Office de la Propriete Canadian CA 2248634 C 2004/02/24

Intellectuelle Intellectual Property

du Canada Office (11)(21) 2 248 634
Un organisme An agency of

d'Industrie Canada Industry Canada 12 BREVET CANADIEN

CANADIAN PATENT
13) C

(22) Date de depot/Filing Date: 1998/09/24 (51) CL.Int.%/Int.C1.° HO4L 29/02, HO4L 12/46
(41) Mise a la disp. pub./Open to Public Insp.: 2000/03/24 (72) Inventeurs/Inventors:

.1 . PRZYBYLSKI, PIOTR, CA;
(45) Date de deéelivrance/lssue Date: 2004/02/24 BEISIEGEL. MICHAEL. CA:

STARKEY, MICHAEL, CA

(73) Proprietaire/Owner:
IBM CANADA LIMITED-IBM CANADA LIMITEE, CA

(74) Agent: SAUNDERS, RAYMOND H.

(54) Titre : CHASSIS COMMUN DE CONNEXION
(54) Title: COMMON CONNECTOR FRAMEWORK

p—F

INFRASTRUCTURE 18

A ——T A

APPLICATION COMPONENT 14

12

- CCF CLIENT VIEW

16
CCF
INFRASTRUCTURE
VIEW

10

CCF CONNECTOR
IMPLEMENTATION

(57) Abrége/Abstract:

An object oriented framework for communication between an application component running in an infrastructure and a backena
system. The framework includes a connector protocol definition for a implementation by a connector component. The connector
component enables and constrains communication between the application component and the backend system. The
framework provides client view interface definitions for communication between the application component and the connector
component, and Infrastructure view Interface definitions for communication between the infrastructure and the connector
component.

S SNV ENEEN
O - 2.7 20 a0

J "..
KT
e
A

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02248634 1998-09-24

CA9-98-028

COMMON CONNECTOR FRAMEWORK
ABSTRACT

An object oriented framework for communication between an application component running in an
infrastructure and a backend system. The framework includes a connector protocol definition for
a implementation by a connector component. The connector component enables and constrains
communication between the application component and the backend system. The framework
provides client view interface definitions for communication between the application component and
the connector component, and infrastructure view interface definitions for communication between

the infrastructure and the connector component.

28

10

15

20

CA 02248634 2003-04-25

CA9-98-028

COMMON CONNECTOR FRAMEWORK

FIELD OF THE INVENTION

The present invention is directed to an improvement in computing systems and 1n particular to a

framework providing common connections between computer systems and computer software.

BACKGROUND OF THE INVENHON

A large number of software products are designed to be used to permit the connection difterent
computer systems running on various hardware platforms and under different software
configurations. This type of connecting software is referred to as "middleware", and is used to
provide clients (application programs or their components) with an access to different types of

systems, such as transaction servers or database systems (reterred to as "backend systems”).

Middleware is often provided as a library which is specific to a particular programming language and
operating system. The middleware library provides to client programs a well defined set of
application program interfaces (APlIs) used to access the middleware and the backend system which

the client 1s seeking to communicate with.

There are several problems with this middleware approach. For the middleware implementors, the
main problem is the variety of the backend computer systems that middleware has to use. For each
such computer system, often very different in its support and services, the middleware has to provide
consistent behaviour e.g. error reporting mechanism. often having to implement its services multiple

times.

The main problem for the clients is the number of different APlIs that even a simple chent may be

10

135

20

25

CA 02248634 1998-09-24

CA9-98-028

required to support. Each middleware product has its own requirements, and a client that is designed
to use several backend systems will typically be required to communicate using more than one piece
of middleware. The result is that the client program or system has to support an ever growing
number of specific APIs. The more versatile and powerful the client becomes, the more complexity
1s associated with the client’s access to backend systems and the resulting expanded use of
middleware systems. Even more severe problems may potentially occur when the client constitutes
a part of a tool or a framework. In that case maintaining flexibility in the tool or framework comes

at the cost of increasing the client, and therefore tool or framework, complexity.

It 1s therefore desirable to have a set of interfaces, or protocols, which will define how client
programs access backend systems. Such a set of interfaces, or protocols, will permit clients to access
backend systems using the same set of APIs independent of the concrete implementation of those
APIs. It1s desirable to have such interfaces or protocols implemented as a framework, which is able
to utilize object oriented programming and design concepts to provide a formal definition of the set
of interfaces so as to permit middleware to be replaced with a tool which will permit a uniform

approach to accessing backend systems.

SUMMARY OF THE INVENTION

According to one aspect of the present invention, there is provided an improved computer system

for client to backend system communication.

According to another aspect of the present invention, there is provided an object oriented framework
for communication between an application component running in an infrastructure and a backend
system, comprising a connector protocol definition for a implementation by a connector component
for communication between the application component and the backend system, the framework
further comprising a client view protocol definition for communication between the application

component and the connector component, and an infrastructure view protocol definition for

2

10

15

20

25

CA 02248634 1998-09-24

CA9-98-028

communication between the infrastructure and the connector component.

According to another aspect of the present invention, there is provided the above object oriented
framework in which the client view protocol definition comprises a connection specification protocol
definition to define communication of backend system connection properties to the connector
component, an interaction specification protocol definition to define communication of properties
associated with application component requests of backend system, a communication specification
protocol definition to define connection, disconnection and execution of communication functions

for communication between the application component and the backend system.

