PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

GO6F 17/30, 13/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/15996

1 April 1999 (01.04.99)

(21) International Application Number: PCT/US98/20150

(22) International Filing Date: 25 September 1998 (25.09.98)

(30) Priority Data:

60/060,655 26 September 1997 (26.09.97) US

(71)(72) Applicants and Inventors: DEVINE, Carol, Y. [US/US];
395 Palm Springs Drive, Colorado Springs, CO 80921 (US).
DOLLAR, Tammy, E. [US/US]; 8175 Talon Court, Peyton,
CO 80821 (US). MUNGUIA, Wayne, J. [US/US]; 5850
Northwide Drive, Colorado Springs, CO 80918 (US).

(74) Agents: GROLZ, Edward, W. et al.; Scully, Scott, Murphy &
Presser, 400 Garden City Plaza, Garden City, NY 11530
us).

(81) Designated States: AU, BR, CA, JP, MX, SG, European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: MULTI-THREADED WEB BASED USER INBOX FOR REPORT MANAGEMENT

(57) Abstract

An Internet/Intranet World Wide Web (Web)-based centralized common interface repository system for event notifications and report
outputs generated by different server applications and/or application platforms is provided as a message center. Such message center
includes a common graphical user interface to a customer for viewing and receiving the report outputs and event notifications. The report
outputs and event notifications are communicated in priority order using muitithreading and multiprocessing mechanism wherein multiple
messages may be serviced or received simultaneously. An Internet/Intranet Web~based information delivery system infrastructure capable
of providing for the secure initiation, acquisition, and presentation of information from any customer computer platform having a Web

browser is also provided.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
cM
CN
Ccu
CzZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Tvoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
Kz
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ)
™
TR
TT
UA
UG
us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

30

WO 99/15996 PCT/US98/20150

MULTI - THREADED WEB BASED USER INBOX FOR REPORT
: MANAGEMENT

The present invention relates to an
electronic information delivery system, and
particularly, to an Internet/Intranet-based reporting,
presentation, and notification system for customers
requesting information from remotely located back-end
servers of telecommunications service entities via the
World Wide Web (Web).

Major telecommunications service entities
presently provide for the presentation and
dissemination of customer account and network
management information to their customers predominantly
through a Windows-based graphical user interface
resident on a personal computer. Typically, service
entity customers are enabled to directly dial-up, e.g.,
via a modem, or alternately, via dedicated
communication lines, e.g., ISDN, T-1, etc., to the
entity=s mainframe applications, and initiate the
generation of reports of their requested account
information through the graphical user interface. The
report requests initiated by the customer are processed
by the entity=s legacy applications, which retrieve the
requested customer=s information from one or more
databases, and process and format the information for
downloading to the client=s reporting graphical user
interface.

The telecommunications service providers
offer many different services which have been developed

independently over time, and which operate on many

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

different operating platforms. For instance, MCI=s
Service View platform (AMSV@) provides for the
generation of toll free network management data, priced
call detail or APerspective@ data for usage analysis
and trending, and unpriced call detail or real-time
ATrafficView@ data each of which requires a different
reporting mechanism due to the nature of the data being
presented and the legacy application which generates
it. For example, much of the customers APerspective@
data is provided on a CD-ROM media and shipped to the
customer, usually on a monthly basis, and requires
extensive client-side processing to utilize the data.
This cuts down on computing resources as the customer
requires a dedicated application and graphical user
interface to process this type of data. Furthermore,
such systems do not readily provide for the scheduling
of periodic or ad hoc Aone-shot@ reports.

Therefore, it would be desirable to provide
an Internet/Intranet World Wide Web (Web) -based
reporting system that provides a common graphical user
interface enabling both report requesting, customizing
and viewing of various types of data from different
server applications.

It would also be highly desirable that this
reporting paradigm be asynchronous; that is, the
customer may request a report, and then continue using
the system or other applications on the workstation
while the report is processed at the server. When the
report is completed, the server deposits the report
results into an inbox, and notification appears in a
message center at the client terminal. At any point

thereafter, at the customer=s convenience, the report

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

may be downloaded and viewed, saved, etc. This
paradigm preserves the responsiveness of the platform
and emphasizes the customer=s control of the system.

The inbox may be used as a general conduit
for messages to the customer; news of available
upgrades, problems with the servers, problems with
report requests, promotional announcements, product
offerings, etc. Messages may remain in the customer=s
inbox until they are deleted by the customer, or
expired after a predetermined period.

Although this paradigm is very much like e-
mail, and the implementation may share many e-mail like
characteristics, such as Astore-and-forwarde reporting
and message forwarding architecture, the actual e-mail
SMTP protocol cannot support many of the features
required by the Web-based reporting and messaging
system such as concurrent processing and handling of
large data storage as the back-end repository and
recoverable downloads to the client platform.
Therefore, it would be highly desirable to provide an
inbox client/server system having a capability to
handle multithreading for high-priority messages,
guaranteed delivery, and recoverable downloads.

Accordingly, to overcome the above
shortcomings, the present invention provides an
Internet/Intranet World Wide Web (Web) -based
centralized common interface repository system for
event notifications and report outputs generated by
different server applications and/or application
platforms.

The present invention further provides a

common graphical user interface to a customer for

3-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

viewing and receiving the report outputs and the event
notifications fér all application services. In
addition, the present invention provides an
Internet/Intranet Web-based information delivery system
infrastructure capable of providing for the secure
initiation, acquisition, and presentation of
information from any customer computer platform having
a Web browser.

The present invention further provides an
Internet/Intranet Web-based client-server
communications infrastructure capable of transmitting
and receiving multiple messages simultaneously over a
plurality of secure communications links. With this
mechanism, a high priority message may be communicated
to a customer in real time, even when a duration-
intensive download of a large file is taking place, for
example.

Further yet, the present invention provides a
well-organized and efficiently accessible directory
structure for storing different application servers
and/or application platform information in a central
Intranet/Intranet repository system. For example, each
application utilizing the inbox system may have its own
predetermined directory space in which to place its
data. |

For attaining the above functionalities, the
present present invention includes a client browser
application located at the client workstation. The
client browser application enables an interactive web-
based communications with the inbox system and provides
an integrated interface to the one or more enterprise

application services. A customer may access the inbox

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

system with an inbox client application, which is
typically launched by the client browser application.

The present invention also includes at least
one secure server for managing client sessions over the
Internet/Intranet network. The secure server supports
secure socket connections enabling encrypted
communications between the client browser application
and the secure server. At the enterprise side, the
application servers associated with different services
typically generate customer specific data and place the
data in the inbox server. The inbox server stores and
maintains the customer specific data. The data
includes report data and notification data received
from the enterprise application servers, and also a
metadata description of the report data. The metadata
typically represents report standards and options for
customizing the report standards. The report data and
the metadata associated with the report data may be
downloaded to the client browser application via the
secure server for generation of reports according to
the metatdata description. The reports may then be
presented to the customer at the client workstation.
The inbox server also accepts news and information data
other than reports from the various enterprise
application services. The news and additional
information may then be retrieved by the customer via
the inbox client application at the client workstation.

Further benefits and advantages of the
invention will become apparent from a consideration of
the following detailed description.

Preferred embodiments of the present

invention will now be described, by way of example

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

only, with reference to the accompanying drawings in
which:

Figure 1 illustrates the software
architecture component comprising a three-tiered
structure;

Figure 2 is a diagrammatic overview of the
software architecture of the networkMCI Interact
system;

Figure 3 is an illustrative example of a
backplane architecture schematic viewed from a home
page of the present invention;

Figure 4 illustrates an example client GUI
presented to the client/customer as a browser web page;

Figure 5 is a diagram depicting the physical
networkMCI Interact system architecture;

Figure 6 is a block diagram depicting the
physical architecture of the inbox components and their
relationship with other fulfilling systems of the
networkMCI interact;

Figure 7 is a flow diagram illustrating an
overview of the report retrieval process utilizing the
inbox system;

Figure 8 illustrates an overview of the
process in which the StarOE and the inbox interact
during a customer order entry session;

Figure 9 illustrates a logical message format
sent from the client browser to the desired middle tier
server for a particular application;

Figures 10(a) and 10(b) are schematic
illustrations showing the message format passed between
the dispatch server and the application specific proxy

(Figure 10(a)) and the message format passed between

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

the application specific proxy back to the dispatch
server (Figure 10(b));

Figures 11(a), 11(b), and 11l(c) illustrate a
low level logic flow diagram depicting the
multithreading functionality of the proxies;

Figure 12 illustrates a sample spreadsheet
display; and

Figure 13 illustrates an example of the inbox
client screen display from which a customer may invoke

various inbox services.

An overview of the Web-enabled integrated system

The present invention is one component of an
integrated suite of customer network management and
report applications using a Web browser paradigm.
Known as the networkMCI Interact system (AnMCI
Interact@) such an integrated suite of Web-based
applications provides an invaluable tool for enabling
customers to manage their telecommunication assets,
quickly and securely, from anywhere in the world.

The nMCI Interact system architecture is
basically organized as a set of common components
comprising the following:

1) an object-oriented software architecture
detailing the client and server based aspect of nMCI
Interact;

2) a network architecture defining the
physical network needed to satisfy the security and
data volume requirements of the networkMCI System;

3) a data architecture detailing the
application, back-end or legacy data sources available

for networkMCI Interact; and

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

4) an infrastructure covering security, order
entry, fulfillment, billing, self-monitoring, metrics
and support.

EFEach of these common component areas will be
generally discussed hereinbelow.

Figure 1 is a diagrammatic illustration of
the software architecture component in which the
present invention functions. A first or client tier 10
of software services are resident on a customer |
workstation 10 and provides customer access to the
enterprise system, having one or more downloadable
application objects directed to front-end business
logic, one or more backplane service objects for
managing sessions, one or more presentation services
objects for the presentation of customer options and
customer requested data in a browser recognizable
format and a customer supplied browser for presentation
of customer options and data to the customer and for
internet communications over the public Internet.
Additional applications are directed to front-end
services such as the presentation of data in the form
of tables and charts, and data processing functions
such as sorting and summarizing in a manner such that
multiple programs are combined in a unified application
suite. A

A second or middle tier 16, is provided
having secure web servers and back-end services to
provide applications that establish user sessions,
govern user authentication and their entitlements, and
communicate with adaptor programs to simplify the

interchange of data across the network.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

A third or back-end tier 18 having
applications directed to legacy back-end services
including database storage and retrieval systems and
one or more database servers for accessing system
resources from one or more legacy hosts.

Generally, the customer workstation includes
client software capable of providing a platform-
independent, browser-based, consistent user interface
implementing objects programmed to provide a reusable
and common GUI abstraction and problem-domain
abstractions. More specifically, the client-tier
software is created and distributed as a set of Java
classes including the applet classes to provide an
industrial strength, object-oriented environment over
the Internet. Application-specific classes are
designed to support the functionality and server
interfaces for each application with the functionality
delivered through the system being of two-types: 1)
cross-product, for example, inbox and reporting
functions, and 2) product specific, for example, toll
free network management or call management functions.
The system is capable of delivering to customers the
functionality appropriate to their product mix.

