the widget or software application 455 on the mobile device 450 has actually
changed. As such, the traffic needed to check for the changes to application data is not
performed over the wireless (cellular) network. This reduces the amount of generated network

traffic and shortens the total time and the number of times the radio module is powered up on

93

WO 2012/071283 PCT/US2011/061512

the mobile device 450, thus reducing battery consumption and, in addition, frees up network

bandwidth.

[00411] FIG. 5 depicts a diagram showing one example process for implementing a hybrid
IP and SMS power saving mode on a mobile device 550 using a distributed proxy and cache

system (e.g., such as the distributed system shown in the example of FIG. 1B).

[00412] Instep 502, the local proxy (e.g., proxy 175 in the example of FIG. 1B) monitors
the device for user activity. When the user is determined to be active, server push is active. In
this way, always-on-push IP connection can be maintained and, if available, SMS triggers can be

immediately sent to the mobile device 550 as it becomes available.

[00413] In process 504, after the user has been detected to be inactive or idle over a period of
time (e.g., the example is shown for a period of inactivity of 20 minutes), the local proxy can
adjust the device to go into the power saving mode. In the power saving mode, when the local
proxy receives a message or a correspondence from a remote proxy (e.g., the server proxy 135 in
the example of FIG. 1B) on the server-side of the distributed proxy and cache system, the local
proxy can respond with a call indicating that the device 550 is currently in power save mode
(e.g., via a power save remote procedure call). In some instances, the local proxy can take the
opportunity to notify multiple accounts or providers (e.g., S10A, and 510B) of the current power

save status (e.g., timed to use the same radio power-on event).

[00414] In one embodiment, the response from the local proxy can include a time (e.g., the
power save period) indicating to the remote proxy (e.g., server proxy 135) and/or the application
server/providers 510A/B when the device 550 is next able to receive changes or additional data.

A default power savings period can be set by the local proxy.

[00415] In one embodiment, if new, changed, or different data or event is received before the
end of any one power saving period, then the wait period communicated to the servers 5S10A/B
can be the existing period, rather than an incremented time period. In response, the remote
proxy server, upon receipt of power save notification from the device 550, can stop sending
changes (data or SMSs) for the period of time requested (the wait period). At the end of the wait
period, any notifications received can be acted upon; for example, changes sent to the device
550 as a single batched event or as individual events. If no notifications come in, then push can

be resumed with the data or an SMS being sent to the device 550. The proxy server can time the

94

WO 2012/071283 PCT/US2011/061512

poll or data collect event to optimize batch sending content to the mobile device 550 to increase

the chance that the client will receive data at the next radio power on event.

[00416] Note that the wait period can be updated in operation in real time to accommodate
operating conditions. For example, the local proxy can adjust the wait period on the fly to

accommodate the different delays that occur in the system.

[00417] Detection of user activity in step 508 at the device 550 causes the power save mode
to be exited. When the device 550 exits power save mode, it can begin to receive any changes

associated with any pending notifications. If a power saving period has expired, then no power
save cancel call may be needed as the proxy server will already be in traditional push operation

mode.

[00418] In one embodiment, power save mode is not applied when the device 550 is plugged
into a charger. This setting can be reconfigured or adjusted by the user or another party. In
general, the power save mode can be turned on and off, for example, by the user via a user
interface on device 550. In general, timing of power events to receive data can be synchronized

with any power save calls to optimize radio use.

[00419] FIG. 6 depicts another flow diagram illustrating an example process for distributed
content caching between a mobile device and a proxy server and the distributed management of

content caching.

[00420] As shown in the distributed system interaction diagram in the example of FIG. 4,
the disclosed technology is a distributed caching model with various aspects of caching tasks
split between the client-side/mobile device side (e.g., mobile device 450 in the example of FIG.
4) and the server side (e.g., server side 470 including the host server 485 and/or the optional

caching proxy 475).

[00421] In general the device-side responsibilities can include deciding whether a response
to a particular request can be and/or should be cached. The device-side of the proxy can make
this decision based on information (e.g., timing characteristics, detected pattern, detected pattern
with heuristics, indication of predictability or repeatability) collected from/during both request
and response and cache it (e.g., storing it in a local cache on the mobile device). The device side
can also notify the server-side in the distributed cache system of the local cache event and notify

it monitor the content source (e.g., application server/content provider 110 of FIG. 1A-B).

95

WO 2012/071283 PCT/US2011/061512

[00422] The device side can further instruct the server side of the distributed proxy to
periodically validate the cache response (e.g., by way of polling, or sending polling requests to
the content source). The device side can further decide whether a response to a particular cache
request should be returned from the local cache (e.g., whether a cache hit is detected). The
decision can be made by the device side (e.g., the local proxy on the device) using information

collected from/during request and/or responses received from the content source.

[00423] In general, the server-side responsibilities can include validating cached responses
for relevancy (e.g., determine whether a cached response is still valid or relevant to its associated
request). The server-side can send the mobile device an invalidation request to notify the device
side when a cached response is detected to be no longer valid or no longer relevant (e.g., the
server invalidates a given content source). The device side then can remove the response from

the local cache.

[00424] The diagram of FIG. 6 illustrates caching logic processes performed for each
detected or intercepted request (e.g., HI'TP request) detected at a mobile device (e.g., client-side
of the distributed proxy). In step 602, the client-side of the proxy (e.g., local proxy 275 shown
in FIG. 2A-B or mobile device 450 of FIG. 4) receives a request (from an application (e.g.,
mobile application) or mobile client). In step 604, URL is normalized and in step 606 the client-
side checks to determine if the request is cacheable. If the request is determined to be not
cacheable in step 612, the request is sent to the source (application server/content provider) in
step 608 and the response is received 610 and delivered to the requesting application 622,

similar to a request-response sequence without interception by the client side proxy.

[00425] If the request is determined to be cacheable, in step 612, the client-side looks up the
cache to determine whether a cache entry exists for the current request. If so, in step 624, the
client-side can determine whether the entry is valid and if so, the client side can check the
request to see if includes a validator (e.g., a modified header or an entity tag) in step 628. For
example, the concept of validation is eluded to in section 13.3 of RFC 2616 which describes in
possible types of headers (e.g., eTAG, Modified_Since, must_revlaidate, pragma no_cache) and
forms a validating response 632 if so to be delivered to the requesting application in step 622. If
the request does not include a validator as determined by step 628, a response is formed from the
local cache in step 630 and delivered to the requesting application in step 622. This validation

step can be used for content that would otherwise normally be considered un-cacheable.

96

WO 2012/071283 PCT/US2011/061512

[00426] If, instead, in step 624, the cache entry is found but determined to be no longer valid
or invalid, the client side of the proxy sends the request 616 to the content source (application
server/content host) and receives a response directly fro the source in step 618. Similarly, if in
step 612, a cache entry was not found during the look up, the request is also sent in step 616.
Once the response is received, the client side checks the response to determine if it is cacheable
in step 626. If so, the response is cached in step 620. The client then sends another poll in step

614 and then delivers the response to the requesting application in step 622.

[00427] FIG. 7 depicts an interaction diagram showing cache management by a distributed
proxy system 760 of content delivered to an application (e.g., mobile application) 755 over a

long-held request while ensuring freshness of content delivered.

[00428] The diagram illustrates an example process for how cached responses received in
long-held requests (e.g., long-held HT'TP request, long polls, or HI'TP streaming) are provided
to the requesting application 755 and management of expired/invalid/non-relevant cache entries.
A long-held request can be any request for a persistent connection that is held between the
device and the server until a response is available at the server to be sent (or pushed) to the
device. The long-held request or long-held HT'TP request can allow the device/server
interaction to simulate content push over the persistent connection (e.g., COMET style push), for

example, over a persisted connection over HT'TP.

[00429] In step 702, the application 755 sends a request which is detected and intercepted by
the local proxy 765 on the mobile device 750 on the client/device-side of the proxy system 760.
Note that the request-response sequence 702, 704, 706, and 708 shown occurs after a long poll
hunting period which may sometimes be performed by the application (e.g., mobile application)
sending long poll requests. The long poll hunting period may or may not be performed, but
when performed, it allows the requesting application 755 to find the longest amount of time it
can hold a request with the end server/provider 795 open before the connection times out (e.g.,

due to network reason, such as socket closures).

[00430] A timing diagram showing characteristics request-response timing sequences is
further illustrated in the example of FIG. 8. In general, the device proxy 750 or local proxy 765
is able to detect request-response pattern sequences initiated from the application 755 while long

poll hunting and can wait until the hunting period has settled prior to caching responses from

97

WO 2012/071283 PCT/US2011/061512

long poll request. The request-response steps shown between 702 and 710 occur after any long

poll hunting request/response pairs if it was performed by the requesting application 755.

[00431] The request is sent to the server/provider 795 in step 704 and the request times out
or closes in 706 when the server 795 sends a response in step 708 back to the application 755 on
the device side 750. The connection times out when the server 795 sends a response in step 708
due to the nature of the long-held request send in step 702. The response when sent is also
intercepted by the local proxy 765 on the mobile side 750 of the distributed proxy 760 for local

caching.

[00432] Once cached, the local proxy 765 notifies the server-side 770 of the proxy of the
system 760 and requests that the server-side 770 proxy (e.g., the host server 785) begin to
monitor the server/provider 795 in step 712. In step 714, the server-side proxy 770 now begins
to send requests to the server/provider in order to monitor responses received 716 from the

server/provider 795.

[00433] The next time the application 755 sends the request 718, the local proxy 765
determines that a local cache entry now exists and waits for a period of time 720 (e.g., a long
poll interval) before providing the cached response back to the application 755 in step 722. The
local proxy 765 allows the period of time to elapse to simulate the actual behavior of the
server/provider 795 with the application 755. Since in an actual long poll request which goes
over the network, a response is not received until after some delay, characteristic of the given

long poll.

[00434] Starting at step 724, another request is sent from the application (e.g., mobile
application) 755 when the response from the server/provider 795 in step 726 is validated. The
local proxy 765 waits for an interval in step 728 before replying with the cache entry in step 744.
However, in the interim, the server-side proxy 770 in monitoring responses sends a request in
step 730 to the server/provider 795 and detects content change in the response received 732 from
the server/provider 795 in step 734. The server-side 770 proxy thus caches the changed/updated
response data at the server-side proxy in step 736 and notifies the local proxy 765 to invalidate

the associated cache entry 738.

[00435] The local proxy 765, in response to receiving an invalidation notice, sets the
associated entry to be invalidated as being ‘transient’ in step 740, or otherwise annotated or

indicated to be marked for deletion or removal. At this point, the local proxy 765 replies to the

98

WO 2012/071283 PCT/US2011/061512

application 755 again with the transient cache in step 744. The local proxy 765 also connects to
the server-side proxy 770 to obtain the new cached data at the server-side 770 in step 742 and

receives a response (the new/updated response) at step 746.

[00436] The next time the same request is sent from the application (e.g., mobile application)
in step 748, the local proxy 765 now can reply with the response received from the server cache
in step 750. Thus, even in the event when a cache entry has been invalidated, the application
(e.g., mobile application) request need not be sent over the network (e.g., wireless or cellular
network) to receive a current/relevant response. The subsequent request 752 is sent to the local
proxy 765 for processing (e.g., forwarded to the application server/content provider 795) in step

754.

[00437] FIG. 8 depicts a timing diagram showing hunting mode behavior 805 in a long poll

request and a timing diagram showing timing characteristics when the long poll has settled §10.

[00438] In hunting mode 805, the request times are held for an increasing amount of time
(180, 360.... 1024 seconds) until a request times out without receiving a response from the
server (as shown in 802, 804, 806, and 808). After this time is detected, the request times are
now held at some time less than the time it took for a time out (e.g., now 500 seconds) and used
to send future long poll requests. The diagram 810 shows the timing characteristics of
request/response pairs after the long poll hunting period has settled. These characteristics can be
detected and identified in operation by the local proxy and/or the remote proxy for handling
during caching. As previously described, the distributed caching system can either begin
caching (optionally) while the application is still in long poll hunting mode or begin caching
after the hunting period 805 has completed and the application is in settled mode as in 810. In
general, if a decrease in time interval is detected, the response is not cached until the local or

remote proxy can verify that a subsequent received response meets cacheability conditions.

[00439] In general, long poll hunting may or may not be performed by mobile apps or clients
but the distributed system includes mechanisms to detect long poll hunting activity for
application long polls and can simply ignore the long poll hunting requests and begin caching
after the hunting period has elapsed and the long polls have settled at some constant or near
constant interval value or apply logic to begin caching during the hunting period, thus enabling

accelerated caching to enhance performance and improve user experience.

99

WO 2012/071283 PCT/US2011/061512

[00440] In process 802, a decision is made to begin to cache content received from the host
server. The decision can be made through the example processes shown in the example of FIG.
9 which depicts a flow chart illustrating example processes for determining whether to cache
content from a particular host server (content source) by determining the frequency of polling
requests made to the host server in step 802 and/or by determining the frequency of content
change at the host server in step 804 The two steps can be used in conjunction or independently

of one another in deciding whether content from the host server is to be cached, in step 806

[00441] In process 804, content from a content server is stored as cached elements in a local
cache on the mobile device. In process 806, a polling request to contact the content server is
received by the distributed caching system. In process 808, if it is determined that a radio of the
mobile device is not activated and in process 810, the cached elements are retrieved from the
local cache to respond to the polling request without activating the radio even when a cache

defeating mechanism is employed.

[00442] The cache defeat mechanism, or identifiers used intended to defeat cache addressed
by such identifiers, can be employed by the content server (the server to which the polling
requests using the identifiers are directed). In general, the cache defeating mechanism or
identifiers intended for cache defeat can be detected from a syntax or pattern of a resource

identifier included in the polling request identifying the content server.

[00443] For example, the resource identifier can include a URI or URL and the URI/URL is
normalized by performing one or more of the following steps: converting the URI scheme and
host to lower-case, capitalizing letters in percent-encoded escape sequences, removing a default
port, or removing duplicate slashes. In addition, the identifier normalization process for an
identifier employing cache defeat removes any portion of the identifier which is intended to
defeat cache (e.g., typically a changing parameter between requests detectable by the format,

pattern, or syntax of the parameter).

[00444] Note that the detection of cache defeat mechanisms or identifiers intended to defeat
cache need not be determined with 100% certainty. Identifiers with certain characteristics (e.g.,
having parameters matching specific formats) which can in addition to be determined to be
employing cache defeat may simply be treated as cache defeating or intended for defeating
cache for the purposes of caching content over a wireless network; for example these may be

managed in a distributed fashion.