According to another aspect of the present invention, there is provided the above object oriented
framework in which the infrastructure view protocol definition comprises a set of managed
connection protocol definitions to define the creation and management of connections between the
application component and the backend system, wherein the set of managed connection protocol
definitions comprises a first subset of managed connection protocol definitions for implementation
in the connector component and a second subset of managed connection protocol definitions for
implementation in the infrastructure, a set of resource coordination protocol definitions to define
coordination of resources relating to connections between the application component and the
backend system, wherein the set of resource coordination protocol definitions comprises a first
subset of resource coordination protocol definitions for implementation in the connector component
and a second subset of resource coordination protocol definitions for implementation in the
infrastructure, an identifier protocol definition for implementation by the infrastructure to provide
connector component access to a unique identifier, a logon information protocol definition for
implementation by the infrastructure to provide connector component access to security items in the
Infrastructure, a component definition for logon information for definition of security items required
for connector component communication between the application component and the backend

system, a RAS protocol definition for implementation by the infrastructure to provide connector

access to error and trace logging.

o 0l b -

10

15

20

25

CA 02248634 1998-09-24

CA9-98-028

According to another aspect of the present invention, there is provided the above object oriented
framework wherein the application component runs on a thread in an infrastructure providing
Infrastructure services, the object oriented framework further comprising means for the infrastructure
to provide infrastructure services to the connector component by associating a runtime context of

the infrastructure services with the thread of the application component

According to another aspect of the present invention, there is provided the above object oriented
framework in which the first subset of managed connection protocol definitions comprises a protocol
definition for the creation of a connection, and a protocol definition for providing a connection
manager component with control over a managed connection, and in which the second subset of

managed connection protocol definitions comprises a protocol definition for reserving and releasing

managed connections.

According to another aspect of the present invention, there is provided the above object oriented
framework in which the first subset of resource coordination protocol definitions comprises a
protocol definition for creating a view of a connection resource for use by a resource coordinator,
and 1n which the second subset of resource coordination protocol definitions comprises a protocol

definition for registration of resources by a resource coordinator.

According to another aspect of the present invention, there is provided the above object oriented
frameworks in which the framework is implemented in the Java programming languages and in

which the protocol definitions are interfaces in the Java programming language.

According to another aspect of the present invention, there is provided the above object oriented
framework in which the application component runs on a thread in a Java infrastructure, the object
oriented framework further comprising means for the infrastructure to provide infrastructure services
to the connector component by associating a Java runtime context with the thread of the application

component.

According to another aspect of the present invention, there is provided a computer system

4

10

15

20

CA 02248634 1998-09-24

CA9-98-028

comprising a set of tools for use to create a communication between a first computer system
component and a second computer system component, the tools constraining the communication to
occur using a predefined protocol, the set of tools comprising a connector tool for a implementation
by a connector for communication between the first computer system component and the second
computer system component, the connector tool comprising a client view tool for defining
communication between the application component and the connector component, and an
infrastructure view tool for defining communication between the infrastructure and the connector

component.

Advantages of the present invention include the provision of a framework to define the interaction
between the client and the backend such that the same framework may be implemented for different
infrastructures and different backend systems. The need for clients to utilize different APIs, and for

infrastructures to support different middleware systems, is therefore reduced.

BRIEF DESCRIPTION OF THE DRAWINGS

The preferred embodiment of the invention is shown in the drawings, wherein:

Figure 1 is a block diagram showing the architecture of the framework of the preferred

embodiment of the invention, including an application component.

Figure 2 is block diagram illustration an example of system connections using the

framework of the preferred embodiment.
Figure 3 1s an interface diagram for the client view of the framework of Figure 1.

Figure 4 1s a block diagram showing the architecture of the framework of the preferred

embodiment including a fat application.

10

15

20

CA 02248634 1998-09-24

CA9-98-028

Figure 5 is an interface diagram for the infrastructure view of the framework of Figure

Figure 6 is a block diagram showing the architecture of the framework of the preferred

embodiment, including the runtime context.

In the drawings, the preferred embodiment of the invention is illustrated by way of example. It is
to be expressly understood that the description and drawings are only for the purpose of illustration

and as an aid to understanding, and are not intended as a definition of the limits of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Referring to Figure 1, there is illustrated in a block diagram the architecture of the framework of the

preferred embodiment.

The term "framework" relates to object oriented programming languages and systems. The preferred
embodiment is described below with reference to the object oriented language Java. Terminology
relating to the Java language is used in the description of the preferred embodiment. It will be
appreciated by those skilled in the art that the use of object oriented languages such as Java
facilitates the description of the preferred embodiment. However the protocols of the preferred
embodiment can be adopted and adapted to in other programming environments. Similarly, the
preterred embodiment can be implemented without using frameworks, although there are advantages

to both implementing and describing the preferred embodiment using the notion of frameworks.

"Frameworks" are used in this application to mean a collection of classes or interfaces in an object
oriented programming language which is designed to guide and constrain how a communication or

function is to be carried out by a system making use of the framework. A framework is similar in

10

20

25

CA 02248634 2003-04-25

CA9-98-028

certain respects to libraries. However, a library is typically a collection of routines or data definitions
which must be subject to relatively extensive programming and data design steps betore the
subroutines and/or data definitions of the library are usable. [n contrast, a framework not only
defines data structures and methods but also provides a detined interrelationship which ensures that

the methods and data structures are usable with limited input trom the user.