Figure 2 is a diagrammatic overview of the
software architecture of the networkMCI Interact system
including: the Customer Browser (a.k.a. the Client) 20;
the Demilitarized Zone (DMZ) 17 comprising a Web
Servers cluster 24; the MCI Intranet Dispatcher Server
26; and the MCI Intranet Application servers 30, and
the data warehouses, legacy systems, etc. 40.

The Customer Browser 20, is browser enabled

and includes client applications responsible for

9.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996

PCT/US98/20150

presentation and front-end services. Its functions

include providing a user interface to various MCI

services and supporting communications with MCI=s

Intranet web server cluster 24. As illustrated in

Figure 3, the client tier software is responsible for

presentation services to the customer and generally

includes a web browser 14 and additional object-

oriented programs residing in the client workstation

platform 20. The client software is generally

organized into a component architecture with each

component generally comprising a specific application,

providing an area of functionality. The applications

generally are integrated using a Abackplanee@ services

layer 12 which provides a set of services to the

application objects that provide the front-end business

logic. The backplane services layer 12 also manages the

launching of the application objects. The networkMCI

Interact common set of objects provide a set of

services to each of the applications. The set of

services include: 1) session management; 2) application

launch;

3) inter-application communications; 4) window

navigation among applications; 5) log management; and

6) version management.

The primary common object services include:

graphical user interface (GUI); communications;

printing; user identity, authentication, and

entitlements; data import and export; logging and

statistics; error handling; and messaging services.

Figure 3 is a diagrammatic example of a

backplane architecture scheme illustrating the

relationship among the common objects. In this

example,

the backplane services layer 12 is programmed

-10-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

as a Java applet which may be loaded and launched by
the web browser 14. With reference to Figure 3, a
typical user session starts with a web browser 14
creating a backplane 12, after a successful logon. The
backplane 12, inter alia, presents a user with an
interface for networkMCI Interact application
management. A typical user display provided by the
backplane 12 may show a number of applications the user
is entitled to run, each application represented by
buttons depicted in Figure 3 as buttons 58a,b,c
selectable by the user. As illustrated in Figure 3,
upon selection of an application, the backplane 12
launches that specific application, for example,
Service Inquiry 54a or Event Monitor 54b, by creating
the application object. In processing its functions,
each application in turn, may utilize common object
services provided by the backplane 12. Figure 3 shows
graphical user interface objects 56a,b created and used
by a respective application 54a,b for its own
presentation purposes.

Figure 4 illustrates an example client GUI
presented to the client/customer as a browser web page
250 providing, for example, a sulte 252 of network
management reporting applications including: MCI
Traffic Monitor 252c; Cali Manager 252f; a Network
Manager 252e and Online Invoice 252i. Access to
network functionality is also provided through Report
Requester 252b, which provides a variety of detailed
reports for the client/customer and a Message Center
252a for providing enhancements and functionality to

traditional e-mail communications.

-11-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

As shown in Figures 3 and 4, the browser
resident GUI of the present invention implements a
single object, COBackPlane which keeps track of all the
client applications, and which has capabilities to
start, stop, and provide references to any one of the
client applications.

The backplane 12 and the client applications
use a browser 14 such as the Microsoft Explorer
versions 4.0.1 or higher for an access and distribution
mechanism. Although the backplane is initiated with a
browser 14, the client applications are generally
isolated from the browser in that they typically
present their user interfaces in a separate frame,
rather than sitting inside a Web page.

The backplane architecture is implemented
with several primary classes. These classes include
COBackPlane, COApp, COAppImpl, COParm. and COAppFrame
classes. COBRackPlane 12 is an application backplane
which launches the applications 54a, 54b, typically
implemented as COApp. COBackPlane 12 is generally
implemented as a Java applet and is launched by the Web
browser 14. This backplane applet is responsible for
launching and closing the COApps.

When the backplane is implemented as an
applet, it overrides standard Applet methods init (),
start (), stop() and run(). In the init() method, the
backplane applet obtains a COUser user context cbject.
The COUser object holds information such as user
profile, applications and their entitlements. The
user=s configuration and application entitlements
provided in the COUser context are used to construct

the application toolbar and Inbox applications. When

-12-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

an application toolbar icon is clicked, a particular
COApp is launched by launchApp() method. The launched
application then may use the backplane for inter-
application communications, including retrieving Inbox
data.

The COBackPlane 12 includes methods for
providing a reference to a particular COApp, for
interoperation. For example, the COBackPlane class
provides a getApp() method which returns references to
application objects by name. Once retrieved in this
manner, the application object=s public interface may
be used directly.

As shown in Figure 2, the aforesaid objects
will communicate the data by establishing a secure TCP
messaging session with one of the DMZ networkMCI
Interact Web servers 24 via an Internet secure
communications path 22 established, preferably, with a
secure sockets SSL version of HTTPS. The DMZ
networkMCI Interact Web servers 24 function to decrypt
the client message, preferably via the SSL
implementation, and unwrap the session key and verify
the users session. After establishing that the request
has come from a valid user and mapping the request to
its associated session, the DMZ Web servers 24 re-
encrypt the request using symmetric encryption and
forward it over a second socket connection 23 to the
dispatch server 26 inside the enterprise Intranet.

A networkMCI Interact session is designated
by a logon, successful authentication, followed by use
of server resources, and logoff. However, the world-
wide web communications protocol uses HTTP, a stateless

protocol, each HTTP request and reply is a separate

-13-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

TCP/IP connection, completely independent of all
previous or future connections between the same server
and client. The nMCI Interact system is implemented
with a secure version of HTTP such as S-HTTP or HTTPS,
and preferably utilizes the SSL implementation of
HTTPS. The preferred embodiment uses SSL which
provides a cipher spec message which provides server
authentication during a session. The preferred
embodiment further associates a given HTTPS request
with a logical session which is initiated and tracked
by a Acookie jar server@ 28 to generate a Acookie@
which is a unique server-generated key that is sent to
the client along with each reply to a HTTPS request.
The client holds the cookie and returns it to the
server as part of each subsequent HTTPS request. As
desired, either the Web servers 24, the cookie jar
server 28 or the Dispatch Server 26, may maintain the
Acookie jar@ to map these keys to the associated
session. A separate cookie jar server 28, as
illustrated in Figure 2 has been found desirable to
minimize the load on the dispatch server 26. This form
of session management also functions as an
authentication of each HTTPS request, adding an
additional level of security to the overall process.
As illustrated in Figure 2, after one of the
DMZ Web servers 24 decrypts and verifies the user
session, it forwards the message through a firewall 25b
over a TCP/IP connection 23 to the dispatch server 26
on a new TCP socket while the original socket 22 from
the browser is blocking, waiting for a response. The
dispatch server 26 unwraps an outer protocol layer of

the message from the DMZ services cluster 24, and re-

-14-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

encrypts the message with symmetric encryption and
forwards the message to an appropriate application
proxy via a third TCP/IP socket 27. While waiting for
the proxy response all three of the sockets 22, 23, 27
block on a receive. Specifically, once the message is
decrypted, the wrappers are examined to reveal the user
and the target middle-tier (Intranet application)
service for the request. A first-level validation 1is
performed, making sure that the user is entitled to
communicate with the desired service. The user=s
entitlements in this regard are fetched by the dispatch
server 26 from the StarOE server 49, the server
component of the present invention, at logon time and
cached.

If the requestor is authorized to communicate
with the target service, the message is forwarded to
the desired service=s proxy. Each application proxy 1is
an application specific daemon which resides on a
specific Intranet server, shown in Figure 2 as a suite
of mid-range servers 30. Each Intranet application
server of suite 30 is generally responsible for
providing a specific back-end service requested by the
client, and, is additionally capable of requesting
services from other Intranet application servers by
communicating to the specific proxy associated with
that other application server. Thus, an application
server not only can offer its browser a client to
server interface through the proxy, but also may offer
all its services from its proxy to other application
servers. 1In effect, the application servers requesting
services are acting as clients to the application

servers providing the services. Such mechanism

-15-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

increases the security of the overall system as well as
redﬁcing the number of interfaces.

The network architecture of Figure 2 may also
include a variety of application specific proxies
having associated Intranet application servers
including: a StarOE proxy for the StarOE application
server 39 for handling authentication order
entry/billing; an Inbox proxy for the Inbox application
server 31, which functions as a container for completed
reports, call detail data and marketing news messages;
a Report Manager proxy capable of communicating with a
system-specific Report Manager server 32 for
generation, management and receipt notification of
customized reports; a Report Scheduler proxy for
performing the scheduling and requests of the
customized reports. The customized reports include,
for example: call usage analysis information provided
from the StarODS server 33; network traffic
analysis/monitor information provided from the Traffic
view server 34; virtual data network alarms and
performance reports provided by Broadband server 35;
trouble tickets for switching, transmission and traffic
faults provided by Service Inquiry server 36; and toll
free routing information provided by Toll Free Network
Manager server 37.

As partially shown in Figure 2, it is
understood that each Intranet server of suite 30
communicates with one or several consolidated network
databases which include each customer=s network
management information and data. For example, the
Services Inquiry server 36 includes communication with

MCI=s Customer Service Management legacy platform

-16-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

40 (a). Such network management and customer network
data is additionally accessible by authorized MCI
management personnel. As shown in Figure 2, other
legacy platforms 40(b), 40(c) and 40(d) may also
communicate individually with the Intranet servers for
servicing specific transactions initiated at the client
browser. The illustrated legacy platforms 40 (a) - (d)
are illustrative only and it is understood other legacy
platforms may be interpreted into the network
architecture illustrated in Figure 2 through an
intermediate midrange server 30.

Each of the individual proxies may be
maintained on the dispatch server 26, the related
application server, or a separate proxy server situated
between the dispatch server 26 and the midrange server
30. The relevant proxy waits for requests from an
application client running on the customer=s
workstation 10 and then services the request, either by
handling them internally or forwarding them to its
associated Intranet application server 30. The proxies
additionally receive appropriate responses back from an
Intranet application server 30. Any data returned from
the Intranet application server 30 is translated back
to client format, and returned over the Internet to the
client workstation 10 via the Dispatch Server 26 and at
one of the web servers in the DMZ Services cluster 24
and a secure sockets connection. When the resultant
response header and trailing application specific data
are sent back to the client browser from the proxy, the
messages will cascade all the way back to the browser
14 in real time, limited only by the transmission

latency speed of the network.

-17-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

The networkMCI Interact middle tier software
includes a communications component offering three (3)
types of data transport mechanisms: 1) Synchronous; 2)
Asynchronous; and 3) Bulk transfer. Synchronous
transaction is used for situations in which data will
be returned by the application server 40 quickly.

