wo 20187232310 A1 |00 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
20 December 2018 (20.12.2018)

(10) International Publication Number

WO 2018/232310 A1

WIPO I PCT

(51) International Patent Classification:
GO6F 12/10 (2016.01) GO6F 12/02 (2006.01)

(21) International Application Number:

(72) Inventor: JIANG, Xiaowei; 400 S. E1 Camino Real, Suite
400, San Mateo, CA 94402 (US).

(74) Agent: CAPRON, Aaron, J.; Finnegan, Henderson,

PCT/US2018/037863 Farabow, Garrett & Dunner LLP, 901 New York Avenue,

(22) International Filing Date: Nw, Washington, DC 20001-4413 (US).

15 June 2018 (15.06.2018) (81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,

(25) Filing Language: English AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(26) Publication Language: English CA,CH,CL,CN,CO, CR,CU, CZ,DE, DJ, DK, DM, DO,

o DZ, EC, EE, EG, ES, FL, GB, GD, GE, GH, GM, GT, HN,

(30) Priority Data: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
15/626,044 16 June 2017 (16.06.2017) US

KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant: ALIBABA GROUP HOLDING LIMITED
[—/US]; Fourth Floor, One Capital Place, P.o. Box 847,
George Town (KY).

(54) Title: METHOD AND APPARATUS FOR HARDWARE VIRTUALIZATION

106a @ 106b 108a\D

100

|— 102 104
Virtual Virtual Virtual Virtual aa
machine 120 machine 122 machine 140 machine 142
Guest Guest Guest Guest
software software software scftware

stack stack stack stack

126 128 |1 146 148 .

1 50 - 160
| Hypervisor 124 ‘ I Hypervisor 144 l
[iiCinterface 110a | [lOinterface 1122 |
Network interface 110 Network interface 112
P DN J
FiG. 1A

(57) Abstract: An apparatus for operating an input/output (I/O) intertace in a virtual machine is provided. The apparatus is configured
to: map a first portion of a memory device to a configuration space of an I/O interface; obtain a first mapping table that maps a set of
host space virtual addresses to a first set of physical addresses associated with the first portion of the memory device; obtain a second
mapping table that maps a second set of physical addresses associated with a second portion of the memory device accessible by a
virtual machine to the set of host space virtual addresses; generate a third mapping table that maps the second set of physical addresses
to the first set of physical addresses; and provide the third mapping table to a device driver operating in the virtual machine, to enable
the device driver to access the configuration space of the I/O interface.

[Continued on next page]

WO 2018/232310 A1 {100V A0 0 0K Y A r

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/232310 PCT/US2018/037863

METHOD AND APPARATUS FOR HARDWARE VIRTUALIZATION

TECHNICAL FIELD
[001] The present disclosure generally relates to the field of computer architecture,

and more particularly, to a method and apparatus for virtualization.

BACKGROUND

[002] Virtualization generally refers to a method of logically dividing system
resources among a plurality of software applications. In a virtualized environment, one or
more virtual machines are created. A virtual machine can operate like a computer system
emulator and can execute a set of software instructions. Typically a virtual machine operates
a software stack including a guest operating system, and one or more guest software
applications running on top of the operating system. The guest operating system provides
software frontend drivers that can communicate with backend drivers hosted in a hypervisor
to access a set of physical resources. The hypervisor can also regulate the access of the
physical resources by, for example, managing the access rights to the system resources,
transporting access request and requested resources between the virtual machines and the

system that provides the requested resources, etc.

SUMMARY

[003] Embodiments of the present disclosure provide an apparatus for operating an
input/output (I/O) interface in a virtual machine, the apparatus comprising one or more
memory devices that stores a set of instructions, and one or more hardware processors
configured to execute the set of instructions to: map a first portion of the one or more

memory devices to a configuration space of an I/O interface; obtain a first mapping table that

WO 2018/232310 PCT/US2018/037863

maps a set of host space virtual addresses to a first set of physical addresses associated with
the first portion of the one or more memory devices; obtain a second mapping table that maps
a second set of physical addresses associated with a second portion of the one or more
memory devices to the set of host space virtual addresses, wherein the second portion of the
one or more memory devices is accessible by a virtual machine; generate a third mapping
table that maps the second set of physical addresses to the first set of physical addresses; and
provide the third mapping table to a device driver operating in the virtual machine, wherein
the third mapping table enables the device driver to access the configuration space of the I/O
interface.

[004] Embodiments of the present disclosure also provide a method for operating an
input/output (I/O) interface in a virtual machine, the method comprising: mapping a first
portion of a memory device to a configuration space of an I/O interface; obtaining a first
mapping table that maps a set of host space virtual addresses to a first set of physical
addresses associated with the first portion of the memory device; obtaining a second mapping
table that maps a second set of physical addresses associated with a second portion of the
memory device to the set of host space virtual addresses, wherein the second portion of the
memory device is accessible by a virtual machine; generating a third mapping table that maps
the second set of physical addresses to the first set of physical addresses; and providing the
third mapping table to a device driver operating in the virtual machine, wherein the third
mapping table enables the device driver to access the configuration space of the I/O interface.

[005] Embodiments of the present disclosure also provide a non-transitory computer
readable medium that stores instructions that are executable by one or more processors of an
apparatus to perform a method for operating an input/output (I/O) interface in a virtual
machine, the method comprising: mapping a first portion of a memory device to a

configuration space of an I/O interface; obtaining a first mapping table that maps a set of host

WO 2018/232310 PCT/US2018/037863

space virtual addresses to a first set of physical addresses associated with the first portion of
the memory device; obtaining a second mapping table that maps a second set of physical
addresses associated with a second portion of the memory device to the set of host space
virtual addresses, wherein the second portion of the memory device is accessible by a virtual
machine; generating a third mapping table that maps the second set of physical addresses to
the first set of physical addresses; and providing the third mapping table to a device driver
operating in the virtual machine, wherein the third mapping table enables the device driver to
access the configuration space of the I/O interface.

[006] Additional objects and advantages of the disclosed embodiments will be set
forth in part in the following description, and in part will be apparent from the description, or
may be learned by practice of the embodiments. The objects and advantages of the disclosed
embodiments may be realized and attained by the elements and combinations set forth in the
claims.

[007] Itis to be understood that both the foregoing general description and the
following detailed description are exemplary and explanatory only and are not restrictive of

the disclosed embodiments, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[008] FIGs. 1A-1B are diagrams illustrating an exemplary virtualized environment
in which embodiments of the present disclosure can be used.

[009] FIGs. 2A-2C are diagrams illustrating exemplary components of exemplary
components of a hypervisor and an I/O interface, consistent with embodiments of the present
disclosure.

[010] FIG. 3 is a flow diagram illustrating an exemplary method of providing a
virtual machine access to a hardware device, consistent with embodiments of the present

disclosure.

WO 2018/232310 PCT/US2018/037863

[011] FIG. 4 is a flow diagram illustrating an exemplary method of operating a
hardware device with a virtual machine, consistent with embodiments of the present
disclosure.

[012] FIG. 5 is a flow diagram illustrating another exemplary method of operating a
hardware device with a virtual machine, consistent with embodiments of the present
disclosure.

[013] FIG. 6 is a block diagram illustrating an exemplary computer system on

which embodiments described herein can be implemented.

