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CONNECTION IDENTIFIER ASSIGNMENT AND
SOURCE NETWORK ADDRESS TRANSLATION

BACKGROUND

Many enterprises have large and sophisticated networks comprising switches, hubs,
routers, middleboxes, servers, workstations and other networked devices, which support a
variety of connections, applications and systems. The increased sophistication of computer
networking, including virtual machine migration, dynamic workloads, multi-tenancy, and
customer-specific quality of service and security configurations require a better paradigm for
network control. Networks have traditionally been managed through low-level configuration of
individual network components. Network configurations often depend on the underlying
network: for example, blocking a user's access with an access control list ("ACL") entry
requires knowing the user's current IP address. More complicated tasks require more extensive
network knowledge: for example, forcing guest users' port 80 traffic to traverse an HTTP proxy
requires knowing the current network topology and the location of each guest. This process is of
increased difficulty where the network switching elements are shared across multiple users.

In response, there is a growing movement towards a new network control paradigm
called Software-Defined Networking (SDN). In the SDN paradigm, a network controller,
running on one or more servers in a network, controls, maintains, and implements control logic
that governs the forwarding behavior of shared network switching elements on a per user basis.
Making network management decisions often requires knowledge of the network state. To
facilitate management decision-making, the network controller creates and maintains a view of
the network state and provides an application programming interface upon which management
applications may access a view of the network state.

Some of the primary goals of maintaining large networks (including both datacenters
and enterprise networks) are scalability, mobility, and multi-tenancy. Many approaches taken to
address one of these goals results in hampering at least one of the others. For instance, one can
casily provide network mobility for virtual machines within an L2 domain, but L2 domains
cannot scale to large sizes. Furthermore, retaining user isolation greatly complicates mobility.
As such, improved solutions that can satisfy the scalability, mobility, and multi-tenancy goals

are needed.
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BRIEF SUMMARY

Some embodiments of the invention provide a network control system that allows a user
to specify a logical network that includes one or more logical forwarding elements (e.g., logical
switches, logical routers, etc.) and one or more middleboxes (e.g., firewalls, load balancers,
network address translators, intrusion detection systems (IDS), wide area network (WAN)
optimizers, etc.). The system implements the user-specified logical forwarding elements across
numerous managed switching elements on numerous physical machines that also host virtual
machines of the logical network. The system implements the user-specified middleboxes across
the numerous physical machines. Typically, the system of some embodiments configures, in one
physical machine, a managed switching element that implements at least part of the logical
switching elements and a distributed middlebox instance that provides a middlebox service to
the packets forwarded by the managed switching element.

In some embodiments, a managed switching element that receives a packet from a VM
that is hosted in the same physical machine performs all or most of the logical forwarding
processing of the logical forwarding elements on the received packet. Because the managed
switching element receives the packet from the VM and performs forwarding processing on the
packet, the managed switching element is the first-hop managed switching element with respect
to the packet. While the first-hop managed switching clement is performing the logical
forwarding of the packet, the first-hop managed switching element has the distributed
middlebox instance that is running in the same host to process the packet according to the
middlebox service that the distributed middlebox instance provides.

Since the distributed middlebox instances provide middlebox services to the packets
forwarded by the managed switching elements that are running in the same hosts in which the
distributed middlebox instances runs, possibly using the same algorithm or mechanism, packets
processed by these distributed middlebox instances that are heading to the same destination may
look identical from the viewpoint of the destination. For instance, packets sent out by virtual
machines in different physical machines to establish connections with other virtual machines
may be processed by the distributed middlebox instances hosted in the different physical
machines. The distributed middlebox instances provide a source network address translation
(SNAT) service to the packets (e.g., by translating the source network addresses of the packets
into different network addresses to hide the real source network addresses). These packets then
may have the same network address as the source network addresses of the packets. When these
packets are heading to the same destination, these packets may be identical in terms of the five-
tuples that the packets have (e.g., source and destination network addresses, source and
destination port numbers, transport protocol type), even though these packets originate from
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different virtual machines. Consequently, the packets may appear to be packets of the same
connection even though the packets should each be packets of their own connections.

The network control system of some embodiments configures the distributed middlebox
instances in such a way that the distributed middlebox instances assign identifiers to the packets
having the same five-tuple so that the connections established by the packets are
distinguishable. Different embodiments assign the connection identifiers differently. For
instance, in some embodiments, the system assigns a non-overlapping range of connection
identifiers to each of the distributed middlebox instances that implement a middlebox. The
distributed middlebox instances use identifiers within the range and the packets processed by
these distributed middlebox instance can be uniquely identified by the identifier that is not used
for other live connections. Alternatively or conjunctively, the network control system of some
embodiments provides a set of application programming protocols (APIs) that each distributed
middlebox instance can use to obtain and release a range of connection identifiers on demand.
In these embodiments, the network control system maintains the available (i.e., not being used)
and unavailable (i.e., being used) ranges of connection identifiers.

In some embodiments, the network control system lets each distributed middlebox
maintain the entire available range of connection identifiers and assign connection identifiers to
the packets forwarded by the managed switching element that are last-hop managed switching
elements with respect to the packets. A managed switching element is a last-hop managed
switching element with respect to a packet when the managed switching element forwards the
packet to a destination virtual machine that runs in the same host in which the managed
switching element runs.

The network control system of some embodiments implements a middlebox that
provides a SNAT service in a distributed manner. The network control system receives, from a
user, configuration data for configuring the middlebox, including SNAT rules to use to translate
source addresses of incoming packets. The network control system configures the distributed
middlebox instances that implement the middlebox to provide SNAT service in a similar way ia
whieh—to how the network control system configures the managed switching elements to
perform logical forwarding processing of the logical switching elements of the user.

In some embodiments, the network control system has several controllers including
logical controllers and physical controllers. A logical controller is a master of logical switching
clements of a user. A logical controller of some embodiments receives a specification of the
logical switching elements from the user, in the form of logical control plane (LCP) data. A
logical controller translates the LCP data into logical forwarding plane (LFP) data, which define
control plane and forwarding plane of the logical switching elements. A logical controller then
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translates the LFP data to the universal physical control plane data. A logical controller then
identifies a set of physical controllers, each of which is responsible for managing a managed
switching element. A logical controller sends the universal control plane data only to the
identified set of physical controllers that manages managed switching elements, each of which
at least partially implements the logical switching elements of the user.

A physical controller translates the universal physical control plane data into customized
physical control plane data, which is control plane data for the managed switching elements that
implement the logical switching elements. The physical controller sends the customized
physical control plane data to the managed switching element. The managed switching element
then translates the customized control plane to perform the logical forwarding processing of the
logical switching elements specified by the user.

Similarly, a logical controller receives configuration data for configuring the middlebox.
The logical controller identifies the same set of physical controllers which are masters of the
managed switching elements that implement, at least partially, the logical switching elements
specified by the user. The logical controller sends the middlebox configuration data to the
identified set of physical controllers. The physical controller of some embodiments then sends
the middlebox configuration data to the managed switching elements so that the managed
switching elements can send the middlebox configuration data to the distributed middlebox
instances that run in the same host in which the managed switching elements run. Alternatively,
the physical controller sends the middlebox configuration data directly to the distributed
middlebox instance, which runs in the same host with the managed switching elements, of
which the physical controller is the master.

The preceding Summary is intended to serve as a brief introduction to some
embodiments of the invention. It is not meant to be an introduction or overview of all inventive
subject matter disclosed in this document. The Detailed Description that follows and the
Drawings that are referred to in the Detailed Description will further describe the embodiments
described in the Summary as well as other embodiments. Accordingly, to understand all the
embodiments described by this document, a full review of the Summary, Detailed Description
and the Drawings is needed. Moreover, the claimed subject matters are not to be limited by the
illustrative details in the Summary, Detailed Description and the Drawing, but rather are to be
defined by the appended claims, because the claimed subject matters can be embodied in other

specific forms without departing from the spirit of the subject matters.
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BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth in the appended claims. However, for
purpose of explanation, several embodiments of the invention are set forth in the following
figures.

Figure 1 illustrates an example network structure of a logical network of a user that is
implemented in the infrastructure of a physical network.

Figure 2 illustrates a processing pipeline that is performed by the MSEs of some
embodiments.

Figure 3 illustrates an example controller cluster.

Figure 4 illustrates example architecture of a network controller.

Figure 5 conceptually illustrates several different ways of assigning connection
identifiers to several distributed middlebox instances.

Figure 6 illustrates a logical network and a physical network.

Figure 7 conceptually illustrates a process that some embodiments perform to provide
SNAT service.

Figure 8 conceptually illustrates an example operation of a MSE that is a first-hop MSE
with respect to a data packet.

Figure 9 conceptually illustrates an example operation of a MSE that is a first-hop MSE
with respect to a data packet.

Figure 10 conceptually illustrates an example operation of a MSE that is a first-hop
MSE with respect to a particular packet and is a last-hop MSE with respect to a response packet
that was sent in response to the particular packet.

Figure 11 conceptually illustrates a process that some embodiments perform to set up
forward and reverse sanitization flow entries at a MSE that is a last-hop MSE.

Figure 12 conceptually illustrates example operations of a MSE that is a last-hop MSE
with respect to packets.

Figure 13 conceptually illustrates example operations of a MSE that is a last-hop MSE
with respect to packets.

Figure 14 conceptually illustrates an example operation of a MSE that is a last-hop MSE
with respect to a particular packet and is a first-hop MSE with respect to a response packet that
is sent in response to the particular packet.

Figure 15 conceptually illustrates an electronic system with which some embodiments

of the invention are implemented.
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DETAILED DESCRIPTION

In the following detailed description of the invention, numerous details, examples, and
embodiments of the invention are set forth and described. However, it will be clear and apparent
to one skilled in the art that the invention is not limited to the embodiments set forth and that the
invention may be practiced without some of the specific details and examples discussed.

Some embodiments of the invention provide a network control system that allows the
logical datapath sets of different users to be implemented by switching elements of a physical
network. These switching elements are referred to below as managed switching elements
(MSESs) or managed forwarding elements as they are managed by the network control system in
order to implement the logical datapath sets. Examples of such switching elements include
virtual or physical network switches, software switches (e.g., Open vSwitch), routers, etc. In
some embodiments, the logical datapath sets are implemented in the managed switching
clement in a manner that prevents the different users from viewing or controlling each other’s
logical datapath sets (i.e., each other’s switching logic) while sharing the same switching
elements.

To implement logical datapath sets, the network control system of some embodiments
generates physical control plane data from logical datapath set data specified by the users. The
physical control plane data is then downloaded to the MSEs. The MSEs convert the physical
control plane data into physical forwarding plane data that allows the MSEs to perform
forwarding of the packets that these MSEs receive. Based on the physical forwarding data, the
MSE:s can process data packets in accordance with the logical processing rules specified within
the physical control plane data.

In some embodiments, each of the logical datapath sets defines a logical network that
includes one or more logical switching elements. A logical switching element can process
incoming packets in layer 2 (L2) or layer 3 (L3). That is, a logical switching element can
function as a logical switch for switching packets at L2 and/or as a logical router for routing
packets at L3. The network control system implements the logical switching elements of
different users across the MSEs.

In addition to the logical switching clements, the network control system of some
embodiments allows the users to specify middleboxes. As known in the art, middleboxes
perform data processing other than forwarding the data (e.g., network address translation, load
balance, firewall, intrusion detection and prevention, wide area network optimization, etc.). The
middleboxes provide these middlebox services to the users’ respective logical switching
elements. The network control system implements the specified middleboxes in the physical
infrastructure of the physical network, including the hosts in which the MSEs operate.
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Several examples of such systems are described below in Section 1. Section II then
describes distributed middlebox instances that provide SNAT service. Section 11 describes an
electronic system that implements some embodiments of the invention.

L IMPLEMENTING LOGICAL SWITCHING ELEMENTS AND MIDDLEBOXES
IN A DISTRIBUTED MANNER

A. Logical Switching Elements and Middleboxes

Figure 1 illustrates an example network structure of a logical network of a user that is
implemented in the infrastructure of a physical network. Specifically, this figure illustrates that
the logical network includes a middlebox and that the middlebox is implemented in the physical
network in a distributed manner. The top half of the figure shows a logical network 105 while
the bottom half of the figure shows a physical network 110 in which the logical network 105 is
implemented.

As shown in the top half of the figure, the logical network 105 includes two logical
switches 1 and 2, a logical router 115, and a middlebox 120. The logical switch 1 is connected
to virtual machines (VMs) 1 and 2 and the logical router 115. There may be many other VMs
connected to the logical switch 1 but they are not depicted in this figure for the simplicity of
illustration and description. The logical switch 1 forwards data between VMSs connected to the
logical switch at L2 (e.g., by using MAC addresses) and between the VMs and the logical router
115 when the data needs routing at L3 (e.g., by using IP addresses). Like the logical switch 1,
the logical switch 2 forwards data between the logical router 115 and the VMs connected to the
logical switch 2.