Thus, a single TCP connection wili be made and kept
open until the full response has been retrieved.

Asynchronous transaction is supported
generally for situations in which there may be a long
delay in application server 40 response. Specifically,
a proxy will accept a request from a customer or client
10 via an SSL connection and then respond to the client
10 with a unique identifier and close the socket
connection. The client 10 may then poll repeatedly on
a periodic basis until the response is ready. Each
poll will occur on a new socket connection to the
proxy, and the proxy will either respond with the
resultant data or, respond that the request is still in
progress. This will reduce the number of resource
consuming TCP connections open at any time and permit a
user to close their browser or disconnect a modem and
return later to check for results.

Bulk transfer is generally intended for large
data transfers and are unlimited in size. Bulk
transfer permits cancellation during a transfer and
allows the programmer to code resumption of a transfer
at a later point in time.

Figure 5 is a diagram depicting the physical
networkMCI Interact system architecture 10. As shown
in Figure 5, the system is divided into three major

architectural divisions including: 1) the customer

-18-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

workstation 20 which include those mechanisms enabling
customer connection to the Secure web servers 24; 2) a
secure network area 17, known as the DeMilitarized Zone
ADMZ@ set aside on MCI premises double firewalled
between the both the public Internet 25 and the MCI
Intranet to prevent potentially hostile customer
attacks; and, 3) the MCI Intranet Midrange Servers 30
and Legacy Mainframe Systems 40 which comprise the
back-end business logic applications.

As illustrated in Figure 5, the present
invention includes a double or complex firewall system
that creates a Ademilitarized zone@ (DMZ) between two
firewalls 25a, 25b. In the preferred embodiment, one
of the firewalls 29 includes port specific filtering
routers, which may only connect with a designated port
on a dispatch server within the DMZ. The dispatch
server connects with an authentication server, and
through a proxy firewall to the application servers.
This ensures that even if a remote user ID and password
are hijacked, the only access granted is to one of the
web servers 24 or to intermediate data and privileges
authorized for that user. Further, the hijacker may
not directly connect to any enterprise server in the
enterprise intranet, thus ensuring internal company
system security and integrity. Even with a stolen
password, the hijacker may not connect to other ports,
root directories or applications within the enterprise
system.

The DMZ acts as a double firewall for the
enterprise intranet because the web servers located in
the DMZ never store or compute actual customer

sensitive data. The web servers only put the data into

-19-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

a form suitable for display by the customer=s web
browser. Since the DMZ web servers do not store
customer data, there is a much smaller chance of any
customer information being jeopardized in case of a
security breach.

As previously described, the customer access
mechanism is a client workstation 20 employing a Web
browser 14 for providing the access to the networkMCI
Interact system via the public Internet 15. When a
subscriber connects to the networkMCI Interact Web site
by entering the appropriate URL, a secure TCP/IP
communications link 22 is established to one of several
Web servers 24 located inside a first firewall 25a in
the DMZ 17. Preferably at least two web servers are
provided for redundancy and failover capability. 1In
the preferred embodiment of the invention, the system
employs SSL encryption so that communications in both
directions between the subscriber and the networkMCI
Interact system are secure.

In the preferred embodiment, all DMZ Secure
Web servers 24 are preferably DEC 4100 systems having
Unix or NT-based operating systems for running services
such as HTTPS, FTP, and Telnet over TCP/IP. The web
servers may be interconnected by a fast Ethernet LAN
running at 100 Mbit/sec or greater, preferably with the
deployment of switches within the Ethernet LANs for
improved bandwidth utilization. One such switching
unit included as part of the network architecture is a
HydraWEBJ unit 45, manufactured by HydraWEB
Technologies, Inc., which provides the DMZ with a
virtual IP address so that subscriber HTTPS requests

received over the Internet will always be received.

220-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

The HydraWEBJ unit 45 implements a load balancing
algorithm enabling intelligent packet routing and
providing optimal reliability and performance by
guaranteeing accessibility to the "most available"
server. It particularly monitors all aspects of web
server health from CPU usage, to memory utilization, to
available swap space so that Internet/Intranet networks
can increase their hit rate and reduce Web server
management costs. In this manner, resource utilization
is maximized and bandwidth (throughput) is improved.

It should be understood that a redundant HydraWEBJ unit
may be implemented in a Hot/Standby configuration with
heartbeat messaging between the two units (not shown).
Moreover, the networkMCI Interact system architecture
affords web server scaling, both in vertical and
horizontal directions. Additionally, the architecture
is such that new secure web servers 24 may be easily
added as customer requirements and usage increases.

The use of the HydraWEBJ enables better load
distribution when needed to match performance
requirements.

As shown in Figure 5, the most available Web
server 24 receives subscriber HTTPS requests, for
example, from the HydraWEBJ 45 over a connection 44a
and generates the appropriate encrypted messages for
routing the request to the appropriate MCI Intranet
midrange web server over connection 44b, router 55 and
connection 23. Via the HydraWEBJ unit 45, a TCP/IP
connection 38 links the Secure Web server 24 with the
MCI Intranet Dispatcher server 26.

Further as shown in the DMZ 17 is a second

RTM server 52 having its own connection to the public

21-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Internet via a TCP/IP connection 48. This RTM server
provides real-time session management for subscribers
of the networkMCI Interact Real Time Monitoring system.
An additional TCP/IP connection 48 links the RTM Web
server 52 with the MCI Intranet Dispatcher server 26.

With more particularity, as further shown in
Figure 5, the networkMCI Interact physical architecture
includes three routers: a first router 49 for routing
encrypted messages from the Public Internet 15 to the
HydraWEBJ 45 over a socket connection 44; a second
router 55 for routing encrypted subscriber messages
from a Secure Web server 24 to the Dispatcher server 26
located inside the second firewall 25b; and, a third
router 65 for routing encrypted subscriber messages
from the RTM Web server 52 to the Dispatcher server 26
inside the second firewall. Although not shown, each
of the routers 55, 65 may additionally route signals
through a series of other routers before eventually
being routed to the nMCI Interact Dispatcher server 26.
In operation, each of the Secure servers 24 function to
decrypt the client message, preferably via the SSL
implementation, and unwrap the
session key and verify the users session from the
COUser object authenticated at Logon.

After establishing that the request has come
from a valid user and mapping the request to its
associated session, the Secure Web servers 24 will re-
encrypt the request using symmetric RSA encryption and
forward it over a second secure socket connection 23 to
the dispatch server 26 inside the enterprise Intranet.

As described herein, the data architecture

component of networkMCI Interact reporting system is

22-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

focused on the presentation of real time (un-priced)
call detail data, such as provided by MCI=s TrafficView
Server 34, and priced call detail data and reports,
such as provided by MCI=s StarODS Server 33 in a
variety of user selected formats.

All reporting is provided through a Report
Requestor GUI application interface which support
spreadsheet, a variety of graph and chart type, or both
simultaneously. For example, the spreadsheet
presentation allows for sorting by any arbitrary set of
columns. The report viewer may also be launched from
the inbox when a report is selected.

A common database may be maintained to hold
the common configuration data which may be used by the
GQUI applications and by the mid-range servers. Such
common data includes but are not limited to: customer
security profiles, billing hierarchies for each
customer, general reference data (states, NPA=s,
Country codes), and customer specific pick lists: e.g.,
ANI=s, calling cards, etc.. An MCI Internet StarOE
server manages the data base for the common
configuration of data.

Report management related data is also
generated which includes 1) report profiles defining
the types of reports that are available, fields for the
reports, default sort options and customizations
allowed; and 2) report requests defining customer
specific report requests including report type, report
name, scheduling criteria, and subtotal fields. This
type of data is typically resident in a Report Manager

server database and managed by the Report Manager.

23-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

The Infrastructure component of the nMCI
Repbrting system includes mechanisms for providing
secure communications regardless of the data content
being communicated. The nMCI Interact system security
infrastructure includes: 1) authentication, including
the use of passwords and digital certificates; 2)
public key encryption, such as employed by a secure
sockets layer (SSL) encryption protocol; 3) firewalls,
such as described above with reference to the network
architecture component; and 4) non-repudiation
techniques to guarantee that a message originating from
a source is the actual identified sender. One
technique employed to combat repudiation includes use
of an audit trail with electronically signed one-way
message digests included with each transaction.

Another component of the nMCI Interact
infrastructure includes order entry, which is supported
by the present invention, the Order Entry (AStarOE@)
service. The general categories of features to be
ordered include: 1) Priced Reporting; 2) Real-time
reporting; 3) Priced Call Detail; 4) Real Time Call
Detail; 5) Broadband SNMP Alarming; 6) Broadband
Reports; 7) Inbound RTM; 8) Outbound RTM; 9) Toll Free
Network Manager; and 10) Call Manager. The order entry
functionality is extended to additionally support il)
Event Monitor; 12) Service Inquiry; 13) Outbound
Network Manager; and, 14) Online invoicing.

The self-monitoring infrastructure component
for nMCI Interact is the employment of mid-range
servers that support SNMP alerts at the hardware level.
In addition, all software processes must generate

alerts based on process health, connectivity, and

4.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

availability of resources (e.g., disk usage, CPU
utilization, database availability).

The Metrics infrastructure component for nMCI
Interact is the employment of mechanisms to monitor
throughput and volumes at the Web servers, dispatcher
server, application proxies and mid-range servers.
Metrics monitoring helps in the determination of
hardware and network growth.

To provide the areas of functionality
described above, the client tier 10 is organized into a
component architecture, with each component providing
one of the areas of functionality. The client-tier
software is organized into a Acomponent@ architecture
supporting such applications as inbox fetch and inbox
management, report viewer and report requestor, TFNM,
Event Monitor, Broadband, Real-Time Monitor, and system
administration applications. Further functionality
integrated into the software architecture includes
applications such as Outbound Network Manager, Call

Manager, Service Inquiry and Online invoicing.

Inbox application

The present invention is directed to an inbox
service, a horizontal service supplied by the
AnetworkMCI Interact@ for use by all applications to
share. The inbox provides a repository for application
event notifications and report outputs, and also
supports the AStarWRSe Internet reporting system,
another horizontal service. The horizontal services
are utilized across the Intranet applications to

promote a common interface for the services in order to

25.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

reduce complexity, to centralize and ensure the system
and application security, to promote reusability of
code, and to monitor and report on the Intranet

application traffic.

Integration with the reporting system

Figure 6 is a block diagram depicting the
physical architecture of the inbox components and their
relationship with other fulfilling systems of the
networkMCI interact. The inbox system comprises an
inbox client application 300 associated with the client
GQUI front-end for interacting with a customer, and a
middle-tier inbox server 302 communicating with various
Intranet applications (fulfilling servers) 304a, 304b.
The Web servers and dispatch servers previously
described with respect to Figures 2 and 5 have been
omitted from Figure 6 to simplify the explanation. The
inbox server 302 component serves as the repository
where the completed user report data and event
notification data are stored, maintained, and
eventually deleted and is the source of data that is
downloaded to the client user via the dispatcher
(Figure 2) over a secure socket connection 306.