DESCRIPTION OF THE EMBODIMENTS

[014] Reference will now be made in detail to exemplary embodiments, examples of
which are illustrated in the accompanying drawings. The following description refers to the
accompanying drawings in which the same numbers in different drawings represent the same
or similar elements unless otherwise represented. The implementations set forth in the
following description of exemplary embodiments do not represent all implementations
consistent with the invention. Instead, they are merely examples of apparatuses and methods
consistent with aspects related to the invention as recited in the appended claims.

[015] Embodiments of the present disclosure provide an apparatus for providing one
or more virtualized computing environments. The apparatus is communicatively coupled with
a hardware system capable of performing a set of functions. The hardware system comprises
a configuration space, which comprises a set of hardware registers and a memory device and
stores a set of configuration data for configuring the performance of the set of functions. The
apparatus is associated with a host space in a memory device, and stores a mapping table that
maps a set of virtual memory addresses accessible to the virtual machine to the configuration
space via the host space. The mapping table enables a software application operating on the

virtual machine to directly access the hardware system by performing one or more memory

WO 2018/232310 PCT/US2018/037863

read/write operations to the set of virtual memory addresses.

[016] By providing direct access to a hardware system, embodiments of the present
disclosure enable a software application operating on a virtual machine to access the
resources provided by the hardware system more efficiently. As a result, the performance of
the software application, as well as the performance of the virtualized environment in which
the software application operates, can improve. Moreover, the virtual machine can operate a
generic and standard device driver capable of accessing the hardware system. As a result, the
deployment and maintenance of the virtualized environment can be performed more
efficiently as well.

[017] Reference is now made to FIG. 1A, which illustrates a virtualized
environment 100 in which embodiments of the present disclosure can be used. As shown in
FIG. 1A, virtualized environment 100 includes a host machine 102 and a host machine 104.
Host machine 102 may be communicatively coupled with a user device 106a and a user
device 106b via network 103, whereas host machine 104 may also be communicatively
coupled with a user device 108a and 108b via network 103. Each of host machines 102 and
104 can be a server and can provide virtualized computing and networking resources to user
devices 106a, 106b, 108a, and 108b. For example, host machines 102 and 104 operates a chat
messaging software application that provides the chat messaging session between user
devices 106a and 108a. Host machines 102 and 104 also operates a Voice-over-IP (VoIP)
software application that provides a VoIP session between user devices 106b and 108b. Users
can log into host machines 102 and 104 to access the chat messaging software application
and the VoIP software application via the user devices. Host machines 102 and 104 can
provide a virtualized environment by, for example, allowing user devices 106a and 108a to
access the chat messaging software application but not the VoIP software application.

Moreover, host machines 102 and 104 also allow user devices 106b and 108b to access the

WO 2018/232310 PCT/US2018/037863

VoIP software application, but not the chat messaging software application.

[018] As shown in FIG. 1A, host machines 102 and 104 further include,
respectively, a network interface 110 and a network interface 112. Network interfaces 110
and 112 can be configured to provide packetized data transmission over network 114 to
support the chat messaging session and the VoIP session according to predetermined network
protocols, such as Transmission Control Protocol/Internet Protocol (TCP/IP), Real-Time
Transport Protocol (RTP), RTP Control Prtocol (RTCP), etc. Both of network interfaces 110
and 112 further comprises, respectively, an I/O (input/output) interface 110a and an I/O
interface 112a. Network interfaces 110 and 112 can interface with other components of,
respectively, host machines 102 and 104 via the I/O interface. The I/O interface can be based
on a parallel interface (e.g., Peripheral Component Interconnect (PCI)), a serial interface (e.g.,
Peripheral Component Interconnect Express (PCle)), etc. As an illustrative example, network
interfaces 110 and 112 can be a PCle network interface card (NIC) connected to host
machines 102 and 104 via a PCle interface.

[019] To provide a virtualized environment to user devices 106a and 106b for
accessing I/0 interface 110a (and the networking resources provided by network interface
110), host machine 102 hosts a virtual machine 120, a virtual machine 122, and a hypervisor
124 that regulates the access of I/O interface 110a by virtual machines 120 and 122.
Similarly, to provide a virtualized environment to user devices 108a and 108b for accessing
I/O interface 112a (and the physical resources provided by network interface 112), host
machine 104 also hosts a virtual machine 140, a virtual machine 142, and a hypervisor 144
that regulates the access of I/O interface 112a by virtual machines 140 and 142.

[020] Each of the virtual machines operates a guest software stack to provide a user
device access to the 1/0 interface. For example, virtual machine 120 can operate a guest

software stack 126, virtual machine 122 can operate a guest software stack 128, virtual

WO 2018/232310 PCT/US2018/037863

machine 140 can operate a guest software stack 146, whereas virtual machine 142 can
operate a guest software stack 148. Each of the guest software stacks can include a guest
operating system, as well as one or more software applications that operate on top of the
guest operating system to access the I/0 interfaces and the network interfaces. For example,
the aforementioned chat messaging software application can be included in guest software
stacks 126 and 146, whereas the aforementioned VolP software application can be included
in guest software stacks 128 and 148.

[021] Each of guest software stacks 126, 128, 146, and 148 also includes a device
driver capable of accessing I/O interface 110a or 112a. The device driver can be a generic
driver that is a part of a standard build of the guest operating system. The device driver can
be, for example, a Virtl/O Frontend Driver. The guest operating system included in the guest
software stacks can be, for example, Microsoft™ Windows™, Ubuntu™, Red Hat™
Enterprise Linux ™ (RHEL), etc. As to be discussed below, a hypervisor (e.g., hypervisor
124, hypervisor 144, etc.) can be a type-1 or type-2 hypervisor and can regulate access of the
I/O interface by the device driver, which in turn can regulate the access of the I/O interface
by the guest software stack that includes the device driver. For example, hypervisor 124 can
control which of the chat messaging application (operating in virtual machine 120) and the
VolIP application (operating in virtual machine 122) can use /O interface 110a (and network
interface 110) to transmit data over network 114. Likewise, hypervisor 144 can also control
which of the chat messaging application (operating in virtual machine 140) and the VoIP
application (operating in virtual machine 142) can use I/O interface 112a (and network
interface 112) to transmit data over network 114.

[022] Each of host machines 102 and 104 includes, respectively, a memory device
150 and a memory device 160. The aforementioned virtual machines, guest software stacks,

and hypervisors can be software codes stored in the memory devices 150 and 160, and

WO 2018/232310 PCT/US2018/037863

executed by one or more hardware processors (not shown in FIG. 1A), to provide the
aforementioned virtualized environment, as well as the chat messaging session and the VoIP
session, for the user devices. Each of memory devices 150 and 160 also provides memory
spaces to be used by the virtual machines, guest software stacks, and the hypervisors when
operating on host machines 102 and 104, as well as by the I/O interfaces.

[023] In some embodiments, each of memory devices 150 and 160 can include a
region designated as a host space, and one or more regions designated as guest spaces. The
host space is accessible the by hypervisors and the I/O interfaces, whereas the guest spaces
are accessible by the virtual machines and the guest software stacks. Each virtual machine
can be assigned a guest space, and software applications running on different virtual
machines are isolated from one another. For example, referring to FIG. 1B, memory device
150 can include a guest space 152a, a guest space 152b, and a host space 154. Guest space
152a can be assigned to virtual machine 120 (as well as guest software stack 126), guest
space 152b can be assigned to virtual machine 122 (as well as guest software stack 128),
whereas host space 154 can be assigned to hypervisor 124 and I/O interface 110a. Although
not shown in FIG. 1B, it is understood that memory device 160 can also include a set of
guest spaces assigned to virtual machines 140 and 148, and a host space assigned to
hypervisor 144 and /O interface 112a.