The logical router 115 routes data at L3, among the logical switches connected to the
logical router and the middlebox 120. When the data needs middlebox service (e.g., source
network address translation), the logical router 115 sends the data to the middlebox 120 to
process and in some cases receives the processed data back from the middlebox to route the data
to the data’s destination. The logical router 115 also routes data to and from the external
network, which includes network elements that do not belong to the logical network 105.

As shown in the bottom half of Figure 1, the physical network 110 includes hosts 1-4. A
host is a machine that is managed by an operating system (e.g., Linux™, Windows™, etc.) that
is capable of running software applications and virtual machines. Each of the hosts has several
network elements running in the host, including several MSEs, several distributed middlebox
instances, and/or several VMs. Not all of these network elements are depicted in each host in
this figure for the simplicity of illustration and description. In some embodiments, a MSE is a
software switching element that has components running in the user space and/or the kernel of
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the host on which the software is running. Also, a distributed middlebox instance in some
embodiments is a software application that has components running in the user space and/or the
kernel. In some embodiments, a distributed middlebox instance is provisioned in a VM running
in the host in which the MSE is running.

As shown, the host 1 includes MSE 1, a distributed middlebox instance 125, and VM 1.
The host 2 includes MSE 2, a distributed middlebox instance 140, and VM 2. The host 3
includes MSE 3, a distributed middlebox instance 145, and VM 3. The host 4 includes MSE 4,
and a distributed middlebox instance 140.

The MSEs 1-4 implement the logical switches 1 and 2 and the logical router 115 in a
distributed manner. That is, the MSEs 1-4 of some embodiments collectively perform the data
forwarding operations of the logical switches 1 and 2 and the logical router 115. Specifically,
the ports (not shown) of the logical switches 1-2 are mapped to physical ports (e.g., virtual
interfaces (VIFs) — not shown) of the MSEs 1-3. The VMs that send and receive data to and
from the logical switches 1-2 through the ports of the logical switches actually send and receive
the data to and from the MSEs through the physical ports of the MSEs to which the ports of the
logical switches are mapped. The MSEs have forwarding tables (not shown) that include the
physical forwarding plane data in the form of flow entries. In some embodiments, a flow entry
includes a qualifier and an action. The qualifier specifies a condition which, when it is met,
directs the MSE to perform the action. The MSEs perform the data forwarding operations of the
logical switching eclements (logical switches and logical routers) according to the actions
specified in the flow entries. Forwarding tables and flow entries will be described further below
by reference to Figure 8.

The MSE that receives data from a VM is referred to as a first-hop MSE with respect to
that data. In some embodiments, the first-hop MSEs performs all or most of the logical
processing that are to be performed on the received data in order for the data to reach the data’s
destination. For instance, when the logical switch 1 receives a data packet from VM 1 that is
addressed to VM 3, the logical switch 1 forwards the packet to the logical router 115. The
logical router 115 then routes the packet to the logical switch 2, which will forward the packet
to VM 3. In the physical network 110, the MSE 1 is the first-hop MSE with respect to this
packet and performs logical processing to send the packet to VM 3, which is connected to the
MSE 3. That is, the MSE 1 performs the forwarding operations of the logical switch 1, the
logical router 115, and the logical switch 2 to send the packet from VM 1 to the VM 3.
Likewise, for packets from VM 2 to VM 1 or VM 3, the MSE 2, as the first-hop MSE for these
packets, performs the forwarding operations of the logical switch 1, the logical router 115, and
the logical switch 2. The MSE 3 will also perform the forwarding operations of the logical
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switch 2, the logical router 115, and the logical switch 1 to send data packets from VM 3 to VM
1 or VM 2.

The MSEs exchange data amongst themselves via tunnels established between them.
These tunnels allow the data to be exchanged among the MSEs over the other network elements
(not shown) of the physical network 110. In some embodiments, the network control system
does not manage these other network elements of the physical network 110. These other
network elements thus serve as switching fabric for the MSEs to use to exchange data. As
shown, cach of the MSEs 1-4 establishes a tunnel to each of the other MSEs.

Different types of tunneling protocols are supported in different embodiments. Examples
of tunneling protocols include control and provisioning of wireless access points (CAPWAP),
generic route encapsulation (GRE), GRE Internet Protocol Security (IPsec), among others.

In some embodiments, the MSEs 1-4 are edge switching elements because these MSEs
are considered to be at the ‘edge’ of the physical network 110. Being at the edge of the network
means either (1) the MSEs directly interface with virtual machines to send and receive data to
and from the virtual machines or (2) the MSEs connect the physical network 110 to another
physical network which may or may not be managed by the network control system. As shown,
the MSEs 1-3 directly interface with VMs 1-3, respectively. The MSE 4 interfaces the external
network and functions as an integration element to facilitate data exchange between the network
clements of the physical network 110 and the external network. The non-edge MSEs (not
shown) may facilitate data exchange between the MSEs and/or other unmanaged switching
elements (not shown) of the physical network 110.

The middlebox 120 in the logical network 105 is implemented in the physical network
110 in a distributed manner, too. In some embodiments, a distributed middlebox instance is
running in the same host in which a MSE is running in order to provide the middlebox service to
the packets forwarded by the MSE. For instance, the distributed middlebox instance 125
running in the host 1 provides the middlebox service to the packets forwarded by the MSE 1.
That is, the distributed middlebox instance 125 receives data packets from the MSE 1 and
performs middlebox operations (e.g., source NAT) to the packets. The distributed middlebox
instance 125 then returns the packets back to the MSE 1 so that the packets are forwarded to the
destinations of the packets. Likewise, the distributed middlebox instances 130 and 135 running
in the hosts 2 and 3, respectively, next to the MSEs 2 and 3, respectively, provide the middlebox
service to the packets coming to and from VMs 2 and 3, respectively. The distributed middlebox
instance 140 running in the host 4 next to the MSE 4 provides the middlebox service for the

packets forwarded by the MSE 4.
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An example operation of the physical network 110 that implements the logical network
105 is now described by reference to Figure 2. Specifically, Figure 2 illustrates a processing
pipeline 205 that is performed by the MSEs 1 and 3 and the distributed middlebox instance 125
in order to send a data packet from VM 1 to VM 3 via the distributed middlebox instance 125.
Figure 2 shows only VM 1 and VM 3, the logical switching clements, and hosts that are
connected to or include VM 1 and VM 3 to illustrate data being sent from VM 1 to VM 3. The
middlebox service that the middlebox 120 provides is SNAT in this example.

When VM 1 that is coupled to the logical switch 1 sends a packet (not shown) addressed
to VM 3 that is coupled to the logical switch 2, the packet is first sent to the MSE 1. The MSE 1
then performs L2 processing 210. The L2 processing 210 is a set of operations that define the
logical switch 1’s forwarding processing on the packet. By performing the L2 processing 210,
the MSE 1 forwards the packet from VM 1 to the logical router 115. The packet is forwarded to
the logical router 115 because VM 3 is not coupled to the logical switch 1 and thus has to be
routed by the logical router 115 to the logical switch 2 to which VM 3 is coupled.

The MSE 1 then performs the L3 processing 215. The L3 processing 215 is a set of
operations that define the logical router 115°s routing of the packet. The logical router 115
routes the packet to the middlebox 120 to have the middlebox 120 change the packet source
address (e.g., source IP address) to another address. By performing the L3 processing 215, the
MSE 1 sends the packet to the distributed middlebox instance 125.

The distributed middlebox instance 125 which implements the middlebox 120 then
performs SNAT processing 220 on the packet. In some embodiments, the distributed middlebox
instance 125 changes the received packet’s source IP address (i.e., VM 1’s IP address) to a
different address. In other embodiments, the distributed middlebox instance 125 creates flow
entries and installs in the forwarding table (not shown) of the MSE 1 so that when the
distributed middlebox instance 125 sends a packet back to the MSE 1, this packet’s source IP
address is changed by the MSE 1 based on those flow entries installed by the distributed
middlebox instance 125. Creating and installing flow entries will be described further below by
reference to Figures 8 and 12.

The MSE 1 then receives the packet sent from the distributed middlebox instance 125
and performs L3 processing 225 and L2 processing 230 on this packet. This packet has the
source IP address that is assigned by the distributed middlebox instance 125. The L3 processing
225 is a set of operations that define the logical router 115°s routing of the packet. By
performing the L3 processing 225, the MSE 1 routes the packet from the middlebox 125 to the

logical switch 2.
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The MSE 1 then performs L2 processing 230. The L2 processing 230 is a set of
operations that define the logical switch 1’s forwarding processing on the packet. By performing
the L2 processing 230, the MSE 1 forwards the packet from logical router 115 to VM 3.
However, because VM 3 is not physically coupled to the MSE 1, the MSE 1 has to identify a
MSE to which VM 3 is coupled. The MSE 1 identifies the MSE 3 (e.g., through address
learning process) and sends the packet to the MSE 3 over the tunnel established between the
MSEs 1 and 3.

In some embodiments, the MSE 3 performs L2 processing 235, which defines a portion
of the set of operations that define the logical switch 2’s forwarding processing on the packet.
For instance, the MSE 3 performs an egress access control list (ACL) processing on the packet
before forwarding the packet to VM 3. In other embodiments, the MSE 1 does not perform the
L2 processing 230 nor the L2 processing 215. That is, the MSE 3 will perform all L2 processing
for the logical switch 2.

When VM 3 sends a packet to VM 1 in response to receiving a packet from VM 1, the
MSE 3, the distributed middlebox instance 125, and the MSE 1 perform the processing pipeline
205 in the reverse order. Because most or all of the logical processing was performed by the
MSE 1 for the packet that went to VM 3 from VM 1, most or all of logical processing for the
response packet from VM 3 to VM 1 is also performed in the MSE 1. By having the MSE 1
perform most or all of logical processing on the packets going both ways between VM 1 and
VM 3, some embodiments avoid sharing state information (e.g., original and translated source
IP addresses mapping) between the MSEs 1 and 3. More detailed example operations of the
MSEs 1 and 3 will be described further below by reference to Figures 6-14.

B. Configuring MSEs and Middleboxes

As described above, the MSEs of some embodiments implement logical switches and
logical routers based on flow entries supplied to the MSEs by the network control system. The
network control system of some embodiments is a distributed control system that includes
several controller instances that allow the system to accept logical datapath sets from users and
to configure the MSEs to implement these logical datapath sets (i.e., datapath sets defining the
logical switching elements of the users). The distributed control system also receives middlebox
configuration data from the users and configures the distributed middlebox instances by sending
the configuration data to the distributed middlebox instances. These controller instances of the
distributed control system form a cluster and thus the network control system is referred to as a
controller cluster.

Figure 3 illustrates an example controller cluster 300. The controller cluster 300

configures and manages several MSEs and several distributed middlebox instances running in
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several hosts. This figure illustrates only the controller cluster 300 and a host 305. The
controller cluster 300 includes a logical controller 310 and a physical controller 315. The logical
controller 310 and the physical controller 315 are two of many controllers (not shown) of the
controller cluster 300.

In some embodiments, the logical controller 310 is a device (e.g., a general-purpose
computer) that executes one or more modules that transform the user input from a LCP to a
LFP, and then transform the LFP data to universal physical control plane data. These modules in
some embodiments include a control module and a virtualization module (not shown). A control
module allows a user to specify and populate a logical datapath set, while a virtualization
module implements the specified logical datapath set by mapping the logical datapath set onto
the physical switching infrastructure.

As shown on the left side of the logical controller 310, the logical controller 310 of some
embodiments receives logical datapath set data from a user in a form of application protocol
interface (API) calls that are supported by the logical controller 310. The API (not shown) of the
logical controller 310 translates the logical datapath set data for configuring logical switches
and logical routers into LCP data. The LCP data is the control plane data for the logical
switching elements (e.g., logical switches and logical routers) that the user is managing through
the controller cluster. The logical controller 310 generates LFP data from the LCP data. The
LFP data is the forwarding plane data for the logical switching elements of the user. In some
embodiments, the logical controller 310 has a set of modules (not shown) including a translation
engine that translates the LCP data into the LFP data. In some such embodiments, the
translation performed by the translation engine involves database table mapping.

From the LFP data for a particular logical datapath set of the user, the virtualization
module of the logical controller 310 of some embodiments generates universal physical control
plane (UPCP) data that is the control plane data for any MSE that implements the logical
datapath set. The UPCP data does not include specifics of the MSEs (e.g., information that is
local to the MSE such as a port number, etc.). In some embodiments, the translation engine
translates the LFP data into UPCP data.

The set of modules of the logical controller 310 also includes a module that identifies a
set of physical controllers that is responsible for controlling a set of MSEs that implement the
logical datapath set (i.e., that implement the logical switching elements of the user). The logical
controller 310 sends the UPCP data only to the identified set of physical controllers in some
embodiments. The logical controller of different embodiments communicates with the physical
controllers differently. For instance, in some embodiments, the logical controller 310 establishes

a communication channel (e.g., a remote procedure call (RPC) channel) with each of the
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physical controllers in the identified set. Alternatively or conjunctively, the logical controller
and the physical controller use a storage as a medium of communication by placing and pulling
UPCP data in the storage.