The user of a framework is able to use certain of the objects detined in the framework and is able,
where permitted by the framework design, to extend certain of the objects defined in the framework.
Thus a framework both provides predetined functionality and data and permits the extension of such
predefined functions and data by the user of the framework. A framework therefore enables and

constrains the user with respect to accessing resources and communicating in computer systems.

By using frameworks, which are capable of tightly defining data, functionality, and interfaces, it 1s
possible to utilize automated code generation facilities to write code to make use of the framework.
In contrast, typical middleware solutions to communication between client and backend systems
present substantial difficulties in automating the generation of code for use with the APIs of the

potentially dissimilar middleware svstems.

The framework of the preferred embodiment is described in the Java language, but is capable of

being implemented in other object oriented languages.

Figure 1 presents a Common Connector Framework (CCF), in block 10. Associated with the CCFE
are two sets of interfaces. One is named the CCF Client View (shown as block 12) and 1s between
the client or application component {shown as block 14) and the connector of block 10. The second
interface is the CCF Infrastructure View (shown as block 16) which is between the connector of
block 10 and the environment specific infrastructure (shown as block 18). The environment that the

CCF is running in as shown in Figure 1 is a well-detined component-based infrastructure.

The term "interface" as used in this description refers to Java intertaces. Java interfaces are

analogous to other object oriented language constructs referred to as protocols. An interface may

s avae Y S Yl 0 e N X N AR MG AR SN Y, v o s RN AR B I A et SR s et = . es o = SR -- . R Ll T - ST T R . - e Tee e ey Al @ e e - A At P, LIREF B RAE HZHOS H i b uC AR AR N S S - e T AT

.y e AP . N -~ . -

10

15

20

25

CA 02248634 1998-09-24

CA9-98-028

be thought of as a class which defines an agreed-upon behaviour. A Java interface includes
definitions of methods (and thus defines what behaviour of a class that implements the interface) but
the definitions are null definitions. It is the class that implements the interface which must
implement all the methods defined in the interface, thereby "agreeing" to certain behaviour. A class
1s able to implement more than one interface (for this reason, it is possible to view interfaces as

supporting multiple inheritance).

Returning to Figure 1, the division of the CCF into the two separate interfaces of blocks 12 and 16
allows for flexibility of implementation and use. The architecture of the framework of the preferred
embodiment 1s designed to permit various clients (or application components) to use well-defined
and consistent interfaces to create the connection with the desired backend systems. By dividing the
CCF connector interfaces into a client view interface and an infrastructure interface, the client can
be 1solated from the details of how a particular infrastructure handles such functions as error

handling, and trace logging (RAS services), or security controls.

The framework of the preferred embodiment permits all clients using the framework to utilize the
same Interface definition to obtain access to all backend systems. The CCF connector will be
different for each specific backend system but the defined client and infrastructure interfaces permit
each CCF connector to provide a well-defined structure for communication between the client and
the backend system. As is set out below, the interfaces defined in the preferred embodiment are
sufficiently simple to provide ease of use, yet are sufficiently powerful to be useable by all manner

of client and backend system combinations.

The set of interfaces shown in Figure 1 constitutes a contract between the client block 14, the
connector block 10 and the platform specific infrastructure block 18. The set of interfaces is small
enough to allow straightforward implementation, yet flexible enough to accommodate different
requirements of components. As will be seen from the following description, a client that uses
different connectors does not need to interface with numerous APIs of different middleware systems.

Instead, the client is able to use the same interface calls to the connector to establish a connection,

10

15

20

25

CA 02248634 1998-09-24

CA9-98-028

execute requests and disconnect from the backend system, with the differences between connectors

being limited to two well defined interfaces.

The architecture shown in Figure 1 also permits the connector implementation to be independent of
the platform it runs on (the infrastructure 18 in Figure 1), since it can request services, such as error
reporting, security information or coordination, from the infrastructure by using well defined set of
interfaces. Similarly, infrastructure 18 does not need to be concerned with the details of any
particular connector implementation and can implement generic services such as connection

management and coordination that can be used by any CCF connector.

A CCF connector is a package of classes which include implementations of the interfaces in the CCF
(those interfaces indicated as being implemented by the connector in Figures 3 and 5, below). The
classes in the package of a particular CCF connector are written to permit communication with a

particular backend system.

Figure 2 is a block diagram which illustrates how different clients are able to use implementations
ot CCF connectors to establish communication with backend systems. In the example of Figure 2,
there are two different infrastructures, shown as infrastructure n in block 20 and infrastructure p in
block 22. Clients are shown as Clientl, Client2, Client3, and Client4 in blocks 24, 26, 28, and 30,
respectively. Clientl and Client2 run in infrastructure n, while Client3 and Client4 run in

infrastructure p. The two backend systems are illustrated as BackendA and BackendB, in blocks 32

and 34, respectively.

The CCF connector implementations to permit the clients of blocks 24 to 30 to communicate with
the backend systems of blocks 32 and 34 are shown as blocks 40, 42, 44 and 46. Block 40 represents
a CCF connector implementation which is written for BackendA. This package contains classes
which include implementations of interfaces ConnectionSpec, InteractionSpec, Communication,
Managed Factory, Managed, Resource, and an extension of the class LogonInfoltems. These

interfaces and this class are described below.

10

15

20

CA 02248634 1998-09-24

CA9-98-028

Connector implementation 40 has available to it the infrastructure services of infrastructure n. This
is accomplished by use of the Infrastructure View interface, as implemented for infrastructure n. The

Infrastructure View interface is described in more detail below.