[024] Host space 154 further includes an I/O space 154b. I/O space 154b may be
coupled with a set of hardware registers of 1/0 interface 110a, as a part of a memory-mapped
I/0 scheme. With a memory-mapped I/O scheme, data buses that are physically connected to
a set of hardware registers and memory devices of an I/O interface (e.g., /O interface 110a)
can also be physical connected to a memory device of a host machine (e.g., memory device
150 of host machine 102). With such arrangements, the hardware registers and the memory

device of I/0O interface 110a can be accessed by memory write/read operations to I/O space

WO 2018/232310 PCT/US2018/037863

154b. The hardware registers of I/0 interface 110a can store configuration information
including, for example, an identifier of the I/O interface, access control information, a set of
memory addresses for accessing the 1/0 interface, ete.

[025] In a case where I/O interface 110a is a PCle interface, the configuration
registers may include, for example, Device Identification Register (DIR), Base Address
Registers (BAR), a Notify Register, etc. BAR registers may store, for example, a set of
physical addresses associated with the memory device of I/O interface 110a that is accessible
via I/O space 154b. Notify Register can store a notification provided by, for example, a
device driver, to start an operation at I/O interface 110a. As to be discussed in more details
below, a device driver can perform memory write/read operations to I/0 space 154b to store
the configuration information to the hardware registers, and to store other operation
information to the memory device of I/0 interface 110a, to control I/O interface 110a to
perform one or more operations.

[026] In some embodiments, a hypervisor can allow a device driver operating in a
guest space to directly access a configuration space assigned to an I/O interface, to configure
the I/O interface to perform an operation. The hypervisor can create and store a memory
mapping table that maps a set of virtual addresses in the guest space, which is accessible by
the device driver, to a set of physical addresses in the configuration space. Based on the
mapping, the device driver can store data at the configuration space by performing memory
read/write operations to the guest space virtual addresses, to control and/or configure the I/O
interface to perform an operation.

[027] As an illustrative example, a device driver operating in virtual machine 120
can receive a packet transmission request from the chat messaging application of the guest
software stack 126. The device driver can identify a location in the configuration space based

on the memory mapping table, and write data related to the packet transmission request in the

WO 2018/232310 PCT/US2018/037863

configuration space. The data may include, for example, a notification to I/O interface 110a
to prepare for the packet transmission, and information related to the packet transmission
(e.g., actual payload data, or a set of memory addresses where the payload data is stored,
whether the data are for transmission or are received from the network, etc.). I/O interface
110a may monitor the configuration space and, upon detecting the notification, acquire the
payload data, and then provide the payload data to network interface 110 to perform the
packet transmission over network 114. After network interface 110 completes the packet
transmission, it may also notify hypervisor 124 (e.g., by raising an interrupt) about the
completion of the packet transmission. Hypervisor 124 may route the interrupt to the device
driver of virtual machine 120, so that the device driver can handle the next packet
transmission.

[028] Reference is now made to FI1G. 2A, which illustrates exemplary components
of hypervisor 124 and 1/0O interface 110a of FIG. 1A, consistent with embodiments of the
present disclosure. As shown in FIG. 2A, hypervisor 124 includes a host driver 202, a virtual
machine creation module 204, a virtualization controller 206, and a memory translation
module 208. Further, 1/0 interface 110a includes a virtualization module 210 that interfaces
with a device driver 126a (e.g., a Virtl/O Front End driver) operating in guest software stack
126. Although not shown in FIG. 24, it is understood that hypervisor 124 of FIG. 1A may
include similar components as hypervisor 124, and that I/O interface 112a may include
similar components as I/O interface 110a.

[029] Host driver 202 handles resources allocation by, for example, allocating a
portion of host space 154 for I/O space 154b, Host driver 202 may execute or incorporate a
software routine (e.g., mmap) to perform a memory-mapped I/O operation, to obtain a set of
physical addresses in memory device 150 that are mapped to the hardware registers and the

memory device of [/O interface 112a. Host driver 202 can then create I/0 space 154b within

10

WO 2018/232310 PCT/US2018/037863

host space 154, and generate a set of 1/O space physical addresses.

[030] Virtual machine creation module 204 handles virtual machine creation, which
may include, for example, allocating a portion of memory device 150 to a guest space (e.g.,
guest spaces 152a), and providing the allocated portion to the created virtual machine (e.g.,
virtual machine 120), which can then use the allocated memory space to store and execute the
associated guest software stack. Virtual machine creation module 204 also creates a set of
virtual addresses mapped to the guest space physical addresses, and provides the guest space
virtual addresses to the virtual machine, upon receiving a request from the virtual machine.
Virtual machine creation module 204 also creates a mapping between another set of virtual
memory addresses, which are received from virtualization controller 206, to a set of guest
space physical addresses accessible to virtual machine 120. The mapping allows
virtualization controller 206 to perform read/write memory operations to the guest space,
hence virtualization controller 206 can monitor and/or control the memory operations
performed by guest software stack 126 in the guest space.

[031] Virtualization controller 206 can coordinate the operations of host driver 202
and virtual machine creation module 204 to also generate a mapping between the set of guest
space physical addresses and the set of I/O space physical addresses, to allow the device
driver of a virtual machine to directly access the I/O interface. As an illustrative example, as
shown in FIG. 2A, virtualization controller 206 can, via communication 220, invoke host
driver 202 to allocate a portion of host space 154 for I/O space 154b. Host driver 202 can
then exchange data with I/O interface 110a, via communication 222, and map 1/O space 154b
to the configuration space of I/O interface 110a. For example, host driver 202 can receive the
physical addresses of a memory device of /O interface 110a, as well as information about
addressing of the configuration registers of I/O interface 110a, as a part of communication

222. After creating the mapping between the physical addresses of I/O space 154b and the

11

WO 2018/232310 PCT/US2018/037863

physical memory addresses and the configuration registers of I/O interface 110a, host driver
202 can also transmit the mapping information to I/O interface 110a via communication 222,
so that I/O interface 110a can also access I/O space 154b. Host driver 202 then returns a set
of 1/0 space physical addresses, which can be used to access I/O interface 110a, back to
virtualization controller 206, via communication 224, Virtualization controller 206 then
generates a set of virtual addresses (accessible by virtualization controller 206) mapped to the
set of I/O space physical addresses received from host driver 202. Virtualization controller
206 then invokes virtual machine creation module 204 to create a virtual machine (e.g.,
virtual machine 120), via communication 226. Virtual machine creation module 204 then
allocates guest space 152a, and create another mapping between a set of guest space physical
addresses (associated with guest space 152a) and the set of virtual addresses accessible by
virtualization controller 206.

[032] Based on the operations among host driver 202, virtual machine creation
module 204, and virtualization controller 206, a mapping can be created between a set of
guest space virtual addresses and a set of I/O space physical addresses. The mapping allows a
virtual machine (and the device driver operating in it) to directly access the configuration
registers of the I/O interface. An example of the mapping is illustrated in FIG. 2B. As shown
in FIG. 2B, a guest space virtual address 232 is mapped to a guest space physical memory
address 234 (within guest space 152a), after virtual machine creation module 204 creates
virtual machine 120. Guest space physical memory address 234 is also mapped to a host
space virtual address 236 accessible by virtualization controller 206. Host space virtual
address 236 is also mapped to an 1/O space physical address 238 provided by host driver 202.
Based on these mappings (which can be in the form of mapping tables), a direct mapping 240
between guest space virtual address 232 and 1/0 space physical address 238 can be formed.