The physical controller 315 is one of the physical controllers of the controller cluster
300. The physical controller 315 is responsible for managing the MSE 320. The physical
controller 315 receives the UPCP data from the logical controller 310 and converts the UPCP
data into customized physical control plane (CPCP) data for the MSE 320. In contrast to the
UPCP data, the CPCP data for a MSE includes the specifics of the MSE. The CPCP data is the
control plane data for the MSE. In some embodiments, the physical controller 315 has a set of
modules (not shown) including a translation engine that translates the UPCP data into the CPCP
data. In some such embodiment, the translation performed by the translation engine involves
database table mapping.

The CPCP data includes the attachment data, which defines the coupling of the managed
switching element and the distributed middlebox instance that implement the logical switching
clements (the logical switches and the logical routers) of the user. For instance, the attachment
data specifies the port number of a port of the MSE through which the MSE and the distributed
middlebox instance exchange packets.

The physical controller 315 also sends slicing data to the MSE. Slicing data in some
embodiments includes identifiers for identifying different “slices” of a distributed middlebox
instance. In some embodiments, a distributed middlebox instance may provide a middlebox
service to several different VMs that belong to several different users (i.c., several different
logical domains). The distributed middlebox may be “sliced” so that each slice of the distributed
middlebox instance provides the middlebox service one of these different VMs. When the
managed switching element that forwards packets for the VMs sends packets to the distributed
middlebox instance, the MSE uses the slice identifiers to indicate to which particular user or
logical domain that a packet belongs so that the slice for the particular user processes the packet.

In some embodiments, the slicing data includes a binding between a long-form slice
identifier and a short-form slice identifier. The long-form slice identifier is relatively long (e.g.,
128 bit) and the short-form slice identifier is relatively short (e.g., 16 bit). In some
embodiments, the long-term slice identifier is used to make an identity of a user unique across
the numerous MSEs that might be implementing numerous users’ logical domains. The short-
form slice identifier is used for packet exchange between a MSE and a distributed middlebox
instance running in a host.

The user also configures the middlebox service for the user’s logical switching elements.

As shown on the right side of the controller cluster 300, the logical controller 310 of some
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embodiments includes a middlebox API for taking API calls specifying the configuration of the
middlebox service (e.g., SNAT rules) from the user. The middlebox API of the logical
controller 310 extracts the configuration data from the middlebox API calls received from the
user and sends the configuration data to the same set of physical controllers to which the logical
controller 310 sends the UPCP data.

The physical controller 315 of some embodiments receives the configuration data from
the logical controller 310 and then relays the configuration data to all MSEs, which the physical
controller 315 manages, that implement at least part of the user’s logical switching elements,
including the MSE 320. The MSE 320 then sends this configuration data to the distributed
middlebox instance 325. Alternatively or conjunctively, the physical controller 315 directly
sends the middlebox configuration data to the distributed middlebox instance 325.

In some embodiments, the physical controller 315 also sends the slicing data and the
attachment data to the distributed middlebox instances that the physical controller manages. The
distributed middlebox instance 325 performs translation of the configuration data using the
slicing and attachment data to complete the configuration of the distributed middlebox instance
325 as specified by the user. The distributed middlebox instance also creates a binding of slicing
data. Specifically, the distributed middlebox instance of some embodiments creates a binding
between short-form slice identifiers and internal slice identifiers to use only within the
distributed middlebox instance 325. An example usage of the internal slice identifiers may be
for populating a data structure that allows only certain lengths for the slice identifiers to have.

Each of the controllers illustrated in Figure 3 is shown as a single controller. However,
cach of these controllers may actually be a controller cluster that operates in a distributed
fashion to perform the processing of a logical controller or physical controller.

Figure 4 illustrates example architecture of a network controller (e.g., a logical
controller or a physical controller) 400. The network controller of some embodiments uses a
table mapping engine to map data from an input set of tables to data in an output set of tables.
The input set of tables in a controller includes LCP data to be mapped to LFP data, LFP data to
be mapped to UPCP data, and/or UPCP data to be mapped to CPCP data. The input set of tables
may also include middlebox configuration data to be sent to another controller and/or a
distributed middlebox instance. The network controller 400, as shown, includes input tables
415, an rules engine 410, output tables 420, an importer 430, an exporter 435, a translator 435,
and a persistent data storage (PTD) 440.

In some embodiments, the input tables 415 include tables with different types of data
depending on the role of the controller 400 in the network control system. For instance, when

the controller 400 functions as a logical controller for a user’s logical forwarding elements, the
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input tables 415 include LCP data and LFP data for the logical forwarding elements. When the
controller 400 functions as a physical controller, the input tables 415 include LFP data. The
input tables 415 also include middlebox configuration data received from the user or another
controller. The middlebox configuration data is associated with a logical datapath set parameter
that identifies the logical switching elements to which the middlebox to be is integrated.

In addition to the input tables 415, the control application 400 includes other
miscellaneous tables (not shown) that the rules engine 410 uses to gather inputs for its table
mapping operations. These miscellaneous tables tables include constant tables that store defined
values for constants that the rules engine 410 needs to perform its table mapping operations
(e.g., the value 0, a dispatch port number for resubmits, etc.). The miscellancous tables further
include function tables that store functions that the rules engine 410 uses to calculate values to
populate the output tables 425.

The rules engine 410 performs table mapping operations that specifies one manner for
converting input data to output data. Whenever one of the input tables is modified (referred to as
an input table event), the rules engine performs a set of table mapping operations that may result
in the modification of one or more data tuples in one or more output tables.

In some embodiments, the rules engine 410 includes an event processor (not shown),
several query plans (not shown), and a table processor (not shown). Each query plan is a set of
rules that specifies a set of join operations that are to be performed upon the occurrence of an
input table event. The event processor of the rules engine 410 detects the occurrence of each
such event. In some embodiments, the event processor registers for callbacks with the input
tables for notification of changes to the records in the input tables 415, and detects an input table
event by receiving a notification from an input table when one of its records has changed.

In response to a detected input table event, the event processor (1) selects an appropriate
query plan for the detected table event, and (2) directs the table processor to execute the query
plan. To execute the query plan, the table processor, in some embodiments, performs the join
operations specified by the query plan to produce one or more records that represent one or
more sets of data values from one or more input and miscellaneous tables. The table processor
of some embodiments then (1) performs a select operation to select a subset of the data values
from the record(s) produced by the join operations, and (2) writes the selected subset of data
values in one or more output tables 420.

Some embodiments use a variation of the datalog database language to allow application
developers to create the rules engine for the controller, and thereby to specify the manner by
which the controller maps logical datapath sets to the controlled physical switching
infrastructure. This variation of the datalog database language is referred to herein as nLog. Like
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datalog, nLog provides a few declaratory rules and operators that allow a developer to specify
different operations that are to be performed upon the occurrence of different events. In some
embodiments, nLog provides a limited subset of the operators that are provided by datalog in
order to increase the operational speed of nLog. For instance, in some embodiments, nLog only
allows the AND operator to be used in any of the declaratory rules.

The declaratory rules and operations that are specified through nLog are then compiled
into a much larger set of rules by an nLog compiler. In some embodiments, this compiler
translates each rule that is meant to address an event into several sets of database join
operations. Collectively the larger set of rules forms the table mapping rules engine that is
referred to as the nLog engine.

Some embodiments designate the first join operation that is performed by the rules
engine for an input event to be based on the logical datapath set parameter. This designation
ensures that the rules engine’s join operations fail and terminate immediately when the rules
engine has started a set of join operations that relate to a logical datapath set (i.c., to a logical
network) that is not managed by the controller.

Like the input tables 415, the output tables 420 include tables with different types of data
depending on the role of the controller 400. When the controller 400 functions as a logical
controller, the output tables 415 include LFP data and UPCP data for the logical switching
clements. When the controller 400 functions as a physical controller, the output tables 420
include CPCP data. Like the input tables, the output tables 415 may also include the middlebox
configuration data. Furthermore, the output tables 415 may include a slice identifier when the
controller 400 functions as a physical controller.

In some embodiments, the output tables 420 can be grouped into several different
categories. For instance, in some embodiments, the output tables 420 can be rules engine (RE)
input tables and/or RE output tables. An output table is a RE input table when a change in the
output table causes the rules engine to detect an input event that requires the execution of a
query plan. An output table can also be an RE input table that generates an event that causes the
rules engine to perform another query plan. An output table is a RE output table when a change
in the output table causes the exporter 425 to export the change to another controller or a MSE.
An output table can be an RE input table, a RE output table, or both an RE input table and a RE
output table.

The exporter 425 detects changes to the RE output tables of the output tables 420. In
some embodiments, the exporter registers for callbacks with the RE output tables for

notification of changes to the records of the RE output tables. In such embodiments, the
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exporter 425 detects an output table event when it receives notification from a RE output table
that one of its records has changed.

In response to a detected output table event, the exporter 425 takes each modified data
tuple in the modified RE output tables and propagates this modified data tuple to one or more
other controllers or to one or more MSEs. When sending the output table records to another
controller, the exporter in some embodiments uses a single channel of communication (e.g., a
RPC channel) to send the data contained in the records. When sending the RE output table
records to MSEs, the exporter in some embodiments uses two channels. One channel is
established using a switch control protocol (e.g., OpenFlow) for writing flow entries in the
control plane of the MSE. The other channel is established using a database communication
protocol (e.g., JSON) to send configuration data (e.g., port configuration, tunnel information).

In some embodiments, the controller 400 does not keep in the output tables 420 the data
for logical datapath sets that the controller is not responsible for managing (i.e., for logical
networks managed by other logical controllers). However, such data is translated by the
translator 435 into a format that can be stored in the PTD 440 and is then stored in the PTD. The
PTD 440 propagates this data to PTDs of one or more other controllers so that those other
controllers that are responsible for managing the logical datapath sets can process the data.

In some embodiments, the controller also brings the data stored in the output tables 420
to the PTD for resiliency of the data. Therefore, in these embodiments, a PTD of a controller has
all the configuration data for all logical datapath sets managed by the network control system.
That is, each PTD contains the global view of the configuration of the logical networks of all
users.

The importer 430 interfaces with a number of different sources of input data and uses the
input data to modify or create the input tables 410. The importer 420 of some embodiments
receives the input data from another controller. The importer 420 also interfaces with the PTD
440 so that data received through the PTD from other controller instances can be translated and
used as input data to modify or create the input tables 410. Moreover, the importer 420 also
detects changes with the RE input tables in the output tables 430.

C. Connection Identifiers Assignment

As described above by reference to Figures 1 and 2, the first-hop MSEs performs all or
most of the logical processing that is to be performed on a data packet in order for the data
packet to reach the data packet’s destination. The packets from different VMs may be sent to the
same VM. These packets are processed by logical switching elements and middleboxes
implemented in multiple first-hop MSEs and distributed middlebox instances. The multiple
first-hop MSEs and distributed middlebox instances may apply the same processing to these
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packets heading to the same destination. Thus, from the viewpoint of the destination MSE, the
packets may not be distinguishable from one another.

For instance, a packet sent from VM 1 to VM 3 of Figure 1 has a source IP address of
VM 1 and the destination IP address of VM 3. When the distributed middlebox instance 125
applies a middlebox processing (¢.g., SNAT) on this packet, the packet will have a source IP
address assigned by the distributed middlebox instance 125 and the destination IP address of
VM 3. Likewise, a packet sent from VM 2 to VM 3 of Figure 1 initially has a source IP address
of VM 2 and the destination IP address of VM 3. When the distributed middlebox instance 130
applies the same middlebox processing on this packet, this packet will have source IP address
assigned by the distributed middlebox instance 130 and the destination IP address of VM 3.
However, these two packets may have the same source IP address after being processed by the
respective distributed middlebox instance because the middlebox processing performed on these
two packets by the distributed middlebox instances are the same. Hence, from the viewpoint of
the destination MSE attached to the destination of the packets (i.e., the MSE 3 for VM 3 of
Figure 1), these two packets from two different VMs have same field values. For instance, these
two packets may have the same five-tuple (e.g., source IP address, source port number,
destination IP address, destination port number, and protocol type).

In order for the destination MSE to forward response packets from the destination to the
appropriate origins of the packets with the identical five-tuples, the destination MSE needs
additional information to distinguish between those packets. In some embodiments, the MSEs
assign and use connection identifiers to distinguish between those packets with the identical
five-tuples from multiple different first-hop MSEs.

Figure 5 conceptually illustrates several different ways of assigning connection
identifiers to several distributed middlebox instances. Specifically, this figure illustrates three
different approaches 505-515 of centrally assigning the connection identifiers to the distributed
middlebox instances. This figure illustrates a controller cluster 525, an identifier space 530, and
several hosts 535-545 for each of the three approaches. Each of the host includes a MSE and a
distributed middlebox instance. The identifier space 530 includes a set of connection identifiers
that can be assigned to the distributed middlebox instances.