The inbox system is implemented as a part of
AStarWRS@, a networkMCI Interact reporting system whose
components operate closely together in providing an
integrated tool for defining and managing the
generation and presentation of specific reports that
are available to customers. As shown in Figure 6,
AStarWRS@ comprises the following components and

messaging interfaces:

-26-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

1) those components associated with the
client GUI front-end including a report redquestor
client application 308, a report viewer client
application 310, and an inbox client application 300 as
explained previously, which implement the logical
processes associated client platform applications
launched from the backplane (Figure 3) that enable the
display and creation of reports and graphs based on the
fields of the displayed reports, and, allows selection
of different reporting criteria and options for a given
report; and,

2) those middle-tier server components
enabling the reporting functionality including a report
manager server 312, a report scheduler server (not
shown), and an inbox server 302.

Each of these components will now be
described with greater particularity herein below in
relation to the functionality of the inbox system.

The report manager server 312 is an
application responsible for the synchronization of
report inventory with the back-end Afulfilling@ servers
304a, 304b; retrieval of entitlements, i.e., a user=s
security profiles, and report pick list information,
i.e., data for user report customization options, from
the system Order Entry server (not shown); the
transmission of report responses or messages to the
Dispatcher server (not shown); the maintenance of the
reporting databases; and, the management of metadata
used for displaying reports. In the preferred
embodiment, the Report manager server 312 employs a
Unix daemon that passively listens for connect requests

from the GUI client applications and other back-end

27-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

servers and deploys the TCP/IP protocol to receive and
routé requests and their responses. Particularly, Unix
stream sockets using the TCP/IP protocol suite are
deployed to listen for client connections on a
well-known port number on the designated host machine.
Client processes, e.g., report requestor 308, wishing
to submit requests connect to report manager 312 via
the dispatcher (not shown) by providing the port number
and host name associated with Report manager 312.
Request messages received by the Report manager server
312 are translated into a "metadata" format and are
validated by a parser object built into a report
manager proxy 312' that services requests that arrive
from the GUI front-end. If the errors are found in the
metadata input, the Report manager 312 returns an error
message to the requesting client. If the metadata
passes the validation tests, the request type is
determined and data is retrieved in accordance with the
meta data request after which a standard response is
sent back to the requesting client.

In Figure 6, interface SSL sockets 314 are
shown connecting the Report manager server 312 and the
report reqguestor 308, via the dispatch server (not
shown), and other socket connections 316 are shown
interfacing with respective back-end servers 304b. 1In
one embodiment, a server may provide a customer=s
priced billing data through a Talarian7 smart socket
messaging interface to the Report Manager.
Particularly, a back-end billing application known as
"StaroDS", provides such priced billing data.
Additionally, as shown in Figure 6, real-time traffic

data is sent directly to the report manager 312 from

8-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

the Traffic View server ("TVS") 304b. Although not
shown in Figure 6, it should be understood that the
report manager 312 server may manage reporting data for
customer presentation from other back-end servers
including, e.g., broadband, toll free network
management, and event monitor servers, etc. in order to
present to a customer these types of billing/management
data.

The report manager server additionally
utilizes a database, such as provided by Informix, to
provide accounting of metadata and user report
inventory. Preferably, an SQL interface is utilized to
access stored procedures used in processing requests
and tracking customer reports. A variety of C++ tools
and other tools such as Rogue Wave7 tools.h++ are
additionally implemented to perform metadata message
parsing validation and translation functions. The
report manager server 312 additionally includes the
scheduling information, which information is passed to
the back-end fulfilling servers 304b and stored by
them.

The report scheduler server component (not
shown) is, in the preferred embodiment, a perpetually
running Unix daemon that deploys the TCP/IP protocol to
send requests to the back-end fulfilling servers such
as the StarODS server, TVS 304b and receive their
responses. More particularly, the report scheduler
server 260 is a Unix server program that is designed to
handle and process report requests to the fulfilling
servers by deploying Unix stream sockets using the
TCP/IP protocol suite, sending the report regquest to

client connection on a well-known port number on the

9.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

designated host machine. Although not shown, interface
socket connections interface with respective back-end
servers 304b.

In the case of priced billing data from
StarODS, report requests are published by the report
scheduler server to a pre-defined subject to an
interface object, for example, written in C++, that
encapsulates Talarian complexity. When handling other
incoming messages published by back-end servers using
Talarian SmartSockets 4.0, another daemon process is
necessary that uses Talarian C++ objects to connect
their message queue and extract all messages for a
given subject for storage in a database table. Each
message includes the track number of the report that
was requested from the fulfilling server.

From the report scheduler interface, the user
may specify the type of reporting, including an
indication of the scheduling for the report, e.qg.,
hourly, daily, weekly or monthly. For priced data the
user has the option of daily, weekly, or monthly. For
real-time, or unpriced data, the user has the option of
hourly, daily, weekly or monthly. The report requester
interface additionally enables a user to specify a page
or E-mail account so that an e-mail or page message may
be sent to indicate when a requested report is in the
Inbox server 302.

The report scheduler server interfaces
directly with the report manager server 312 to
coordinate report request processing. It should be
understood that the respective report management and

scheduling functions may be performed in a single

-30-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

server, for example, by the report manager server 312,
as shown.

The Inbox Server 302 serves as the repository
where the completed user report data is stored,
maintained, and eventually deleted and is the source of
data that is downloaded to the client user via the
dispatcher (Figure 2) over a secure socket connection
306. It is also a Unix program that is designed to
handle and process user requests submitted in metadata
format using a database 320, typically a commercial
off-the-shelf database such as Informix.

The fulfilling servers such as the Broadband,
and Toll Free Network Manager 304a, and StarODS and TVS
304b, Report Scheduler server, and any other back-end
or fulfilling servers (not shown), may send report
results and event notifications to the inbox server
302. The fulfilling servers, and Report Manager server
may communicate to the inbox server 302 by making
requests to the inbox proxy 302'. The proxy, generally
waits for a request from an application and then
services the request.

The proxy=s main responsibility is to process
requests by either handling them intermally within the
inbox proxy 302' or forwarding them to the inbox server
302, and then responding back to the client (i.e., the
fulfilling servers in this case). In order to maintain
secure connectivity throughout the system, the inbox
proxy 302' uses the application program interfaces
(APIs) provided by the AnetworkMCI Interact@ supporting
different types of data transport mechanisms:
synchronous transaction; asynchronous transaction; and,

synchronous bulk transfer. The transport mechanisms

231-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

are implemented as sockets message protocol, and the
proxy handles its conversation processing on a thread
or process per conversation basis for servicing
multiple simultaneous clients.

As an alternative to the transports above,
the inbox server 302 offers direct File Transport
Protocol (FTP) Aput@ for very large transfers in order
to alleviate some of the network server loads. The
fulfilling servers 304a, 304b with large data transfers
typically use the common shareware compression format
ZIP which is also PKZIP compatible. Alternately, the
fulfilling servers 304a, 304b distributing information
via the inbox may Aput@ the data to the inbox and defer
zipping until after the inbox receives the data.

The fulfilling servers, when placing the data
in the inbox, typically notify the report manager
server 312 they are adding new data in the inbox. The
report manager 312 then retrieves and FTPs the
appropriate metadata associated with the new data in
the inbox, notifying the inbox of the new additions to
the inbox, i.e., the new data and the associated
metatdata. The metadata is then stored in the inbox
server database 320 along with the report results.
Thus, if the metadata is required to be changed, it
does not interfere with the information needed to

display the reports included in the inbox.
The Inbox client GUI application
With regard to the front-end client GUI

components, the above-mentioned inbox client

application 300 functions as an interface between the

-32-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

client software and the inbox server 302 for presenting
to the customer the various types of reports and
messages received at the inbox including all completed
reports, call detail, and marketing news messages.
Preferably, the messages for the user in the inbox is
sorted by type, and then by report type, report name,
date, and time.

In a preferred embodiment, the inbox client
application 300 is implemented using the COApp class
provided by the AnetworkMCI Interact@ common object
classes and uses the services of the common objects.

The inbox client application 300 uses the
services of the backplane (Figure 3) to launch other
applications as needed to process report messages. For
example, if an alarm i1s generated via the Event
Monitor, regarding a fiber outage that impacts a
customer=s toll free circuit, an option allows the user
to go directly from the alarm message in the inbox to
the appropriate alternate routing plan by launching the
TFNM application for finding the routing plan.

The inbox client 300 also uses the services
of the data export objects to provide a save/load
feature for inbox messages, and, 1s used to provide a
user-interface for software upgrade/download control.

In a preferred embodiment, the inbox client
includes a thread that polls periodically, e.g., every
five minutes, for a list of reports. The polling
thread typically looks for new additions to the list of
messages currently displayed on the screen. If the
polling thread finds a new addition, the screen display

is updated accordingly.

33-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

The report requestor application 308 is a GUI
applet enabling user interaction for managing reports
and particularly includes processes supporting: the
creation, deletion, and editing of the user's reports;
the retrieval and display of selected reports; the
display of selected option data; and the determination
of entitlements which is the logical process defining
what functionality a user may perform on StarWRS. 1In
the preferred embodiment, a report request may be
executed immediately, periodically, or as Aone-shotse
to be performed at a later time. As described herein,
the report scheduler service maintains a list of
requested reports for a given user, and forwards actual
report requests to the appropriate middle-tier servers
at the appropriate time. Additional functionality is
provided to enable customers to manage their inventory,
e.g., reschedule, change, or cancel (delete) report
requests.

The report viewer application 310 is a GUI
applet enabling a user to analyze and display the data
and reports supplied from the fulfilling servers such
as StarODS and ATVS@ 304b, and other systems such as
broadband and toll free network manager 304a via the
inbox 300, 302. Particularly, the report manager 312
includes and provides access to the metadata which is
used to tell the report requestor what a standard
report should look like and the Apick-list@ options the
user has in order for them to customize the standard
report. It is used to tell the report viewer client
how to display the report, what calculations or
translations need to be performed at the time of

display, and what further customization options the

_34-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996

PCT/US98/20150

user has while viewing the report. It additionally

includes a common report view by executing a GUI applet

that is used for the display and graphing of report

data and particularly, is provided wit

management 322 functionality that defi

h spreadsheet

nes what

operations may be performed on the spreadsheet

including the moving of columns, column hiding, column

and row single and multiple selection,
export of spreadsheet data, printing o
etc. It is also provided with report

functionality by defining what operati
performed on the data displayed in a s

including such dynamic operations as s

data, sub-totaling of report data, etc.

the report viewer 310 provides a funct
the interpretation of metadata. The r
application 310 may also be able to ac
telling it to display an image 324 or
be passed by one of the applications 1

data (e.g., invoice, broadband report,

import and
f spreadsheet,
data management
ons may be
preadsheet
orting of report
Furthermore,
ionality enabling
eport viewer
cept messages
text 326 that may
n lieu of report

etc.)