Memory translation module 208 can store direct mapping 240 by, for example, storing a

12

WO 2018/232310 PCT/US2018/037863

mapping table that maps guest space virtual address 232 to I/O space physical address 238.

[033] In some embodiments, the mapping table can be in the form of, for example,
Extended Page Table (EPT). Virtualization controller 206 can include components of a Quick
Emulator (QEMU), whereas virtual machine creation module 204 can also include
components of a kernel-based virtual machine (KVM), and can provide access to the EPT.
With KVM, the EPT can be updated based on a VM_Exit event. For example, after virtual
machine 120 is created, and device driver 126a attempts to access a guest space virtual
memory address that is either not yet allocated or not yet mapped to an I/O space physical
address, an EPT fault may arise. The EPT fault may lead to an exit event of virtual machine
120 (e.g., a VM_exit event), which in turn can cause the KVM to create a mapping between
the guest space memory virtual address (being accessed by the device driver) to a guest space
physical address that has been mapped to an I/O physical space address. The creation of the
mapping can result in a new direct mapping between the guest space virtual address and the
/O space physical address. KVM can then update the EPT to include the new direct
mapping. After restarting virtual machine 120, device driver 126a can then access the EPT to
obtain the direct mapping, and access the I/O space by performing memory read/write
operations to the guest space virtual addresses mapped to the I/O space.

[034] Although FIG. 2A depicts memory translation module 208 as a part of
hypervisor 124, it is understood that memory translation module 208 can also be a separate
component from hypervisor 124. Moreover, memory translation module 208 can also be
accessed by an input-output memory management unit (IOMMU).

[035] Referring back to FIG. 2A, device driver 126a can obtain the direct mapping
from memory translation module 208 via communication 242. Based on the direct mapping,
device driver 126a can obtain a set of guest space virtual addresses that are mapped to a set of

1/0 space physical addresses. Device driver 126a can perform memory write operations to the

13

WO 2018/232310 PCT/US2018/037863

set of guest space virtual addresses to store a set of configuration data 244 at I/O space 154b.
The configuration data 244 will also be received by virtualization module 210. Based on the
configuration data, virtualization module 210 can control network interface 110 to perform
one or more operations such as, for example, controlling network interface 110 to transmit
data to network 114, to provide data received from network 114, etc.

[036] Reference is now made to FIG. 2C, which illustrates the exemplary
components of network interface 110, which includes 1/O interface 110a, as described above.
As shown in FIG. 2C, I/O interface 110a includes virtualization module 210, which includes
hardware registers 250, a memory device 260, and a backend module 270. Memory device
260 further stores a task queue 280. 1/0 interface 110a further comprises I/O interface core
logic 290, which interfaces with backend module 270. Backend module 270 also interfaces
with network interface core logic 295. These components of I/0 interface 110a can be a
packaged functional hardware unit designed for use with other components (e.g., portions of
an integrated circuit) or a part of a program (stored on a computer readable medium) that
performs a particular function of related functions. These components can be comprised of
connected logic units, such as gates and flip-flops, and/or can be comprised of programmable
units, such as programmable gate arrays or processors.

[037] Hardware registers 250 may include, for example, a set of configuration
registers for configuring the operations of I/O interface 110a. In a case where 1/O interface
110a is a PCle interface, the configuration registers may include, for example, Device
Identification Register (DIR), Base Address Registers (BAR), Notify Register, etc. Task
queue 280 may store information related to a set of tasks to be performed by /0 interface
110a (and network interface 110). The information stored may include, for example, a type of
the operation (e.g., whether it is for a transmission of data packets to network 114, for

reception of data packets from network 114, etc.), a set of guest space virtual addresses for

14

WO 2018/232310 PCT/US2018/037863

storing the data (in a case where the data is to be transmitted to network 114), or for
retrieving the data (in a case where the data is received from network 114), and a virtual
machine identifier associated with the operation. In some embodiments, task queue 280 can
be configured as Virtqueue, a VRING table, etc.

[038] As discussed above, both hardware registers 250 and task queue 280 can be
mapped and accessible by a device driver operating in a virtual machine (e.g., device driver
126a), via I/O space 154b. The device driver can obtain memory mapping information from
BAR registers by accessing the portion of I/O space 154b that is mapped to the BAR
registers, to obtain a set of host space physical addresses that are mapped to the locations of
memory device 260 where task queue 280 are stored. The device driver can then submit a
request to memory translation module 208 to translate the host space physical addresses to a
set of guest space virtual addresses, and access task queue 280 by performing memory read
operations to the set of guest space virtual addresses. The device driver can also submit
memory translation requests to memory translation module 208 to obtain the set of guest
space virtual memory addresses to access hardware registers 250.

[039] Backend module 270 can interface with hardware registers 250, task queue
280, I/O interface core logic 290, and network interface core logic 295 to handle the
aforementioned data packet transmission or reception tasks. To proceed with a data packet
transmission task, the device driver can update task queue 280 by inserting a new data packet
transmission task in the task queue. The task is also associated with a set of guest space
virtual addresses where the data to be transmitted are stored. As discussed above, the guest
space virtual addresses can be mapped to I/O space 154a, and the device driver operating in
virtual machine 120 may directly store data in [/O space 154a by performing memory write
operations using the guest space virtual addresses mapped to I/O space 154a. After storing

the data in I/O space 154a, the device driver can also access hardware registers 250 (via I/O

15

WO 2018/232310 PCT/US2018/037863

space 154a) and write into the Notify Register, to notify backend module about the data
packet transmission task.

[040] After detecting the write activity at the Notify Register, backend module 270
can retrieve the new data packet transmission task from task queue 280, and obtain the set of
guest space virtual addresses associated with the task. Backend module 270 may submit a
request to memory translation module 208 (e.g., via IOMMU) to translate the guest space
virtual addresses to, for example, a set of /O space physical addresses (e.g., of /O space
154b). Based on the translated I/O space physical addresses, backend module 270 can
perform memory read operations to obtain the data to be transmitted from virtual machine
120. Backend module 270 may provide the data to I/O interface core logic 290 for additional
processing (e.g., to perform 8b/10b encoding, etc.), and then provide the processed data to
network interface core logic 295. Network interface core logic 295 can then generate data
packets based on the processed data, and release the data packets to network 114, After
receiving a notification from network interface core logic 295 that the data packet
transmission has been completed, backend module 270 can notify the device driving
operating in virtual machine 120 (e.g., by raising an interrupt) about the completion. The
notification can be transmitted directly to virtual machine 120 (e.g., by writing data related to
the interrupt to a guest memory space accessible by the virtual machine), or to virtualization
controller 206, which then writes data related to the interrupt to the guest memory space, to
notify the device driver about the completion.

[041] On the other hand, to handle a data packet reception, backend module 270
may receive data extracted from a received data packet from network interface core logic
295. Backend module 270 can determine, from task queue 280, that there is a pending data
packet reception task at the top of the queue, and that the received data packet is for that

pending data packet reception task. Backend module 270 can also obtain a set of guest space

16

WO 2018/232310 PCT/US2018/037863

virtual addresses associated with the pending data packet reception task from task queue 280,
and submit a request to IOMMU to translate the guest space virtual addresses to a set of I/O
space physical addresses in I/0 space 154b. Backend module 270 can also provide the
received packet data to I/0O interface core logic 290 for additional processing (e.g., to perform
8b/10b decoding, etc.), and then perform memory write operations using the set of I/O space
physical addresses to store the processed data in I/0 space 154b. Backend module 270 can
also notify the device driver operating in virtual machine 120 (e.g., device driver 126a) about
the received packet data by, for example, raising an interrupt. Upon receiving the notification,
the device driver can obtain the guest space virtual addresses from the pending data packet
reception task at the top of queue 280, and perform a memory read operation to obtain the
received packet data.