The first approach 505 shows slicing the identifier space 530 in advance. That is, the
controller cluster 525 assigns a non-overlapping range of connection identifiers to each
distributed middlebox instance as the controller cluster configures the distributed middlebox
instance. Each middlebox instance will have a pre-assigned range of identifiers and will assign

an identifier from the range to a connection for which the corresponding MSE is a first-hop
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MSE. This approach can be taken when the number of connection identifiers is sufficient for the
number of the distributed middlebox instances for which the identifiers should be sliced.

The second approach 510 shows slicing the identifier space 530 on demand. In this
approach, a distributed middlebox instance asks for a range of connection identifiers from the
controller cluster 525 whenever the distributed middlebox instance needs more connection
identifiers. The distributed middlebox instance can release a range of connection identifiers
when the distributed middlebox instance does not need the range of connection identifiers. The
controller cluster 525 maintains the identifier space 530 to keep track of the ranges of identifiers
that are being used by the distributed middlebox instances and the identifiers that are available
to be assigned to the distributed middlebox instances. Specifically, the controller cluster 525 of
some embodiments taking this approach supports a connection identifier assignment API that
enables the distributed middlebox instances to obtain and release a range of connection

identifiers on demand. An example API call for obtaining a range of connection identifiers is:

range_acquire (key, number of identifiers, purpose)

The key specifies the distributed middlebox instance that is asking for a range of identifiers. The
number of identifiers is the number of identifiers that the distributed middlebox instance asking
for. Purpose indicates whether this range of identifiers is going to be used for sanitizing the
packets. Sanitizing packets will be described further below by reference to Figure 12. The
controller cluster 525 returns (1) a range of connection identifiers which includes the requested
number of connection identifiers and (2) a range identifier for identifying the range.

An example API call for releasing a range of connection identifier is:

range release (range id)

The range id is the range identifier for the range of connection identifiers to release. In response
to receiving this API call, the controller cluster 525 makes this range of connection identifiers
available for assigning to the distributed middlebox instances.

The third approach 515 shows assigning the entire range of connection identifiers to
cach of the distributed middlebox instances. This approach can be taken when the identifier
assignment to a connection happens at the destination MSE for the connection, rather than at the
first-hop MSE for the connection. Because the identifier assignment to the connection happens

at the destination MSE, the identifier assignment is used only by the destination MSE and the
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corresponding middlebox instance. Therefore, there is no need to uniquely identify a connection
across different MSEs.

II. SOURCE NETWORK ADDRESS TRANSLATION (SNAT)

As mentioned above, one of the middlebox services that a middlebox can provide is a
SNAT service. When a middlebox is providing the SNAT service, the middlebox replaces the
source network address (e.g., the source IP address) with a different source network address in
order to hide the real source network address from the recipient of the packet. Figures 6-14
illustrate example operations of the MSEs 1-3 and the corresponding distributed middlebox
instances 125-135. The distributed middlebox instances 125-135 provides SNAT service unless
otherwise specified below.

Figure 6 illustrates the logical network 105 and the physical network 110 that is
described above by reference to Figure 1. Specifically, Figure 6 illustrates the elements of the
logical network 105 and the physical network 110 with ports. The description of these ports will
be used in the description of the later figures, Figure 7-14.

As shown, the logical switch 1 has three ports, ports 1-3. Port 1 is associated with VM
I’s L2 address (e.g., a MAC address). Port 2 is associated with VM 2’s L2 address. Port 3 is
associated with the MAC address of port X of the logical router 115. The logical switch 2 has
two ports, ports 4-5. Port 4 is associated with the MAC address of port Y of the logical router
115. In this example, the MAC address of port X is 01:01:01:01:01:01 and the MAC address of
port Y is 01:01:01:01:01:02.

The logical router has ports X, Y, and N. Port X is coupled to port 3 of the logical switch
1. In this example, the logical switch 1 forwards packets between VMs that have IP addresses
that belong to a subnet IP address of 10.0.1.0/24. Port X is therefore associated with a subnet IP
address of 10.0.1.0/24. Port Y is coupled to port 4 of the logical switch 2. In this example, the
logical switch 2 forwards packets between VMs that have IP addresses that belong to a subnet
IP address of 10.0.2.0/24. Port Y is therefore associated with a subnet IP address of 10.0.2.0/24.
Port N is for sending packets to the middlebox 120 and is not associated with any IP subnet in
this example. In some embodiments, a port of the MSE that the MSE uses to communicate with
the distributed middlebox instance (e.g., port N) is a port that does not have a physical port (e.g.,
VIF) to which the port is mapped. Also, VM 1 has an IP address of 10.0.1.1 and VM 2 has an IP
address of 10.0.1.2. VM 3 has an IP address of 10.0.2.1 in this example. The middlebox 120 in
this example has a set of IP addresses 11.0.1.1 — 11.0.1.100 to use to translate source IP
addresses of packets that originate from the logical switch 1 (e.g., packets having the source IP

addresses that belong to the subnet IP address of 10.0.1.0/24).
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Shown in the bottom half of Figure 6 arc hosts 1-3 on which the MSEs 1-3 and the
distributed middlebox instances 125-135, respectively, run. The MSE 1 has ports A-C. The
MSE 2 has ports G-1. The MSE 3 has ports D-F. In this example, the tunnel that is established
between the MSEs 1 and 2 terminates at ports B and G. The tunnel that is established between
the MSEs 1 and 3 terminates at ports A and D. The tunnel that is established between the MSEs
2 and 3 terminates at ports H and E. Port C of the MSE 1 is mapped to port 1 of the logical
switch 1 and therefore port C is associated with the MAC address of VM 1. Port I of the MSE 2
is mapped to port 2 of the logical switch 1 and therefore port I is associated with the MAC
address of VM 2. Port F of the MSE 3 is mapped to port 5 of the logical switch 2 and therefore
port F is associated with the MAC address of VM 3.

A. Distributed Middlebox Instance with SNAT Service

Figure 7 conceptually illustrates a process 700 that some embodiments perform to
provide SNAT service. In some embodiments, the process 700 is performed by a distributed
middlebox instance in order to translate source network addresses of the packets that the
distributed middlebox instance’s corresponding MSE (i.c., the MSE that is running in the same
host), as a first-hop MSE, processes. The distributed middlebox instance of some embodiments
receives flow templates along with the packets, which are flow entries that are missing some
actual values. In these embodiments, the distributed middlebox provides the middlebox service
by creating flow entries by filling in the flow templates with actual values and installing the
created flow entries in the flow tables of the first-hop MSE. The distributed middlebox also
sends the packets back to the first-hop MSE so that the packets are processed by the MSE based
on the flow entries installed by the distributed middlebox instance.

The process 700 begins by receiving (at 705) a packet and several flow templates from a
MSE that is a first-hop MSE with respect to this packet. That is, the MSE sending the packet has
received the packet from a source VM with which the MSE directly interfaces. This packet’s
destination IP address is the IP address of a destination VM, which is not coupled to the logical
switch to which the source VM is coupled. The packet has the IP address of the source VM as
the source IP address.

Next, the process 700 identifies (at 710) the source IP address of the received packet so
that the process can translate this address into another IP address. The process 700 then
determines (at 715) whether there is an available IP address to which to translate the source IP
address. In some embodiments, the process 700 maintains a set of IP addresses. When all 1P
addresses in the maintained set are used, the process 700 determines that no address is available.

When there is an IP address in the maintained set of addresses that the process 700 can use, the
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process 700 determines that an address to which to translate the source IP address of the
received packet is available.

When the process 700 determines (at 715) that there is no available address to which to
translate the source IP address of the packet, the process 700 creates (at 730) and installs a
failure flow entry. In some embodiments, the process 700 creates the failure flow entry by
filling in a received (at 705) flow template with an instruction to drop the packet. The MSE will
drop the packet according to the failure flow entry. The process 700 then proceeds to 735, which
will be described further below.

When the process 700 determines (at 715) that there is an available address to which to
translate the source IP address of the packet, the process 700 maps (at 720) the source IP
address of the packet to the address to which to translate the source IP address and stores the
mapping.

Next at 725, the process 700 creates and installs forward and reverse flow entries. A
forward flow entry is a flow entry that directs the first-hop MSE to modify the packet by
replacing the source IP address with the IP address to which the source IP address is mapped (at
720). In some embodiments, the process 700 creates the forward flow entry by filling in a
received (at 705) flow template with the address to which the source IP address is mapped (at
720). A reverse flow entry is a flow entry that directs the first-hop MSE to modify a response
packet that is sent from the destination of the initial packet (i.c., the packet that is sent to the
destination) in response to receiving the initial packet. The response packet will have a
destination IP address, which is the IP address to which the source IP address of the initial
packet is translated. The first-hop MSE translates the destination IP address of the response
packet so that the response packet can reach the source VM of the initial packet.

Next, the process 700 then sends (at 735) the packet back to the first-hop MSE. The
process 700 then ends. The first-hop MSE will process the packet based on the flow entries,
which will include the forward and reverse flow entries and/or the failure flow entry.

B. First-Hop Processing of the First Packet

Figure 8 conceptually illustrates an example operation of a MSE that is a first-hop MSE
with respect to a data packet. Specifically, this figure illustrates an operation of the MSE 1 that
processes a packet from VM 1 to VM 3. In this example, the packet is the very first packet that
is sent from VM 1 to VM 3. This figure also illustrates the operation of a distributed middlebox
instance that receives the packet from the first-hop MSE to provide SNAT service. Specifically,
the top half of this figure illustrates two processing pipelines 800 and 801 that are performed by
the MSE 1. The processing pipeline 800 includes L2 processing 820 for the logical switch 1 and
L3 processing 845 for the logical router 115, which have stages 825-840 and stages 850-860,
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respectively. The processing pipeline 801 includes L3 processing 865 for the logical router 115
and L2 processing 895 for the logical switch 2, which have stages 870-890 and stages 896-899,
respectively.

The bottom half of the figure illustrates the MSEs 1 and 3, and VM 1. As shown, the
MSE 1 includes a table 805 for storing flow entries for the logical switch 1 (not shown), a table
810 for storing flow entries for the logical router 115, and a table 815 for storing flow entries for
the logical switch 2. Although these tables are depicted as separate tables, the tables do not
necessarily have to be separate tables. That is, a single table may include all the flow entries for
the MSE 1 to use to perform the logical processing of the logical router 115 and the logical
switches 1 and 2.

When VM 1 that is coupled to the logical switch 1 sends packet 1 to VM 3 that is
coupled to the logical switch 2, the packet is first sent to the MSE 1 through port 1 of the MSE
1. The MSE 1 performs an L2 processing 820 on packet 1 based on the forwarding tables 805 of
the MSE 1. In this example, packet 1 has a destination IP address of 10.0.2.1, which is the IP
address of VM 3 as described above by reference to Figure 6. Packet 1’s source IP address is
10.0.1.1. Packet 1 also has VM 1°s MAC address as a source MAC address and the MAC
address of port X (01:01:01:01:01:01) of the logical router 115 as a destination MAC address.

The MSE 1 identifies a flow entry indicated by an encircled 1 (referred to as “record 17)
in the forwarding table 805 that implements the context mapping of the stage 825. The record 1
identifies packet 1’s logical context based on the ingress port, which is port 1 through which
packet 1 is received from VM 1. In addition, the record 1 specifies that the MSE 1 stores the
logical context of packet 1 in a set of fields (e.g., a VLAN id field) of packet 1’s header. In
some embodiments, a logical context represents the state of the packet with respect to the
logical switching element. For example, some embodiments of the logical context may specify
the logical switching element to which the packet belongs, the port of the logical switching
element through which the packet was received, the port of the logical switching element
through which the packet is to be transmitted, the stage of the LFP of the logical switching
element the packet is at, etc.

The record 1 also specifies packet 1 is to be further processed by the forwarding tables
(e.g., by sending packet 1 to a dispatch port). A dispatch port (not shown) is a port of a MSE to
send the processed packet back to the ingress port of the MSE so that the MSE can further
process the packet.

Based on the logical context and/or other fields stored in packet 1’s header, the MSE 1
identifies a flow entry indicated by an encircled 2 (referred to as “record 2”) in the forwarding
tables that implements the ingress ACL of the stage 830. In this example, the record 2 allows
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packet 1 to be further processed and, thus, specifies packet 1 is to be further processed by the
MSE 1. In addition, the record 2 specifies that the MSE 1 stores the logical context (i.c., packet
1 has been processed by the stage 830) of packet 1 in the set of fields of packet 1’s header.

Next, the MSE 1 identifies, based on the logical context and/or other fields stored in
packet 1’s header, a flow entry indicated by an encircled 3 (referred to as “record 3”) in the
forwarding tables that implements the logical L2 forwarding of the stage 835. The record 3
specifies that a packet with the MAC address of port X of the logical router 115 as a destination
MAC address is to be sent to port 3 of the logical switch 1.