Similarly, Client3 uses CCF connector implementation 44 for BackendA, which also makes use of

the Infrastructure View interface to obtain the infrastructure services of infrastructure p (block 22).

In a like manner, Client2 and Client4 make use of CCF connector implementations designed for
BackendB, which connector implementations run in infrastructures n and p, respectively. Client2
also makes use of the CCF connector implementation for BackendA. In this case Client2 must

create a separate communication with Connector A n.

As can be appreciated, the clients of the example of Figure 2 will make use of the common interface
provided in the CCF Client View interface to carry out the communication with the two backend
systems. The CCF connector implementations for the two backend systems will likewise make use
of the common interface provided in the CCF Infrastructure View interface to obtain access to the

necessary services of the infrastructures.

As reterred to above, the framework of the preferred embodiment includes interfaces which
themselves define methods. The following describes the interfaces in the framework of the preferred
embodiment, including which components implement and which components use the interfaces, and

which methods are defined in the interfaces.

Figure 3 is an interface view which describes the interfaces of the Client View of the Common
Connector Framework. The Client View represents the contract between the thin client or
application component and the connector implementation. The following interfaces define the

connector to the client:

1. Communication (block 50 in Figure 3) is an interface implemented by all CCF connectors.

This interface defines methods to establish connection with the target system, perform the

10

CA9-98-028

communication and terminate the communication. The interface defines the following

CA 02248634 1998-09-24

methods (set out in block 52):

10

public abstract void connect()
This method establishes the connection with the backend system and if necessary can

also perform any communication specific setup such as verification of the validity

of the client's security credentials.

public abstract void execute (InteractionSpec interactionspec, Object input, Object
output)
This method performs one interaction with the backend system. The input and

output objects depend on the backend resource used.

public abstract void disconnect ()
This method terminates the communication with the back end system and

pertorms the necessary cleanup preparing the communication for the next use.

15 2. ConnectionSpec (block 54) is an interface encapsulating all the connection relevant

properties such as host name, port number or the queue name. The ConnectionSpec is

able to create the communications and provide a unique identifier, such as hash code, for

each connection. This interface defines two methods (in block 56):

20

public abstract Communication createcommunication()

This method creates a new communicaton.

public abstract int hashcode()
This method calculates and returns a connection specific unique identifier based

on the connection properties (for example, host name, queue name).

11

10

15

20

25

CA 02248634 1998-09-24

CA9-98-028

3. InteractionSpec (block 58) is an interface which defines request specific properties

such as program or transaction name, the interaction mode defining whether the request is
synchronous or asynchronous (SEND-RECEIVE, SEND, RECEIVE), and other

connector specific properties.

As Figure 3 indicates, the CCF connector implements the interfaces of the CCF Client View, and
the client uses the interfaces. The methods set out in the interfaces of the CCF Client View are
sufficiently generalized and powerful to permit the Client to access the backend system which a
particular connector is defined to connect to. As will also be appreciated, the client using the
connector of the CCF does not have to deal with those infrastructure functions such as RAS services,
which may be dealt with by the CCF connector in the Infrastructure View. Thus error handling
functions, for example, which are expressly dealt with by clients using the typical middleware

product, are no longer necessarily handled at the client level.

However, in some cases the client is designed so that the client itself uses the infrastructure services
which are set out in the Infrastructure View interface. Figure 4 presents a view of the CCF by such
a fat application client. InFigure 4 CCF Connector implementation 70 is shown having CCF Client
View 72 and CCF Infrastructure View 74. There is no infrastructure shown as a separate block in
the block diagram of Figure 4. Instead, Fat Application 76 is shown. This type of more complex
client uses the infrastructure interface of CCF Infrastructure View 74 for a direct access to the
services such as coordination or security. As will be appreciated, the architecture of Figure 4 is a
special case of the Figure 1 architecture of the preferred embodiment. The description below will
focus on the Figure 1 architecture, but the preferred embodiment may be implemented with

necessary modifications to provide the architecture of Figure 4.

An example of how the interfaces defined above may by implemented in classes which are used by

a client may be seen in reference to the example set out in Figure 2. Clientl in Figure 2 makes use
of ConnectorA_n. ConnectorA_n is a package which contains classes which implement interfaces

as defined above. In this example, assume that ConnectorA_n implements the ConnectionSpec

12

10

15

20

CA 02248634 1998-09-24

CA9-98-028

interface by class A_nConnectionSpec, InteractionSpec by class A _nlnteractionSpec, and

Communication by class A nCommunication.

The client may then create a new object using the following code:

Clientl_ConnectionSpec = new ConnectorA_n.A_nConnectionSpec

The object Client] _ConnectionSpec is an instance of the ConnectionSpec interface implementing

class A_nConnectionSpec, as found in the package ConnectorA n.

A communication object may then be created by the client by using the CreateCommunication

method which is found in the A nConnectionSpec class (mandated by the ConnectionSpec

interface):

A _nCommunication ¢ = Clientl_ConnectionSpec.CreateCommunication ()

An interaction specification must also be created by the client. The following code creates the object

Clientl InteractionSpec:

A nInteractionSpec Clientl_InteractionSpec =
new Connectord _n.A_nInteractionSpec

The client may then define the properties of the Client]l InteractionSpec object to reflect what
interaction is desired with the backend system. The description of the ConnectorA n package will
also indicate what object definition is required for input and output to and from the backend system.
The clientuses ¢ . connect () tocreate aconnection. The client may then use the execute method,
as defined 1n the class A nCommunication which implements the Communication interface in

package ConnectorA n. For example:

CALL c.execute (A_nInteractionSpec Clientl_InteractionSpec,

InputObject input, OutputObject output)

The above example illustrates, the manner in which the interfaces of the CCF Client View are used

to permit a client to communicate with a backend system. In the example, the call to the c.execute

13

10

15

20

235

CA 02248634 1998-09-24

CA9-98-028

method ensures that the interaction desired by the client will be carried out on the input in a manner
as defined in the interaction specification and that the output will receive the result of that

interaction.