[042] Reference is now made to FIG. 3, which illustrates an exemplary method 300
of providing a virtual machine access to a hardware device, consistent with embodiments of
the present disclosure. The method can be performed by, for example, hypervisor 124 in
conjunction with guest software stack 126 and virtualization module 210 of FIG. 2A.

[043] After an initial start, virtualization controller 206 instructs host driver 202 to
allocate a portion of memory device 150 accessible by hypervisor 124 (e.g., host space 154),
and map the allocated portion of memory device 150 to the hardware registers and the
memory device of I/0O interface 110a, in step 302. After receiving the instruction from
virtualization controller 206, host driver 202 allocates an I/O space mapped to I/O interface
110a (e.g., [/O space 154a), and returns a set of I/O space physical addresses, in step 304.
After receiving the set of physical addresses mapped to the hardware registers and the
memory device of I/O interface 110a, the virtualization controller 206 generates a set of
virtual addresses accessible by the virtualization controller, and maps the set of virtual

addresses to the set of physical addresses received from host driver 202, in step 306.

17

WO 2018/232310 PCT/US2018/037863

Virtualization controller 206 then provide the set of host space virtual addresses to virtual
machine creation module 204, and instructs virtual machine creation module 204 to create a
virtual machine, in step 308.

[044] Virtual machine creation module 204 allocates a guest space (e.g., guest space
152a) from memory device 150, and creates a mapping between a set of guest space physical
memory addresses (associated with guest space 152a) and the set of host space virtual
addresses (received from virtualization controller 206 and mapped to I/O space 154a), in step
310. Based on the mapping between the set of virtual addresses received from virtualization
controller 206 and the I/O space physical addresses, virtual machine creation module 204 also
creates a mapping between the set of guest space physical memory addresses and the [/O
space physical addresses, in step 312. Virtual machine creation module 204 can generate a set
of guest space virtual addresses mapped to the set of guest space physical addresses that have
already been mapped to the 1/0 space physical addresses, and create or update an Extended
Page Table (EPT) including a direct mapping between the set of guest space virtual addresses
and the I/O space physical addresses, in step 314.

[045] The generation of guest space virtual addresses can be due to an event (e.g.,
VM exit) caused by a virtual machine attempting to access a guest space virtual address that
does not exist or is not yet mapped to the I/O space. The EPT can be stored in, for example,
memory translation module 208. Based on the direct mapping of the EPT, a device driver
operating in a virtual machine can access the hardware registers and memory device of I/O
interface 110a by performing one or more memory read/write operations, to control the
operations of the I/O interface.

[046] Reference is now made to FIG. 4, which illustrates an exemplary method 400
of operating a hardware device with a virtual machine, consistent with embodiments of the

present disclosure. The method can be performed by, for example, device driver 126a

18

WO 2018/232310 PCT/US2018/037863

operating in virtual machine 120 and I/O interface 110a of FIG. 1A.

[047] After an initial start, a device driver (e.g., device driver 126a) may receive a
data packet transmission request from a software application that is a part of guest software
stack 126, in step 402. The device driver consults the EPT and obtains a set of guest spaces
virtual addresses mapped to I/O space physical addresses, in step 404. The device driver
performs a memory write operation to the guest spaces virtual addresses to store the data to
be transmitted, in step 406. The device driver then performs a memory write operation to add
a new data packet transmission task to task queue 280, in step 408. The memory write
operation includes, for example, associating the new data transmission task with the set of
guest spaces virtual addresses that store the data to be transmitted. The device driver further
writes to a Notify Register of I/O interface 110a to notify the interface about the new data
packet transmission task, in step 410. The device driver accesses task queue 280 and the
Notify Register (of hardware registers 250) based on the direct mapping between the guest
space virtual addresses and the I/O space physical addresses stored in EPT.

[048] After detecting the writes to the Notify Register, backend module 270 can
retrieve the new data packet transmission task from task queue 280, and obtain the set of
guest space virtual addresses associated with the task, in step 412. Backend module 270 may
submit a request to memory translation module 208 (e.g., via IOMMU) to translate the guest
space virtual addresses to, for example, a set of I/O space physical addresses (e.g., of I/O
space 154b). Based on the translated I/O space physical addresses, backend module 270 can
perform memory read operations to obtain the data to be transmitted from virtual machine
120, and provide the data to a network interface for transmission, in step 414. After receiving
a notification from the network interface that the data packet transmission has been
completed, backend module 270 can notify the device driving operating in virtual machine

120 about the completion, in step 416. The notification can be in the form of an interrupt.

19

WO 2018/232310 PCT/US2018/037863

[049] Reference is now made to FIG. 5, which illustrates an exemplary method 500
of performing network packet reception with a virtual machine, consistent with embodiments
of the present disclosure. The method can be performed by, for example, a device driver
operating in virtual machine 120 and I/O interface 110a of FIG. 1A.

[050] After an initial start, backend module 270 receives, from the network
interface, data extracted from a received data packet, in step 502. Backend module 270 can
obtain a set of guest space virtual addresses associated with a pending data packet reception
task from task queue 280, in step 504. Back end module 270 can translate the guest space
virtual addresses to a set of I/O space physical addresses (e.g., in I/O space 154b), in step
506. The translation can be performed by, for example, submitting a request to IOMMU.
Backend module 270 can perform memory write operations using the set of I/O space
physical addresses to store the data in the I/O space, in step 508. Backend module 270 can
notify the device driver operating in virtual machine 120 (e.g., by raising an interrupt) about
the received packet data, in step 510. Upon receiving the notification, the device driver can
obtain the guest space virtual addresses from the pending data packet reception task in queue
280, in step 512. The device driver then performs a memory read operation to obtain the
received packet data, and provide the received packet data to guest software stack 126, in step
514.

[051] FIG. 6 is a block diagram of an exemplary computer system 600 with which
embodiments described herein can be implemented. Computer system 600 includes a bus 602
or other communication mechanism for communicating information, and one or more
hardware processors 604 (denoted as processor 604 for purposes of simplicity) coupled with
bus 602 for processing information. Hardware processor 604 can be, for example, one or
MiCroprocessors.

[052] Computer system 600 also includes a main memory 606, such as a random

20

WO 2018/232310 PCT/US2018/037863

access memory (RAM) or other dynamic storage device, coupled to bus 602 for storing
information and instructions to be executed by processor 604. Main memory 606 also can be
used for storing temporary variables or other intermediate information during execution of
instructions to be executed by processor 604. Such instructions, after being stored in
non-transitory storage media accessible to processor 604, render computer system 600 into a
special-purpose machine that is customized to perform the operations specified in the
instructions.

[053] Computer system 600 further includes a read only memory (ROM) 608 or
other static storage device coupled to bus 602 for storing static information and instructions
for processor 604. A storage device 610, such as a magnetic disk, optical disk, or USB thumb
drive (Flash drive), etc., is provided and coupled to bus 602 for storing information and
instructions.