The record 3 also specifies that packet 1 is to be further processed by the MSE 1. Also,
the record 3 specifies that the MSE 1 stores the logical context (i.e., packet 1 has been processed
by the third stage 835) in the set of fields of packet 1’s header.

Next, the MSE 1 identifies, based on the logical context and/or other fields stored in
packet 1’s header, a flow entry indicated by an encircled 4 (referred to as “record 4”) in the
forwarding tables that implements the egress ACL of the stage 840. In this example, the
record 4 allows packet 1 to be further processed (e.g., packet 1 can get out of the logical switch
1 through port 3 of the logical switch 1) and, thus, specifies packet 1 is to be further processed
by the MSE 1 (e.g., by sending packet 1 to the dispatch port). In addition, the record 4 specifies
that the MSE 1 stores the logical context (i.e., packet 1 has been processed by the stage 845 of
the processing pipeline 800) of packet 1 in the set of fields of packet 1’s header. (It is to be
noted that all records specify that a MSE updates the logical context store in the set of fields
whenever the MSE performs some portion of logical processing based on a record.)

The MSE 1 continues processing packet 1 based on the flow entries. The MSE 1
identifies, based on the logical context and/or other fields stored in packet 1’s header, a flow
entry indicated by an encircled 5 (referred to as “record 5”) in the L3 entries 810 that
implements L3 ingress ACL of the logical router 115 by specifying that the MSE 1 should
accept the packet through port X of the logical router 115 based on the information in the header
of packet 1. The record 5 also specifies that packet 1 is to be further processed by the MSE 1
(e.g., by sending packet 1 to a dispatch port). In addition, the record 5 specifies that the MSE 1
stores the logical context (i.e., packet 1 has been processed by the stage 850 of the processing
pipeline 800) of packet 1 in the set of fields of packet 1’s header.

The MSE 1 then identifies a flow entry indicated by an encircled 6 (referred to as
“record 6”) in the L3 entries table 810 implements the L3 routing 855 by specifying that a
packet received through port X of the logical router 115 is to be sent to the middlebox 120
through port N. That is, the record 6 specifies that a packet having a source IP address that
belongs to the subnet IP address of 10.0.1.0/24 is to be sent to the middlebox 120. Because
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packet 1 has the source IP address 10.0.1.1 that belongs to the subnet IP address of 10.0.1.0/24,
the MSE 1 will send the packet to the distributed middlebox instance 125.

The MSE 1 then identifies a flow entry indicated by an encircled 7 (referred to as
“record 7) in the L3 entries 810 that implements L3 egress ACL 860 by specifying that the
MSE 1 allows the packet to exit out through port N of the logical router 115 based on the
information (e.g., source IP address) in the header of packet 1. In addition, the record 7 specifies
that the MSE 1 removes the logical context of packet 1 from the set of fields of packet 1’s
header. The MSE 1 sends packet 1 to the distributed middlebox instance 125, which implements
the middlebox 120. The record 7 also specifies that several flow templates are to be sent to the
middlebox 120 along with packet 1. The managed switching element 1 of some embodiments
also sends a slice identifier to the distributed middlebox instance 125 so that the slice of the
distributed middlebox instance 125 for the user of the logical switching elements in the logical
network 1 processes packet 1.

Upon receiving packet 1, the distributed middlebox instance 125 identifies an IP address
to which to translate the source IP address (10.0.1.1) of packet 1. In this example, the distributed
middlebox instance 125 selects 11.0.1.1 from the range of IP addresses (11.0.1.1-11.0.1.100)
described above by reference to Figure 6. The distributed middlebox instance 125 also creates a
forward flow entry that specifies that the MSE 1 modifies a packet that has a source IP address
of 10.0.1.1 by replacing the source IP address (10.0.1.1) with the selected IP address (11.0.1.1).
The distributed middlebox instance 125 also creates a reverse flow entry that specifies that the
MSE 1 modifies a packet with a destination IP address of 11.0.1.1 by replacing the destination
IP address of this packet with an IP address of the VM 1. The reverse flow entry ensures that a
response packet from VM 3 reaches the correct destination, VM 1. The distributed middlebox
instance 125 installs the created flow entries and sends packet 1 back to the MSE 1. In some
embodiments, the MSE 1 treats the packet returned from the distributed middlebox instance 125
as a new packet to route. Thus, this new packet is referred to as packet 2 in this example. As
shown, the forward and reverse flow entries are installed (e.g., placed) in the table 810 indicated
by encircled F and R, respectively.

Upon receiving packet 2, the MSE 1 performs the L3 processing 865 on packet 2 based
on the table 810. In this example, because packet 2 is still same as packet 1, packet 2 has a
destination IP address of 10.0.2.1, which is the IP address of VM 3. Packet 2’s source IP address
is still 10.0.1.1. The MSE 1 identifies a flow entry indicated by an encircled 8 (referred to as
“record 8”) in the forwarding table 810 that implements the context mapping of the stage 870.
The record 1 identifies packet 2’s logical context based on the ingress port, which is port N
through which packet 2 is received from the middlebox 120. In addition, the record 8 specifies
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that the MSE 1 stores the logical context of packet 2 in a set of fields (e.g., a VLAN id field) of
packet 2’s header. The record 8 also specifies packet 2 is to be further processed by the MSE 1
(e.g., by sending packet 2 to a dispatch port).

The MSE 1 continues processing packet 2 based on the flow entries. The MSE 1
identifies, based on the logical context and/or other fields stored in packet 2’s header, a flow
entry indicated by an encircled 9 (referred to as “record 9”) in the L3 entries 810 that
implements L3 ingress ACL 875 of the logical router 115 by specifying that the MSE 1 should
accept the packet through port N of the logical router 115 based on the information in the header
of packet 2. The record 9 also specifies that packet 2 is to be further processed by the MSE 1. In
addition, the record 9 specifies that the MSE 1 stores the logical context (i.c., packet 2 has been
processed by the stage 875 of the processing pipeline 801) of packet 2 in a set of fields of packet
2’s header.

The MSE 1 then identifies a flow entry indicated by an encircled 10 (referred to as
“record 10”) in the L3 entries 810 that implements L3 routing 880 by specifying that packet 2
with its destination IP address (10.0.2.1) should exit out of port Y of the logical router 115. The
record 10 also specifies that packet 2 is to be further processed by the MSE 1. In addition, the
record 10 specifies that the MSE 1 stores the logical context (i.e., packet 2 has been processed
by the stage 880 of the processing pipeline 801) of packet 2 in a set of fields of packet 2’s
header.

In some embodiments, the flow entries have associated priority levels. The priority
levels are used to select one of several flow entries when a packet satisfies the conditions
specified by the qualifiers of the several flow entries. The MSE 1 identifies a flow entry
indicated by an encircled F (referred to as “record F”) in the L3 entries table 810. The record F
is the forward flow entry that the distributed middlebox instance has created and installed in the
table 810. Packet 2 meets the condition specified in the record F as well as the condition
specified in the record 6 because packet 2’s source IP address is 10.0.1.1 that is specified as a
condition in the record F and packet 2’s source IP address belongs to the subnet IP address of
10.0.1.0/24 specified as a condition in the record 6. In some embodiments, the record F that is
created by the distributed middlebox instance has a priority level that is higher than that of the
record 6, which directs the MSE 1 to send the packet to the distributed middlebox instance 125.
In addition, the record F specifies that the MSE 1 stores the logical context (i.e., packet 1 has
been processed by the stage 885 of the processing pipeline 801) of packet 2 in the set of fields
of packet 2’s header. It is to be noted that the record F may be identified ahead of the record 10
so that the MSE 1 replaces the source IP address of the packet before routing the packet
according to the record 10.
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The MSE 1 then identifies a flow entry indicated by an encircled 11 (referred to as
“record 117) in the L3 entries 810 that implements L3 egress ACL by specifying that the MSE 1
allows the packet to exit out through port Y of the logical router 115 based on the information
(e.g., source IP address) in the header of packet 2. Also, the record 11 (or another record in the
routing table, not shown) indicates that the source MAC address for packet 2 is to be rewritten
to the MAC address of port Y of the logical router 115 (01:01:01:01:01:02). Record 11 may also
specify that the MSE 1 resolves the destination IP address of packet 2 in order to obtain the
MAC address of VM 3. In some embodiments, the MSE 1 uses address resolution protocol
(ARP) to resolve the destination IP address into the MAC address of the destination. Record 11
or another record may specify that the MSE 1 replaces the destination MAC address of the
packet (currently the MAC address of port 3 of the MSE 1) with the MAC address of VM 3 to
which the destination IP address has been resolved. In addition, the record 11 specifies that the
MSE 1 stores the logical context (i.e., packet 2 has been processed by the stage 890 of the
processing pipeline 801) of packet 2 in the set of fields of packet 2’s header.

Packet 2 has exited the logical router 115 through port Y and has entered the logical
switch 2 through port 4 of the logical switch 2. The MSE 1 then performs L2 processing 895.
Based on the logical context and/or other fields stored in packet 2’s header, the MSE 1 identifies
a flow entry indicated by an encircled 12 (referred to as “record 12”) in the L2 entries 815 that
implements the ingress ACL of the stage 896. In this example, the record 12 specifies that
packet 2 is to be further processed by the MSE 1. In addition, the record 12 specifies that the
MSE 1 stores the logical context (i.e., packet 1 has been processed by the stage 896 of the
processing pipeline 801) of packet 1 in the set of fields of packet 2’s header.

Next, the MSE 1 identifies, based on the logical context and/or other fields stored in
packet 1’s header, a flow entry indicated by an encircled 13 (referred to as “record 13”) in the
L2 entries 815 that implements the logical L2 forwarding of the stage 897. The record 13
specifies that a packet with the MAC address of VM 3 as the destination MAC address should
be forwarded through port 5 of the logical switch 2 that is connected to VM 3. The record 13
also specifies that packet 2 is to be further processed by the MSE 1. Also, the record 13
specifies that the MSE 1 stores the logical context (i.e., packet 2 has been processed by the
stage 897 of the processing pipeline 801) in the set of fields of packet 2’s header.

Based on the logical context and/or other fields stored in packet 2’s header, the MSE 1
identifies a flow entry indicated by an encircled 14 (referred to as “record 14”) in the L2 entries
815 that implements the context mapping of the stage 898. In this example, the record 14
identifies the MSE 3 as the MSE to which the packet exiting port 5 of the logical switch 2
should be sent. The record 14 additionally specifies that packet 2 be further processed by the
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MSE 1. In addition, the record 14 specifies that the MSE 1 stores the logical context (i.e., packet
2 has been processed by the stage 898 of the processing pipeline 801) of packet 2 in the set of
fields of packet 2’s header.

Based on the logical context and/or other fields stored in packet 2’s header, the MSE 1
then identifies a flow entry indicated by an encircled 15 (referred to as “record 15”) in the L2
entries 815 that implements the physical mapping of the stage 899. The record 15 specifies port
A of the MSE 1 as a port through which packet 2 is to be sent in order for packet 2 to reach the
MSE 3. In this case, the MSE 1 is to send packet 2 out of port A of MSE 1 that is coupled to the
MSE 3 through a tunnel. In addition, the record 15 specifies that the MSE 1 stores the logical
context (i.e., packet 2 has been processed by the stage 899 of the processing pipeline 801) of
packet 2 in the set of fields of packet 2’s header.

B. First-Hop Processing of The Subsequent Packets

Figure 9 conceptually illustrates an example operation of a MSE that is a first-hop MSE
with respect to a data packet. Specifically, this figure illustrates an operation of the MSE 1 that
processes a packet from VM 1 to VM 3. In this example, the packet is one of the packets that
are being sent from VM 1 to VM 3 after the very first packet that has been sent from VM 1 to
VM 3. This subsequent packet has the same source and destination IP addresses because the
packet is being sent from the same source to the same destination as the first packet. The top
half of this figure shows a processing pipeline 900 that the MSE performs on this packet. The
processing pipeline 900 includes the L2 processing 820 for the logical switch 1, L3 processing
905 for the logical router 115, and the L2 processing 895 for the logical switch 2. The L3
processing 905 has the stages 850, 880, 885, and 890.

As shown in Figures 8 and 9, the difference between the processing of the very first
packet (packet 1) and the processing of a subsequent packet (packet 3) by the MSE 1 is that the
MSE 1 does not send the subsequent packet to the distributed middlebox instance 125. This is
because after the stage 850 is performed according to the record 5, the MSE 1 goes with the
record F rather than the record 6, which would have directed the MSE 1 to send the subsequent
packet to the distributed middlebox instance. As described above by reference to Figure 8, the
record F (i.e., the forward flow entry created and installed by the distributed middlebox instance
125) has a higher priority level than the record 6 has. This shows that only the first packet for
establishing a connection between the source and the destination needs to be sent to the
distributed middlebox instance and thus makes it faster to process the subsequent packets being
sent from the source to the destination.