100

WO 2012/071283 PCT/US2011/061512

[00445] FIG. 9 depicts an interaction diagram showing how application (e.g., mobile
application) 955 polls having data requests from a mobile device to an application server/content
provider 995 over a wireless network can be can be cached on the local proxy 965 and managed
by the distributed caching system (including local proxy 965 and the host server 985 (having

server cache 935 or caching proxy server 975)).

[00446] In one example, when the mobile application/widget 955 polls an application
server/provider 932, the poll can locally be intercepted 934 on the mobile device by local proxy
965. 'The local proxy 965 can detect that the cached content is available for the polled content in
the request and can thus retrieve a response from the local cache to satisfy the intercepted poll
936 without requiring use of wireless network bandwidth or other wireless network resources.
The mobile application/widget 955 can subsequently receive a response to the poll from a cache

entry 938.

[00447] In another example, the mobile application widget 955 polls the application
server/provider 940. The poll is intercepted 942 by the local proxy 965 and detects that cache
content is unavailable in the local cache and decides to set up the polled source for caching 944.
To satisfy the request, the poll is forwarded to the content source 946. The application
server/provider 995 receives the poll request from the application and provides a response to
satisfy the current request 948. In 950, the application (e.g., mobile application)/widget 955

receives the response from the application server/provider to satisfy the request.

[00448] In conjunction, in order to set up content caching, the local proxy 965 tracks the
polling frequency of the application and can set up a polling schedule to be sent to the host
server 952. The local proxy sends the cache set up to the host server 954. The host server 985
can use the cache set up which includes, for example, an identification of the application
server/provider to be polled and optionally a polling schedule 956. The host server 985 can now
poll the application server/provider 995 to monitor responses to the request 958 on behalf of the
mobile device. The application server receives the poll from the host server and responds 960).
The host server 985 determines that the same response has been received and polls the
application server 995 according to the specified polling schedule 962. The application

server/content provider 995 receives the poll and responds accordingly 964.

[00449] The host server 985 detects changed or new responses and notifies the local proxy

965. The host server 985 can additional store the changed or new response in the server cache

101

WO 2012/071283 PCT/US2011/061512

or caching proxy 968. The local proxy 965 receives notification from the host server 985 that
new or changed data is now available and can invalidate the affected cache entries 970. The
next time the application (e.g., mobile application)/widget 955 generates the same request for the
same server/content provider 972, the local proxy determines that no valid cache entry is
available and instead retrieves a response from the server cache 974, for example, through an
HTTP connection. The host server 985 receives the request for the new response and sends the
response back 976 to the local proxy 965. The request is thus satisfied from the server cache or
caching proxy 978 without the need for the mobile device to utilize its radio or to consume

mobile network bandwidth thus conserving network resources.

[00450] Alternatively, when the application (e.g., mobile application) generates the same
request in step 980, the local proxy 965, in response to determining that no valid cache entry is
available, forwards the poll to the application server/provider in step 982 over the mobile
network. The application server/provider 995 receives the poll and sends the response back to
the mobile device in step 984 over the mobile network. The request is thus satisfied from the

server/provider using the mobile network in step 986.

[00451] FIG. 10 depicts an interaction diagram showing how application 1055 polls for
content from an application server/content provider 1095 which employs cache-defeating
mechanisms in content identifiers (e.g., identifiers intended to defeat caching) over a wireless

network can still be detected and locally cached.

[00452] In one example, when the application (e.g., mobile application)/widget 1055 polls
an application server/provider in step 1032, the poll can locally be intercepted in step 1034 on
the mobile device by local proxy 1065. In step 1034, the local proxy 1065 on the mobile device
may also determine (with some level of certainty and heuristics) that a cache defeating

mechanism is employed or may be employed by the server provider.

[00453] The local proxy 1065 can detect that the cached content is available for the polled
content in the request and can thus retrieve a response from the local cache to satisfy the
intercepted poll 1036 without requiring use of wireless network bandwidth or other wireless
network resources. The application (e.g., mobile application)/widget 1055 can subsequently
receive a response to the poll from a cache entry in step 1038 (e.g., a locally stored cache entry

on the mobile device).

102

WO 2012/071283 PCT/US2011/061512

[00454] In another example, the application (e.g., mobile application) widget 1055 polls the
application server/provider 1095 in step 1040. The poll is intercepted in step 1042 by the local
proxy 1065 which determines that a cache defeat mechanism is employed by the server/provider
1095. The local proxy 1065 also detects that cached content is unavailable in the local cache for
this request and decides to setup the polled content source for caching in step 1044. The local
proxy 1065 can then extract a pattern (e.g., a format or syntax) of an identifier of the request and
track the polling frequency of the application to setup a polling schedule of the host server 1085
in step 1046.

[00455] To satisfy the request, the poll request is forwarded to the content provider 1095 in
step 1048. The application server/provider 1095 receives the poll request from the application
and provides a response to satisfy the current request in step 1050. In step 1052, the application
(e.g., mobile application)/widget 1055 receives the response from the application server/provider

1095 to satisfy the request.

[00456] In conjunction, in order to setup content caching, the local proxy 1065 caches the
response and stores a normalized version of the identifier (or a hash value of the normalized
identifier) in association with the received response for future identification and retrieval in step
1054. The local proxy sends the cache setup to the host server 1085 in step 1056. The cache
setup includes, for example, the identifier and/or a normalized version of the identifier. In some
instances, a modified identifier, different from the normalized identifier, is sent to the host server

1085.

[00457] The host server 1085 can use the cache setup, which includes, for example, an
identification of the application server/provider to be polled and optionally a polling schedule in
step 1058. The host server 1085 can now poll the application server/provider 1095 to monitor
responses to the request in step 1060 on behalf of the mobile device. The application server
1095 receives the poll from the host server 1085 responds in step 1062. The host server 1085
determines that the same response has been received and polls the application server 1095, for
example, according to the specified polling schedule and using the normalized or modified
identifier in step 1064. The application server/content provider 1095 receives the poll and

responds accordingly in step 1066.

[00458] This time, the host server 1085 detects changed or new responses and notifies the

local proxy 1065 in step 1068. The host server 1085 can additionally store the changed or new

103

WO 2012/071283 PCT/US2011/061512

response in the server cache 1035 or caching proxy 1075 in step 1070. The local proxy 1065
receives notification from the host server 1085 that new or changed data is now available and
can invalidate the affected cache entries in step 1072. The next time the application (e.g.,
mobile application)/widget generates the same request for the same server/content provider 1095
in step 1074, the local proxy 1065 determines that no valid cache entry is available and instead
retrieves a response from the server cache in step 1076, for example, through an HT'TP
connection. The host server 1085 receives the request for the new response and sends the
response back to the local proxy 1065 in step 1078. The request is thus satisfied from the server
cache or caching proxy in step 1080 without the need for the mobile device to utilize its radio or

to consume mobile network bandwidth thus conserving network resources.

[00459] Alternatively, when the application (e.g., mobile application) 1055 generates the
same request, the local proxy 1065, in response to determining that no valid cache entry is
available in step 1084, forwards the poll to the application server provider 1095 in step 1082
over the mobile network. The application server/provider 1095 receives the poll and sends the
response back to the mobile device in step 1086 over the mobile network. The request is thus

satisfied from the server/provider using the mobile network 1086 in step 1088.

[00460] FIG. 11 depicts a flow chart illustrating an example process for collecting
information about a request and the associated response to identify cacheability and caching the

response.

[00461] In process 1102, information about a request and information about the response
received for the request is collected. In processes 1104 and 1106, information about the request
initiated at the mobile device and information about the response received for the request are
used in aggregate or independently to determine cacheability at step 1108. The details of the
steps for using request and response information for assessing cacheability are illustrated at flow

A as further described in the example of FIG. 12.

[00462] In step 1108, if based on flow A it is determined that the response is not cacheable,
then the response is not cached in step 1110, and the flow can optionally restart at 1102 to

collect information about a request or response to again assess cacheability.

[00463] In step 1108, if it is determined from flow A that the response is cacheable, then in
1112 the response can be stored in the cache as a cache entry including metadata having

additional information regarding caching of the response. The cached entry, in addition to the

104

WO 2012/071283 PCT/US2011/061512

response, includes metadata having additional information regarding caching of the response.
The metadata can include timing data including, for example, access time of the cache entry or

creation time of the cache entry.

[00464] After the response is stored in the cache, a parallel process can occur to determine
whether the response stored in the cache needs to be updated in process 1120. If so, the
response stored in the cache of the mobile device is invalided or removed from the cache of the
mobile device, in process 1122. For example, relevance or validity of the response can be
verified periodically by polling a host server to which the request is directed on behalf of the
mobile device. The host server can be polled at a rate determined at the mobile device using
request information collected for the request for which the response is cached. The rate is
determined from averages of time intervals between previous requests generated by the same

client which generated the request.

[00465] The verifying can be performed by an entity that is physically distinct from the
mobile device. In one embodiment, the entity is a proxy server coupled to the mobile device and
able to communicate wirelessly with the mobile device and the proxy server polls a host server
to which the request is directed at the rate determined at the mobile device based on timing

intervals between previous requests generated by the same client which generated the request.

[00466] In process 1114, a subsequent request for the same client or application is detected.
In process 1116, cache look-up in the local cache is performed to identify the cache entry to be
used in responding to the subsequent request. In one embodiment, the metadata is used to
determine whether the response stored as the cached entry is used to satisfy the subsequent
response. In process 1118, the response can be served from the cache to satisfy a subsequent
request. 'The response can be served in response to identifying a matching cache entry for the

subsequent request determined at least in part using the metadata.

[00467] FIG. 12 depicts a flow chart illustrating an example process for a decision flow to

determine whether a response to a request can be cached.

[00468] Process 1202 determines if the request is directed to a blacklisted destination. If so,
the response is not cached, in step 1285. If a blacklisted destination is detected, or if the request
itself is associated with a blacklisted application, the remainder of the analysis shown in the
figure may not be performed. The process can continue to steps 1204 and 1206 if the request

and its destination are not blacklisted.

105

WO 2012/071283 PCT/US2011/061512

[00469] In process 1204, request characteristics information associated with the request is
analyzed. In analyzing the request, in process 1208, the request method is identified and in step
1214, it is determined whether the response can be cached based on the request method. If an
uncacheable request is detected, the request is not cached and the process may terminate at
process 1285. If the request method is determined to be cacheable, or not uncacheable, then the
response can be identified as cacheable or potentially cacheable (e.g., cacheable but subject to

the other tests and analysis shown in the figure) at step 1295.

[00470] Inprocess 1210, the size of the request is determined. In process 1216, it is
determined whether the request size exceeds a cacheable size. If so, the response is not cached
and the analysis may terminate here at process 1285. If the request size does not exceed a
cacheable size in step 1216, then the response can be identified as cacheable or potentially
cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at step

1295.

[00471] Instep 1212, the periodicity information between the request and other requests
generated by the same client is determined. In step 1218, it is determined whether periodicity
has been identified. If not, the response is not cached and the analysis may terminate here at
process 1285. If so, then the response can be identified as cacheable or potentially cacheable

(e.g., cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

[00472] Inprocess 1206, the request characteristics information associated with the response

received for the request is analyzed.

[00473] In process 1220, the status code is identified and determined whether the status code
indicates a cacheable response status code in process 1228. If an uncacheable status code is
detected, the request is not cached and the process may terminate at process 1285. If the
response status code indicates cacheability, or not uncacheable, then the response can be
identified as cacheable or potentially cacheable (e.g., cacheable but subject to the other tests and

analysis shown in the figure) at step 1295.

[00474] In process 1222, the size of the response is determined. In process 1230, it is
determined whether the response size exceeds a cacheable size. If so, the response is not cached
and the analysis may terminate here at process 1285. If the response size does not exceed a

cacheable size in step 1230, then the response can be identified as cacheable or potentially

106

WO 2012/071283 PCT/US2011/061512

cacheable (e.g., cacheable but subject to the other tests and analysis shown in the figure) at step

1295.

[00475] In process 1224, the response body is analyzed. In process 1232, it is determined
whether the response contains dynamic content or highly dynamic content. Dynamic content
includes data that changes with a high frequency and/or has a short time to live or short time of
relevance due to the inherence nature of the data (e.g., stock quotes, sports scores of fast pace
sporting events, etc.). If so, the response is not cached and the analysis may terminate here at
process 1285. If not, then the response can be identified as cacheable or potentially cacheable

(e.g., cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

[00476] Process 1226 determines whether transfer encoding or chunked transfer encoding is
used in the response. If so, the response is not cached and the analysis may terminate here at
process 1285. If not, then the response can be identified as cacheable or potentially cacheable

(e.g., cacheable but subject to the other tests and analysis shown in the figure) at step 1295.

[00477] Not all of the tests described above need to be performed to determined whether a
response is cached. Additional tests not shown may also be performed. Note that any of the
tests 1208, 1210, 1212, 1220, 1222, 1224, and 1226 can be performed, singly or in any
combination to determine cacheability. In some instances, all of the above tests are performed.
In some instances, all tests performed (any number of the above tests that are actually
performed) need to confirm cacheability for the response to be determined to be cacheable. In
other words, in some cases, if any one of the above tests indicate non-cacheability, the response
is not cached, regardless of the results of the other tests. In other cases, different criteria can be
used to determine which tests or how many tests need to pass for the system to decide to cache a

given response, based on the combination of request characteristics and response characteristics.

[00478] FIG. 13 depicts a flow chart illustrating an example process for determining

potential for cacheability based on request periodicity and/or response repeatability.

[00479] Inprocess 1302, requests generated by the client are tracked to detect periodicity of
the requests. In process 1306, it is determined whether there are predictable patterns in the
timing of the requests. If so, the response content may be cached in process 1395. If not, in
process 1308 it is determined whether the request intervals fall within a tolerance level. If so,
the response content may be cached in process 1395. If not, the response is not cached in

process 1385.

107

WO 2012/071283 PCT/US2011/061512

[00480] In process 1304, responses received for requests generated by the client are tracked
to detect repeatability in content of the responses. In process 1310, hash values of response
bodies of the responses received for the client are examined and in process 1312 the status codes
associated with the responses are examined. In process 1314, it is determined whether there is
similarity in the content of at least two of the responses using hash values and/or the status
codes. If so, the response may be cached in process 1395. If not, the response is not cached in

1385.

[00481] FIG. 14 depicts a flow chart illustrating an example process for dynamically

adjusting caching parameters for a given request or client.