[054] Computer system 600 can be coupled via bus 602 to a display 612, such as a
cathode ray tube (CRT), an liquid crystal display (LCD), or a touch screen, for displaying
information to a computer user. An input device 614, including alphanumeric and other keys,
is coupled to bus 602 for communicating information and command selections to processor
604. Another type of user input device is cursor control 616, such as a mouse, a trackball,
or cursor direction keys for communicating direction information and command selections to
processor 604 and for controlling cursor movement on display 612. The input device
typically has two degrees of freedom in two axes, a first axis (for example, x) and a second
axis (for example, y), that allows the device to specify positions in a plane. In some
embodiments, the same direction information and command selections as cursor control may
be implemented via receiving touches on a touch screen without a cursor.

[055] Computing system 600 can include a user interface module to implement a

graphical user interface (GUI) that can be stored in a mass storage device as executable

21

WO 2018/232310 PCT/US2018/037863

software codes that are executed by the one or more computing devices. This and other
modules can include, by way of example, components, such as software components,
object-oriented software components, class components and task components, processes,
functions, fields, procedures, subroutines, segments of program code, drivers, firmware,
microcode, circuitry, data, databases, data structures, tables, arrays, and variables. The
modules may include, for example, components of hypervisor 124 of FIG. 2A.

[056] Computer system 600 can implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 600 to
be a special-purpose machine. According to some embodiments, the operations,
functionalities, and techniques and other features described herein are performed by computer
system 600 in response to processor 604 executing one or more sequences of one or more
instructions contained in main memory 606. Such instructions can be read into main memory
606 from another storage medium, such as storage device 610. Execution of the sequences of
instructions contained in main memory 606 causes processor 604 to perform the method steps
(e.g., methods 300-500 of FIGs. 3-5) described herein. In alternative embodiments,
hard-wired circuitry can be used in place of or in combination with software instructions.

[057] The term “non-transitory media” as used herein refers to any non-transitory
media storing data and/or instructions that cause a machine to operate in a specific fashion.
Such non-transitory media can comprise non-volatile media and/or volatile media.
Non-volatile media can include, for example, optical or magnetic disks, such as storage
device 610. Volatile media can include dynamic memory, such as main memory 606.
Non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid
state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other

optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM,

22

WO 2018/232310 PCT/US2018/037863

and EPROM, a FLASH-EPROM, NVRAM, flash memory, register, cache, any other
memory chip or cartridge, and networked versions of the same.

[058] Non-transitory media is distinct from, but can be used in conjunction with,
transmission media. Transmission media can participate in transferring information between
storage media. For example, transmission media can include coaxial cables, copper wire and
fiber optics, including the wires that comprise bus 602. Transmission media can also take the
form of acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[059] Various forms of media can be involved in carrying one or more sequences of
one or more instructions to processor 604 for execution. For example, the instructions can
initially be carried on a magnetic disk or solid state drive of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 600 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 602. Bus 602 carries the data to main memory
606, from which processor 604 retrieves and executes the instructions. The instructions
received by main memory 606 can optionally be stored on storage device 610 either before or
after execution by processor 604.

[060] Computer system 600 can also include a communication interface 618 coupled
to bus 602. Communication interface 618 can provide a two-way data communication
coupling to a network link 620 that can be connected to a local network 622. For example,
communication interface 618 can be an integrated services digital network (ISDN) card,
cable modem, satellite modem, or a modem to provide a data communication connection to a

corresponding type of telephone line. As another example, communication interface 618 can

23

WO 2018/232310 PCT/US2018/037863

be a local area network (LAN) card to provide a data communication connection to a
compatible LAN. Wireless links can also be implemented. In any such implementation,
communication interface 618 can send and receive electrical, electromagnetic or optical
signals that carry digital data streams representing various types of information.

[061] Network link 620 can typically provide data communication through one or
more networks to other data devices. For example, network link 620 can provide a connection
through local network 622 to a host computer 624 or to data equipment operated by an
Internet Service Provider (ISP) 626. ISP 626 in turn can provide data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 628. Local network 622 and Internet 628 both use electrical, electromagnetic
or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 320 and through communication interface 618, which carry
the digital data to and from computer system 600, can be example forms of transmission
media.

[062] Computer system 600 can send messages and receive data, including program
code, through the network(s), network link 620 and communication interface 618. In the
Internet example, a server 630 can transmit a requested code for an application program
through Internet 628, ISP 626, local network 622 and communication interface 618.

[063] The received code can be executed by processor 604 as it is received, and/or
stored in storage device 610, or other non-volatile storage for later execution. In some
embodiments, server 630 can provide information for being displayed on a display.

[064] Other embodiments of the invention will be apparent to those skilled in the art
from consideration of the specification and practice of the invention disclosed herein. This
application is intended to cover any variations, uses, or adaptations of the invention following

the general principles thereof and including such departures from the present disclosure as

24

WO 2018/232310 PCT/US2018/037863

come within known or customary practice in the art. It is intended that the specification and
examples be considered as exemplary only, with a true scope and spirit of the invention being
indicated by the following claims.

[065] It will be appreciated that the present invention is not limited to the exact
construction that has been described above and illustrated in the accompanying drawings, and
that various modifications and changes can be made without departing from the scope
thereof. It is intended that the scope of the invention should only be limited by the appended

claims.

25

WO 2018/232310 PCT/US2018/037863

WHAT IS CLAIMED IS:

1. An apparatus for operating an input/output (I/O) interface in a virtual machine,
comprising:
one or more memory devices that stores a set of instructions; and
one or more hardware processors configured to execute the set of instructions to:
obtain a first mapping table that maps a set of host space virtual addresses to a
first set of physical addresses associated with a first portion of the one or more memory
devices;
obtain a second mapping table that maps a second set of physical addresses
associated with a second portion of the one or more memory devices to the set of host space
virtual addresses, wherein the second portion of the one or more memory devices is
accessible by a virtual machine;
generate a third mapping table that maps the second set of physical addresses
to the first set of physical addresses; and
provide the third mapping table to a device driver operating in the virtual

machine,

2. The apparatus of claim 1, wherein the one or more hardware processors are further

configured to map the first portion of the one or more memory devices to a configuration

26

WO 2018/232310 PCT/US2018/037863

space of an I/O interface, and wherein the third mapping table enables the device driver to

access the configuration space of the I/0 interface.

3. The apparatus of claim 2, wherein the one or more hardware processors are further
configured to execute the set of instructions to provide a virtualization controller and a host
driver;

wherein the mapping of a set of host space virtual addresses to the first set of physical
addresses is performed by the virtualization controller; and

wherein the mapping of a first portion of the one or more memory devices to a
configuration space of the 1/O interface is performed by the host driver after receiving an

indication from the virtualization controller.

4. The apparatus of claims 2 or 3, wherein the one or more hardware processors are
further configured to execute the set of instructions to:

map a set of guest space virtual addresses to the second set of physical addresses;

update the third mapping table that maps the set of guest space virtual addresses to the
first set of physical addresses; and

provide the updated third mapping table to the device driver,

wherein the updated third mapping table enables the device driver to access the
configuration space of the I/O interface by performing one or more memory operations using

the set of guest space virtual addresses.