C. Processing Response Packets

As mentioned above, in some embodiments, a particular MSE that is a first-hop with
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respect to a particular packet performs all or most of the logical processing that is to be
performed on the particular packet in order for the particular packet to reach the packet’s
destination. In some such embodiments, the particular MSE also performs all or most of the
logical processing that is to be performed on a response packet that is sent from the destination
of the particular packet in response to receiving the particular packet. By having the particular
MSE perform the logical processing on the response packet, some embodiments avoid having to
share state information (e.g., mapping of the source IP address of the particular packet and the
translated source IP address) between MSEs. That is, had the first-hop MSE to the response
packet performed the logical operation on the response packet, that MSE would need the state
information in order to restore the original source IP address and send the response packet back
to the origin of the particular packet.

Figure 10 conceptually illustrates an example operation of a MSE that is a first-hop
MSE with respect to a particular packet and is a last-hop MSE with respect to a response packet
that was sent in response to the particular packet. Specifically, this figure illustrates an operation
of the MSE 1 that processes a packet from VM 3 to VM 1. In this example, VM 3 has sent this
packet to VM 1 in response to receiving a packet from VM 1. In other words, the response
packet from VM 3 is part of data stream originating from VM 3 and flowing into VM 1 over a
connection (e.g., a transport layer connection like a TCP connection). This figure also illustrates
that the response packets are not sent to the distributed middlebox instance 125 for translating
the destination IP addresses of the response packets into the IP address of VM 1. Instead, the
MSE 1 performs that translation according to the reverse flow entry that is created and installed
by the distributed middlebox instance 125 as described above by reference to Figure 8.

The top half of Figure 10 illustrates a processing pipeline 1000 that is performed by the
MSE 1. The processing pipeline 1000 includes L2 processing 1005 for the logical switch 2, L3
processing 1010 for the logical router 115, and L2 processing 1015 for the logical switch 1,
which have stages 1020-1035, stages 1040-1055, and stages 1096-1099, respectively. The
bottom half of the figure illustrates the MSEs 1 and 3, and VM 1. As shown, the MSE 1
includes the tables 805, 810, and 815 for storing flow entries for the logical switch 1, the logical
router 115, and the logical switch 2, respectively.

When the MSE 1 receives from the MSE 3 packet 4 that is originated from VM 3
through port A of the MSE, the MSE 1 performs the L2 processing 1005 to forward packet 4
from VM 3 to the logical router 115. The MSE 1 performs the L2 processing 1005 based on the
flow entries indicated by encircled 16-19. Packet 4 has VM 3’s IP address 10.0.2.1 as the source
IP address and has the destination IP address of 11.0.1.1 because packet 4 is a response packet
to a packet that has the source IP address of 11.0.1.1.
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The MSE 1 then performs the L3 processing 1010 to route the packet out of the logical
router 115 through port X of the logical router 115. Specifically, based on the logical context
and/or other fields stored in packet 4’s header, the MSE 1 identifies a flow entry indicated by an
encircled 20 (referred to as “record 20”) in the forwarding tables that implements the L3 ingress
ACL of the stage 1040. In this example, the record 20 allows packet 4 to be further processed
and, thus, specifies that packet 4 is to be further processed by the MSE 1. In addition, the
record 20 specifies that the MSE 1 stores the logical context (i.e., packet 1 has been processed
by the stage 1040) of packet 4 in the set of fields of packet 4’s header.

The MSE 1 then identifies the reverse flow entry indicated by encircled R (referred to as
“record R”). As mentioned above, the reverse flow entry specifies that the MSE 1 modifies a
packet with a destination IP address of 11.0.1.1 by replacing the destination IP address of this
packet with the IP address of the VM 1 (10.0.1.1).

The MSE 1 then identifies a flow entry indicated by an encircled 21 (referred to as
“record 21”) in the L3 entries 810 that implements L3 routing 1050 by specifying that packet 4
with its destination IP address (10.0.1.1) should exit out of port X of the logical router 115.
Also, the record 21 (or another record in the routing table, not shown) indicates that the source
MAC address for packet 4 is to be rewritten to the MAC address of port X of the logical router
115(01:01:01:01:01:01).

The MSE 1 then identifies a flow entry indicated by an encircled 22 (referred to as
“record 22”) in the L3 entries 810 that implements L3 egress ACL by specifying that the MSE 1
allows the packet to exit out through port X of the logical router 115 based on the information
(e.g., source IP address) in the header of packet 4. In addition, the record 22 specifies that the
MSE 1 stores the logical context (i.e., packet 4 has been processed by the stage 1055 of the
processing pipeline 1000) of packet 4 in the set of fields of packet 4’s header.

The MSE 1 then performs the L2 processing 1015 for the logical switch 1 according to
the flow entries indicated by encircled 23-26. The MSE will send packet 4 out of the logical
switch 1 through port 1 of the logical switch. Because port C of the MSE 1 is mapped to port 1
of the logical switch, the MSE 1 will physical send out packet 1 to VM 1 through port C of the
MSE 1.

D. Last-Hop Processing of the First and Subsequent Packets

In some embodiments, sanitizing packets is done at the last-hop MSE when the first-hop
MSEs sending the packets to the last-hop MSEs do not assign unique identifiers to the packets.
When the packets from different first-hop MSEs come into the same last-hop MSE without
having been assigned unique identifiers, the last-hop MSE in some cases would not be able to
send response packets to the right first-hop MSE because the incoming packets may have the
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same five-tuple (e.g., source IP address, destination IP address, transport protocol type, source
port number, destination port number). Sanitizing packets includes adding a unique identifier to
the packets in addition to the 5-tuples or modifying the 5-tuples of the packets (e.g., changing
the source port number) to make the 5-tuples distinguishable.

Figure 11 conceptually illustrates a process 1100 that some embodiments perform to set
up forward and reverse sanitization flow entries at a MSE that is a last-hop MSE. A MSE is a
last-hop MSE with respect to a particular packet when the MSE is directly interfacing the
destination of the particular packet. For instance, for a packet that is sent from VM 1 to VM 3 as
described above in Figure 6, the MSE 3 is the last-hop with respect to the packet because the
MSE 3 is directly interfacing VM 3, which is the destination of the packet.

In some embodiments, the process 1100 is performed by a distributed middlebox
instance that runs in the same host in which a MSE runs. The MSE is the last-hop MSE with
respect to the packets that the MSE sends to the distributed middlebox instance. The distributed
middlebox instance of some embodiments also receives flow templates along with the packets.
In these embodiments, the distributed middlebox provides the middlebox service by creating
flow entries by filling in the flow templates with actual values and installing the created flow
entries in the flow tables of the last-hop MSE. The distributed middlebox also sends the packets
back to the last-hop MSE so that the packets are processed by the MSE based on the flow
entries installed by the distributed middlebox instance.

The process 1100 begins by receiving (at 1105) a packet and several flow templates
from a MSE that is a last-hop MSE with respect to this packet. That is, the MSE has received
the packet from another MSE and not from a VM with which the receiving MSE directly
interfaces. The packet has a five-tuple in the header of this packet. The process 1100 also
receives the identification of the other MSE from which the receiving MSE received the packet.

Next, the process 1100 determines (at 1110) whether the process 1100 has previously
received a packet that has the same five-tuple from a different MSE. The process 1100 in some
embodiments maintains a look up table of five-tuples and the identifications of the MSE that has
sent the packets with the five-tuples to the last-hop MSE. The process 1100 looks up this table
to determine whether a packet with the same five-tuple as the received packet has been received
from a MSE that is different from the MSE that has sent the currently received packet to the
last-hop MSE.

When the process determines (at 1110) that the process 1100 has not seen a packet with
the same five-tuple as that of the received packet from a different MSE, the process 1100
proceeds to 1120 to add the five-tuple and the MSE identification of the received packet in the
look up table. The process 1100 then proceeds to 1125, which will be described further below.
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When the process determines (at 1110) that the process 1100 has seen a packet with the
same five-tuple as that of the received packet from a different MSE, the process 1100 proceeds
to 1115 to create and install a forward sanitization flow entry and a reverse sanitization flow
entry in the flow tables of the last-hop MSE. A forward sanitization flow entry is a flow entry
that directs the last-hop MSE to modify the received packet’s five-tuple to make the packet’s
five-tuple unique (e.g., by replacing the source port number with a new source port number). A
reverse sanitization flow entry is a flow entry that directs the last-hop MSE to modify response
packets that are sent from the received packet’s destination to the source of the received packet.
According to the reverse sanitization flow entry, the MSE un-does the sanitization performed
based on the forward sanitization flow entry. That is, for instance, the last-hop MSE replaces the
destination port number (i.c., the new source port number of the received packet) of the
response packets with the original source port number of the received packet. The process 1100
records the new source port number so that the process 1100 does not reuse the same new
source port number to sanitize other packets.

Next, the process 1100 then sends (at 1125) the received packet back to the last-hop
MSE. The process 1100 then ends. The last-hop MSE will process the packet based on the flow
entries, which will include the forward and reverse sanitization flow entries.

Figure 12 conceptually illustrates example operations of a MSE that is a last-hop MSE
with respect to packets. That is, this MSE receives packets that are being sent to a destination
with which this MSE is directly interfacing. Specifically, this figure illustrates operations of the
MSE 3 that processes packets from VM 1 to VM 3. The MSE 3 processes packet 2 that is the
first packet going to VM 3 from VM 1. Packet 2 is the packet that the MSE 1 has processed as
described above by reference to Figure 8.

The top side of the figure shows two processing pipelines 1205 and 1210 that are
performed by the MSE 3. The processing pipeline 1205 includes stages 1220 and 1225. The
processing pipeline 1210 includes stages 1220, 1235, 1236, 1240, and 1245. The bottom side of
the figure shows the MSEs 1 and 3, and VM 3. As shown, the MSE 3 includes the table 1250
for storing flow entries for the logical switch 2.

When the MSE 3 receives from the MSE 1 packet 2 that is originated from VM 1
through port D of the MSE, the MSE 3 performs the processing pipeline 1205 to forward packet
2 to the distributed middlebox instance 135. The MSE 3 performs the processing pipeline 1205
based on the flow entries indicated by encircled 27 and 28. As described above by reference to
Figure 8, packet 2 has the source IP address of 11.0.1.1, which was translated from the IP
address of VM 1 (10.0.1.1) and has the IP address of VM 3, 10.0.2.1 as the destination IP
address. The packet 2 also has the MAC address of port Y of the logical router 115,
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01:01:01:01:01:02, as a source MAC address and has the MAC address of VM 3 as the
destination MAC address.

Based on the logical context stored in packet 2 header, the MSE 3 then identifies a flow
entry indicated by an encircled 27 (referred to as “record 27”’) in the L2 entries table 1250 that
implements the context mapping of the stage 1220. The record 27 identifies the packet 2’s
logical context based on the logical context that is stored in packet 2’s header. The logical
context specifies that packet2 has been processed by the stage 897 of the processing
pipeline 801, which was performed by the MSE 1. As such, the record 27 specifies that packet is
to be further processed by the MSE 3 (e.g., by sending the packet to a dispatch port of the MSE
3).

The MSE 3 then identifies a flow entry indicated by encircled 28 (referred to as “record
28”) in the table 1250 that implements the stage 1225. The record 28 specifies that packet 2 is to
be sent to the distributed middlebox instance 135. The record 28 also specifies that several flow
templates for generating forward and reverse sanitization flow entries are to be sent to the
distributed middlebox instance. The record 28 also specifies that the MSE 3 is to send an
identification of the MSE 1 to indicate that packet 2 came from the MSE 1. The managed
switching element 3 of some embodiments also sends a slice identifier to the distributed
middlebox instance 135 so that the slice of the distributed middlebox instance 135 for the user
of the logical switches 1 and 2 and the logical router 115 processes packet 1.

Upon receiving packet 2 and the identification of the MSE 1 from the MSE 3, the
distributed middlebox instance 135 identifies the five-tuple of packet 2 and determines whether
the distributed middlebox instance has received a packet that has the same five-tuple from
another MSE. In this example, the MSE 2 had sent a packet from VM 2 to VM 3 before. This
packet had the same five-tuple as packet 2’s because the distributed middlebox instance 130
running in host 2 for the MSE 2 and the distributed middlebox instance 125 running in host 1
for the MSE 1 are configured to implement the middlebox 120 and thus the distributed
middlebox instance 130 translated the source IP address of the packet from VM 2 from the
source IP address of VM 2 to 11.0.1.1.

In some embodiments, the distributed middlebox instance maintains a look up table of
five-tuples and the identifications of the MSE that has sent the packets with the five-tuples to
the last-hop MSE. In this example, the look up table of the distributed middlebox instance 135
has an entry for the packet from VM 2 and VM 3. The distributed middlebox instance 135 thus
creates a forward sanitization flow entry that specifies that the MSE 3 modifies a packet that has
the five tuple of packet 2 (e.g., source IP address: 11.0.1.1, destination IP address: 10.0.2.1,
source port number: 1234, destination port number: 80, transport protocol: TCP) and the
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identification of the MSE 1 by replacing the source port number with a new source port number
(e.g., 12340). The new source port number serves as a connection identifier because the new
source port number makes the connection over which the packet is being sent unique.