[00482] In process 1402, requests generated by a client or directed to a host are tracked at
the mobile device to detect periodicity of the requests. Process 1404 determines if the request
intervals between the two or more requests are the same or approximately the same. In process
1406, it is determined that the request intervals between the two or more requests fall within the

tolerance level.

[00483] Based on the results of steps 1404 and 1406, the response for the requests for which

periodicity is detected is received in process 1408.

[00484] Inprocess 1412, a response is cached as a cache entry in a cache of the mobile
device. In process 1414, the host is monitored at a rate to verify relevance or validity of the
cache entry, and simultaneously, in process 1416, the response can be served from the cache to

satisfy a subsequent request.

[00485] In process 1410, a rate to monitor a host is determined from the request interval,
using, for example, the results of processes 1404 and/or 1406. In process 1420, the rate at which
the given host is monitored is set to verify relevance or validity of the cache entry for the
requests. In process 1422, a change in request intervals for requests generated by the client is
detected. In process 1424, a different rate is computed based on the change in request intervals.
The rate at which the given host is monitored to verify relevance or validity of the cache entry

for the requests is updated in step 1420.

[00486] FIG. 15 depicts a flow diagram 1500 illustrating an example process for using
request intervals to determine and to set a polling interval or rate at which a proxy server is to

monitor an application server/content host on behalf of the mobile device.

108

WO 2012/071283 PCT/US2011/061512

[00487] The flow diagram 1500 refers to various timing parameters of request/response
sequences, shown diagrammatically in FIG. 17A-B. The timing parameters ‘IT,” ‘RI,” ‘D,
‘RT’ are defined as follows and illustrated in FIG. 17A-B.

[00488] 1. RI - Request interval - Time between “Request Sent 0" and “Request Sent 1.”

[00489] 2. D - Delay - Time between ‘Request sent’ and “First bytes of response (HEADER)

arrived.”

[00490] 3.IT - Idle time -Time between ‘Whole Response content received 0" and ‘Request
Sent 1°.

[00491] 4. RT - Response time - Time between “First bytes of response (HEADER)

arrived.” and ‘“Whole Response content received.”

[00492] When the local proxy sets up a poll with the proxy server, the polling interval or rate
can be specified via timing parameters RI, I'T, D, or any combination of the above. Some
examples of ways the local proxy can setup a poll with the proxy includes: a) specifying IT only
— which can be used in case of stable I'T intervals; b) specifying I'T and D — this can be used in
the case of stable I'T and long D; ¢) RI only — in the case of stable RI (e.g., detected linear
pattern); and d) RI and D — this may be used in the case of stable RI and long D.

[00493] Each of the setups can be selected based on the criteria shown in the flow diagram,
starting at step 1502 where it is determined whether I'T for a request of a given client/application
(e.g., mobile application) is stable. If I'T is not stable, in process 1512, it is determined whether
RI is periodic and if not, no pattern has been detected yet in step 1520. Rl is periodic, then the

process continues to step 1522, as detailed below.

[00494] If IT is stable at 1502, it is determined whether ‘I'T” is zero in step 1504. If ‘IT" is
not zero at step 1504, it is determined whether ‘RI’ is more stable than ‘I'T” in step 1514. If not,
the process continues to 1506. If so, the process proceeds to determine whether ‘D’ is stable or
if long poll hunting pattern is detected in step 1522. If not, then the poll is setup for polling with
‘RI’ in step 1526. If at step 1522 D is stable and hunting pattern is detected, the process
continues at step 1524 to determine whether ‘D’ is long, and if so, the poll is setup with both

‘RI’ and “D.” If not, the poll is just set up with ‘Rl in process 1526.

109

WO 2012/071283 PCT/US2011/061512

[00495] If ‘TT’ is detected to be zero at 1504, in step 1506 it is then determined whether ‘D’
is stable or if a hunting pattern (for a long poll) is detected. If so, in step 1508 it is determined
whether ‘D’ is long, and if so, in step 1510 the intervals of ‘D’ and ‘I'T” can be used for polling.
As such the determined 'D' and/or TT" can be specified to the proxy server, or other entity
monitoring the content source on behalf of the mobile device or local proxy. If ‘D’ is
determined to not be long in step 1508, the poll can be setup with just ‘I'1” in step 1518.
However, if at 1506, ‘D’ is not detected to be stable and a hunting pattern is not detected, then

no pattern has been detected as yet, as in step 1516.

[00496] A ‘stable’ interval can generally be used to refer to some level of repeatability or
predictability in the interval within some tolerable threshold between two or more requests. For
example, ‘stable’ could mean that two intervals are within 5%, 10%, 15%, or 20% of one
another. In some instance, a larger differential may also be allowed. The threshold used to
quality a ‘stable’ interval could be a static value or it could be a dynamic value which changes
with real-time operating conditions, and/or a value which is varying based on device, user, OS,
application, network operator, ISP, and/or other third party specifications, No stringent
definition for ‘stable’ needs to be applied so long as the specified intervals used for polling of
the proxy server on behalf of the mobile device does not significantly negatively impact the

user’s perception of performance or user experience.

[00497] FIG. 16 depicts example timing diagrams 1600 showing timing characteristics for

various types of request-response sequences.

[00498] In FIG. 16, 8 time line combinations are illustrated, each containing 2 blocks of
request-response sequences. In each sequence, the dotted line indicates a response in a request-
response interval. Sequence 1602 is characterized by a short ‘D’, short ‘RT”, and long ‘I'T".
Thus sequence 1602 may be a typical poll. Sequence 1604 is characterized by a short ‘D’, a
short ‘R'T”, a short ‘I'l” and is indicative of a high polling rate. Sequence 1604 may also indicate

that a user is actively interacting with the application and/or actively refreshing the application.

[00499] Sequence 1606 is characterized by a short ‘D’, a long ‘RT’ and short ‘IT,” which
can indicate possible streaming. Sequence 1608 is characterized by a short ‘D’, a long ‘RT, and
a long ‘I'T” which can indicate polling of large content. Sequence 1610 is characterized by a
long ‘D,’ a short ‘RT,” and a long ‘IT, which may indicate a long poll with high latency allowed

on the application level.

110

WO 2012/071283 PCT/US2011/061512

[00500] Sequence 1612, which has a long ‘D’, a short ‘RT’, and a short ‘I'T” may indicate a
long poll. Sequence 1614, having a long ‘D’, long ‘RT” and short ‘I'l” can indicate streaming or

long poll of large content. Sequence 1616 has a long ‘D’ a ‘long ‘RT’, and long ‘I'l” can be a
combination of 1614 and 1610.

[00501] FIG. 17A depicts an example of a timing diagram 1700 showing timing

characteristics for request and response sequences.

[00502] The present technology includes a distributed caching model which involves
cooperation of the device-side proxy and server-side. In order for it to work after caching a
response, the client-side component needs to notify the server-side proxy and also provide a rate
that a particular resource (application server/content provider) must be polled at (to verify
validity of cached content). After receiving this notification, the server-side proxy can then
monitor the resource for changes (validating resource), and once a change is detected, the server-

side component can notify the device-side component by sending an invalidation request.

[00503] The client-side component needs to provide a correct and suitable polling interval to
the server-side proxy (e.g., the interval at which the server-side proxy is polling the resource to
monitor it) for optimal performance, since if the polling interval is too low, the load is
unnecessarily increased on the server-side proxy. By increasing the polling interval, the local

proxy risks providing the expired/irrelevant information to the user at the user device.

[00504] As previously described, timing characteristics of request-responses sequences
between a requesting client/application and content provider/application server can be used to
determine application behavior and/or to categorize request type. Such information can be used
to determine, identify, estimate, or predict an application’s polling intervals such that an optimal
polling interval at which server-side proxy needs to monitor the resource can be determined and

provided to the server-side proxy.

[00505] The timing characteristics can include, for example, response/delay time to receive a
response after a request has been sent and an idle time to send a subsequent request after the
response has been received. The relationships of the various time intervals in a response-request

sequence can be seen in the timing diagram 1700.

[00506] Each request-response time sequence can be described using all or some of the

following events: 1) Start sending request (1705); 2) Request sent; 3) Response start (1710); 4)

111

WO 2012/071283 PCT/US2011/061512

Response end (1720); and 5) Next request send (1715). The ‘Response Start’ 1710) indicates
when the first bytes of response (HEADER) arrived and the ‘Response end 1720 indicates

when all response content has been received.

[00507] Using these events, the device-side can calculate the following intervals shown in

1700:

[00508] 1. RI 1708 - Request interval - Time between “Request Sent 0 and “Request Sent
1.”

[00509] 2.D 1704 - Delay - Time between ‘Request sent” and “First bytes of response
(HEADER) arrived.”

[00510] 3. 1T 1706 - 1dle time -Time between ‘Whole Response content received 07 and

‘Request Sent 17

[00511] 4. RT 1712 - Response time - Time between “First bytes of response (HEADER)

arrived.” and “Whole Response content received”

[00512] The relationship of the timing characteristic in a request-response sequence (RI =D
+ RT+ IT) can be considered to extract application behavior information for use in caching
content in a distributed fashion. Relative comparisons between different intervals can also be

used to characterize the application and its requests.

[00513] In general, the device-side component of the distributed proxy can keep track of
individual timing intervals in a request-response sequence and compare the values in a relative
(e.g., bigger or smaller than another interval) or absolute manner (specific duration, long, short
compared to a dynamic or static threshold value, etc.). The device-side component can track
these interval values over time, check for stable components and determine or identify
tendencies or patterns. For example, the device-side component can detect increasing or
decreasing ‘D’ 1704 in the case of long poll hunting mode for long poll requests. FIG. 17B
depicts an example of a timing diagram 1750 showing timing characteristics for
request/response sequences characteristic of a long poll. Note that timing diagram 1750 may not

be applicable to high latency long polls.

[00514] In one embodiment, a request can be detected, determined, or to be a long poll

request based on a comparison of the response/delay time (D 1754) relative to the idle time (IT

112

WO 2012/071283 PCT/US2011/061512

1756) between request 0 1755 and response start time 1760. For example, the request can be
detected to be a long poll request when the idle time is short compared to the response delay
time (IT 1756 < D 1754). The request can also be determined to be a long poll when [T 1756 is

zero or substantially zero (~0).

[00515] In addition, the request can be determined or categorized as a long poll request if the
idle time (IT 1756) indicates an immediate or near-immediate issuance of the subsequent request
after receipt of the response (e.g., a short I'T 1756). In addition, a request can be determined to
be along poll if RI 1758 =D 1754 + RT 1762 + IT 1756 ~ D 1754 + RT 1762. In one
embodiment, the response time ‘RT” 1762 can be used to determine bit rate (e.g., size in

byte*8/time).

[00516] In general, different combinations of time intervals provide indications about polling
pattern of the specific application or request and can be used by the device-side component to

generate a polling interval for the server-side component to use in monitoring the content source.

[00517] FIG. 18 depicts a data timing diagram 1800 showing an example of detection of

periodic request which may be suitable for caching.

[00518] In the example shown, a first request from a client/application on a mobile device is
detected at time 1:00 (t1). At this time, a cache entry may be created in step 1802. At time 2:00
(t2), the second request is detected from the same client/application, and the cache entry that was
created can now be updated with the detected interval of 1 hour between time t2 and t1 at step
1804. The third request from the same client is now detected at time t3 = 3:00, and it can now
be determined that a periodic request is detected in step 1806. The local proxy can now cache
the response and send a start poll request specifying the interval (e.g., 1 hour in this case) to the

proxy server.

[00519] The timing diagram further illustrates the timing window between 2:54 and 3:06,
which indicates the boundaries of a window within which periodicity would be determined if the
third request is received within this time frame 1810. The timing window 1808 between 2:54
and 3:06 corresponds to 20% of the previous interval and is the example tolerance shown. Other
tolerances may be used, and can be determined dynamically or on a case by case (application by

application) basis.

113

WO 2012/071283 PCT/US2011/061512

[00520] FIG. 19 depicts a data timing diagram 1900 showing an example of detection of

change in request intervals and updating of server polling rate in response thereto.

[00521] Atstep 1902, the proxy determines that a periodic request is detected, the local
proxy caches the response and sets the polling request to the proxy server, and the interval is set
to 1 hour at the 3rd request, for example. At time t4=3:55, the request is detected 55 minutes
later, rather than 1 hour. The interval of 55 minutes still fits in to the window 1904 given a
tolerance of 20%. However, at step 1906, the 5th request is received at time t5 = 4:50, which no
longer fits within the tolerance window set determined from the interval between the 1st and
second, and second and third requests of 1 hour. The local proxy now retrieves the resource or
response from the proxy server, and refreshes the local cache (e.g., cache entry not used to serve
the 5th request). The local proxy also resends a start poll request to the proxy server with an
updated interval (e.g., 55 minutes in the example) and the window defined by the tolerance, set

by example to 20%, now becomes 11 minutes, rather than 12 minutes.

[00522] Note that in general, the local proxy notifies the proxy server with an updated
polling interval when an interval changes is detected and/or when a new rate has been
determined. This is performed, however, typically only for background application requests or
automatic/programmatic refreshes (e.g., requests with no user interaction involved). In general,
if the user is interacting with the application in the foreground and causing out of period requests
to be detected, the rate of polling or polling interval specified to the proxy server is typically not
update, as illustrated in FIG. 20. FIG. 20 depicts a data timing diagram 2000 showing an

example of serving foreground requests with cached entries.

[00523] For example, between the times of t = 3:00 and 3:30, the local proxy detects 1st and
2nd foreground requests at t = 3:10 and t = 3:20. These foreground requests are outside of the
periodicity detected for background application or automatic application requests. The response
data retrieved for the foreground request can be cached and updated, however, the request

interval for foreground requests are not sent to the server in process 2008.

[00524] As shown, the next periodic request detected from the application (e.g., a
background request, programmatic/automatic refresh) at t=4:00, the response is served from the

cache, as is the request at t=5:00.

114

WO 2012/071283 PCT/US2011/061512

[00525] FIG. 21 depicts a data timing diagram 2100 showing an example of a non-optimal
effect of cache invalidation occurring after outdated content has been served once again to a

requesting application.

[00526] Since the interval of proxy server polls is set to approximately the same interval at
which the application (e.g., mobile application) is sending requests, it is likely the case that the
proxy server typically detects changed content (e.g., at t=5:02) after the cached entry (now
outdated) has already been served for a request (e.g., to the 5th request at t=5:00). In the
example shown, the resource updates or changes at t=4:20 and the previous server poll which
occurs at t = 4:02 was not able to capture this change until the next poll at 5:02 and sends a
cache invalidation to the local proxy at 2110. Therefore, the local cache does not invalidate the
cache at some time after the Sth request at time t=5:00 has already been served with the old
content. The fresh content is now not provided to the requesting application until the 6th request

at t = 6:00, 1 period later at process 2106.