In Figure 5, the Common Connector Framework Infrastructure View is illustrated. As described
above, the CCF Infrastructure View represents the contract between the implementation of a CCF
connector and a platform specific infrastructure. The interface between the CCF connector and the
infrastructure differs from the contract between the thin client and the connector. In the latter, the
connector implements and the client uses the set of interfaces (defined in the Client View interface
shown in Figure 3). Inthe case of the relationship between the CCF connector and the infrastructure,

both the connector and the infrastructure have to implement the set of interfaces to be used by the

other.

The interfaces set out in the CCF Infrastructure View are shown in Figure 5. The interfaces (and
the class) which are implemented by the CCF connector and used by the CCF infrastructure are the
ManagedFactory interface 80, Managed interface 82, Resource interface 84, and LogonInfoltems
class 86. The interfaces which are implemented by the infrastructure and used by the CCF connector
are ConnectionManager 88, Coordinator interface 90, Identifier interface 92, LogonInfor interface
94, and RASService interface 96. The implementations of the interfaces of CCF Infrastructure View
are designed to interact with the implementations of interfaces which are found in the CCF Client

View (as shown in Figure 3).

The interfaces (and class) of the CCF Infrastructure View which are implemented by a CCF

connector are designed as follows:

1. ManagedFactory interface 80 provides a connection manager (an implementation of

ConnectionManager interface 82) with the generic way of creating connections from

ConnectionSpec 54. The ManagedFactory interface 80 defines the following method:

- public Managed createManaged (ConnectionSpec connectionspec)

14

10

15

20

CA 02248634 1998-09-24

CA9-98-028

This method creates a managed connection based on the connection specification (from the

CCF Client View ConnectionSpec 54).

2. Managed interface 82 is implemented by a managed connection. A connection manager
(implementation of ConnectionManager interface 88) is able to control the entire life cycle
of the managed connection from its creation by an implementation of ManagedFactory
interface 80 to its destruction using the destroyManaged method which is defined in
Managed interface 82. Managed connections can also be reused by the connection manager
and therefore methods are included which relate to the reuse of a managed connection. The

main methods of Managed interface 82 are:

- public void destroyManaged ()
This method allows a connection manager to destroy a managed connection. The method is
used, for example, in cases where the connection manager reduces the number of the

connections managed by it.

- public void prepareManagedForReuse ()

This method prepares the connection to be reused by the connection manager.

3. Resource interface 84 defines the coordinator view of the connection resource. It contains
resource definition similar to that found in JTS/OTS and includes one and two phase commit

protocol support. Resource interface 84 defines the following methods:

- public void commit ()

The coordinator tells the resource that its state is valid and it is no longer needed.

- public void rollback()

The coordinator tells the resource that its state is invalid and it is no longer needed.

- public void commitOnePhase ()

The coordinator tells the resource that it can commit work using a one phase commit

15

10

15

20

CA 02248634 1998-09-24

CA9-98-028

protocol.

- public int prepare ()
The coordinator asks the resource whether its state is valid and if a subsequent call to commit

would succeed.

[naddition to the interfaces defined as described above, the connector extends and uses the following

class which is in the CCF Infrastructure View:

4. Logonlnfoltems class 86 is the superclass for all connector specific LogonInfoltem
classes. It defines the way in which a given CCF connector accesses security items specific

to that connector.

public logonInfo getlogoninfo ()
This method returns the logonlnfo object used to carry out the logoninfoitems

access methods. The methods are used in this object.

public string getpassword ()

This method returns the password.

public string getuser ()

This method returns the user.

public void setpassword (string password)

This method sets the password.

public void setuser (string user)

This method sets the user.

As the above description indicates, the CCF Infrastructure view contains interfaces (and one

16

10

15

20

235

CA 02248634 1998-09-24

CA9-98-028

superclass) which require that a protocol for managed connections be created when the
tframework of the CCF is instantiated. When a client wishes to access a backend system, the
client will call instances of objects created in classes which implement the interfaces of the CCF
Client View. The CCF connector implements the interfaces in the CCF Infrastructure View to
permit a managed connection to be created with the backend system. The managed connection
makes use of infrastructure services which are made available to the CCF connector object in
accordance with the interfaces in the CCF Infrastructure View which are implemented by each

particular infrastructure which supports the Common Connector Framework.

Referring again to Figure 5, the interfaces of the CCF Infrastructure View which are

implemented by the infrastructure are designed as follows:

1. ConnectionManager interface 88 defines the common connection manager as seen by a
CCF connector. ConnectionManager interface 88 defines management of connections
based on the hashcode method of ConnectionSpec interface 54. If the infrastructure
provides session ID then the connection manager implementing the ConnectionManager
interface 88 will manage the connection based on SessionID (see below description of the
Identifier interface), as well. The connection manager uses the connection management
properties, defined on the ConnectionSpec to create, reuse and destroy connections.
ConnectionManager 88 relates to connection management functions which can include
timeout requirements, billing constraints, or maximum simultaneous connections, for

example.