27

WO 2018/232310 PCT/US2018/037863

5. The apparatus of claim 4, wherein the configuration space stores a task queue;
wherein the one or more hardware processors are further configured to execute the set
of instructions to:
store, by the device driver, first data to be transmitted to the second hardware
interface at a first guest space virtual address of the set of guest space virtual addresses;
store, by the device driver, the first guest space virtual address at the task queue; and
store, by the device driver and based on the updated third mapping table, a
notification in the configuration space of the first hardware interface, to cause the first
hardware interface to retrieve the first data using the first guest space virtual address and the

updated third mapping table.

6. The apparatus of claims 4 or 5, wherein the configuration space stores a task queue;
wherein the one or more hardware processors are further configured to execute the set of
instructions to:

receive, by the device driver from the first hardware interface, a notification
that second data is received from a second hardware interface;

responsive to receiving the notification, obtain, by the device driver, a second
guest space virtual address associated with the second data from the task queue; and

retrieve, by the device driver using the second guest space virtual address and

the third mapping table, the second data.

28

WO 2018/232310 PCT/US2018/037863

7. The apparatus of any one of claims 1-6, wherein the device driver is a Virtl/O

Frontend Driver.

8. The apparatus of any one of claims 3-7, wherein the virtualization controller is a

QEMU.

9. The apparatus of claim 5, wherein the task queue comprises at least one of: a

VRING table or a Virtqueue.

10. A method for operating an input/output (I/O) interface in a virtual machine, the
method comprising:

obtaining a first mapping table that maps a set of host space virtual addresses to a first
set of physical addresses associated with a first portion of the memory device;

obtaining a second mapping table that maps a second set of physical addresses
associated with a second portion of the memory device to the set of host space virtual
addresses, wherein the second portion of the memory device is accessible by a virtual
machine;

generating a third mapping table that maps the second set of physical addresses to the
first set of physical addresses; and

providing the third mapping table to a device driver operating in the virtual machine.

29

WO 2018/232310 PCT/US2018/037863

11. The method of claim 10, further comprising mapping the first portion of a memory
device to a configuration space of an I/O interface, wherein the third mapping table enables

the device driver to access the configuration space of the I/O interface.

12. The method of claim 11, wherein the mapping of a set of host space virtual
addresses to the first set of physical addresses is performed by a virtualization controller; and

wherein the mapping of a first portion of a memory device to a configuration space of
the I/O interface is performed by a host driver after receiving an indication from the

virtualization controller.

13. The method of claims 11 or 12, further comprising:

mapping a set of guest space virtual addresses to the second set of physical addresses;

updating the third mapping table that maps the set of guest space virtual addresses to
the first set of physical addresses; and

providing the updated third mapping table to the device driver,

wherein the updated third mapping table enables the device driver to access the
configuration space of the I/O interface by performing one or more memory operations using

the set of guest space virtual addresses.

14. The method of claim 13, wherein the configuration space stores a task queue; the

30

WO 2018/232310 PCT/US2018/037863

method further comprising:
storing, by the device driver, first data to be transmitted to the second hardware
interface at a first guest space virtual address of the set of guest space virtual addresses;
storing, by the device driver, the first guest space virtual address at the task queue;
storing, by the device driver and based on the updated third mapping table, a
notification in the configuration space of the first hardware interface, to cause the first
hardware interface to retrieve the first data using the first guest space virtual address and the

updated third mapping table.

15. The method of claims 13 or 14, wherein the configuration space stores a task
queue; the method further comprising:

receiving, by the device driver from the first hardware interface, a notification that
second data is received from a second hardware interface;

responsive to receiving the notification, obtaining, by the device driver, a second
guest space virtual address associated with the second data from the task queue; and

retrieving, by the device driver using the second guest space virtual address and the

third mapping table, the second data.

31

WO 2018/232310 PCT/US2018/037863

16. The method of any one of claims 10-15, wherein the device driver is a Virtl/O

Frontend Driver.

17. A non-transitory computer readable medium that stores instructions that are
executable by one or more processors of an apparatus to perform a method for operating an
input/output (I/0) interface in a virtual machine, the method comprising:

obtaining a first mapping table that maps a set of host space virtual addresses to a first
set of physical addresses associated with a first portion of the memory device;

obtaining a second mapping table that maps a second set of physical addresses
associated with a second portion of the memory device to the set of host space virtual
addresses, wherein the second portion of the memory device is accessible by a virtual
machine;

generating a third mapping table that maps the second set of physical addresses to the
first set of physical addresses; and

providing the third mapping table to a device driver operating in the virtual machine.

18. The medium of claim 17, wherein the method further comprises mapping the first

portion of a memory device to a configuration space of an I/O interface, wherein the third

mapping table enables the device driver to access the configuration space of the I/O interface.

32

WO 2018/232310 PCT/US2018/037863

19. The medium of claim 18, wherein the mapping of a set of host space virtual
addresses to the first set of physical addresses is performed by a virtualization controller; and

wherein the mapping of a first portion of a memory device to a configuration space of
the I/O interface is performed by a host driver after receiving an indication from the

virtualization controller,

20. The medium of claims 18 or 19, further comprising the set of instructions that is
executable by the one or more processors of the apparatus to cause the apparatus to further
perform:

mapping a set of guest space virtual addresses to the second set of physical addresses;

updating the third mapping table that maps the set of guest space virtual addresses to
the first set of physical addresses; and

providing the updated third mapping table to the device driver,

wherein the updated third mapping table enables the device driver to access the
configuration space of the I/O interface by performing one or more memory operations using

the set of guest space virtual addresses.

21. The medium of claim 20, wherein the configuration space stores a task queue; the
method further comprising;:
storing, by the device driver, first data to be transmitted to the second hardware

interface at a first guest space virtual address of the set of guest space virtual addresses;

33

WO 2018/232310 PCT/US2018/037863

storing, by the device driver, the first guest space virtual address at the task queue;

storing, by the device driver and based on the updated third mapping table, a
notification in the configuration space of the first hardware interface, to cause the first
hardware interface to retrieve the first data using the first guest space virtual address and the

updated third mapping table.

22. The medium of any one of claims 20 or 21, wherein the configuration space stores
a task queue; the method further comprising:

receiving, by the device driver from the first hardware interface, a notification that
second data is received from a second hardware interface;

responsive to receiving the notification, obtaining, by the device driver, a second
guest space virtual address associated with the second data from the task queue; and

retrieving, by the device driver using the second guest space virtual address and the

third mapping table, the second data.

23. The medium of any one of claims 17-22, wherein the device driver is a Virtl/O

Frontend Driver.

34

PCT/US2018/037863

WO 2018/232310

N>

21| 80ByIo)Ul YIOMION

| ezileoepawion |

081

~

v0L—]

sesessenmsrannscnmnanastsnanane

yiL JosinedAH
8yl avl
xoels yoels
aIeM]jos 2I1BM)J0S
jseng 1s8n9
Zyl auysew Opl suydew
[eNUIA [eniA

B L L L T T L L LT T TPy

€80}

Vi "Old

201 —

£01 YlomjaN

~

01} 99ELI8)U) SIOMIBN

| eopleoepeioy |

L L LT L P Y Y 2

$z1 JosiadAy
8cl gclL
¥oB}s Yoejs
alemyjos aIBM}j0S
159N9) 1s8N9)

22\ suiyoew
[enpiA

0¢1 auyoew
[enHip

=

4501

|

O
<~

1/9

PCT/US2018/037863

WO 2018/232310

B0l | SOBpSUL O]