All reporting is provided through the report

viewer interface which supports spreadsheet, a variety

of graphic and chart types, or both types

simultaneously. The spreadsheet prese
for sorting by any arbitrary set of co
report viewer 310 1s launched from the
when a report is selected and may also
applications directly if a report is g
time.

By associating each set of r
is downloaded via the inbox server 302

Ametadata@ report description object,

-35-

SUBSTITUTE SHEET (RULE 26)

ntation allows
lumns. The
inbox client 300
be launched from

enerated in real

eport data which
with a

reports may be

10

15

20

25

30

WO 99/15996 PCT/US98/20150

presented without report-specific presentation code.
At one level, these metadata descriptions function like
the catalog in a relational database, describing each
row of a result set returned from the middle tier as an
ordered collection of columns. Each column has a data
type, a name, and a desired display format, etc.
Column descriptive information may be stored in an
object, and the entire result set may be described by a
list of these objects, one for each column, to allow
for a standard viewer to present the result set, with
labeled columns. Nesting these descriptions within one
another allows for breaks and subtotaling at an
arbitrary number of levels. If the standard viewer
must be extended for a particular report with elaborate
formatting or data manipulation, it may be subclassed.
Since Java may create class instances by name, the
report description object could simply supply the name
of the derived class and the standard report launching
methods would still support the report. The same
metadata descriptions may be used to provide common
data export and report printing services. When
extended to describe aggregation levels of data within
reporting dimensions, it may even be used for generic
rollup/drilldown spreadsheets with Ajust-in-time@ data
access.

The metadata data type may include geographic
or telecommunications-specific information, e.g.,
states or NPAs. The report viewer may detect these
data types and provide a geographic view as one of the

graph/chart types.

-36-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

The inbox and report retrieving procedure

An overview of the report retrieval proces

S

utilizing the inbox system will now be described with

references to the flow diagram of Figure 7. 1In
preliminary steps, a customer first establishes
communication with the DMZ Web server at step 400 an
logs on to the networkMCI Interact Platform by enter
name and password on a logon dialog box as indicated
step 402. Then, at steps 406-408, an application
running on the backplane directs a Avalidate user
message@ to the StarOE server via the web server and
dispatcher servers to request the StarOE server to
perform security validation and authenticate the nam

and password. Generally, the StarOE server is the

d
ing
at

e

repository of customer related security profile, pick

lists and reporting entitlements.

Once the customer has logged on, the
backplane requests a current list of authorized
applications from StarOE by sending a Aget user
application request@ message as indicated at step 41
The StarOE returns a response message comprising the
list of authorized applications specific to the
customer. As indicated at steps 412 to 418, this

information is incorporated into the home page

0.

presented to the customer (Figure 4). The customer may

select either the message center (inbox) or one of the

reporting icons to retrieve reports. In either case

7

to view reports, the customer makes the message center

(inbox) the active window and selects the reports tab

as indicated at step 420. As described previously,

report viewer interfaces with the customer=s inbox

-37-

SUBSTITUTE SHEET (RULE 26)

the

10

15

20

25

30

WO 99/15996 PCT/US98/20150

(message center) for presenting to the customer the
various types of reports received at the inbox. At
steps 422, the customer may select open, print, or
delete options for handling of reports. At step 424,
if the «customer selects the open option, the StarWRS
viewer applet (report viewer) is launched as indicated
at step 426. At step 428, the file transfer of the
compressed file to the client computer begins. When
the transfer 1s complete, the file may be automatically
decompressed to a local drive as indicated at step 430
if the file is of a type which requires a report
viewer. Additionally, depending on the file type,
e.g., call detail data, the customer may be given an
option to download but perform the decompressing at a
later time. At step 432, the file is saved locally for
session use, including displaying and printing. The
customer is notified of the progress of the
decompression by an indicator on the inbox window as
shown at step 430. After the file is saved locally as
indicated at step 432, the customer may view or print
the downloaded file as indicated at steps 434 to 438.
In addition, if the file type of the downloaded file 1is
a report, as indicated by the metadata, a viewer may
automatically be launched for displaying the report,
whereby he customer is presented with the report at
step 440. If the customer selects to print as
indicated at step 438, the report, according to the
customer=s choice, is sent either to a printer
associated with the customer=s workstation at step 442
or to a local disk file named by the customer at step
444 .

-38-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Moreover, various formats of the reports may
be displaved depending on the type of service to which
the report is directed. For example, a spreadsheet may
be displayed with the report columns and corresponding
data. Figure 12 illustrates a sample spreadsheet 1200
display. This may be displayed as a splitframe and the
other half may be a chart or graph based on the
selected columns and fields. Default graphing, which
automatically displays a graph according to the
metadata instruction, is also supported. In addition,
a mapping display may be used to support the reporting
for the customer=s network configuration. The
customers may be able to see their sites, various
connections between any two or more of these sites, and
information about each specific site and circuit.

The StarWRS viewer applet remains open until
the customer closes it as indicated at step 450. If
the customer selects another report to view at step
446, the same process is begun and a new instance of
the viewer opens on the screen at step 448. Other
options available to the customer when a particular
report is selected at step 422, are to print a list of
reports in the inbox on a local printer as indicated at
steps 452 to 454, and to delete the report both from
the client platform and the inbox server as indicated
at steps 456 to 460.

Generally, the inbox may be separated into
three sections: News, Report, Data. Each of these
sections retrieves files from the server. 1In addition,
the Reports section may retrieve both a data file and a
metadata file. The InboxCmd object is launched by the

Inbox object when the customer requests a specific

-39.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

report and it utilizes the list transaction data to
retrieve the proper information. Once the InboxCmd
object retrieves the data file for the report selected,
the customer may either save the file or continue with
the processing. When the processing resumes, the
program determines from the list transaction data
whether the file needs to be decompressed. Once the
data file has been processed, if the data file is a csv
report file type, the InboxCmd object retrieves the
metadata file. When all of the data regarding the
selected report has been obtained by the InboxCmd
object, it creates a new WRVReportViewer object, which
launches one of the following viewers based upon the
file type of the date file: WRVTableChartViewer,
WRVTextViewer, WRVImageViewer.

The data file and metadata file are passed to
the WRVController object, where the controller converts
the data file into a WRVFileDataSource object and uses
this object to create a WRVDataTable. The metadata
file is placed in a WRVMetaData object which is then
processed by the WRVMetaDataChecker object to prepare
the data for extraction. The data is then taken from
the processed metadata file and consolidated with the
data file in the WRVDataTable. The consolidated '
WRVDataTable is used to produce the complete report.

Additional inbox services

In addition to interfacing with the report
viewer during the report retrieval and presentation
process, the inbox server 302 supports additional types
of services such as add, delete, list, fetch, and

update items in the inbox by interoperating with the

-40-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996

PCT/US98/20150

fulfilling servers 304a, 304b and the inbox client 300.
The command Aadde inbox item adds an item into the
inbox. The data may comprise both short messages and
large data transfers. It also supports optional paging
or e-mail for an item that has been retrieved into the
inbox. The add inbox item service is generally
utilized by the application servers, i.e., the
fulfilling servers and the report manager server, when
report data or event notification data are available to
be displayed at the client terminal. The application
servers may utilize synchronous transaction for
transferring files to the inbox. The data may also be
transferred to the inbox via the FTP.

The user command Adelete@ an inbox item
deletes any data related to the item selected at the

client platform as well as the inbox server. The user

command Alist@ inbox items for given customer provides

a list of header information blocks pertaining to the

inbox items.

returns data to the customer.

The user command Afetch@ an inbox item

The user command

Aupdate@ an inbox item enables a customer to update

fields such as purge days and acknowledgment flags.

Table 1,

service requestor,

given below,

summarizes the inbox services,

and types of transport mechanism

which may be used for providing the services.

Service Used by client Used by Communica-tion
platform applets | application transport
Servers mechanism
Add No Yes Synchronous
transaction
Delete Yes No Synchronous
List Yes No Bulk transfer

41-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Fetch Yes No Bulk transfer
Update Yes No Synchronous
transaction
Table |

Generally, communication within the inbox
server, inbox client, and application servers are
accomplished by messaging interface. All the service
requests to the inbox and all the responses comprise a
list of parameters or other embedded lists. A simple
list typically comprises of a series of
Aparameter=value@ palrs separated by commas. The
entire list is typically delimited by the A<A and A>@
character. For example:

<parameter=value,parameter=value,parameter=value>
A value may be either a string delimited by double
quotes using the conventional \ for escaping, long
integer, or another list delimited by < and >.
Additional un-parameterized binary data may be sent
immediately following the list until the end of the
data content of the transaction request or response.
Thus, the general form of the data content may be:

<param=val,param=val,param=<param=val, param=val>,

param=val>binary-data

Each of the services supported by the inbox and the
corresponding request and response messaging interface

will now be described in detail below.

4D

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Add request from the application servers

The add request as described previously is
performed by the inbox at the request of the StarOE,
report manager, report scheduler, or any of the
fulfilling servers, and typically adds an item into
the inbox. The item includes the information about
where the data is located. Table 2 in Appendix A
describes details of the messaging interface used when
requesting the add service to the inbox server. An
example of the request message may be:

A<CATEGORY=R, TYPE=Unpriced, USERID=1234,RPTID=245,
COMPRESS=1, RPTCATEGORY=Longest Calls,
LOC=/inbox/files/TVs/38293738.txt,RQSTDT=199707211200,
FSIZE=2048,RPTTITLE=My Longest Calls Report,
MSIZE=1024>

When the inbox server receives and processes the
request, it returns an acknowledgment of add in the
format described in Table 3 of Appendix A. An example
of an acknowledgment response to add request may be:
Z<REQ=A, ERROR=0, INBOXID=528>
As mentioned previously, the fulfilling server placing
an add request to the inbox performs the FTP of the
report/data file to a known directory on the inbox
server. This is a Apush@ from the fulfilling server to
the inbox. A directory may be pre-defined on the inbox
server for each application using the services of the
inbox. The fulfilling server is generally responsible
for the unique generation of file names within the
application directory. The following directory and
file naming conventions are generally utilized.