ConnectionManager interface 88 defines the following methods:

- public Managed reserve (ManagedFactory managedfactory, ConnectionSpec

connectionspec)

17

10

15

20

CA 02248634 1998-09-24

CA9-98-028

This method reserves a connection for the caller and returns it for the exclusive use of the
caller. Typically this will be called in the connect method (shown in block 52 of Figure 3)

of an implementation of Communication interface 50.

- public void clearForSessionlD (Identifier aSessionID)

This method clears the used connections list of the coordinator identified by the session.

-public void release (Managed managed)
This method 1s called to release a connection used exclusively by a client. Typically this

will be called by the disconnect method in the implementation of Communication

interface 50.

2. Coordinator 90 defines the common coordinator interface as seen by an
implementation of the Resource interface of a connector. Coordinator 90 allows
registration of resources. Since some resources should be handled before or after the
connection resources, the appropriate registration method should be used for such
resources (registerBetore or registerAfter). An implementation of the Coordinator
interface also returns a unique identifier, defined as a CoordinationID object, that may be
used by a backend system which is defined to require such an ID. Coordinator interface
90 1s related to coordination of logical units of work and provides a functionality to
permuit certain resources to be logically grouped such that interactions are appropriately

handled to preserve the logical interrelationship of the resources.
Coordinator interface 90 defines the following methods:

- public void clearAllRegistered ()

This method disposes of all the resources registered with the coordinator.

- public Identifier getCoordinationlD ()

This method returns the unique Coordination Identifier of this coordinator. The

18

10

15

20

CA 02248634 1998-09-24

CA9-98-028

CoordinationID is not changed by commit or rollback methods.

- public void register(Resource resource)

This method registers the Resource with the coordinator.

- public void registerAfter(Resource resource)
This method registers a resource (not a connection) to be registered after the registered

connections are registered.

- public void registerBefore(Resource resource)
This method registers a resource (not a connection) to be registered before the registered

connections are registered.

3. Identifier interface 92 is a generic interface implemented by objects that need to
provide a unique identifier. In the framework of the preferred embodiment, such a unique
identifier is used for the SessionID (used by the connection manager to organize the

connections) and 1s used for the CoordinationID by the coordinator.

4. Logonlnfo interface 94 defines the common way in which the infrastructure accesses
the security items and provides support for security requirements on the connector and
infrastructure side such as: on demand fetching of values, preloading of values, connector
having an environment independent way of getting logon info and type constraints for
properties. These requirements are realized by two elements in the framework of the

preterred embodiment: the LogonInfo interface and the LogonInofltems class.

The implementations of the LogonInfo interface represent an infrastructure specific way
of accessing security data. The LogonInfoltems class and its connector specific
subclasses define which specific security items a connector is looking for. The

LogonInfoltems class is to be extended by the connector by the definition of subclasses

19

CA 02248634 1998-09-24

CA9-98-028

which are specific to the security of the backend system which the connector is designed

to provide a connection with.

The lookup in the infrastructure is implemented using the LogonInfo object passed on
construction (as 1s described below, a connector retrieves the LogonInfo to use from the
runtime context). Even when no further items besides user and password are needed by a
particular connector, the connector has to introduce a subclass, so that a LogonInfo

implementation can differentiate LogonInfoltems on a connector basis.

The LogonlInfo interface defines the following methods:

- public Object getltem (LogonInfoltems logonlnfoltems, String itemname)

This method retrieves a named item from the LogonInfo object.

- public void setitem (LogonInfoltems logonInfoltems, String itemname, Object item)

This method sets a named item from the LogonInfo object.

5. RASService interface 96 defines the common reliability, availability and serviceability
services to all connectors. It allows error and trace logging by providing the log methods

and the mechanism to retrieve the log and error streams.

The above description indicates how the CCF defines the protocols for managed connections,
coordinated resources, logon information and RAS services. For a particular connector, the
infrastructure must implement the interfaces ConnectionManager, Coordinator, Identifier, LogonInfo
and RASService. An infrastructure which has implemented these interfaces can be used by any
connector which in turn implements the interfaces of the CCF Infrastructure View, namely
ManagedFactory, Managed, Resource and the class LogonInfoltems. Thus an infrastructure which
implements the interfaces set out above supports all CCF connectors. The CCF Infrastructure View,
as implemented on the CCF connector side, will vary for different backend systems. The

implementation of the interfaces ManagedFactory, Managed, Resource and the class LogonInfoltems

20

10

15

20

CA 02248634 1998-09-24

CA9-98-028

will vary based on the details of the backend system to be connected to. However, once written, the
connector for a particular backend will be available to be used in any CCF-supporting

infrastructures.

The CCF Infrastructure View design ensures that managed connections made by a client using a
CCF connector are run through a connection manager in the infrastructure and that resources are
coordinated by the infrastructure. The connector itself ensures that the logon information is passed

to the infrastructure by way of the accessor methods which use the LogonInfo interface.

According to the preferred embodiment, the infrastructure services are made available to a connector
implementation by use of the RuntimeContext. This is a class which defines all the infrastructure

services as used by the connector as shown on Figure 6.