The distributed middlebox instance 135 also creates a reverse sanitization flow entry that
specifies that the MSE 3 modifies a packet (not shown), which is sent from VM 3 to VM 1 in
response to receiving packet 2, by replacing the destination port number to the port number of
VM 1 from which packet 2 came. This reverse sanitization is to restore the correct port number
so that the response packet from VM 3 to VM 1 reaches the correct port of VM 1. In this
example, the flow entry indicated by encircled RS (“the record RS”) specifies that the MSE 3
modifies a packet, which has a five-tuple of a packet from VM 3 to VM 1 in response to packet
5 (e.g., source IP address: 10.0.2.1, destination IP address: 11.0.1.1, source port number: 80,
destination port number: 12340, transport protocol: TCP), by replacing the destination port
number with the source port number (e.g., 1234) of packet 2 before being sanitized.

The distributed middlebox instance 135 installs the created flow entries and sends packet
2 back to the MSE 3. In some embodiments, the MSE 3 treats the packet returned from the
distributed middlebox instance 135 as a new packet to route. Thus, this new packet is referred to
as packet 5 in this example. As shown, the forward and reverse sanitization flow entries are
installed (e.g., placed) in the table 1250 indicated by encircled FS and RS, respectively.

In some embodiments, the distributed middlebox instance may keep separate slices for
generating forward and reverse flow entries and generating sanitization flow entries. That is, the
distributed middlebox instance has one slice for the packets for which the distributed middlebox
instance provides the SNAT service and has another slice for the packets for which the
distributed middlebox instance provides sanitization even though all these packets belong to the
same logical domain of a single user.

Upon receiving packet 5, the MSE 3 performs the processing pipeline 1210 on packet 5
based on the table 1250. In this example, because packet 5 is still the same as packet 2, packet 5
has the same five-tuple with the source port number 1234. The MSE 3 identifies a flow entry
indicated by an encircled 27 (referred to as “record 27”) in the forwarding table 1250 that
implements the context mapping of the stage 1220, which is described above. The record 27
also specifies packet 5 is to be further processed by the MSE 1 (e.g., by sending packet 5 to a
dispatch port).

The MSE 3 identifies a flow entry indicated by an encircled FS (referred to as “record
FS”) in the table 1250. The record FS is the forward sanitization flow entry that the distributed
middlebox instance 135 has created and installed in the table 1250. Packet 5 meets the condition

specified in the record FS as well as the condition specified in the record 28 because packet 5’s
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five-tuple is specified as a condition in the record FS and in the record 28. In some
embodiments, the record FS that is created by the distributed middlebox instance has a higher
priority level than that of the record 28, which directs the MSE 3 to send the packet to the
distributed middlebox instance 135. In addition, the record FS specifies that the MSE 3 stores
the logical context (i.c., packet 5 has been processed by the stage 1230 of the processing
pipeline 1205) of packet 5 in the set of fields of packet 5’s header.

The MSE 3 then identifies a flow entry indicated by an encircled 29 (referred to as
“record 29”) in the L2 entries 1250 that implements generating a reverse hint flow entry of the
stage 1236. In some embodiments, the last-hop MSE creates and installs a reverse hint. A
reverse hint in some embodiments is a flow entry that directs the MSE, which is the last-hop
MSE with respect to a particular packet, to send a response packet to the origin of the particular
packet without performing logical processing on the response packet. A reverse hint is set up in
order to allow the first-hop MSE with respect to the particular packet to process all or most of
the logical processing in some embodiments. As shown, the MSE has installed a reverse hint
flow entry indicated by encircled RH (referred to as “record RH”). In this example, the record
RH specifies that the MSE 3 sends a packet, which has a five-tuple of a packet from VM 3 to
VM 1 in response to receiving the sanitized packet 5 (e.g., source IP address: 10.0.2.1,
destination IP address: 11.0.1.1, source port number: 80, destination port number: 1234,
transport protocol: TCP) to the MSE 1.

Next, the MSE 3 identifies, based on the logical context and/or other fields stored in
packet 5’s header, a flow entry indicated by an encircled 30 (referred to as “record 30”) in the
forwarding tables that implements the egress ACL of the stage 1240. In this example, the
record 30 allows packet 5 to be further processed (e.g., packet 5 can get out of the logical switch
2 through port 5 of the logical switch 2) and, thus, specifies packet 5 is to be further processed
by the MSE 3. In addition, the record 30 specifies that the MSE 3 stores the logical context (i.¢c.,
packet 5 has been processed by the stage 1240 of the processing pipeline 1210) of packet 5 in
the set of fields of packet 5’s header.

Based on the logical context and/or other fields stored in packet 5’s header, the MSE 3
then identifies a flow entry indicated by an encircled 31 (referred to as “record 31”) in the table
1250 that implements the physical mapping of the stage 1245. The record 31 specifies port F of
the MSE 3 as a port through which packet 5 is to be sent in order for packet 5 to reach VM 3. In
addition, the record 31 specifies that the MSE 3 removes the logical context of packet 5 from
the set of fields of packet 5’s header. The MSE 3 sends packet 5 to VM 3.

Figure 13 conceptually illustrates example operations of a MSE that is a last-hop MSE
with respect to packets. Specifically, this figure illustrates operations of the MSE 3 that

35



10

15

20

25

30

35

WO 2013/074842 PCT/US2012/065359
processes a packet from VM 1 to VM 3. In this example, the MSE processes packet 3 that is one
of the packets going to VM 3 from VM 1 after the first packet has reached VM 3. Packet 3 is the
packet that the MSE 1 has processed as described above by reference to Figure 9. As shown,
the MSE processes packet 3 that is one of the packets going to VM 3 from VM 1 after the first
packet has reached VM 3. Packet 3 is the packet that the MSE 1 has processed as described
above by reference to Figure 9.

The top half of the figure shows a processing pipeline 1215 that the MSE 3 performs on
packet 3. The processing pipeline 1215 includes the stages 1220, 1235, 1236, 1240, and 1245,
which are described above. As shown in Figures 12 and 13, the difference between the
processing of the very first packet (packet 2) and the processing a subsequent packet (packet 3)
by the MSE 3 (i.c., the last-hop MSE with respect to packets 2 and 3) is that the MSE 3 does not
send the subsequent packet to the distributed middlebox instance 135. This is because after the
stage 1220 is performed according to the record 27, the MSE 3 goes with the record FS rather
than the record 28, which would have directed the MSE 3 to send the subsequent packet to the
distributed middlebox instance 135. As described above, the record FS (i.e., the forward
sanitization flow entry created and installed by the distributed middlebox instance 135) has a
higher priority level than the record 28’s priority level. This shows that only the first packet for
establishing a connection between the source and the destination needs to be sent to the
distributed middlebox instance and thus makes it faster to process the subsequent packets being
sent from the source to the destination. Also, the MSE 3 regenerates or refreshes the record RH
by performing the stage 1236 for packet 3.

E. Last-Hop Processing of Response Packet

Figure 14 conceptually illustrates an example operation of a MSE that is a last-hop MSE
with respect to a particular packet and is a first-hop MSE with respect to a response packet that
is sent in response to the particular packet. Specifically, this figure illustrates an operation of the
MSE 3 that processes a packet from VM 3 to VM 1. In this example, VM 3 sends this packet to
VM 1 in response to receiving a packet from VM 1. This figure also illustrates that the response
packets are not sent to the distributed middlebox instance 135 for translating the destination IP
addresses of the response packets into the IP address of VM 1. Instead, the MSE 3 processes the
response packets according to the reverse hint flow entry and the sanitization flow entry that are
created and installed by the distributed middlebox instance 135 as described above by reference
to Figure 12.

The top half of Figure 14 illustrates a processing pipeline 1400 that is performed by the
MSE 3. The processing pipeline 1400 includes stages 1405-1420. The bottom half of the figure
illustrates the MSEs 3 and 1, and VM 3. As shown, the MSE 3 includes the table 1250 for
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storing flow entries.

When the MSE 3 receives packet 4 from VM 3 through port F of the MSE, the MSE 3
performs the L2 processing 1400 to forward packet 4 from VM 3 to the logical router 115. The
MSE 3 performs the processing pipeline 1400 based on the flow entries indicated by encircled
32, RH, RS, and 33. Packet 4 has a destination port number that is the destination port number
of the sanitized packet 3 (e.g., 12340).

The MSE 3 identifies a flow entry indicated by an encircled 32 (referred to as
“record 32”) in the forwarding table 1250 that implements the context mapping of the
stage 1405. The record 32 identifies packet 4’s logical context based on the ingress port, which
is port F of the MSE 3 through which packet 1 is received from VM 3. In addition, the record 32
specifies that the MSE 3 stores the logical context of packet 4 in a set of fields of packet 4’s
header. The record 32 also specifies packet 4 is to be further processed by the forwarding tables

The MSE 3 then identifies the reverse hint flow entry, the record RH. As mentioned
above, the record RH specifies that the MSE 3 sends a packet, which has a five-tuple of a packet
from VM 3 to VM 1 in response to receiving the sanitized packet 5 (e.g., source IP address:
10.0.2.1, destination IP address: 11.0.1.1, source port number: 80, destination port number:
1234, transport protocol: TCP) to the MSE 1.

The MSE 3 then identifies the reverse sanitization flow entry, the record RS, which is
created and installed by the distributed middlebox instance 135. As mentioned above, the record
RS specifies that the MSE 3 modifies a packet, which has a five-tuple of a packet from VM 3 to
VM 1 in response to packet 5 (e.g., source IP address: 10.0.2.1, destination IP address: 11.0.1.1,
source port number: 80, destination port number: 12340, transport protocol: TCP), by replacing
the destination port number with the source port number (e.g., 1234) of packet 2 before being
sanitized. The MSE modifies packet 4 accordingly.

Based on the logical context and/or other fields stored in packet 4’s header, the MSE 3
then identifies a flow entry indicated by an encircled 33 (referred to as “record 33”) in the table
1250 that implements the physical mapping of the stage 1420. The record 33 specifies port D of
the MSE 3 as a port through which packet 4 is to be sent in order for packet 4 to reach VM 1.
The MSE 3 sends packet 4 to the MSE 1 through port D accordingly.

III. ELECTRONIC SYSTEM

Many of the above-described features and applications are implemented as software
processes that are specified as a set of instructions recorded on a computer readable storage
medium (also referred to as computer readable medium). When these instructions are executed
by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other
processing units), they cause the processing unit(s) to perform the actions indicated in the
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instructions. Examples of computer readable media include, but are not limited to, CD-ROMs,
flash drives, RAM chips, hard drives, EPROMs, etc. The computer readable media does not
include carrier waves and electronic signals passing wirelessly or over wired connections.

In this specification, the term “software” is meant to include firmware residing in read-
only memory or applications stored in magnetic storage which can be read into memory for
processing by a processor. Also, in some embodiments, multiple software inventions can be
implemented as sub-parts of a larger program while remaining distinct software inventions. In
some embodiments, multiple software inventions can also be implemented as separate
programs. Finally, any combination of separate programs that together implement a software
invention described here is within the scope of the invention. In some embodiments, the
software programs, when installed to operate on one or more electronic systems, define one or
more specific machine implementations that execute and perform the operations of the software
programs.

Figure 15 conceptually illustrates an electronic system 1500 with which some
embodiments of the invention are implemented. The electronic system 1500 may be a computer,
server, dedicated switch, phone, or any other sort of electronic device. Such an electronic
system includes various types of computer readable media and interfaces for various other types
of computer readable media. Electronic system 1500 includes a bus 1505, processing unit(s)
1510, a system memory 1525, a read-only memory 1530, a permanent storage device 1535,
input devices 1540, and output devices 1545.

The bus 1505 collectively represents all system, peripheral, and chipset buses that
communicatively connect the numerous internal devices of the electronic system 1500. For
instance, the bus 1505 communicatively connects the processing unit(s) 1510 with the read-only
memory 1530, the system memory 1525, and the permanent storage device 1535.

From these various memory units, the processing unit(s) 1510 retrieve instructions to
execute and data to process in order to execute the processes of the invention. The processing
unit(s) may be a single processor or a multi-core processor in different embodiments.

The read-only-memory (ROM) 1530 stores static data and instructions that are needed
by the processing unit(s) 1510 and other modules of the electronic system. The permanent
storage device 1535, on the other hand, is a read-and-write memory device. This device is a
non-volatile memory unit that stores instructions and data even when the electronic system 1500
is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or
optical disk and its corresponding disk drive) as the permanent storage device 1535.

Other embodiments use a removable storage device (such as a floppy disk, flash drive,
or ZIP® disk, and its corresponding disk drive) as the permanent storage device. Like the
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permanent storage device 1535, the system memory 1525 is a read-and-write memory device.
However, unlike storage device 1535, the system memory is a volatile read-and-write memory,
such a random access memory. The system memory stores some of the instructions and data that
the processor needs at runtime. In some embodiments, the invention’s processes are stored in
the system memory 1525, the permanent storage device 1535, and/or the read-only memory
1530. From these various memory units, the processing unit(s) 1510 retrieve instructions to
execute and data to process in order to execute the processes of some embodiments.