[00527] To optimize caching performance and to resolve this issue, the local proxy can
adjust time setup by specifying an initial time of request, in addition to the polling interval to the
proxy server. The initial time of request here is set to some time before (e.g., a few minutes) the
request actually occurred such that the proxy server polls occur slightly before actual future
application requests. This way, the proxy can pick up any changes in responses in time to be

served to the subsequent application request.

[00528] FIG. 22 depicts a data timing diagram 2200 showing cache management and

response taking into account the time-to-live (T'TL) set for cache entries.

[00529] In one embodiment, cached response data in the local cache specifies the amount of

time cache entries can be stored in the local cache until it is deleted or removed.

[00530] The time when a response data in a given cache entry is to be removed can be
determined using the formula: <response data_cache time> + <TTL>, as shown at t = 3:00, the
response data is automatically removed after the TTL has elapsed due to the caching at step
2212 (e.g., in this example, 24 hours after the caching at step 2212). In general the time to live
(TTL) applies to the entire cache entry (e.g., including both the response data and any metadata,
which includes information regarding periodicity and information used to compute periodicity).
In one embodiment, the cached response data TTL is set to 24 hours by default or some other

value (e.g., 6 hours, 12 hours, 48 hours, etc.). The TTL may also be dynamically adjustable or

115

WO 2012/071283 PCT/US2011/061512

reconfigured by the admin/user and/or different on a case-by-case, device, application, network

provider, network conditions, operator, and/or user-specific basis.

[00531] FIG. 23 depicts a diagram of an example of the component API layer for the cache

store.

[00532] One example of the cache store component API layer can include the following
entities: 1) Cache Manager 2312. Client facing entry point to the cache management system.
This can allow registration of different caches for multiple applications/clients, providing them
to relevant applications/clients when required. 2) ICache 2314. 'This entity represents a cache
store, i.e., a mechanism for maintaining a pool of cache entries. Cache entries in the iCache can
be queried, edited, removed, and/or updated with new entries. 3) ICacheListener 2304. This
allows implementation of features in application/clients to enable receipt of cache related
notifications. 4) CacheEvent 2302. This represents a cache related event. 5) Iterator 2320.
This provides a mechanism for iterating on a collection of cache entries. 6) ICacheFilter 2306.
This provides a mechanism for filtering cache entries. 7) UrlFilter 2308. This is a cache filter
that allows performing cache lookups based on entry URIs. 8) IdentityFilter 2310. This is a
cache filter that allows performing cache lookups based on entry IDs. 9) [CacheEntry 2316.
This entity represents a single cache entry. Cache entry is identified either by ID or by URI;
both generally must be unique in scope of a single cache. 10) ICacheEntryData 2318. This is a

named data associated with some cache entry.

[00533] FIG. 24 depicts a diagram showing one example of the data model for the cache
store. Cache stores may be mobile platform specific. In one embodiment, cache stores can
utilize hybrid storage, which can include the following components: 1) SQL file database for
persisting cache entries, or 2) file system for persisting meta-data and binary response data.

This configuration can be used for mobile platforms such as Android.

[00534] FIG. 25 depicts a conceptual diagram of one example of the data model of a cache
entry 2504 in the cache store 2502. A given cache entry 2504 can be identified by an identifier
(e.g., URD). In general, cache entries include a response data component (e.g., ResponseData

field 2508) and any associated metadata (e.g., Metalnfo field 2506).

[00535] FIG. 26A-B depicts example request-response pairs showing cacheable responses
2604 and 2654 addressed by identifiers with changing parameters 2602 and 2652.

116

WO 2012/071283 PCT/US2011/061512

[00536] The request/response pairs shown in the examples of FIG. 26A illustrate timing
parameters 2602 used for cache defeat since the responses 2604 received for each request is the
same even though the timing parameters 2602 change each time. The resource identifier and the
parameter 2602 can be identified as cache defeating upon the second time the ‘response’ is
detected to be the same, or the third time, or a later subsequent time. The caching of the
‘response = x’ can similarly begin the second detected same response, the third detected same

response, or a later subsequent detected same response.

[00537] Similarly, the request response pairs shown in the examples of FIG. 26B illustrate
random parameters 2652 that are used for cache defeat since the responses 2654 received for
each request is the same even though the random parameters 2652 in the identifiers are varying
each time. The resource identifier and the parameter 2602 can be identified as cache defeating
upon the second time the ‘response’ is detected to be the same, or the third time, or a later
subsequent time. The caching of the ‘response = x’ can similarly begin the second detected

same response, the third detected same response, or a later subsequent detected same response.

[00538] Although two types of changing parameters are shown (timing/date 2602 and
random parameter 2652), other types of changing parameters may be used for cache defeat and

can be similarly detected by the system.

[00539] FIG. 27A depicts an example list 2700 of default or initial polling intervals for

applications or clients at a mobile device.

[00540] The list of applications can be all or a portion of the mobile applications/clients

polling or detected to be polling at the mobile device. The polling intervals and any other polling
behavior or network access can be detected at the mobile device (e.g., by a local proxy 275). The
relative priorities of each application (e.g., Yahoo mail vs. generic IMAP email, Twitter, RSS, or

ESPN) can also be determined or inferred by the local proxy 275 on the mobile device.

[00541] FIG. 27B depicts an example list of adjusted polling intervals 2706 from the

original polling intervals 2704 for applications or clients 2702 at a mobile device.

[00542] There are various ways adjusted polling intervals can be set and the list illustrated
under column 2706 is one example of many possible cases for this given set of application. In
this example, a common denominator or factor selected among most of the original polling

intervals is ‘3 s.” and the intervals for the other applications can be selected or set and rounded

117

WO 2012/071283 PCT/US2011/061512

up or down. For example, the polling intervals for IMAP, Twitter, RSS are rounded up, with the
advantage of minimizing transfers and relieving network traffic. In some instances, the system
can detect a higher priority among the applications, for example, Twitter, and set the adjusted
polling interval to 3 s. rather than 6 s. to ensure that updated content is received at or before
when it would have originally been delivered without applying the data alignment strategy.
Polling intervals can also be set to more or less frequent polls, for example, based on priority,
user preference, network conditions, operator settings, etc. Polling intervals can be set to more
frequent polls for some applications with the trade off of setting others to less frequent polls,
based on application needs, application behavior, operator specified settings, user settings or

preferences, a combination of the above, for example.

[00543] FIG. 28 depicts a flow chart illustrating example processes performed for multiple
mobile devices or mobile device users to batch data received over multiple transactions for
transmission to a given mobile device such that the mobile device need not establish or power

on the radio each time a transaction occurs.

[00544] In process 2802, data directed to a mobile device is received in multiple
transactions. Note that not all or any the multiple transactions need to occur at the same time.

For example, some may occur at the same time, and they may all occur at different times.

[00545] In process 2804, the data is batched prior to transmission. By batching the data, data
transfer to a mobile device can be aligned to optimize connections made by the mobile device in
a cellular network. In general, data received in multiple transactions occur within a time window
which can be predetermined and/or may further be dynamically adjustable, for example, based
on application characteristics, behavior, criticality of the application or the traffic it carries, user
preferences, real-time network conditions, network congestion, type of network, network
operator/carrier settings or preferences, user subscription type, user account type, mobile device
manufacturer settings (e.g., device hardware settings and capabilities), platform or OS specific

settings, etc.

[00546] Note that the data received in the multiple transactions can be directed to multiple
different clients on the mobile device (e.g., to different mobile clients or applications), or from
different web services that a user of the mobile device is subscribed to. For example, in one
transaction, an email is received and in a second transaction, a status update or news feed is

received for a networking application (e.g., Facebook, Linkedin, etc.). Other transactions which

118

WO 2012/071283 PCT/US2011/061512

can be batched can include data or content for same or different applications, at the same or
different times (e.g., IM notifications/messages, content for a web browser, SMS, notifications,

etc.).

[00547] In process 2806, the batched data is transmitted to the mobile device over the
cellular network such that a wireless connection need not be established with the mobile device
every time each of the multiple transactions occurs. For example, a subset of the data from some
of the transactions may be batched in one transaction to the mobile device and a second subset
may be batched in another transaction to the mobile device. In one embodiment, in process
2808, the batched data is sent to the mobile device, in a single transaction over a single
instantiation of wireless network connectivity at the mobile device, for example, all of the data

received in the multiple transactions are batched in one transaction to the mobile device.

[00548] FIG. 29 depicts a flow chart illustrating example processes for managing data

transfer to a mobile device in a wireless network by manipulating polling intervals.

[00549] In process 2902, the default polling intervals of multiple applications of content
hosts are determined from the respective content hosts. From the default polling intervals, an
adjusted polling interval for a first service can be determined or generated based on a polling

interval of a second service serviced by a distinct content host, for example.

[00550] In process 2904, updated polling intervals are assigned to some of the multiple
applications such that at least some of polling times for the multiple applications coincide in
time. The updated intervals can further be used in aligning at least some traffic received from

the distinct hosts due to access on a mobile device of first and second services.

[00551] The updated polling intervals can be determined, for example, from common factors
or denominators of the intervals of multiple applications. The intervals are also determined
while factoring in consideration of application criticality and/or priority/time sensitivity of the
traffic contained therein. An example process for determining or setting polling intervals is
illustrated in FIG. 30. In general, the adjusted polling interval for a given service is based also
on an original polling interval of the first service and that the adjusted polling interval need not
be different from the original polling interval of the first service when the original polling
interval of the first service and the polling interval of the second service are factors or
denominators of each other. In one embodiment, the adjusted polling interval is a multiple of a

factor or a multiple of a denominator of the polling interval of another service. The adjusted

119

WO 2012/071283 PCT/US2011/061512

polling interval can further be determined based on time criticality of traffic from the first

service relative to time criticality of traffic from the second service.

[00552] In process 2906, a common starting point in time is selected for an initial poll of the
content hosts servicing the multiple applications. In process 2908, content is polled from content

hosts based on the common starting point in time and the updated polling intervals.

[00553] FIG. 30 depicts a flow chart illustrating an example process for generating an
adjusted polling interval for a first service based on intervals of other services on the same

device.

[00554] In process 3002, multiples of a common factor of a number of the default polling
intervals are determined. In process 3004, multiples of a common denominator of a number of
the default polling intervals are determined. In process 3050, the updated polling intervals are

determined using common factors and/or the common denominator.

[00555] In process 3012, the time criticality of traffic of applications relative to other
applications on the mobile device is determined. In process 3014, a critical application is

identified as being the most time critical of the multiple applications on the mobile device.

[00556] In process 3016, a default polling interval of the critical application is identified as a
minimum critical interval. In general, the minimum critical interval is not to be exceeded in
assigning an updated polling interval for the critical application. In process 3050, the updated
polling intervals can be determined, for example, using the default polling intervals and

factoring in any critical applications and/or time sensitive traffic.

[00557] FIG. 31 depicts a flow chart illustrating an example process for aligning data

transfer to optimize connections established for transmission over a wireless network.

[00558] In process 3102, a first dataset directed to a recipient is received at a first instance.
In process 3104, a second dataset directed to a recipient is received at a second instance. The
first and second instances can be different times and the first and second datasets can be received
from different web services (e.g., services that a user/recipient is subscribed to). The first and
second datasets are directed to different mobile applications on the same mobile device, such
that they can be batched and transmitted to the mobile device in alignment, even though they

may be received at different times.

120

WO 2012/071283 PCT/US2011/061512

[00559] In process 3106, a single wireless connection in a wireless network is established. In
one embodiment, transmission to the recipient is initiated in response to determining that first
and second datasets include changed data for updating cached content on the mobile device. In
addition, establishment of the single wireless connection is triggered responsive to detecting a
level of priority or time criticality of the second dataset or an application on the mobile device to
which the second data set is directed. In process 3108, the first and second datasets received at

the first and second instances, are transmitted to the recipient over the wireless network.

[00560] FIG. 32 shows a diagrammatic representation of a machine in the example form of a
computer system within which a set of instructions, for causing the machine to perform any one

or more of the methodologies discussed herein, may be executed.

[00561] In alternative embodiments, the machine operates as a standalone device or may be
connected (e.g., networked) to other machines. In a networked deployment, the machine may
operate in the capacity of a server or a client machine in a client-server network environment, or

as a peer machine in a peer-to-peer (or distributed) network environment.

[00562] The machine may be a server computer, a client computer, a personal computer
(PC), a user device, a tablet PC, a laptop computer, a set-top box (STB), a personal digital
assistant (PDA), a cellular telephone, an iPhone, an iPad, a Blackberry, a processor, a telephone,
a web appliance, a network router, switch or bridge, a console, a hand-held console, a (hand-
held) gaming device, a music player, any portable, mobile, hand-held device, or any machine
capable of executing a set of instructions (sequential or otherwise) that specify actions to be

taken by that machine.

[00563] While the machine-readable medium or machine-readable storage medium is shown
in an exemplary embodiment to be a single medium, the term “machine-readable medium” and
“machine-readable storage medium” should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database and/or associated caches and servers) that store
the one or more sets of instructions. The term “machine-readable medium™ and “machine-
readable storage medium” shall also be taken to include any medium that is capable of storing,
encoding or carrying a set of instructions for execution by the machine and that cause the
machine to perform any one or more of the methodologies of the presently disclosed technique

and innovation.

121

WO 2012/071283 PCT/US2011/061512

[00564] In general, the routines executed to implement the embodiments of the disclosure
may be implemented as part of an operating system or a specific application, component,
program, object, module or sequence of instructions referred to as “computer programs.” The
computer programs typically comprise one or more instructions set at various times in various
memory and storage devices in a computer that, when read and executed by one or more
processing units or processors in a computer, cause the computer to perform operations to

execute elements involving the various aspects of the disclosure.

[00565] Moreover, while embodiments have been described in the context of fully
functioning computers and computer systems, those skilled in the art will appreciate that the
various embodiments are capable of being distributed as a program product in a variety of
forms, and that the disclosure applies equally regardless of the particular type of machine or

computer-readable media used to actually effect the distribution.

[00566] Further examples of machine-readable storage media, machine-readable media, or
computer-readable (storage) media include but are not limited to recordable type media such as
volatile and non-volatile memory devices, floppy and other removable disks, hard disk drives,
optical disks (e.g., Compact Disk Read-Only Memory (CD ROMS), Digital Versatile Disks,
(DVDs), etc.), among others, and transmission type media such as digital and analog

communication links.