Directories on the inbox server:

43-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

35

WO 99/15996 PCT/US98/20150

/inbox/files/tvs Trafficview server
/inbox/files/sa StarOE server
/inbox/files/hyper Broadband server
/inbox/files/odsadm ODS server
/inbox/files/rs Report Scheduler

The application (fulfilling) servers are
responsible for generating unique file names within
their directory on the inbox server. The fulfilling
servers typically compress their report data files
prior to FTP=ing into the inbox. The following file

suffixes are generally used for uniformity.

cExt non-compressed text
files

.txt_zip compressed text
files

.CsvVv non-compressed comma
separated value
files

.csv_zip compressed comma
separated value
files

.gif non-compressed image
files

.gif_zip compressed image
files

Typically, when the fulfilling servers places
report result files in the inbox server, the fulfilling
servers notify the report manager of the file
placement, e.g., by sending a Anotify report locatione
request to the report manager. The report manager
verifies whether the request is valid and sends an Add
request to the inbox after creating a file having the
metatdata in the inbox, using the same file name as the

report/data file, but with the following suffix.

.mtd metatdata file when
results file is non-
compressed

-44-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15996 PCT/US98/20150

.mtd_zip metatdata file when
results file is
compressed

The Anotify report location@ message
transaction is used by the fulfilling servers to notify
the report manager of the location in the inbox of a
scheduled report which has been made available for a
customer. The Anotify report location@ is described in
Table 4 of Appendix A. An example of the Anotify
report location@ message format may be:

NRL<TYPE=Unpriced, ENTPID=1234567,USERID=1234,

STDRPTID=3434,USERRPTID=4321,REQUESTID=39283,

COMPRESS=1,L0OC=/inbox/files/TVs/39373928. txt,

FSIZE=2048, PRESORTED=1,
TOTAL=<<21,100><32,401><37,700>>.

The report manager acknowledges the messages by sending
the requesting server the Anotify report location
acknowledgment@ message described in detail in Table 5
of Appendix A. An example of this message format may
be:
12345NRLA<ERROR=0,USERID=1234,USERRPTID=4321, REQUESTID=

38293>.

Add request from the StarOE application

45-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Another example of an add request transaction
may be from the StarOE server. StarOE is another
horizontal service supported by the AnetworkMCI
Interact@ providing system administrative and order
entry functionality for the application services. When
a customer is added or more applications are made
available to an existing customer, the StarOE
application, at the end of its order entry process adds
a news message welcoming the customer as well as the
new subscription information to the inbox.

Figure 8 illustrates an overview of the
process in which the StarOE and the inbox interact
during customer order entry. Additions of new users or
changes to information pertaining to existing users are
typically performed via the OE client 480 and
communicated to the OE server 482. The OE server 482,
via its fulfillment process running periodically, sends
information on new customers to a fulfillment house 486
which is responsible for sending new subscription
packages to customers. The OE server 482 also sends a
news message comprising welcome letters to each new
customer to the Inbox server 302. If a new application
is added to an existing customer then only a message to
that effect is sent to the customer via the Inbox 302.

The fulfillment kit may comprise a welcome
letter via conventional mail and/or an electronic inbox
letter. The fulfillment process in the OE server 482
typically runs on a daily basis. The information
needed for the fulfillment process is generally stored
in an OE database 484, Sybase or Informix for example,
in table forms. Such tables may include a user,

configuration, and enterprise user application tables.

-46-

SUBSTITUTE SHEET (RULE 26)

10

15

20

WO 99/15996 PCT/US98/20150

The information or data is retrieved, configured and
computed from the tables and put into a temporary
fulfillment table which is used for the collection of
the fulfillment information. From the fulfillment
table the process creates the inbox letters and records
for the fulfillment file. The enterprise user
application table usually includes the status of
whether the requested applications have been fulfilled.
The fulfillment file is transferred, using file
transfer protocol (FTP), for example, to the
fulfillment group 486 for creation of the welcome
letters. The welcome letter comprises the customer=s
id and password, URLs pointing to a language specific
web page where a customer may typically start up the
system of the present invention which the customer has
ordered.

When the OE transmits the news messages for
fulfilled customers, the inbox server notifies the
inbox client 300 at the client platform 488. The
notification is typically performed over secure socket
connections 492. A customer, then typically views the
messages displayed at the client terminal by the inbox

client 300.

47-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Requests from the inbox client

Referring back to the inbox services, the
delete, list, fetch, and update item user commands are
performed by the inbox server at the request of the
inbox client when a customer selects the options at the
client terminal. Figure 13 illustrates an example of
the inbox client screen display 1300 where a customer
utilizes the inbox services by selecting one of the
options available. The delete item service removes a
selected item from the inbox and deletes the report
from the local disk as well. When a customer clicks on
the Adelete@ button from the inbox screen, the InboxCmd
object launches the DeleteDlg object. The DeleteDlg
object tells the Communication object to send a Delete
Message to the inbox server to delete a specific
report. When the server receives the Delete Message
from the client, it calls the stored procedure to
remove the item. It returns a response Z, the request
that was being made (D) and an error code. If no error
occurred, the error code may be set to zero.

The message interfaces used for delete item
request is described in Table 6 of Appendix A |
respectively. 2An example of a delete item request
message format is: D<INBOXID=255>. The inbox server
may respond to the inbox client with an acknowledgment
as described in Table 7 of Appendix A. An example of a
response may be: Z<REQ=D, ERROR=0>.

The delete all items service removes all
items from the inbox for an enterprise and user 1d and
deletes the associated reports from the local disk as

well. An entérprise is an aggregation of individual

-48-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

corp 1ds. Enterprises may be created to conveniently
manage the resources of a number of logically related
corp ids, and may include an alphanumeric identifier
assigned to a customer using the call by call routing
service. A user id refers to an alphanumeric
identifier assigned to a particular customer. The
delete all items request and response messages are
described in Tables 8 and 9 of Appendix A respectively.
An example of delete all item message format sent by
the inbox client may be:
D<USERID=1234, ENTPID=7383>.
An example of acknowledgment to the messages sent by
the inbox server to the inbox client may be:
Z<REQ=D, ERROR=0>.
The inbox list service is a synchronous
request for a list of all inbox items pertaining to a
specific customer. When a customer selects the inbox
from the browser or the toolbar (Figure 4) and clicks
on a list service from the inbox screen, the InboxCmd
object launches the InitDlg object. The InitDlg object
tells the Communication object to send a List Message
to the server to retrieve a list of available reports.
When the server receives the List Message from the
client, it calls the stored procedure to get a list of
the requested items. It returns a response Z, the
request that was made(L), a list of the requested
items, and an error code. If no error occurred, the
error code may be set to zero. If an error occurred,
no list may be returned. The stored procedures are a
set of procedures interacting with the inbox server=s
database for accessing, i.e., adding, modifying and

retrieving the data stored in the inbox database. An

-49-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

example list of the stored procedures used in the
present invention and their functional descriptions are
provided in Appendix A, Table 15.

The list request and response message
transactions are described in Tables 10 and 11 of
Appendix A respectively. An example of list request
message format sent by the inbox client to the inbox
server may comprise:

L<ENTPID=3839, iISERID=l234 , CATEGORY=R, INBOXID=255>
The inbox server may respond to the inbox client with
an acknowledgment whose message format may be:

Z<REQ=L, ERROR=0, INBOXID=35,<Ackl,DataLocationl,
DateReceivedl, DateRequestedl,Compressedl,RptID1,
InboxID1l,Metafilesizel,Priorityl, ReportNamel,
ReportTitlel,Sizel,Ttll, Typel><Ack2,DatalLocation2,
DataReceived2,DateRequested2, Compresssed2, RptID2,
InboxID2,Metafilesize2,Priority2, ReporName2,
ReportTitle2,Size2,Ttl2, type2>>.

The fetch service is invoked when a customer
selects a report to view. In this instance, the
InboxCmd object launches the RetrieveDlg object. The
RetrieveDlg object tells the Communication object to
send a Retrieve Message to the inbox server to retrieve
the files related to this report. When the inbox
server receives the Retrieve Message from the client,
it calls the stored procedure to update the item. It
returns a response Z, the request that was made, the
requested item and an error code. If no error
occurred, the error code may be set to zero. If an
error occurred, the requested item may not be sent.

The inbox fetch service is a bulk transfer

request, comprising the parameter list described in

-50-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Table 12 of Appendix A. An example of a fetch request
message may comprise: F<INBOXID=39273,METADATA=0>. As
a response the inbox server may bulk transfer the
requested file to the inbox client.

The inbox update service is invoked when a
customer selects the update button from the inbox
display to update or change any customer specific
report or data stored in the inbox. For example, when
the customer opens an item in the Message Center
(inbox) which has not been acknowledged, the InboxCmd
object launches the UpdateDlg object. The UpdateDlg
object tells the Communication object to send an Update
Message to the inbox server to update the
acknowledgment status. When the server receives the
Update Message from the client, it calls the stored
procedure to update the item. It returns a response Z,
the request that was made(U), and an error code. If no
error occurred, the error code may be set to zero.

Another example utilizing the update function
of the inbox 1s an instance when a time-to-live value
needs to be changed. Generally, each message
transaction sent to the inbox server is tagged by the
sender with a Atime-to-live,@ which determines how long
the message may remain in the inbox server. A process
in the inbox server monitors all the messages for their
expiration, and automatically removes the message files
whose Atime-to-live@ have expired. Accordingly, when a
customer selects the update button on the inbox screen
display to update or change the time-to-live value, the
InboxCmd object launches the UpdateDlg object. The
UpdateDlg object tells the Communication Object to send

an Update Message to the inbox server to update the

-51-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

time-to-live information. When the inbox server
receives the Update Time to Live Message from the
client, it calls the stored procedure to update the
item. It returns a response 7, the request that was
made, and an error code. If no error occurred, the
error code may be set to zero.

The inbox update service is a synchronous
request, comprising the parameter list described in
Table 13 of Appendix A. Examples of a parameter list
for the update request message are:

U<ENTPID=3938,USERID=1234,TTL=63, CATEGORY=R>
or

U<INBOXID=123493,ACK=1>,

The Inbox server responds to the inbox client with an
acknowledgment whose parameter list is described in
Table 14 of Appendix A. Examples of the acknowledgment
message may be:

Z<REQ=U, ERROR=0> or

Z<REQ=U, ERROR=0>.

The inbox server and proxy (302 and 302' at
Figure 6) provides error codes denoting any kind of
error condition which may have occurred when processing
the transaction requests. The error codes are embedded
with the response transaction messages sent to the
regquesting clients and servers. These error codes are
described in detail in Tables 15 and 16 of Appendix A.
Typically, a zero value for the error denotes

successful and completed processing as requested.

-52.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

News portion of the inbox

The news portion of the inbox generally
includes messages for a given customer. An example of
a news message was described previously in reference to
the StarOE news message that was sent to the inbox as a
result of adding new users or new applications for
existing customers. Another example of a news message
populated in the inbox may be an administrator=s
broadcast message to a given category of users. Once
the message is submitted by the administrator, the
message is typically populated in the customers= inbox
within two minutes. Each news message includes a
title, priority, message content, and type, the size of
the message content being limited only by the specific
system resources, associated with it. Example values
for the type field include Awelcome,@ indicating
welcome letter, Ainfo,@ Aalert,@ and Amaint.@ The
values for the priority field include urgent (color
coded in red), attention (yellow), and normal.