The bus 1505 also connects to the input and output devices 1540 and 1545. The input
devices enable the user to communicate information and select commands to the electronic
system. The input devices 1540 include alphanumeric keyboards and pointing devices (also
called “cursor control devices”). The output devices 1545 display images generated by the
electronic system. The output devices include printers and display devices, such as cathode ray
tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as a
touchscreen that function as both input and output devices.

Finally, as shown in Figure 15, bus 1505 also couples electronic system 1500 to a
network 1565 through a network adapter (not shown). In this manner, the computer can be a
part of a network of computers (such as a local area network (“LAN”), a wide area network
(“WAN?”), or an Intranet, or a network of networks, such as the Internet. Any or all components
of electronic system 1500 may be used in conjunction with the invention.

Some embodiments include electronic components, such as microprocessors, storage
and memory that store computer program instructions in a machine-readable or computer-
readable medium (alternatively referred to as computer-readable storage media, machine-
readable media, or machine-readable storage media). Some examples of such computer-readable
media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs
(CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM,
dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW,
DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic
and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra density optical
discs, any other optical or magnetic media, and floppy disks. The computer-readable media may
store a computer program that is executable by at least one processing unit and includes sets of
instructions for performing various operations. Examples of computer programs or computer
code include machine code, such as is produced by a compiler, and files including higher-level
code that are executed by a computer, an electronic component, or a microprocessor using an
interpreter.

While the above discussion primarily refers to microprocessor or multi-core processors
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that execute software, some embodiments are performed by one or more integrated circuits,
such as application specific integrated circuits (ASICs) or field programmable gate arrays
(FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on
the circuit itself.

As used in this specification and any claims of this application, the terms “computer”,
“server”, “processor”, and “memory” all refer to electronic or other technological devices.
These terms exclude people or groups of people. For the purposes of the specification, the terms
display or displaying means displaying on an electronic device. As used in this specification and
any claims of this application, the terms “computer readable medium” and “computer readable
media” are entirely restricted to tangible, physical objects that store information in a form that is
readable by a computer. These terms exclude any wireless signals, wired download signals, and
any other ephemeral signals.

While the invention has been described with reference to numerous specific details, one
of ordinary skill in the art will recognize that the invention can be embodied in other specific
forms without departing from the spirit of the invention. In addition, a number of the figures
(including Figures 7 and 11) conceptually illustrate processes. The specific operations of these
processes may not be performed in the exact order shown and described. The specific operations
may not be performed in one continuous series of operations, and different specific operations
may be performed in different embodiments. Furthermore, the process could be implemented
using several sub-processes, or as part of a larger macro process. Thus, one of ordinary skill in
the art would understand that the invention is not to be limited by the foregoing illustrative

details, but rather is to be defined by the appended claims.
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CLAIMS

What is claimed is:

1. A non-transitory machine readable medium of a controller of a network control
system for configuring a plurality of middlebox instances to implement a middlebox in a
distributed manner in a plurality of hosts, the non-transitory machine readable medium storing
sets of instructions for:

assigning a first set of identifiers to a first middlebox instance that associates an
identifier in the first set with a first packet; and

assigning a second set of identifiers to a second middlebox instance that
associates an identifier in the second set with a second packet.

2. The non-transitory machine readable medium of claim 1, wherein none of the
identifiers in the first set is identical with any identifier in the second set.

3. The non-transitory machine readable medium of claim 1, wherein the first packet
and the second packet have identical source network address and identical destination network
address.

4. The non-transitory machine readable medium of claim 1, wherein a number of
identifiers in the first set is different than a number of identifiers in the second set.

5. The non-transitory machine readable medium of claim 1, wherein the first
middlebox instance associates the identifier in the first set with the first packet by replacing a
source port number of the first packet with the identifier in the first set.

6. The non-transitory machine readable medium of claim 1, wherein at least one of
the identifiers in the first set is identical with one of the identifiers in the second set.

7. The non-transitory machine readable medium of claim 1, wherein the first set of
identifiers and the second set of identifiers are identical sets.

8. The non-transitory machine readable medium of claim 1, wherein the identifier
in the first set and the identifier in the second set are identical.

9. The non-transitory machine readable medium of claim 1, wherein the first packet
and the second packet have different destination addresses.

10. A non-transitory machine readable medium of a controller of a network control
system for configuring a plurality of middlebox instances to implement a middlebox in a
distributed manner in a plurality of hosts, the non-transitory machine readable medium storing
sets of instructions for:

receiving a request for a first set of identifiers from a first middlebox instance;

determining whether the first set of identifiers are available; and
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when the first set of identifiers are available, assigning the first set of identifiers
to the first middlebox instance.

11.  The non-transitory machine readable medium of claim 10, wherein the sets of
instructions further comprise a set of instructions for:

after assigning the first set of identifiers to the first middlebox instance,
recording that the first set of identifiers are not available.

12.  The non-transitory machine readable medium of claim 10, wherein the sets of
instructions further comprise a set of instructions for:

when the first set of identifiers are not available, sending a message indicating
the first set of identifiers are not available to the first middlebox instance.

13.  The non-transitory machine readable medium of claim 10, wherein the sets of
instructions further comprise sets of instructions for:

receiving a request to release a second set of identifiers from a second middlebox
instance; and
recording that the second set of identifiers are available.

14.  The non-transitory machine readable medium of claim 10, wherein the sets of

instructions further comprise sets of instructions for:

after assigning the first set of identifiers to the first middlebox instance,
determining whether the first middlebox instance is alive; and

when the first middle instance is not alive, recording that the first set of
identifiers are available.

15. A non-transitory machine readable medium of a first controller of a network
control system for configuring a plurality of middlebox instances to implement a middlebox in a
distributed manner in a plurality of hosts, the network control system comprising a plurality of
controllers, the non-transitory machine readable medium storing sets of instructions for:

receiving configuration data for configuring the middlebox instances to provide
source network address translation (SNAT) service to packets coming to the middlebox
instances;

identifying a set of other controllers in the network control system that manage
the middlebox instances; and

directing the identified set of other controllers to send the configuration data to
the middlebox instances.

16.  The non-transitory machine readable medium of claim 15, wherein the
configuration data include a set of addresses to which the middlebox instances translate source

network address of the packets.
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17.  The non-transitory machine readable medium of claim 15, wherein the first
controller is a logical controller and the identified set of other controllers are physical
controllers.

18.  The non-transitory machine readable medium of claim 15, wherein the network
control system is for generating physical control plane data for managing first and second
managed forwarding elements that implement forwarding operations associated with a first
logical datapath set, wherein the sets of instructions further comprise a set of instructions for
converting logical control plane data for the first logical datapath set to universal physical
control plane data.

19.  The non-transitory machine readable medium of claim 18, wherein the first
controller is a master controller for the first logical datapath set, wherein each of the identified
set of other controllers is a master controller for a set of managed forwarding elements that are
hosted in the same middlebox instances in which the middlebox instances are hosted.

20.  The non-transitory machine readable medium of claim 15, wherein the

configuration data include at least one mapping of a pair of addresses.
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AMENDED CLAIMS
received by the International Bureau on 02 April 2013 (02.04.13)

What is claimed is:

1. A non-transitory machine readable medium storing a controller of a network
control system for configuring a logical middlebox in a plurality of hosts, wherein the
controller comprises sets of instructions for:

assigning a first set of connection identifiers to a first middlebox instance of a
plurality of middlebox instances that implement the logical middlebox in the plurality of
hosts, the first middlebox instance operating in a first host of the plurality of hosts;

assigning a second set of connection identifiers to a second middiebox |
instance of the plurality of middlebox instances, the second middlebox instance operating in a
second host of the plurality of hosts; and

configuring (i) the first middlebox instance to associate one the first set of
connection identifiers with a first packet originating from a first virtual machine operating in
the first host and (ii) the second middlebox instance to associate one the second set of
connection identifiers with a second packet originating from a second virtual machine
operating in the second host in ofder for a third host of the plurality of hosts that receives the
first and second packets to distinguish between sources of the first and second packets.

2. The non-transitory machine readable medium of claim 1, wherein none of the
connection identifiers in the first set is identical with any connection identifier in the second
set.

3. The non-transitory machine readable medium of claim 1, wherein the first
packet and the second packet have identical source network addresses and identical
destination network addresses

4, The non-transitory machine readable medium of claim 1, wherein a number of
connection identifiers in the first set is different than a number of connection identifiers in the
second set.

5. The non-transitory machine readable medium of claim 1, wherein the first
middlebox instance associates the connection identifier in the first set with the first packet by
replacing a source port number of the first packet with the connection identifier in the first
set.

6. The non-transitory machine readable medium of claim 1, wherein the first
packet and the second packet is formatted according to a same communication protocol.

7. The non-transitory machine réadable medium of claim 1, wherein the

controller further comprises a set of instructions for configuring the third middlebox instance
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to use the connection identifiers associated with the first and second packets to send
responses to the first and second VMs.

8. The non-transitory machine readable medium of claim 1, wherein the
controller further comprises a set of instructions for configuring the third middlebox instance
to generate a set of flow entries based on the connection identifiers associated with packets
that come to the third host in order for a managed switching element operating in the third
host to use the set of flow entries to send responses to sources of the packets.

9. The non-transitory machine readable medium of claim 1, wherein the first
packet and the second packet have identical source port numbers and identical destination
port numbers. _ |

10. A non-transitory machine readable medium of a controller of a network
control system for configuring a logical middlebox in a plurality of hosts, wherein the
controller comprises sets of instructions for:

maintaining a set of connection identifiers to be assigned to a plurality of
middlebox instances that implement the logical middlebox in the plurality of hosts;

receiving a request for a plurality of connection identifiers from a first
middlebox instance of the plurality of middlebox instances, the first middlebox instance
operating in a first host of the plurality of hosts;

based on the request, identifying a plurality of connection identifiers from the
set of connection identifiers that are available to be assigned to the middlebox instances; and

assigning the identified connection identifiers to the first middlebox instance,

wherein the first middlebox instance is configured to associate one of the
connection identifiers assigned to the first middlebox instance with a first packet originating
from a virtual machine operating in the first host in order for a second host that receives the
first packet to distinguish the first VM from other VMs operating in other hosts of the
plurality of hosts from which the second host receives packets.

11.  The noq-transitory machine readable medium of claim 10, wherein the
controller further comprises a set of instructions for:

after assigning the connection identifiers to the first middlebox instance,
recording that the assigned identifiers are not available.

12. The non-transitory machine readable medium of claim 10, wherein the
controller further comprises a set of instructions for configuring a second middlebox instance
in the second host to use the connection identifiers associated with packets that come to the

second host in order to send responses correctly to sources of packets.
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13. The non-transitory machine readable medium of claim 10, wherein the
controller further comprises a set of instructions for:
| receiving a request to release a particular set of connection identifiers from a
middlebox instance; and
recording that the particular set of connection identifiers are available.

14.  The non-transitory machine readable medium of claim 10, wherein the sets of

instructions further comprise sets of instructions for:

after assigning the connection identifiers to the first middlebox instance,
determining whether the first middlebox instance is alive; and

when the first middlebox instance is not alive, recording that the connection
identifiers assigned to the first middlebox are available. |

15. A non-transitory machine readable medium of a controller of a network
control system for configuring a logical middlebox in a plurality of hosts, the network control
system comprising a plurality of controllers, the non-transitory machine readable medium
storing sets of instructions for:

receiving configuration data for configuring, in each host of the plurality of
hosts, a middlebox instance to provide a source network address translation (SNAT) service
to a virtual machine operating in the host;

identifying a set of additional controllers of the network control system that
manage the plurality of middlebox instances for implémenting the configuration data; and

sending the configuration data to the identified set of additional controllers for
the additional controllers to subsequently distribute the configuration data to the plurality of
middlebox instances.

16.  The non-transitory machine readable medium of claim 15, wherein the
configuration data include a set of addresses to which the middlebox instances translate
source network address of the packets.

17.  The non-transitory machine readable medium of claim 15, wherein the
controller is a logical controller and the additional controllers are physical controllers.

18.  The non-transitory machine readable medium of claim 15, wherein the
network control system is for generating physical control plane data for managing first and
second managed forwarding elements that implement forwarding operations associated with
a first logical datapath set, wherein the controller further comprises a set of instructions for
converting logical control plane data for the first logical datapath set to universal physical

control plane data.
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19.  The non-transitory machine readable medium of claim 18, wherein the
controller is a master controller for the first logical datapath set, wherein each of the
additional controllers is a master controller for a set of managed forwarding elements that
operate in the plurality of hosts.

20.  The non-transitory machine readable medium of claim 15, wherein the

configuration data include at least one mapping of a pair of addresses.
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