[00567] Unless the context clearly requires otherwise, throughout the description and the

219

claims, the words “comprise,” “comprising,” and the like are to be construed in an inclusive
sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including,
but not limited to.” As used herein, the terms “connected,” “coupled,” or any variant thereof,
means any connection or coupling, either direct or indirect, between two or more elements; the
coupling of connection between the elements can be physical, logical, or a combination thereof.

20 Ce

Additionally, the words “herein,” “above,” “below,” and words of similar import, when used in
this application, shall refer to this application as a whole and not to any particular portions of
this application. Where the context permits, words in the above Detailed Description using the
singular or plural number may also include the plural or singular number respectively. The
word “or,” in reference to a list of two or more items, covers all of the following interpretations
of the word: any of the items in the list, all of the items in the list, and any combination of the

items in the list.

122

WO 2012/071283 PCT/US2011/061512

[00568] The above detailed description of embodiments of the disclosure is not intended to
be exhaustive or to limit the teachings to the precise form disclosed above. While specific
embodiments of, and examples for, the disclosure are described above for illustrative purposes,
various equivalent modifications are possible within the scope of the disclosure, as those skilled
in the relevant art will recognize. For example, while processes or blocks are presented in a
given order, alternative embodiments may perform routines having steps, or employ systems
having blocks, in a different order, and some processes or blocks may be deleted, moved, added,
subdivided, combined, and/or modified to provide alternative or sub-combinations. Each of
these processes or blocks may be implemented in a variety of different ways. Also, while
processes or blocks are at times shown as being performed in series, these processes or blocks
may instead be performed in parallel, or may be performed at different times. Further any
specific numbers noted herein are only examples: alternative implementations may employ

differing values or ranges.

[00569] The teachings of the disclosure provided herein can be applied to other systems, not
necessarily the system described above. The elements and acts of the various embodiments

described above can be combined to provide further embodiments.

[00570] Any patents and applications and other references noted above, including any that
may be listed in accompanying filing papers, are incorporated herein by reference. Aspects of
the disclosure can be modified, if necessary, to employ the systems, functions, and concepts of

the various references described above to provide yet further embodiments of the disclosure.

[00571] These and other changes can be made to the disclosure in light of the above Detailed
Description. While the above description describes certain embodiments of the disclosure, and
describes the best mode contemplated, no matter how detailed the above appears in text, the
teachings can be practiced in many ways. Details of the system may vary considerably in its
implementation details, while still being encompassed by the subject matter disclosed herein.

As noted above, particular terminology used when describing certain features or aspects of the
disclosure should not be taken to imply that the terminology is being redefined herein to be
restricted to any specific characteristics, features, or aspects of the disclosure with which that
terminology is associated. In general, the terms used in the following claims should not be
construed to limit the disclosure to the specific embodiments disclosed in the specification,

unless the above Detailed Description section explicitly defines such terms. Accordingly, the

123

WO 2012/071283 PCT/US2011/061512

actual scope of the disclosure encompasses not only the disclosed embodiments, but also all

equivalent ways of practicing or implementing the disclosure under the claims.

[00572] While certain aspects of the disclosure are presented below in certain claim forms,
the inventors contemplate the various aspects of the disclosure in any number of claim forms.
For example, while only one aspect of the disclosure is recited as a means-plus-function claim
under 35 U.S.C. §112, (6, other aspects may likewise be embodied as a means-plus-function
claim, or in other forms, such as being embodied in a computer-readable medium. (Any claims
intended to be treated under 35 U.S.C. §112, {6 will begin with the words “means for.”)
Accordingly, the applicant reserves the right to add additional claims after filing the application

to pursue such additional claim forms for other aspects of the disclosure.

124

WO 2012/071283 PCT/US2011/061512

Claims

What is claimed is:

1. A machine-readable storage medium having stored thereon instructions which when
executed by a processor causes the processor to perform a method for aligning data
transfer to a mobile device to optimize connections made by the mobile device in a
cellular network, the method, comprising:

batching data received in multiple transactions directed to a mobile device for
transmission to the mobile device over the cellular network such that a wireless
connection need not be established with the mobile device every time each of the

multiple transactions occurs.

2. The method of claim 1, wherein, the data received in the multiple transactions for the
mobile device is sent to the mobile device, in a single transaction over a single

instantiation of wireless network connectivity at the mobile device.

3. The method of claim 1, wherein, the multiple transactions need not occur at the same
time.
4. The method of claim 1, wherein, the multiple transactions occur within a time window

which is predetermined and dynamically adjustable.

5. The method of claim 1, wherein, the data received in the multiple transactions are

directed to different clients on the mobile device.

6. The method of claim 1, wherein, the data received in the multiple transactions is received

from different web services that a user of the mobile device is subscribed to.

7. A method for managing data transfer to a mobile device in a wireless network, the
method, comprising:
generating an adjusted polling interval for a first service based on a polling

interval of a second service;

125

WO 2012/071283 PCT/US2011/061512

10.

11.

12.

wherein, the first and second services are accessed on the mobile device and
serviced by distinct hosts;

wherein the adjusted polling interval for the first service is used in aligning at
least some traffic received from the distinct hosts due to access on a mobile device of

first and second services.

The method of claim 7, wherein, the adjusted polling interval is a factor or denominator

of the polling interval of the second device.

The method of claim 8,

wherein, the adjusted polling interval for the first service is based also on an
original polling interval of the first service;

wherein, the adjusted polling interval need not be different from the original
polling interval of the first service when the original polling interval of the first service

and the polling interval of the second service are factors or denominators of each other.

The method of claim 7, wherein, the adjusted polling interval is a multiple of a factor or

a multiple of a denominator of the polling interval of the second service.

The method of claim 7, wherein, the adjusted polling interval is further determined based
on time criticality of traffic from the first service relative to time criticality of traffic

from the second service.

The method of claim 7,

wherein, the adjusted polling interval is determined by a local proxy on the
mobile device in communication with the first and second services through a proxy
server,

wherein, the proxy server is coupled to the distinct hosts of the first and second
services and is further able to wirelessly communicate with the local proxy of the mobile
device;

wherein, the local proxy communicates the adjusted polling interval of the first
service to the proxy server for use in aligning the traffic to the mobile device from the

distinct hosts.

126

WO 2012/071283 PCT/US2011/061512

13.

14.

15.

16.

17.

18.

The method of claim 12, further comprising, the proxy server polling the distinct hosts
servicing the first and second services on the mobile device at a schedule based on the
adjusted polling interval of the first service and the polling interval of the second service,
such that data is available to be provided to the mobile device the mobile device polls

according to the adjusted polling interval.

The method of claim 7, further comprising, selecting a mutual starting point in time for a

first poll of the distinct hosts servicing the first and second services.

The method of claim 7, further comprising, communicating the mutual starting point in
time for the first poll to the proxy server, wherein, the mutual starting point in time is in

the future to compensate for communication delay.

The method of claim 12, wherein, the proxy server is further able to wirelessly
communicate with additional mobile devices and able to poll additional hosts servicing

additional services on the additional mobile devices.

A system for managing data transfer to a mobile device in a wireless network, the
method, comprising:

means for, determining, from content hosts, default polling intervals of multiple
applications of the respective content hosts, the multiple applications being accessed on
the mobile device;

means for, assigning updated polling intervals to some of the multiple
applications such that at least some of polling times for the multiple applications
coincide in time;

means for, selecting a common starting point in time for an initial poll of the
content hosts servicing the multiple applications;

means for, polling for content from the content hosts based on the common

starting point in time and the updated polling intervals.

The system of claim 17, wherein, the updated polling intervals are multiples of a

common factor of a majority number of the default polling intervals.

127

WO 2012/071283 PCT/US2011/061512

19.

20.

21.

22.

23.

24.

25.

The system of claim 17, wherein, the updated polling intervals are multiples of a

common denominator of a majority number of the default polling intervals.

The system of claim 17, wherein, the updated polling intervals are further determined
based on time criticality of traffic of the respective applications relative to other

applications on the mobile device.

The system of claim 17, further comprising,
identifying a critical application as being the most time critical of the multiple

applications on the mobile device.

The system of claim 21, wherein, a specific default polling interval of the critical

application is identified as a minimum critical interval.

The system of claim 22, wherein, the minimum critical interval is not to be exceeded in

assigning an updated polling interval for the critical application.

A system for managing data transfer to a mobile device in a wireless network, the
system, comprising:

a local proxy on the mobile device, the local proxy being able to wirelessly
communicate with a proxy server, the proxy server being coupled to the distinct hosts of
first and second services on the mobile device;

wherein, the local proxy generates an adjusted polling interval for a first service
based on a polling interval of a second service, the adjusted polling interval is being
determined in part based on time criticality of traffic for the first service relative to time
criticality of traffic for the second service;

wherein, the local proxy communicates the adjusted polling interval to the proxy
server for use in aligning, in time, at least some traffic received from the distinct hosts

due to access on the mobile device of first and second services.

A method for aligning data transfer to optimize connections established to transmit data
to a recipient over a wireless network, the method, comprising:
receiving, at a first instance, a first dataset directed to a recipient;

receiving, at a second instance, a second dataset directed to the recipient;

128

WO 2012/071283 PCT/US2011/061512

26.

27.

28.

29.

30.

31.

32.

33.

establishing a single wireless connection in the wireless network, to transmit the
first and second datasets received at the first and second instances, to the recipient over

the wireless network.

The method of claim 25, wherein, the first and second instances occur at different times.

The method of claim 25, wherein, the first and second datasets are received from

different web services.

The method of claim 25, wherein, the recipient is a mobile device; wherein, the first and

second datasets are directed to different mobile applications on the mobile device.

The method of claim 25, wherein, the recipient is a user; wherein, the first and second

datasets are received from different web services that the user is subscribed to.

The method of claim 24, wherein, the recipient is a mobile device; further comprising,
determining that first and second datasets include changed data for updating cached

content on the mobile device.

The method of claim 25, wherein, establishment of the single wireless connection is
triggered responsive to detecting a level of priority or time criticality of the second

dataset or an application on the mobile device to which the second data set is directed.

The method of claim 25, further comprising, receiving data for multiple recipients in the

same wireless network, the multiple recipients including mobile devices or users.
The method of claim 25, further comprising, receiving data for multiple recipients across

multiple wireless networks having different network operators, the multiple recipients

including mobile devices or users.

129

PCT/US2011/061512

WO 2012/071283

1/41

Vi HDid

ol s s)laneg :
slierleg (”
movg ,_co‘,mw 0D (Susreg pY |
. e [euoiouwiold e
2021~ a0z~ o7, -
, S20IAIDS
I B0 ‘SHIOMIBU (BIDNG
Gt
ayoe)n
JonIBS Jouesul ‘sjenod
051 G0t <> g0t
K . - Buibessapy
, i > 1B QNI SIS
W.!tl.!t.u\ 3 ..\.,\F ”~ § S b b
o T st e
m \ f., \u J..“ [N ©)
; : L OLOMIBN i § HIOMIBN 3 2L (BU0SHR
{ i ; i H 1
o o oy o . 4 |
mm.v - = ?,\ LN i HET apeIndion
mwfhuwwu \\ \
{007 \ ; IBAIBT sundhoTy SUoRsE T
o F 5 1801
' ,\xf{}.@. ; JUS]UOD [BUOIIOWOId
7 eoeusu| ,w ! JUSWISSILSAPY
N y 4
,\f esn J AS\\WN JOPMADE IUBIUCT
e g mw)% T 7 | seazes voneanddy
/ i / oL
oL e aot |
AR
A
-

WO 2012/071283

PCT/US2011/061512

241

~ 110

App Server/

Content Provider
Ad Server(s)

[

I Optional Caching
: Proxy Server
[

H
| ——

~1208
/

#+120C

|
o AN
e ol ™ Promotional
(\ Content
‘ Network \ Server(s)
3 -
\ 108)
.
et g-Coupon
Server(s)

I‘]OO

RS
H
H
H
H

Proxy Server T
%25 Server Cache |
138 |
Ak)

_—
e mmrsmans e’

N

/-
/

/ e

™ \“"‘v"‘"ww“%“"\\‘ Short Message
\} i Service Center

Network *“ 112
198 S b

I

" 4.,‘)\\& » S et

I

Mobile Dé\)ice

e | | Lo
478 Cachs
. A83

FiG, IB

PCT/US2011/061512

WO 2012/071283

341

Ve Oid

GIT @npoyy ANALDY tes(y

192
Jsbeuepy 1eaquesH

99¢
18jj013u0D olpey

574
auibug uoneziuold

BEe lojeiauso 7ce

GOc Jebeusi UORIBUUOT

8|1j0ld uoieoiddy Jojos)eg waned

9¢z J0jod)a(Q Jolaeyag uonedlddy

gee
Jebeuely uonoesuel] 1senbay

%2
sinpoyy Buoeyg

95¢
QINpo juswubiy

Goe suibug Buideys oiyely

GCC idy Axoid

(574
3iNpoR 1000101 Uoneol|ddy

Sve sbeuep Asjog Buiioen

~
. e .
XCid {8307 e 902 702 01z uouesuddy | | =a>
vogeadd e i G8C |
MWMQA.MSN v SEneD | 4/11dIM 4/1 SNS 14V - woayshg BJIGOR oyoe) |
aIBmMy-AX0id B0Z eoeuSU| HiOMBN waEoo Bugesado Qm%ﬁ:-?o& L

.