The administrator who created the message
typically determines the priority, type, categories of
users, title, and message content. The administrator
may also set a future date and time for the messages to
be populated in the inbox. In this instance, the
messages are populated in the inbox no more than two
minutes before the requested time and no later than two
minutes after the requested time. The news messages
may also be deleted before scheduled time, or changed
by the creator, i.e., the administrator in the instant

example. The scheduled time for the news messages

-53.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

WO 99/15996 PCT/US98/20150

which are queued may also be altered to indicate new

scheduled time for population in the inbox.

Time to live

As described previously, each message
transaction sent to the inbox are tagged by the sender
with a Atime-to-live,@ which determines how long the
message may remain in the inbox. A process in the
inbox server monitors all the messages for their
expiration, and automatically removes the message files
whose Atime-to-live@ have expired. Moreover, a cron
tab entry in the inbox server typically cycles through
on a periodic basis and deletes any records marked for
deletion. For example, an ad hoc customer report may
typically be marked for deletion from the customer
report table once the status indicates that the report
has been completely download to the client workstation.

Furthermore, a customer may change the time-
to-1live parameters associated with their files
according to the inbox category, i.e., news, report,
data, from their default values. For example, the
customer may optionally set the have news to be stored
for 1 day before being deleted, reports for 5 days, and
data for 30 days. All items received in the inbox
under the news category, then may have their time-to-
live set to 1 day. Similarly, all items received in
the inbox under the reports and data may have their

time-to-live set to 5 days and 30 days, respectively.

-54-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Inbox logging
In addition, the inbox server and the proxy

incorporates a logging function for logging entries
such as the incoming reguests, the outgoing responses,
error codes from stored procedures of SQL execution
when accessing a database, and fields returned by the
stored procedures. The logging facility timestamps
each entry, and also attaches the source file and line

number of the statement issuing the logging.

Inbox proxy

The inbox server delivers messages to
customers in a priority order by utilizing the
multithreading mechanism described above. At the
option of the sender, inbox messages may generate a
page or e-mail to the recipient if not downloaded
within a specified time. The optional arrangement may
be typically specified by the customer during the order
entry process via the StarOE system and stored in a
customer profile, and may be communicated to the inbox
via one of the messaging interfaces. This page or e-
mail would be requested of an external messaging system
by the inbox server.

Figure 14 illustrates a high level process
flow for the inbox interacting with other systems.

As mentioned herein with respect to Figure
2(b), the messages created by the client Java software
are transmitted to the StarWeb (DMZ) Server 24 over
HTTPS. For incoming (client-to-server) communications,
the DMZ Web servers 24 decrypt a request, authenticate

and verify the session information. The logical

-55-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

message format from the client to the Web server is

shown as follows:

|| TCP/IP || encryption || http || web header ||
dispatcher header || proxy-specific data ||

where A||@ separates a logical protocol level, and
protocols are nested from left to right. Figure 9
illustrates a specific message sent from the client
browser to the desired middle tier server for the
particular application. As shown in Figure 10(a), the
client message 500 includes an SSL encryption header
510 and a network-level protocol HTTP/POST header 512
which are decrypted by the DMZ StarWeb Server(s) 24 to
access the underlying message; a DMZ Web header 514
which is used to generate a cookie 511 and transaction
type identifier 516 for managing the client/server
session; a dispatcher header 515 which includes the
target proxy identifier 520 associated with the
particular type of transaction requested; proxy
specific data 525 comprising the application specific
metadata utilized by the target proxy to form the
particular messages for the particular middle tier
server providing a service; and, the network-level
HTTP/POST trailer 530 and encryption trailer 535 which
are also decrypted by the DMZ Web server layer 24.
After establishing that the request has come
from a valid user and mapping the request to its
associated session, the request is re-encrypted and
then forwarded through the firewall 25 over a socket
connection 23 to one or more decode/dispatch servers 26

located within the corporate Intranet 30 (Figure 2(b)).

-56-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

The messaging sent to the Dispatcher may
include the user identifier and session information,
the target proxy identifier, and the proxy specific
data. The decode/dispatch server 26 decrypts the
request and authenticates the user's access to the
desired middle-tier service.

It should be understood that networking-level
protocols and HTTP may be handled by off-the-shelf Web
server software, e.g., Netscape Enterprise Server, or
other Web Services-type cluster software that maintains
a virtual client connection state. The AnetworkMCI
Interact@ DMZ Web services software may be invoked by
the AnetworkMCI Interact@ StarWeb server 24 using a
POST-type mechanism, such as: a Netscape servlet API,
CGI or equivalent.

As shown in Figure 10(a), the StarWeb server
24 forwards the Dispatcher header and proxy-specific
data to the Dispatcher, Aenriched@ with the identity of
the user (and any other session-related information) as
provided by the session data/cookie mapping, the target
proxy identifier and the proxyv-specific data. The
dispatch server 26 receives the encrypted requests
forwarded by the Web server(s) 24 and dispatches them
to the appropriate application server proxies.
Particularly, the messages are decrypted, and the
wrappers are examined, revealing the user and the
metadata-type service request. A first-level
validation is performed, making sure that the user is
entitled to communicate with the desired service. The
user's entitlements in this regard would be fetched by
the dispatch server 26 from StarOE server 482 at logon

time and cached. Assuming that the requestor is

-57-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

authorized to communicate with the target service, the
message would be forwarded to the desired service's
Droxy.

Particularly, as explained generally above
with respect to Figure 6, the dispatch server 26
receives encrypted request messages forwarded by the
DMZ Web servers and dispatches them to the appropriate
server proxies. The messages are decrypted, and the
wrappers are examined, revealing the user and the
target middle-tier service for the request. A
first-level validation is performed, making sure that
the user is entitled to communicate with the desired
service. The user's eﬁtitlements in this regard are
fetched by the dispatch server from Order Entry server
482 at logon time and cached. Assuming that the
requestor is authorized to communicate with the target
service, the message is then forwarded to the desired
service's proxy, which, in the accordance with the
principles described herein, is the inbox service proxy
302' corresponding to the inbox server 302. This proxy
process further performs: a validation process for
examining incoming requests and confirming that they
include validly formatted messages for the service with
acceptable parameters; a translation process for
translating a message into the database query message
or networking protocol; and, a management process for
managing the communication of the specific customer
request with the middle-tier server to actually get the
request serviced. Data returned from the AnetworkMCI
Interact@=s server is translated back to client format,
if necessary, and returned to the dispatch server as a

response to the request.

-58-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

Figures 10(a) and 10(b) are schematic
illustrations showing the message format passed between
the Dispatcher 26 and the application specific proxy
(Figure 10(a)) and the message format passed between
the application specific proxy back to the Dispatcher
26 (Figure 10(b)). As shown in Figure 10(a), all
messages between the Dispatcher and the Proxies, in
both directions, begin with a common header 660 to
allow leverage of common code for processing the
messages. A first portion of the header includes the
protocol version 665 which may comprise a byte of data
for identifying version control for the protocol, i.e.,
the message format itself, and is intended to prevent
undesired mismatches in versions of the dispatcher and
proxies. The next portion includes the message length
670 which, preferably, is a 32-bit integer providing
the total length of the message including all headers.
Next is the echo/ping flag portion 672 that is intended
to support a connectivity test for the dispatcher-proxy
connection. For example, when this flag is non-zero,
the proxy immediately replies with an echo of the
supplied header. There should be no attempt to connect
to processes outside the proxy, e.g. the back-end
application services. The next portion indicates the
Session key 675 which is the unique session key or
Acookie@ returned by the Web browser and used to
uniquely identify the session at the browser. As
described above, since the communications middleware is
capable of supporting four types of transport
mechanisms, the next portion of the common protocol
header indicates the message type/mechanism 680 which

may be one of four values indicating one of the

-59.

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

following four message mechanisms and types:

1) Synchronous transaction, e.g., a binary 0; 2)
Asynchronous request, e.g., a binary 1; 3) Asynchronous
poll/reply, e.g., a binary 2; 4) bulk transfer, e.g., a
binary 3.

Additionally, the common protocol header
section includes an indication of dispatcher-assigned
serial number 685 that is unique across all dispatcher
processes and needs to be coordinated across processes
(like the Web cookie (see above)), and, further, is
used to allow for failover and process migration and
enable multiplexing control between the proxies and
dispatcher, if desired. A field 690 indicates the
status is unused in the request header but is used in
the response header to indicate the success or failure
of the requested transaction. More complete error data
may be included in the specific error message returned.
The status field 690 is included to maintain
consistency between requests and replies. As shown in
Figure 10(a), the proxy specific messages 695 may be
metadata message requests from a Report Requestor
client (not shown). Likewise, the proxy specific
responses are metadata response messages 610 again,
capable of being transmitted via a synch, asynch or
bulk transfer transport mechanism.

It should be understood that the application
server proxies may either reside on the dispatch server
26 itself, or, preferably, may reside on the middle-
tier application server, i.e., the dispatcher front-end
code may locate proxies resident on other servers.

As mentioned, each back-end service has a

proxy process with three responsibilities: validate,

-60-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

translate, communicate. Validation comprises of
parsing incoming requests, analyzing them, and
confirming that they include validly formatted messages
for the service with acceptable parameters. If
necessary, the message is translated into an underlying
message or networking protocol. If no errors in the
message are found, the proxy then manages the
communication with the middle-tier server to actually
get the request serviced. The application proxy
supports application specific translation and
communication with the back-end application server for
both the Web Server (java applet originated) messages
and application server messages.

In performing the verification, translation
and communication functions, the inbox proxy employs
proxy.c, logfile.c, logfile.h, util.c, utils.h,
protohdr.h, and oe_msg.h for supporting front-end
functionality. The proxy.c file includes functions
which listen on a socket for a message to arrive. When
a message is received, a function in the proxy.c forks
a process that is dedicated to the fulfillment of that
message. The parent listens for an exit signal from
the child, which is typically generated when the child
completes its task and exits. The logfile.c includes
the functions necessary for logging various events. If
a file name is not passed as an argument in the command
line, the proxy searches an initialization file for a
default file name for logging events. The util.c file
generally includes the functions necessary for socket
implementation. The protohdr.h file includes
definitions for the protocols which are needed when

passing the messages.