To support CCF connectors, an infrastructure must extend the RuntimeContext class. In simple
cases, the CCF itself may extend the default RuntimeContext to create a subclass which may be
sufficient to for a particular infrastructure. In other cases, a subclass which is specific to the
infrastructure is created. A RuntimeContext is then set up at runtime. A connector implementation

then uses the RuntimeContext to obtain the infrastructure services.
The RuntimeContext defines the following methods:

- public static RuntimeContext getcurrent ()
This method returns the runtime context associated with the current thread. If there is none

1t creates a default runtime context, associates it with the thread, and returns it to the caller.

- public void setCurrent (RuntimeContext runtimecontext)

This method associates a runtime context with the current thread.

- public ConnectionManager getConnectionManager ()

This method returns the Connection Manager of this RuntimeContext.

21

Vap— nap gy AL

10

15

20

CA 02248634 1998-09-24

CA9-98-028

- public Coordinator getcoordinator ()

This method returns the Coordinator of this RuntimeContext.

- public Logoninfo getLogonInfo ()

This method returns the class containing the security information of the RuntimeContext.

- public RASService getRASService ()

This method returns the RASService of this runtime context.

public Identifier getSessionID ()
This method returns the unique session identifier associated with this runtime

context.

Public void close ()
This method does the final clean up at the end of a session to handle resource and
managed connections which remain in use. It also removes the RuntimeContext

of the current thread.

The RuntimeContext class is used to permit the infrastructure to create a runtimecontext
which 1s associated with the thread that the application component is running in. This thread
is also the thread on which an instance of a CCF connector is called on. This mechanism of
associating a runtimecontext with the thread of the connector gives the connector access to

the infrastructure services at runtime.

Returning to Figure 2, the above description indicates how the definitions of the protocols
between the client, connector, and interface, as set out by the Java language interface
construct, permits connectors to be built which can easily run in different infrastructures and

which provide a standard for different clients to access backend systems in a uniform way.

22

4 AR v FE S SRSl N

CA 02248634 1998-09-24

CA9-98-028

Although a preferred embodiment of the present invention has been described here in detail,
1t will be appreciated by those skilled in the art, that variations may be made thereto, without

departing from the spirit of the invention or the scope of the appended claims.

23

CA 02248634 1998-09-24

CA9-98-028

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR
PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. An object oriented framework for communication between an application component

running in an infrastructure and a backend system, comprising

a connector protocol definition for a implementation by a connector component for

communication between the application component and the backend system,

the framework further comprising

a client view protocol definition for communication between the application

component and the connector component, and

an infrastructure view protocol definition for communication between the

infrastructure and the connector component.

2. The object oriented framework of claim 1 in which the client view protocol definition

COMPrises

a connection specification protocol definition to define communication of backend system

connection properties to the connector component,

an interaction specification protocol definition to define communication of properties associated

with application component requests of backend system,

a communication specification protocol definition to define connection, disconnection
and execution of communication functions for communication between the application

component and the backend system.

24

CA 02248634 1998-09-24

CA9-98-028

3.

The object oriented framework of claims 1 or 2 in which the Infrastructure view

protocol definition comprises

a set of managed connection protocol definitions to define the creation and management of
connections between the application component and the backend system, wherein the set of
managed connection protocol definitions comprises a first subset of managed connection

protocol definitions for implementation in the connector component and a second subset of

managed connection protocol definitions for implementation in the infrastructure,

a set of resource coordination protocol definitions to define coordination of resources relating
to connections between the application component and the backend system, wherein the set
of resource coordination protocol definitions comprises a first subset of resource coordination
protocol definitions for implementation in the connector component and a second subset of

resource coordination protocol definitions for implementation in the infrastructure,

an 1dentifier protocol definition for implementation by the infrastructure to provide connector

component access to a unique identifier,

a logon information protocol definition for implementation by the infrastructure to provide

connector component access to security items in the infrastructure,

a component definition for logon information for definition of security items required for
connector component communication between the application component and the backend

system,

a RAS protocol definition for implementation by the infrastructure to provide connector

access to error and trace logging.

The object oriented framework of claim 3 wherein the application component runs on a
thread in an infrastructure providing infrastructure services, the object oriented framework

further comprising

means for the infrastructure to provide infrastructure services to the connector component by

25

CA 02248634 1998-09-24

CA9-98-028

assocliating a runtime context of the infrastructure services with the thread of the application

component
J. The object oriented framework of claim 3 in which
the first subset of managed connection protocol definitions comprises

a protocol definition for the creation of a connection, and a protocol definition for

providing a connection manager component with control over a managed connection,
and in which the second subset of managed connection protocol definitions comprises
a protocol detinition for reserving and releasing managed connections.
6. The object oriented framework of claim 3 in which
the first subset of resource coordination protocol definitions comprises

a protocol definition for creating a view of a connection resource for use by a resource

coordinator,

and in which the second subset of resource coordination protocol definitions comprises
a protocol definition for registration of resources by a resource coordinator.

/.. The object oriented framework of claims 1, 2 or 3 in which the framework is implemented in
the Java programming languages and in which the protocol definitions are interfaces in the

Java programming language.

8. The object oriented framework of claim 7 in which the application component runs on a
thread in a Java infrastructure, the object oriented framework further comprising means for
the infrastructure to provide infrastructure services to the connector component by

associating a Java runtime context with the thread of the application component

26

CA 02248634 2003-04-25

CA9-98-028

9. A computer system comprising a set of tools for use to create a communication between a
first computer system component and a second computer system component, the tools
constraining the communication to occur using a predefined protocol, the set of tools

comprising

a connector tool for a implementation by a connector tor communication between the first
computer system component and the second computer system component, the connector

tool comprising

a client view tool for defining communication between an application component and

a connector component. and

an infrastructure view tool for defining communication between an infrastructure and

the connector component.