§

0G¢ 8o1AeQ 3lIqoW

H DIiA

PCT/US2011/061512

441

WO 2012/071283

TH7 subug uogezgucld , i 3567
, \z\i:«i:sﬁff.. loyoslaq Bununy jjog Buoq
TV A A |
Aroyisoda =T
: D0l i Iayoel] [ealalu] AejaQ asuodsay §EEE
L wopemyddy 1 T suBuz Bupipes}, ssucdsayisenbay
b BEZ Jojelaudn) 3jj01g uoneoiddy
- ™ BQEC 1010818 o BuoT
S, e
7S¢ Jopaaq uisned Bog IO1DEISC [BAISIH] 104
9g¢
1010919 Joineyag uonesiddy
—_— e
21214 09%¢ ' — ™
IazfEuy asundsesyy JszAjeuy jsanbay eve _
. Moysoday _wmr%cmmﬁ
E6VC | ;. follod syoeg | Y
18jnpsUog asuodsay Go%7 177 { uoneojddy
JOI0IDBIA WBJICT JCFOIREL Bl] x\x;.%if;ff
BF7 subug N,..,.:f% E\\\w
uosies 108UUCT 10 BYIED #re suwifug ucisimed ssaumeudoiddy suorD
““““““““““““ 2607
B4 1N S0 O ‘
““““ . : ‘,\\.\..‘i. ..i..{.f..
- - , 50¢ o
1578 qipr aumbun || egpr eubuy | auibug dn-xyo007 ayse)n G382
SINPOYY uswisnipy s1epdry : By JoleuByy ThL : @moes
OB SUl} 3NpaYsg ”
uoemdidy TS e ialiam SRS TEF ey ,u . TOg JOIBIauaD) s1epmayy T
Ve JOIBISUST) #NDeysS §0d PHE I0EDIBAL] DUDBD BT EDE] B
“““ “ e
5 ienbeuepy Aolog Buiyoen

2 DIA

PCT/US2011/061512

74
pBug UORRZIUGU

5/41

WO 2012/071283

R ; 10108181 Bl E eTateIY
IS R epiee o, ” iglauinieg igsliniedg UOROBIXT
444 E,P_momqwﬂ ' , , BB WOpLIEN uiBliEd
S0
- uonesiddy TES omsiac e
\ s B [E¢ ol wisled
[y OCc Jopasiag Joneag uonedlddy

~ A
TE7 ..coﬂwoummzw
fayod BUoRD | 92z Jopaleq A eee
— Poouoneoyddy Iglauwieled ajeq/owl| issueied wopuey | cw_wuw«wmmm
BCE e ” UHOBL
SIPCIA AM\\ - T2c 1010919 IsjowelRd 1e9)e(8yoe) WelEd
Aeny suoen T
T2e 2ubug uoHnOssy IBaIe 3Ucen
574 ovc
auibug uoyosies auibug uoisivag
}oBUUO0) 10 BYJED ssausjeldoiddy ayoen
W Cl¢ t8|pueH
Jsjpwele
““““ aulbuy useEH Hmmmmn_ mconm_o
NPT 1000I0IH - ioiauRg AOIEDHBALL
uonesuddy W SINPBLOG 10 SUCRTY 1BD0T I9Z|[[EULION Jayusp|

74
@feuew Aoyog Buiyoes

PCT/US2011/061512

WO 2012/071283

641

(e "Did

olyel] ST
aoueUaUIB) SALDEISIU

arve
auibug
I uopdsieq
i Ayeonlo swig

|

¥4

3 o

lsrielit=Rg Biltatie)

Bd

puncubyoeg pLncbsis 4 i
oo aubuy
LR ZI0H 4
31%2 Jazuobaje) sjels uones)ddy
OC¢ Jcmaed JolaBysg uonesyddy
T4 2150
10I0ReS swbug uooa|8g

WG S8800Y

RPUURLT 58300y

qi6¢

ELG

Ialy10adg ajey eleq :

7z

A
IOBIBG plepums
| LIOREIBUST SEOJ0JAA

14 T
abzuep ,MWWM W
uoneeadx s L L
B0 Auanoy 1ash Aoy 980
T2 #npoyy ARANCY 4850
IS¢ 9G¢

a|npoy Buiyoleg

a|NpoN 1usWiubipy

GG¢ subug

Buideys oges)

[GZ oulbug uonos|eg uniEinByLO MInMIBHN

WO 2012/071283

741

PCT/US2011/061512

Prioritization
Engine
2413

Time Criticality
Detection
Engine
241b

Application State Categorizer

Foreground

Background

Poll Interval
Detector
238

Application Traffic Categorizer
241

Interactive
Traffic

Maintenance
Trafiic

Alignment
Module

Batching
fModule

Factor or
! Denominator
Detection Enging
258a

Critical
Application
Detector
258b

Critical Interval Identifier 258c

PCT/US2011/061512

WO 2012/071283

8/41

Ve DIA

86¢€ 96¢
Jabeuepy Jgjjonuo) Jsjjonuo)n
1eaquesH | |14iMasuselu| olpey

GBE Jobeuep uciosuuns

9G¢
3NPO
[020}0.d
uoneslddy

GGE J1abeuepy
- foljod Buiyoe)

17¢
ainpopy Buiyoyeg

89¢
2iNpol\ JojepijeAu eleq

9/€
1020101 |0JJU0D

7GE oinpol
ssaualemy Ajloud

VL oposiag
BIB(] MEN

GE 9|NPOJN SSoUaIEMY

e
s e

1 9l¢
Aoyisoday

Japinoid
90IAI8G HIOMIBR

g «..s....i..it:.l:f!..l-l.&f&

R

S S,

J

iz
Aicrisoday

UONBULIOIU] 901AB(

"('

- s -

{ AR
sopsodey

:
:
- Jolneyag/AlALD Gy< auibu BARPEISIN JUSIUOG
GIE euibuzm INeULa/ Ny wmwwmo< n_._..m__._ PUB LONDBUUCD |
Busceug oEd) GOT Ja|jo5uoD Axold e :,si!fm
»W el T,
p— —— P GEe
\i\ “““““ ioByoED
cze . sBneg
JETNETSW V(o7 1 R Sp— S,
g e | Ty 4/l SINS T
B0E ooBUdlU| YoM
- P N—
00¢ 7 = ;
19SS 1SOH i i 53 502¢ oz Vo
Q) 18pIAOId DOINIDS (sjaneg {s)iamag W0y | (s)1oM1BS pY
oge A .@t J1anes uoneoiddy uodnon-3 [BUOIOWOI] SP

PCT/US2011/061512

WO 2012/071283

941

q¢ °Did

19¢€
““““““““““““ “ , 19zZAleuy asundsay
p8se , _
auibug yuswisnlpy awi |
JOYOEIBCT USWCD
08G¢ ” BN IO pEEpdn
aulbu3g syepdn sinpayos ,
feléts

Tace Jobeuepy
foynenc 1sanbad 104 Buo

BNPOYY 000G uoEsyddy

BQGL m T0¢
Joe|nuuig Buiwi) 3soH auibug dn-3007 ayoeD

iarerotn e

3

gee

=
Emm:mﬁmm:nmnow:o&

€0¢
lojesauss) ejepelsi

1oy
Jabeueiy Adiiod Buiymes

ayoe) JONIDS |

4

PCT/US2011/061512

WO 2012/071283

10/41

& DI

£5%
IOIDEIBC USILOT)
maN 0 paendn

95¢

(39
jobeusipy
BIAHEYOS 10

=Thlslel
[020101d uoneslddy

Spoy Bunioes | QINPOW
wehed siliap) 184IPON I8iiusp|

I8¢
auibug BuLioyuopy
90IN0g 1Usju0n

<8¢
JaBeuep aoinog Bunesiag syoe)

GG¢
Jabeuey Aoljod Buiyoen

PCT/US2011/061512

WO 2012/071283

11/41

e oid

olgel| oles|
aouBUSUIRKY sAloBIaU|

DIye iezucbsieny oyeii

@R
sufug vonseIsg
ApEoils By,

punoibyory punoibsioy

FTHE 1szuiobeje) sjelg uoneolddy

ELP%
aibug
UCHEZOLION

T¢ J18zARuy J1yel |

1€
a|npolA Buiyoleg

8¢
a|npoly wswubipy

G/¢ @aulbug buideys oies|

PCT/US2011/061512

WO 2012/071283

12741

HE OIA

_ EI%
aulbiug UOIEORHON

Be//¢g
186611} uonosuucH

7€ snpoy Buiymeg

EQLE
JENGEN

llod pajsnipy

g7¢ enpopy weuwubipy

7¢ oulbug buideyg oigel |

PCT/US2011/061512

13/41

¥ ool

WO 2012/071283

Q7Y Axtid gaan Duiusen wikid poysieg 1sanbay g
) grpsenbey
2IBC] DOIXOI
.) vzy i
7y osuadsay pebueyn T UOLEOHION SiEDEAU 3
* 0Zy eleq 10JIUOI QLy SUSED B30T Wi DOYSIES Jeanboy
ot
GLy sanbey
by BSUCGSBY BILES 1B peold
T Ziv meq Joyuopy «
e | oLpisenbey
Ble(JONUO
U ooy ssuodsay i
BIB] PBIXOI
K ~ 90t 1senbay A
BJEQ paIXoid
““““““““““““““““““““““ 0Oy esucdsey Bieg »
* ZOp 188nbay BeQ
CEV 1epiaoid — §7% Axoud 55y GG7 1wbpisa
umuonueaieg ddy 587 J9AISS 1SOH Buoeny AXOid 18007 UB8i0% SLUOH
w..- . ,.»\A w-. . N . \\
Y ¥
0iy oSt
BOIS-IBAIBT 221A8Q 9O ,
5 i
'd
09y

WBISAG AKX DBINGUISIO

WO 2012/071283 PCT/US2011/061512
14741
Mobile Appdication Application

502 device server/content server/content

; 550 provider §10A provider 510B

— e i, i T R—
(User Activity }ww\u oK : :
' | I
Inactive period : :
504 Default = 1200 (20 mins) : :
Ny | |
mnsnsnssnicd e o | I
{ Power saving starts s>l i |
' : . NewData 'NeV\{. Data :
»Lé: “Bower Save Period® g4 I
Power Save Period !

o oo SO PN RS ANew Data

Pariod One |New Data '
506 Defauit = 800 (15 mins) |
[|
\““‘\ g New Data I s

“Target time for earlizat E_

next data

Power %avm Peried

.g}m Power Save Period

;
L New Data

AT N

& New Dala - gr"?é "!

; : s e

@'ﬁ}?\:‘}“f‘i ‘zﬁgat wads Ky E

S Power Save Petjod - X e

< \Eww L)v ia E& ,,,,,,,, New Data :

[jos e
{User Activity -
__________________________ ."“>E

PCT/US2011/061512

WO 2012/071283

15/41

TS

!

ssuodsas %
mc BBTHEA WD \k

e

o >,

s
\\
»

JOIRRIRA SU wtou ;

Isanbaiweus
*,

S \

T

#
4

8¢9

B A

, e
/ ayoed wodj
4. asuodsas wlo4
. S

Y -
0¢9

=M

},

e fonll K

e

9 "Bl

.r...

as|e}

N asuodsal Janieq ;

..‘....IE\«E\E..K\\\
f
44
\\\.....II.. .a./
a\,v‘.ﬁwzai asuodsas ayoe) 1!?
e PR
4 \\.\‘l.\
N 029
\\ BGEBYIED N R
m : N Xai ssuodsRl BNB0Y |
", vyttt
o o~ M,
G258 8ig
e N
asjey - M jsenbai pueg
ffJnll\
%
919 [punojou]
\ ... e p
M pHEA AUB O9YD Mmcnawm,hw\ W;véniiL
/ P

vm«

\

H

\, /f
1
EWELEN
7/

CD
n
C
@]
Q.
[
()
—

N

s|gesyoeo
1sanbal ¥o8yn \

~ %
909
\\E:E:E.....f S
BRI ST R=rti= N ial SR
..f.f. \.\x

N et

[4u

WO 2012/071283

PCT/US2011/061512
16/41
[istributed Proxy Systemn 760
l{. VVVVVV J“\" VVVVV \}
‘ Mobilz Device 750 Server-Side 770
SO A A
A kY H Y
Application Local Proxy Caching Proxy Host Server App Servar/Content
755 788 75 8% Provider 785
702 | e E R
;? E 704]
710 {1 Reguest Reguest {j-jf' .1 | 3 Response timeout
. . 708 | * 708
T8 Response | |, m“dm_f_RESporise e -
|
6: START POLL | 7.Rsquest | | & Response imeout
718 | |] Sl k,w\ 7l
Nt | 10: Waitfor Long | | Ry N
N 9 Reguest | Poll Interval 712 & . 716
11: Reply from | L1720
o, cche b |
o hEg 726
14: Wait for Long o 730
722 12 Reguest (O Poll Interval %f_1_\"3_R’_e§p_on_e__ P
~ ™ k“‘“\ i
724 728 7 15: Request),w"k 16: Content changed
17: Response with \\E-&
¢ Changed content | | . 732
738 ™
! ﬁ\j 18. Cache ; N
"L 19: Invalidate o jgsponse data 734
7 X with cache 4\ § ...
4\() o \N\\
Sy 20: Set entry as ”3{:
Trar]wsuent)
DI 742
oo
s ache ata)
22: Repiy with | [- P
fransisgnt cache X
o mmm R “ |
T | 23 Repiy from
< i 58 r\;/) er cache
744 24: Request A,)
y > ™
' 748
271 [Reguest .
Ny h
f e i v
I ' 754

FiG, 7

WO 2012/071283

802 -

804 ~-

Hunting
mode <4
805

i
806

BOE

Settied
Long poll
810

PCT/US2011/061512
17141
< .
Reguest 180 ms » 7
M 180
OK
Response b e - S —
",
N
Reguest 360 ms
o 360
OK
Reasponse e T
e 10241
1024 ms
i T ™ Server
No response, ”
Request times out h
~ 500
Requests settle K
backatan vl . .
interval less o 500 : .
than 1024 {
(e.g., 500) OK o .
\\,. Ny
2 500
A
{
i 500
p
L
C
N ST

FIG. &8

PCT/US2011/061512

WO 2012/071283

18/41

6 DA

I08 sepiacaduenias
uoneoydde ayy Wl POYsEES 1Sanbay

PEE esundssy
Bl SPUDS PDUE Loy o8 SonssaN

i
iaaiss uopeondde &g
SIGRIEAE 51 ALIUD SUDED

S SRS,
IBA G4 JEU) SEU

086 Japinold 1usjuoo/iaalas uoiiediidde sjjod

278 Axosd Bungoes

10 DYORD ISAISS SY LIGH DRUSNES 15anbay

301 81 ¢ asundsas

BU) SPUTS PUB DSUOGSE] MIL DY J0) 15ONDRI SRASEEY

Vi
SUNED JBAIDS SUY LU0 BSU
BpEBAE §f AUs oyoED i_g ou z:r SRUIE EQ

DLaMEs LonEidde SHOY

076 Solljua aUoed JUEAD|D] SejeplleAUl o|qe|IEne
sI ejep pabueyd JO MaU Jey) UOIIEDIHIOU SBAIZ0aY

oGE Axcud Buiyoes s a0

BUTES JOAISS B} U PO asuodsal mau o paburyn
H8E Axoud
(800] 24 SRIHI0U ‘Bsu0desl sl i peluBys Sosia
708 |npayss m
pases uoneoudde syl syng