N

gl "old

mmmv/

Wy

N
\

|

~_

QG| 8oeds Oy

$Z | JosiadAH

P T T T Y T T L R LR P T T Y

R L L L L T T

F T R T L L LT LT T T Y TR T PP P P T Y TR Y Y

8¢l
yoes
8I1EMY0S
Jseng

22\ sulyoew
[enuIA

L L T T T T R Y Y L L)

gzt
Yoejs
alemyos
1s9n9

0z} suiyoew
[enpiA

e T L L L L T T R R R L R L

g !
Yo
~

e T T T S LA TR P

Q
w0
—

2/9

WO 2018/232310 PCT/US2018/037863
Guest software stack 126
Device driver 126a
A I
— 22 | 244 124
! 226
Mermo Vitual | : -
translatirc))ln machine | 220 Virtualization
module creation 1 Host driver 1 coniroler
208 module I 202 ___C_____» 206
204 : 224
| 222
!
Y Y

Virtualization module 210

FIG. 2A

3/9

_—110a

PCT/US2018/037863

g¢ ol

EQL |velsiul O/

< s

aysl
/

/ : Novm
T T T T - i

WO 2018/232310

8EC — HW_ P
4T AN
> = ,
08 \HT\ / B7Gl
154 ﬁ
902 114"
Is)jonuog auIyoBW
uonezienyin [ENHIA

4/9

PCT/US2018/037863

WO 2018/232310

09¢
0lc

3¢ 9Ol

Gz 0160} 8100 80BHB}UI YIOMBN

< e
SN

A A\

\

(/2 |jhpoui pusyoeyg ‘llll\

08z snanb yse}

062 sie)sibal alempie

werwrvrrewnmd

06z 21Bo] 2102
8oepau Off

___E0l}

()
—
~!

5/9

PCT/US2018/037863

WO 2018/232310

sossalppe [eaisAyd
aoeds (] 10 198 8y} pue sassalppe
jenyia aoeds 1sanb jo 18S B usamiag
Buiddew e apnjoul 0} | 43 slepdn :pig

]

sossalppe [easAyd aoeds O/} J0 195 aif}
pue sassaippe [eaishyd soeds jsanb jo
198 & Usamieq Buiddew e ajealdn 1zi¢

sassalppe |enuia aoeds Jsoy au}
0] sassalppe [eoisAyd aoeds jsenb auyy
dew pue soeds 1sanb e sjeao|e :gLe

y0¢
a|npou uoneslo
auIyoRW |BNLIA

€ 'Ol4

-«

¢0¢
JOALP 1SOH

4———SUIYORW [BNYIA B 8)2810 0} JONISUI PUB S8SSaIpPE [enyin soeds jsoy Jo Jes sy} apiaoid :gQe

sassalppe jeoishyd aoeds
O/} 40 }8s dY} 0} SassaIppe
[enyia jo jos e dew :gog

——s9ssa1ppe [eaisAyd aoeds O/} JO 185 B WINa) Hc—w-

30EMBIUL /] UB 0} paddew
aoeds O/} Ue 81200JR 1208

902
J8]|oJuU0T UoKEZIBNUIA

(o=’
o

6/9

WO 2018/232310

BN
(o]
{em]

Device driver 126a

402: receive a data packet
transmission request from
guest software stack

404: consult EPT to obtain a
set of guest spaces virtual
addresses mapped to 1/0

physical addresses

I

406: perform a memory write

operation to the guest spaces

virtual addresses to store the
data to be transmitted

I

408 add a new data packet
transmission task to a task
queue

410; notify about the new data

PCT/US2018/037863

Backend module 270

packet transmission task

416: notify about the completion of

P

412: obtain the set of guest

space virtual addresses that

store the data from the task
queue

414: provide the datato a
network interface for
transmission

the data packet transmission

FIG. 4

719

PCT/US2018/037863

WO 2018/232310

¢ o

YoejS aiemyios 1sanb
8y} 0} ejep 8y} apinoid LG

shanb
}SE} By} Woll Blep ay} alols
1BY) SSSSaIpPR |BNUIA aoBds
159nb Jo 188 8YL LRG0 1Z|LS

JSALP 80IA8(

8oeds
O/l 8y} ui elep 8y} 810Js 805

I

sassalppe [eoisAyd aoeds O
/] 10198 B 0} $98S8Ippe [BNUIA
aoeds Jsenb ayj siejsued) :90s

]

80z ananb yse}

Lol yse; uondadal jayoed
ejep Buipuad e yym pajeicosse
$8558IppE fenuiA soeds
159n6 J0 185 B UIRIq0 H(06

¢——B)ep 19y0ed paAleoal Jnoge Alljou ;L G———

1eoed ejep paAlesal & Wwoi
PaJORIIXa BIBP SAI808I (G

0.2 sinpow puaxoeg

8/9

PCT/US2018/037863

WO 2018/232310

919
TOHINOD
d0SHNd

9 "9l
¥29
LSOH
0 f—————————— e ————
W I 00
| 819
NS NI JOVANALNI 709
oo/ YHOMIIN | NGLIVSINAANG) ¥0SSIO0Ud
_
|
|
|
|
_ v
_ 209
! snd
ds| |
_
_
L3NY3INI |
|
_
H ole 809 909
089 _ 30IA30 AHOWIN
MIANTS “ JOVH0LS NOY NIVW

719
30IA40 LNdNI

Il

A%
AY1dSId

9/9

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 18/37863

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - GO6F 12/10, GO6F 12/02 (2018.01)

CPC - GO6F 12/1081, GO6F 9/45558, GO6F 12/10, GO6F 12/1009, GO6F 12/109, GO6F 2009/45579,
GOBF 2212/657, GO6F 2212/1016, GO6F 2009/45583

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

See Search History Document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
See Search History Document

Electronic data base consulted during the intemnational search (name of data base and, where practicable, search terms used)

See Search History Document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 2016/0246730 A1 (Wisconsin Alumni Research Foundation), 25 August 2016 (25.08.2016), | 1-5, 9-14, 17-21

entire document, especially para [0016], [0053], [0075], [0079]

Wang et al. "Selective Hardware/Software Memory Virtualization.” in: VEE '11 Proceedings of 1-5, 9-14,17-21

Abstract; page 1, col 2; page 3, col 1; page 8, col 1

US 2014/0379955 A1 (Dong et al.), 25 December 2014

the 7th ACM SIGPLAN/SIGOPS international conference on Virtual execution environments,
March 09 - 11, 2011 [online] [retrieved on 15 August 2018 (15.08.2018)] Retrieved from the
Internet <URL: https://dl.acm.org/citation.cfm?id=19527 10>, entire document, especially

Wang et al. "virlio: lowards a de-facto standard for virtual /O devices.” In: ACM SIGOPS
Operating Systems Review, January, 2008 [online] [retrieved on 15 August 2018 (15.08.2018)]
Retrieved from the Internet <URL: https://dl.acm.org/citation.cfm?id=1400108>, entire
document, especially Abstract; page 4, col 1-2; page 7, col 1-2

US 2006/0139360 A1 (Panesar et al.), 29 June 2006 (29.06.2006), entire document

2-5,9, 11-14, 18-21

(25.12.2014), entire document 1-5, 8-14, 17-21

1-5,9-14,17-2

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the apElication but cited to understand
the principle or theory underlying the invention

“X" document of particular relevance; the claimed invention cannot be
considered nove! or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

16 August 2018

Date of mailing of the international search report

31AUG 2018

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 18/37863

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. @ Claims Nos.: 6-8, 15-16, 22-23
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. D As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:] As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest D The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

[:I No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - wo-search-report
	Page 47 - wo-search-report