R NEL TAR e de iR A e iy er v LG R e CEL DN [y 1000 M2 AN M (il s) N T R BRI ol 1 (S0 | Vst +) g 0025 a3 SR W2 TR LS VA)

CA 02248634 1998-09-24

INFRASTRUCTURE 18

APPLICATION COMPONENT 14

CCF CLIENT VIEW

10

CCF CONNECTOR
IMPLEMENTATION

12

16
CCF

INFRASTRUCTURE
VIEW

FIGURE 1

CA 02248634 1998-09-24

20 INFRASTRUCTURE n 22 INFRASTRUCTURE p

24 26 | 28 30
CLIENT I CLIENT 2 CLIENT 3 CLIENT 4
!
44 46 |
CONNECTOR | CONNECTOR CONNECTOR CONNECTOR

A n B n Ap | Ap

—

32 34

BACKEND A | BACKEND B
I

FIGURE 2

02248634 1998-09-24

CA

¢ HANOIA

192{qo o13192ds 10195uu0d
Io/pue
(RAR[PI0DY) d0vLIdUL JJjngalAg] oy Sunudwajduwi 3193(q0

‘(indino 103[qO ‘ndur 193[qO “vadguondeiajul 22dGuO1IOLIAU])AINIIXI PIOA JorlISqe d1jgnd
{(192uu0dsIP PIOA JorIISqe dS1jgnd
S :()192uu09 pIoA JoRIISqQR J1jgnd

S$J0J23UUO) [[B J0] 90RLIdJUI UOHBIIUNWWO) UowWwo) uonediunwwo)) 0§

" HAIHOH Y “ANES IAIFOTY ANAS) 9pow uondesd)ur dys ‘[ed 0} wes3oid sy

sadguoipeia] 8¢
JO dweu d3y) ‘39 ‘saipadouad jueadjal 3sanbail fje spjoy uonedi10ads uonoeidu]

‘()oponysey jut Joensqe dnqgnd

‘(uonedIunWwo)ajeald uonedunwwo)) Jensqe drqnd

‘Al 09 243 SI) ‘Joqunuiiod
(apooysey) uondauuod anbiun e saJ1IUP! ‘AL03OR) UONBIIUNWI 3 SI) “quinuil 55dSU0199UL0)) §

pue swewsoy ‘39 ‘sonuadouid jueAdjal UOIIIUUOD [[B SPIOY uol1eIL193ds uonduuo))
Sasn Jual|)

‘sjudwdjdut 103929uu0)

MITA JUIIL) HD

— . .

\\\\\

CA 02248634 1998-09-24

76 FAT APPLICATION

74

L 79 CCF

CCF CLIENT VIEW INFRA-
STRUCTURE
VIEW

70

CCF CONNECTOR
IMPLEMENTATION

FIGURE 4

02248634 1998-09-24

CA

S HANODIA

SWIBA1)S JO SPOYIdW-30] 9'1 ‘3uiZ30] 2del) pue J0LI3 0 SSAY IIIAIRSSVY 96

OJUJUOTO 3N YoIYym SPOYIdW J0SSIIIT YIIM JIYI930) Swid)l AJLINDIS J0II3UUO0D JO 19s aY) sauija(d SWOI[OJuIUu030T 98

$asn pue

SWAY AJLINDIAS Y] 0} SSAY 0Jujuo30 6 ‘SpUAIXI 10123UU0))

131J1JUdp! uolIssas anbiun 0] S0V 1Y NUIP] €6

9OBJIUI 924N0S3I I SLO/S.LE ‘92IN0SAT UOIIDAUUOD B JO MIIA SIOJRUIPOO)) %

10JBUIPIOO)) 06

J[0ADI3]I] SUOIIOAUUOD pageur Y} JIAO |ONUOD SIdFBURW UOI)IUUO)) pageury 78

(J1uo13euIpI00)) anbiun 0} $S3008 pue ‘22INOSIY JO UOIIRIISIBIY

AK10yoe.|pagdeueiy (8

LIOI}09UUO0D B B3I 0] JAFRUBW UOIIIJUUOD € I0J ABM JLISUIN)

dadguornpauuo)) Aq papraoid sanuadotd

JuowageuRU ‘((J[UOISSAS puR) apodysey SH Yim 23dguoldsuuo)) 193RURA UOI}OUUOD)
s1 Aatjod juowoSeurw ‘SuoidaUU0D PISRURLU JO ISBI[AI PUR JAIISIY 338
S9SN 10J92UU0)) SaSN 2INJONISLIJU]
‘syuowopdun sImponysedju] ‘syuowdjdu 10103uu0))

MIIA danpanajsejuy 1D)D

'..............-.---....‘...-.....-.......

CA 02248634 1998-09-24

Single threaded context, 1.e. the thread the connector
is called on is the same on which the infrastructure
established the RuntimeContext

INFRASTRUCTURE

APPLICATION COMPONENT

CCF CLIENT VIEW

.......................................

—

l CCF
INFRASTRUCTURE l
| VIEW

CCF CONNECTOR I l
IMPLEMENTATION

FIGURE 6

INFRASTRUCTURE 18

APPLICATION COMPONENT 14
12
- CCF CLIENT VIEW 2
) T 16
CCF
[NFRASTRUCTURE
VIEW
10
CCF CONNECTOR
IMPLEMENTATION - -]

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - abstract drawing