096 ssuodsal ay; mvcwm pue
Janes 1soy wolj |jod sansday

G5 ampaios
P ®pus payod aq o} tepiacud 756 JaAIas jsoy ay) 01 dnjas ayoed ay) spuas
| j0 uoneoynuep] LB BupmoUl B0 U SHAIR0TH

7OE isadas 1804 aU) 40y anpayoss Bugod m \j ﬂo.e
pue uonesidde ay o Aousnbsiy B

0G6 Jopiroidyiisnias uonesldde sy woy
1sanbal ay) Asiies o) asuodsal ay) SeAigoey

e ung .ﬁ : 3} asuodsas
g sapincid | ndde
8U} L0 Mmmzwe_ nod sy sasnenay

10} SOINGS BI
HQBIEABUN S JE

SHEOABL HUE
Ui s1naied AKGd

Zv6 paydsossiul jiod

076 Jepinoidyisnies uoiedldde sjjod

ZCH ANUS BUDED

B oy jod a4 0} ssucdsa: 2 sene0y

9¢6 ||od ay) Aysiies o) asuodsal e
SOABLI}aI SNy} puUe pljeA S| pue Jusjuod pajjod sy
10} S[gEJIEAE S| JUBJUOD BYJED JBU) S}08)8p AXoid

€6 paydsaiaiul |lod

€6 Joplncidianias uoneoidEs St

CEG 18DRIAtd IS0 N
parsag uoesyddy

G186 Axcig Bunysen 10 §58 syovs iaales
CHE i8A185 1S0H

96 Ax0.id |[eds07]

G55 whppuonesiddy spgow

PCT/US2011/061512

WO 2012/071283

18141

01 "DiAd

PR _v ACd IDAISS
B 3

U1 paysi fmmn.umm

920} osuodsal sy}
spuas pue woyy |jod seaiasay

spAcld
juEuosuanes vogeadde $j0d

o,m..:_w ?Sm “.c..t,é. i0 wrz

BIGT Axeud (go0) @ 0F 9sundsal
U} SPUST PUE 33L0NSR! MBU B

43 403 J$BNDBL SBAIRGY

43 WISA) BEU0S i533 al] sarsilied
rcm: pliga QU jBY: wnr:rccwhdﬁ

WNUCT .Mgﬁ@r roam& dde 510
g B H [«

m Sl sl I pabueyn

{EG] BUY SBYNOL

‘asuodsal M3k D

gabupyd siosiec

GEOT asuodssi 24 spu
IBAISS 180U WGH 0T SBA] mcmm

P01 anpe rbw Gu
UG pases ucieodde syl s

i o)

NG ‘PEAISSAE FUCTES SRS

2901 asuodsal ay} spuss pue
JBAIDS 1S0Y Woyj |jod sonieoay

fGT ﬁ%w
BU) OO OF Japiasiduenas un

S3U0GS3
peosdidy 2

SHEYTE

pead

4O LoiEsy

G0 2NPIUDS
fuind 2 pue pajisd 90 01 J8DIAGY
o0t ue Bupnicu) dnies SUDED Bl SAAIR0SY

Asrses uonesidde sy

9G01
191J1JUBPI BU} JO UOISIOA PSZI|EULIOU E IO JBYNUIP! Sy}
Buipnjoul ‘1aAI9S JS0Y 8y} 0) dnjes 9YOBO BU} SPUIG

FGOT [eAsu}as pUB LUOHIEOLIUSPI 81NNy 10}
95U0dSal POAIZ0AL O] YUM UOIIBIDOSSE Ul J3LIUap! 8y}
1O UOISISA PaZIfBLLIOU B 8I0)S PUB asuodsal ayy mcumo

.53_;9.:
JIBAIBS E«L dge mE Wiy y5enhs)
auy Aisies o) asuodsal SUl seaB0y

06071 senbad
Eq:.ﬁ 2 \ﬁﬁ.ﬁ asuodes:
[le] ACd pue usnesydde o

Fg ysenbas (jod 81 SeaaNeY

BFOT 90In0S 9y} 0) popIemio) }sanbal |jod

T ISAIBS J80L 813 40} sinpeuns Bujed
an ﬁmn pu Smﬁ.:amm 2u1 10 Asusnbay Buyod syoes
pue 1senbas 82U} 10 JBLLURD UR JO uisped B SI0RGKT

701 Buiyoed o a21nos pajjod ay) dnyas o} sepiosp
pue aige|ieABUN S| JUSJUOD BUOED Jey) S10ajep Axold

Zv01 Jepinoid
1anas ay) Aq pakojdwsa si wisiueyoaw Bunesyep
ayoend e jey) sauluslep Axold pue pajdeciajul jod

gc01 llod sy} Aysies
0} asuodsai e anaLB1 0} SapID8p pue Jusjuod pajjod
8y} 10} 8|gE|IBAR S| JUSJUOD 3BUIED JBY] S108)ap AX0ld

701 Jopinold
J1anes ay) Ag pakoldws si wisiueyosw Buljesjop
ayoed e jey) sauiwialep Axold pue pajdasiajui jod

GEOL SORIAGL JUBUO]
jiBasag uoneldy

G701 Axoud Buiy

G801

289 10 GEO] 2YoeD JOAIOS.
19A19S JSOH

$901 Axoud [e00T

1eBpipguonesiddy ejgqon

WO 2012/071283

PCT/US2011/061512

20/41

response received for the request

1102

k2

¥

Use information about the
request initiated at the mobile
device 1104

Use information about the
response receivad for the
raguest 1106

FAERN
W,
.-*"";'N&\\\
is \\"\\\ NO Response not cached |
<_responss cacheable? e 1110
T 1108 T =
\LYes
Store the response in the cachs as a cache
aniry including metadata having additional
information regarding caching of the response
1112
|
rrrrrrrrrr P N
Detect a subsequent request Daea in e\
1114 _~Tesponse stored in thé_
T “.._ cachenesdstobe
rrrrrrrrrr ¥ , T updated?
Perform cache look-up in the local \\\.,‘3;32%..*«*‘*’
cache to identify the cache entry to T
. . Yes
be used in responding to the eeeeseneeseeessmmeessssssss B et sssssseesssessrneoe
subsequent request 1116 Invalidaie the responses siored

A
Serve the response from the cache
to satisfy the subsegquent reguest

FiG.

irt the cache of the mobile
device or remove the responss
from the cache

i

PCT/US2011/061512

2141

WO 2012/071283

ot 'BiA

. SHZL o
% A 2 - BOUDES 8¢ LED AsUsdsa W 4
2
3 53¢t »
& pouoes ou ssucdsey ¢ A,
,,,,,, & &
SBA
\ R
/ ;
S Lcmwcoo f.f A,
1\\ DHUBLAD S, R
wEues /) eol :
on oN ,, o \\ L8TS SIGEBLDED
N %1@50&1\» e HEsyUsED b 2 peadxa gzZie
LY MR OGS g B DO 2L \ , Lo@:qﬁ = o
\ " N F asucdsas o | 830(] P e
T 580(] ,,/ ’ Do
\ az? .WW SBA " ll.ﬂ.\\.\ viet }/f«v
\\ muc& % % $8 A ,f,.mmﬁmmﬁmu\\
S ewu ﬁcﬁ . : ; S
s, Buipoous \.\ A - 4
3 \\ >UOQ - PR [E——— [AXA* £ ;
; £LL IBULEESI 0ceL S0 DLUBS 34} AQ pajeisuaB sanboa: o ;
/ asuodsal - - - e e Sl wanbes el o)
DU} IO OFS BPOO SNIES sysanbal JBUI0 pUE 153Nnhal o 8213 84 AN
azjeuy sl SUULBIEC aup uesmieq uoRelIC | |0 PAR S DO 138005
3 % Aoipousd SULLISIE P BURLIBLAC ayy Ayiuen;
,,,, , & % %
GG7T 1senbal oy} Iop pananal —r
asucdess BL) Yum peiel m Wmm “ctoﬁ» N%QECE& ys asuodsss szARUY A ch ;
*) - - P sonbal SU) UM DOIBIDOSSE UOHBULIOLI SOISURIDBIBLD 8anhal azipuy
““““““““““ A S
SIS
ON B S nmt& nw %v&\ ON

PCT/US2011/061512

WO 2012/071283

22141

&1 °DEA

Krnnnnnnnny

“““““ ¥
5T ST
F sosundsar s, PEUSED 8G UED JUBUCT F5Ucdsay
50 oM 58ER] IR 301Uy owﬁz TaeT ’ %
A,xzmﬁ up AJUBILUIS BIBL 51 4D Vt&miv A
~PUIES B mwwccaw\& “““ |
S sgary L2
m F s9A |
N
RO P
rAXE , Olct \\\ BN T STesisanbal st J0™
asucdsas | sasuodsal :o;m\,ﬂ BOURIBI0L B UM 1B > |EEA\ Buiiy sy ui swened >
BU} LN DRBIN0SEE 8y} JO SaIpoq asuodsa: EEASI ?mé& - xfumb_w&a B \“\\
$BHH0 SNJES BLILLEXKT JO SaN[eA Ysey suiuexg o0 \\ xzf.&“\
% % ..wy ‘.\w
yoct

sasuodsal ay} Jo Juajuod ut Aljigejeadal
10919p 0} Jud||0 8y} Aq pejeisush
sisonbal 1o} paAlaoal sasuodsal Yok

SHET
syseniel eyl jo Anipousd
1oEED 03 JUSID el Ag pesiausb sisenbal oL

WO 2012/071283

23141

PCT/US2011/061512

directad o a host at the mobile device
o datect periodicity of the requesis

k:
Monitor the host at a rate|
to verify relevance or

1402
e e Y
Determine that the request s . N
intervals between the two or more | . Determine that the requast
requests are the same or | s intervals between the two or more
aq roximatelv the same raquests fall within g icleranace lsvel
R o 1406
. ¥
Receive the response received for Determine a rate to monitor a host
the requests for which periodicity is| . . :
detected S $ from the request intervals
1408 1410
,,,,,,,, % -
Cache sresponsg asacache entryl 1 g - '
in a cache of the mobile device Detect change in request
1412 ¥ intervals for requests

1414

& B

Serve the response from the cache
to saiisfy a subssquent request

validity of the cache entry|

Set or updais the
rats at which the
given host is
mionitored {o verify
relevance or validity |
of the cache entry |©

1440

generated by ihe client

Cormpule g different rate
based on the changs in
request intervals
1424

1448

Fit, 14

WO 2012/071283

24141

1‘312

PCT/US2011/061512

.................. L
,\,«l;\ No){ Is R;)lart)t%rrlrc\)dlc] e No NG At
YeS\I@ i detected’? “j Yes: i Lm&
» 1504
) ‘
G?,',T ‘ZH‘?W a 1514
i
S A
Z._No { Is Rl more]
Tt stable than IT? P
Yes 1822 1526
,,,,,,,,,, * M{f
J%Ywe{es hljn[ansgta;?;?tgm o NO J‘“éﬁfgrttﬁ%ll;ng R
» = 5 = e = wi
, 1 ?0@ No _is detected? J YeSI Lo MR
U AT S5
s D stabie or | ¥ T No
PUNHNG PEHEIT e [Is D LONG? } ~~~~~~~~~~~~~ et T
s deteted? | R
1524 . S
“Start pollmg !
W|th Rland D
i
1528
g
,,,,,,,,, 4'§'t’é"r’t"56’|l‘iﬁ§'} ™
1 withe i 4
............................. -
=~ 15040

with: O and I7

(Start poii ing

FIG. 15

PCT/US2011/061512

WO 2012/071283

2541

91 "Bid

Ry

Rianannnay

0

vy

[m—
@

-]

o)

>—

9]

e
GOGL -

Qeveeed

[re—
[—

o

POgL i\\!

B
Bvrng
[

Qg

M

h

R

009l

el ssucdsay, o

37

1 SpLIGASBL0D Ul PERO

PCT/US2011/061512

26/41

WO 2012/071283

Vil "Did

YA oLzl
N
- ~
puz wels
BSUCUSTY asuodsay
£ 9021 ¥044 %
FJ ,fj,
s 1l % e
k4 %
) L ¥) 0
.\\Ammn@mm ~ 1 L\ LS3roay
GLil 2Ll 50LL

7 on H+ld+a=1
S

1078

PCT/US2011/061512

WO 2012/071283

271471

ol "DiAd

0444 0041
. - i+ ¥+ 0= 18+ 8ISUAM
™ ™
pU HICH
SSUCCASON asuodsay
¥\ 2
A vGLL
I .f..l.[l.
3
e | [e a >
A4 A 4
L L 5
LSINOTY - 183N03IN
mmte\\J \ L mmt.\
zaly
L :
e
(\\lm L+ 1d+3d=1
85iL

PCT/US2011/061512

WO 2012/071283

28/41

GG-¥0

B

| poIopISUOD U9aq BABY

81 DA

o
o O
[xe
o

90-€0 pue $5:20
usamaq pauaddey
) 9sBD Ul dipolad

0S|e p|nom }sanbay

[EAISILL N0 |

10 B8ED U UL 71 e
“BAIBIU SNoIABID 3L
19 %07 3! SAMOPUIAY

/
4 noy

\\ 000 — 0020
\ .
/ 2

noy

0020 - 0040

A

3300

520
}

",
s

}senbal ¢

fff
™,

"

ysenbal 2
00:¢0

e

ARl Yl paiepdn
Duiag st Anus sysen

\l\

Y01

Mwmsmo_ <
00:10

paleald Buieq
sI Aus ayoe)

\l\

2081

PCT/US2011/061512

WO 2012/071283

28/41

61 "Did

seJnuUIL GG SBINUIUL GG noy |
06:%0 —65°€0 G620 —00eC 0020 — 0020
00:60 ,‘ & v A% 7 % 00°10
] M e mm
L » i
960 vm“nﬂo 90 Mvo w\%mm
sf.s@ .«.ﬁ
L2 12
1sanbai e 1senbau uV ,,,M isanbal oul
0610 Gge0 ‘\M 00°¢0
e %
P wanbas o
'S8INUIW || O} 2L Wod} IR%Y
sobueyd 82I1S MOPUIAA “(SSINUIW GG — s
0119s mou ““B'8) |eassul pajepdn | PRORUIR B4 ",
yIMm 1senbal Buijjod pe)s Buipussal O Sl JHES [BAE [enims fxoid o oy 4 oy Ba)
pue ayoeo Buysayal ‘Jonies Axoud —~ {198 [EAIEIUL LM 15oNDa1 Buljjod 1S |
Wouj 80inosal Buinsiyey “aiowhue 206 | spuss puz esucdsal saULRD AXCId .
MOpUIM S} OJUI 13 10U S0P |BAISJU| o | je0o| ‘pejcelep jsenbal JIpoLa ™,
£ \&k \
9061 A e
2064 ™ 008

PCT/US2011/061512

WO 2012/071283

30/41

0C DA

0g-€0 0020
Vel
™ e 7~
S e
- - anbae: punoibeso) 7 }senbal punolbaloy | . s e,
- 0%E0 0L:€0 - ‘sonba; o
™ 9007)y P isonbas g
™ L o ~ RS
™~ ., !..l....‘.v “““ Pl e
~ IBAIBE B <
o 03 Ju9s 10U St jBAIBIUI P 4
- - e peepdn 186 i p
o | 21Ep asucdsal peyles) P
™~ #0080 — 0020
. ~ It
G - - v 5, 0000
B S
80:501vS-¥0 90:%0 vmmo i
Cnnr — e— — !!!u\f ““““
...ﬁ..‘
138nbal e 1sonbai W f 1sonbal ouC
0050 0070 %, 00:20
%
1sanbal o€
00-€0
™ AN
3UoBs Wolj SUDED WOl ", ~.
pantes asuodsay vwzmw owcoawmm ~, %
WL s o) Unoy L o) CEe) -
\I\ 1@ [EAEIUL UM 15enbal Bujod e 5007

goae Y002

771 1B1s spuss pue asuodsss $aU0RD
zann- | Welo 'panalep wanbad dipousd
AL

PCT/US2011/061512

WO 2012/071283

31/41

I "DIA

AN
™,
x\ inoy | mnoy i
/ < . - .
N 2060 — 2090 COp0 — 2020
00:£0 w - . 00:20
Axoud o0 o) “, saBuBLo oL - - dionsa %
SORBDIRAUL BUAED 5 safiupys ou ‘8ounossal sjjod Jealsg '
SpUBS JBAIDG e Y siod JaAse 200 » %
BRUBUD S10318D "80IN0SAL SHOG J8ASG | jsenbal jjod SOAIBDES JOMSS
r 20'50 w ‘
o1z w cOED
s Y, 8012
soBUBYD S0IN0SHN A
0Zv0 ROy L 01198 [pAU
00:20 ! 0020

1senbal 9
0080

1218 pousd | palealep
AMOU JUSIUOS USRS

: . Y %,
H ,, Wﬂv Wu ‘.c-‘
UCHEDIEAUL 8UDED 1 ﬁ jsenba ¢
$0i50 Y ', 00'£0
% % .,
M wanbel p Y
Jsanbas 6 0-v0 Jeniss o) 1senbal Busjod
0G0 UEIS SDUSS PuR asucdsal sauoes
¢ JUSH0 'PaI0BIep Jsenbal JipoLR
/ Vel
[AL 4

\I\

9018

1 DBIDARP USRG 8ARY
yaLz-/ | PINOMIUSILCD Ysaid

PCT/US2011/061512

WO 2012/071283

32/41

[4T44

Reres oy linoy L o1 B's)
19% (BAISIUL UM “mmnsm.n mE [[ols:
UBIS SpUSs pUB 3suodsal sauoed

cC DA
Glee

[EAEIUL UM
paiepdn Buisg

8027
?

Fi

paeaio Buiag

e ‘peloslep isenbal sipouad 51 Anus ayoen) 51 Aljus syoe”)
., % kY :
GO0 ety % 5 0000
Riﬂ-v T L5
~ .- ‘ \
*, .
- 188nbal s 5
ﬁ&xvmm T~ - 00:zZ0 %,
@a.mc T~ ysanbes |
T~ 0010 "00:00
0050 =~ -~
gLoziLLice L OLOT/LLGT
. B T e— — — — —
§
m
;
3 D T
/ M «.....,.. 5,
7 paanuial s1eb % wenbal |
\\ 21ep Wm.co%mm '\ 0010
7 00¢0 .
K wenbal g
isenbal 87 0060
00%0
BLOBD WIOY
Brjes asuodss
dres oy inoy | oy “Ba) o P o
188 el ypmasenbes Buyed | /7 902e e
UEIS SpUSS pue mmco.n,wmx SOUDED L4 POLE 05ce B
USHD 'PSI0SIBpP 138nhal 21poLSd 0022 - {sinoy pz 0y “Ba)

198 71 1 eep ssucdsoy

PCT/US2011/061512

WO 2012/071283

33/41

opuz+
puiespandnCusdos
RUB2SINCGUIUSdo+
gphrumebs

pengebs
rauenebs

/

'S mwma ARugayosn); |
<<HOBUSIE> > |

£C DIA

CIxENSEL+
IKBU+

O 0jeial}
<<BIRMEUI>>

A

G 72 .
[EIR(]SAOIBI+ u&\
oerReb+ ommhwzum?
oHneis phiumebs ApT——
OBACLUB+ QIBUBISTIOADISI+ coanz%omm,wwwmw
aoneb+ gezigiels “okonseps
QHUELIOO+ fg OEBRIO+ |y) o1 Ui
gezisiabs QISUBIEIPPE+ iehei
obosalasl et pesuuhels reBeueyeyors
Ajuzayoe) ayde)] S
O <<3JBLBUI>> O <<30Bl9lUl> > Nwﬂ\
7 } AN
m\.;..\ f.,. .\..s!m\
giLes .,\,.\, ried
,.A,...f
18y14Auep| i g gaupesets
- e ,, 4 gadAieb+
P e QUBL+ HhE =l 2g Vi s TR nhiumsts
o7 * - p
0red O @14ayoen)| O JsusisiTayoen)| m QAEYATID _FHOYD+
A <<dlBLBI>> <<®oBLOWI>> 880 0V_AdING
e - g OAAONZY _Ad LN
- ¢ 300y ASINT+
8y14HN S0ee roee sAgaYsED
! -~
i 4
80¢¢ ZOEE

WO 2012/071283

34/41

PCT/US2011/061512

2404
B

I

<<ipierface>>

{Cachekniry O

/

1

2306
R I

2402
\-...»J‘i
<<ipterfaces> .
iCache O K=
2408
7
- s
<<interface>> O 1
Actual data
2502
e
Cg;;he R 0 *

<<interface>> o~
iCacheEntrylata

2004 2506
- o
7 Entry ; Metalnfo
+URI T R
2508
v
ResponseData
+data

FIG. 25

WO 2012/071283 PCT/US2011/061512

35/41

Something.com/myservice?x=n,y=a,t=<epoch_milliseconds>
-->response = X

. : - 2602
Something.com/myservice?x=n,y=a,t=<epoch_milliseconds>

2604 -->response = X
Something.com/myservice?x=n,y=a,t=<epoch_milliseconds>
-->response = X

FlG. 264

o e §F

Something. comimyservice"x=1, y=n
e =D TESPONSE = Z

/
/ Something.comimysearvicex=1, y=n+2"

2654 i“*« - PIESPONSE = I
Something. comfmyservice”x=1, y=n+a"

\,
S PTEEPONSe = 2

2652

FiG. 268

WO 2012/071283

- Email from Yahoo!:

36/41

when new notification is received,

- Email from generic IMAP:

available:

- Smart proxying for Twitter:
- Smart proxying for RSS client:
- Smart proxying for ESPN sporis feed:

PCT/US2011/061512

service polls i the background every 3¢ minutes and

service every 13 minutes, no notifications are

FiG. 274

service polls every 4 mninutes;
service polls every 10 minutes; and

zervice polls every 3 mninutes,

Original Polling interval

Yahoo! 30s. 30 s,
"""""""" AP 13s. TS
Twitter | 4s 5s.
RES 10's. 12s.
"""""" ESPN 3s. Is

FiG. 278

WO 2012/071283

PCT/US2011/061512
37/41

o ,) 2802

Receive in multiple transactions, data directed to a mobile }

device 2802 B
e .

e 2804

Batch the data prior to transmission 2804 »

¥

¥

Transmit the batched data |
to the mobile device over |

the celiular network such
that a wireless connection
need not be established
with the mobile device
every time each of the
multiple transactions
occurs

L3

N

h
2806

Send the batched data to
the mobile device, in a
single transaction over a
single instantiation of
wireless network
connectivity at the mobile
device

FIG. 28

WO 2012/071283

PCT/US2011/061512
38/41

""") 72902

Determine, from content hosts, default polling intervals of }
multiple applications of the respective content hosts }
. ¥ oeeeemseeseon

Assign updated polling intervals to some of the multiple I 2904

applications such that at ieast some of polling times for the -/
multiple applications coincide in time

"""" - s 2808

Select a common starting point in time for an initial poll of the ‘_.j
content hosts servicing the multiple applications

: W 2908

Poll for content from the content hosts based on the common { ;
starting point in time and the updated polling intervals

FIG. 29

PCT/US2011/061512

WO 2012/071283

389/41

s

eAsEiLl
IROBUC WINWHLLL B SB uoneoydde 2onus
au jo feasspu Buiod Ynepep B Ausp)

3

PLOE

FOABE BIGOUT L U0 sucnedde
SICHINW B4 10 1EDGLD 8L 130U
s Buleq se uonesidde Rogus 2 Ahusp)

3

enlARD BIQOLU 243 UC suoiedidde 1810 O 8AEISI
sucnesidde 1o SuEG 1O ANRINLS SIUD QU BURLUBIRG

\.ﬁi\

ZL08

sreasap Bunjod pnzep

oy o Joquiny Auoieuw e |

10 IOTEUIRLIOLSE LOWILLIOD
B 10 S stiuusec

o my

H

FOLE

sjeassl Buiod ynelsn
S jo asguanu Auoleie B 10 10108y
UOURUOT B J0 sepdiiniy suillsled

e

7

zo0e

WO 2012/071283

PCT/US2011/061512

40/41

¥

Transmit the first and second datasets received at the first and | ;
second instances, to the recipient over the wireless network

% e,
“":

FiG. 31

~3102

ot 3 .E Gd

~3106

~3108

WO 2012/071283 PCT/US2011/061512

41741
- 3200
Pre
erf.a(\\\m
Processor
Video Display
Instructions | 1 1 1 e
Alpha-numeric Input Device
Main Memory | |}
Cursor Control Device
. Bus{ |
Instructions -
Drive Unit
,,,,,, Machine-readable
) {Storage) Medium
Norn-volatile Memory
""""""" | instructions
Network Interface Device
Signal Generation Device
""“\/""\ ,,,,,,,,,,,,,,,,,,,
N
Network j o -
f ’ l\"'\,x-“"f"““

N

FIG, 32

INTERNATIONAL SEARCH REPORT International application No.
PCT/US2011/061512

A. CLASSIFICATION OF SUBJECT MATTER

HO4W 28/02(2009.01)i, HO4W 76/02(2009.01)i, HO4W 74/06(2009.01)i, HO4W 52/02(2009.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
HO4W 28/02; HO4J 3/06; HO4L 12/403; GO6F 17/60, HO4J 3/16; GO6F 15/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: data, traffic, transaction

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 05940813A A (THOMAS A. HUTCHINGS) 17 August 1999 1-33
See abstract.

A US 2010-0238915 Al (STEPHANE CAYLA et al.) 23 September 2010 1-33
See abstract and paragraph [0017].

A US 2004-0184475 Al (ROBERT MEIER) 23 September 2004 1-33
See abstract and paragraph [0024].

A US 7672291 B2 (JOHN C. WANG) 02 March 2010 1-33
See abstract and claim 1.

|:| Further documents are listed in the continuation of Box C. & See patent family annex.

* Special categories of cited documents: "T" later document published after the international filing date or priority

"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention

"E" earlier application or patent but published on or after the international ~ "X" document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone
cited to establish the publication date of citation or other "Y" document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents,such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later "&" document member of the same patent family

than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report
09 MAY 2012 (09.05.2012) 10 MAY 2012 (10.05.2012)
Name and mailing address of the ISA/KR Authorized officer
' Korean Intellectual Property Office
Government Complex-Daejeon, 189 Cheongsa-ro, Yoo Sun Jung
Seo-gu, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-5775

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT International application No.

Information on patent family members PCT/US2011/061512

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 05940813A A 17.08. 1999 WO 98-04992 A2 05.02. 1998

US 2010-0238915 At 23.09.2010 EP 1465371 Al 06.10.2004
US 2005-0105503 A1 19.05.2005
US 7693126 B2 06.04.2010

US 2004-0184475 A1 23.09.2004 EP 1606908 A2 21.12.2005
EP 1606908 B1 23.04.2008
EP 1971079 A2 17.09.2008
EP 1971079 A3 20.07.2011
US 2010-0265907 A1 21.10.2010
US 7801092 B2 21.09.2010
W0 2004-086689 A2 07.10.2004
WO 2004-086689 A3 27.01.2005

US 7672291 B2 02.03.2010 US 2006-0013187 A1 19.01.2006

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - description
	Page 94 - description
	Page 95 - description
	Page 96 - description
	Page 97 - description
	Page 98 - description
	Page 99 - description
	Page 100 - description
	Page 101 - description
	Page 102 - description
	Page 103 - description
	Page 104 - description
	Page 105 - description
	Page 106 - description
	Page 107 - description
	Page 108 - description
	Page 109 - description
	Page 110 - description
	Page 111 - description
	Page 112 - description
	Page 113 - description
	Page 114 - description
	Page 115 - description
	Page 116 - description
	Page 117 - description
	Page 118 - description
	Page 119 - description
	Page 120 - description
	Page 121 - description
	Page 122 - description
	Page 123 - description
	Page 124 - description
	Page 125 - description
	Page 126 - claims
	Page 127 - claims
	Page 128 - claims
	Page 129 - claims
	Page 130 - claims
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - drawings
	Page 139 - drawings
	Page 140 - drawings
	Page 141 - drawings
	Page 142 - drawings
	Page 143 - drawings
	Page 144 - drawings
	Page 145 - drawings
	Page 146 - drawings
	Page 147 - drawings
	Page 148 - drawings
	Page 149 - drawings
	Page 150 - drawings
	Page 151 - drawings
	Page 152 - drawings
	Page 153 - drawings
	Page 154 - drawings
	Page 155 - drawings
	Page 156 - drawings
	Page 157 - drawings
	Page 158 - drawings
	Page 159 - drawings
	Page 160 - drawings
	Page 161 - drawings
	Page 162 - drawings
	Page 163 - drawings
	Page 164 - drawings
	Page 165 - drawings
	Page 166 - drawings
	Page 167 - drawings
	Page 168 - drawings
	Page 169 - drawings
	Page 170 - drawings
	Page 171 - drawings
	Page 172 - wo-search-report
	Page 173 - wo-search-report