-61-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

To support the back-end functionality of the
inbox system, the inbox proxy employs C++ tools such
as: inboxutil.c, which file includes the functions for
processing the inbox requests such as add, delete,
list, fetch and update; inboxdef.h which is a header
file included by the inboxutil.c comprising messages
and definitions used by the inbox utility C code;
MCIInboxParser.c which is a class used as a repository
for the report manager metatdata, whose Abuild@ member
function reads the string comprising the data to store
for the class to parse; MCIInboxParser.hh, a
MCIInboxParser object holding public, private
declarations of the MCIInboxParser.c; and mainsqgl.c, a
class interfacing SQL C for messages from the report
manager and report viewer, whose functions call the
stored procedures according to the messages and build
responses inside the functions depending on the
returned values of the stored procedures. Typically,
the MCIInboxParser object is created in inboxutil after
a message has been received.

Other proxy functions and utilities provided
include enabling multithreaded proxy functionality in
order that the proxies may service multiple clients
simultaneously. The logic flow diagram illustrating
the multithreading functionality is shown in Figures
11(a)-11(c).

Specifically, as shown in Figure l1ll(a), step
902, a proxy 1iétener socket on a middle-tier sgerver,
e.g., inbox server, is first initialized. A proxy
signal handler is invoked at step 904 to wait for a
connection signal from the dispatcher server, as

indicated at step 905. At step 908, a determination is

-62-

~SUBSTITUTESHEET(RULEZG)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

made as to whether the Proxy has accepted a connection
request from the dispatcher. If the proxy could not
accept the connection, a SignalHandler Routine is
invoked as indicated at step 909 and described with
reference to Figure 11(b). If the proxy accepts the
connection, a child process is instantiated as
indicated at step 910. A determination is next made at
step 911 to determine if the forked process was
successful. If the forked process was successful, then
a check is made at step 912 to determine if the child
process was created for that session. If the child
process was created, then the child process is invoked
at step 915 as described with reference to Figure
11(c). If the child process was not created, a
determination is made at step 916 to determine whether
the parent proxy process is still executing. If the
parent is still executing, then the current
conversation socket is closed, as indicated at step
918, and the process returns to step 905. TIf the
parent is not alive, then an error handler routine is
invoked at step 920, and the process returns to step
905.

Returning back to step 908, if the proxy
could not accept a connection request, the Signal
Handler routine is described with reference to Figure
11(b). As shown at step 922, the SignalHandler routine
first blocks all signals except the current signal.
Then at step 922 a determination is made at step 924 as
to whether the received signal is equal to the SIGBUS
indicating bus error. If the received signal is not
equal to SIGBUS, then a determination is made at step

926 as to whether the received signal 1s equal to the

-63-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

SIGQUIT. 1If the received signal is not equal to
SIGQUIT, then a determination is made at step 928 as to
whether the received signal is equal to the SIGCHLD.

If the received signal is not equal to SIGCHLD, then a
determination is made at step 930 as to whether a
signal is pending.

If, at step 924, it is determined that the
received signal is equal to SIGBUS, then a SIGQUIT
signal indicating that the process should exit, is
generated at step 932, and the process returns to step
930. If, at step 926, it is determined that the
received signal is equal to SIGQUIT, then a SignalExit
process is invoked to exit as indicated at step 934,
and the process returns to step 930. If, at step 928,
it is determined that the received signal is equal to
SIGCHLD, then a CleanupChild process is invoked to
clear and reinitialize the child process procedures and
terminate the child process as indicated at step 936,
and the process returns to step 930. If none of these
signals were generated and no signals are pending, then
at step 935 all signals are restored and the process
returns to step 905, Figure 11l(a).

If it is determined that a signal is pending
at step 930, then the process proceeds to step 944. At
step 944, a determination is made as to whether the
received signal is equal to the SIGBUS indicating bus
error. If the received signal is not equal to SIGBUS,
then a determination is made at step 946 as to whether
the received signal is equal to the SIGQUIT. If the
received signal is not equal to SIGQUIT, then a
determination is made at step 948 as to whether the

received signal is equal to the SIGCHLD. If the

-64-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

received signal is not equal to SIGCHLD, then the
process proceeds to step 935 where all signals are
restored and the process returns to step 905, Figure
11(a).

If, at step 944, it is determined that the
received signal is equal to SIGBUS, then a SIGQUIT

signal indicating that the process should exit 1is

generated at step 952, and the process returns to step
935. If, at step 946, it is determined that the
received signal is equal to SIGQUIT, then a SignalExit

process is invoked to terminate the process as

indicated at step 954, and the process returns to step
935. If, at step 948, it is determined that the
received signal is equal to SIGCHLD, then a
CleanupChild process is invoked to clear and
reinitialize the child process local data and procedure
as indicated at step 956, and the process returns to
step 935. If none of these signals were generated, all
signals are restored at step 935 and the process
returns to step 905, Figure 11l(a).

Referring back to Figure 1ll(a), the client
request is processed by the forked child process as
indicated at step 915. This procedure is described
with reference to Figure 11 (c) where, at step 960, the
proxy header is received from the Dispatcher. If the
header does not conform to the protocol, then at step
964, an error handling routine is invoked, and the
socket connection to the Dispatcher is closed, as
indicated at step 968, and the process terminates by
returning at step 969 to the invoking procedure (Figure
11(a)). If the header conforms to the messaging

protocol as determined at step 962, then a validation

-65-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

step 1s performed at step 965 wherein a connection to
the Web server cookie jar is implemented to determine
the validity of the current session. Next, a
determination is made at step 970 as to whether the
current session is a valid user session. If the
current session is validated, then the process proceeds
to step 975. Otherwise the process proceeds to step
968 to close the socket connection to the Dispatcher.

At step 975, Figure 11l (c), the proxy
application receives the metadata message. At step
976, a determination is made as to whether the process
proxy application failed. If the proxy process failed,
the program handles the error as indicated at step 978.
If there is no error, the proxy application inputs
processed data from the meta data descriptions as
indicated at step 980, and send back the proxy header
to the Dispatcher based on the transaction type, as
indicated at step 983.

A determination is made at step 985 as to
whether an error occurs when sending the proxy header.
If an error occurs, the program handles the error as
indicated at step 987 and closes the socket connection
to the dispatcher server as indicated at step 995.
Otherwise, as indicated at step 990, the proxy data
obtained from the proxy application is sent to the
dispatcher in accordance with the specified transaction
mechanism. A determination is made at step 992 as to
whether an error occurs when sending the proxy data
back to the Dispatcher server. If an error occurs, the
program handles the error as indicated at step 978 and
closes the socket connection to the dispatcher as

indicated at step 995. If the transmission is

-66-

SUBSTITUTE SHEET (RULE 26)

10

15

20

25

30

WO 99/15996 PCT/US98/20150

successful, the socket connection to the Dispatcher
server closes, as indicated at step 995 and the process
returns to step 905, Figure 1ll(a), to await the next
proxy connection request.

Qutgoing (server-to-client) communications
follow the reverse route, i.e., the proxies feed
responses to the decode/dispatch server, which encrypts
the client-bound messages and communicates them to the
DMZ Web servers over the socket connection. The Web
servers forward the information to the client using
SSL. The logical message format returned to the client

from the middle tier service is shown as follows:

|| TCP/IP || encryption || http || web response ||

dispatcher response || proxy-specific response ||

where A||@ separates a logical protocol level, and

protocols nested from left to right.

While the invention has been particularly
shown and described with respect to preferred
embodiments thereof, it will be understood by those
skilled in the art that the foregoing and other changes
in form and details may be made therein without

departing from the spirit and scope of the invention.

-67-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996

| Ad request

~ Parameter Name

Appendix A

Char (1)

Param Type Required AcceptableValue

A= add

PCT/US98/20150

SUBSTITUTE SHEET (RULE 26)

Yes
CATEGORY | Item category is Char (1) Yes A= Alarm, R =
= an alarm, report, Report, D = Data, F
data, or flash = Flash
TTL= “time to live” in Char (3) No Default is 45 days
days — before
automatically
purged from dbf
TYPE= Designates Char (30) Yes e.g. Broadband,
alarm type, priced, unpriced,
report type, data exception, invoice,
type, or flash MIR, CCID, priced
type call detail, outage
ENTPID= Enterprise ID Char (8) Yes As assigned in
StarOE
USERID= Designates Char (20) Yes Starbucks username
intended as assigned in Sys
recipient or Admin
audience
RPTID= User report ID Char (30) Reports User report ID (i.e.,
and data | 245)
only
PRIORITY= Standardized Char (1) ONLY 1 = fatal, 2 = major, 3
Network alarm or = minor, 4 = info
Management flash (default), 5 = no alert
Priority Levels
COMPRESS | Designates Char (1) Yes 0 = data not
= whether the data compressed,
has been 1 = data compressed
compressed
UNOTIFY= Says if user Char (1) No 0 = None (default), 1
should be paged = Page, 2 = Email, 3
or emailed when = Email and page
the Inbox item is
received by the
Inbox server
MMADDR Override email Char(75) No Must contain @ e.g.
address userA@mci.com
MMTEXT Override email Char(500) No
message text
PGT Override pager Char(1) No As supported by
type Star_ OE
PGPIN Override pager Char(8) No Numerics oniy
PIN
-68-

WO 99/15996 PCT/US98/20150

 Message ParameterName Param quired Acceptable Value

240 IhanumeriC pagers

PGTXT | Overide pge r(

)
text or or
Char(20) Numeric pagers
SEV= Servity of Char (1) No 1,2,0r3
notification
message
RPTCATEG Report category | Char (50) ONLY e.g. — Longest Calls
ORY= (report name) report
LOC= Location Char (255) | Yes File Path, name and
extension
RQSTDT= Report or data Char (12) ONLY YYYY-MM-DD
request reportor | HH:MM
date/time stamp data
FSIZE= Size of Char (10) Yes Limit is 2147483647
associated file in
bytes
RPTTITLE= Alarm short test, | Char (255) Yes
user-defined
report title, data
request name, or
flash short text
MSIZE= Size of Char (10) ONLY Limit is 2147483647
associated report or
metadata for data
transfer
ERRFLAG= Fulfilling server Char (1) No 0 = no error (default),
reported an error 1= error

Example:A<CATEGORY=R, TYPE=Unpriced, USERID=1234, RPTID=245,
COMPRESS=1, RPTCATEGORY=Longest Calls, LOC=/inbox/files/tvs/38293738.txt,
RQSTDT=199707211200, FSIZE=2048, RPTTITLE=My Longest Calls Report,
MSIZE=1024>

Table 3 Add Acknowled

- 'Parameter Name = Pa pe Required Acceptable Value:

Z Reponse ‘ Z
REQ= Request which is | Char (1) Yes A DL FU

being

acknowledged
ERROR= Error Code Char Yes 0 = no error or error

code

INBOXID= Inbox 1D Char(10) No Unigquely assigned id

Example:Z<REQ=A, ERROR=0, INBOXID=528>

-69-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996

Table 4 Notifv Report Location

PCT/US98/20150

- Message Parametes Name: “.-Acceptable Value. .

NRL Request Char (3

CATEGORY | Alarm, report, Char (1) Yes for A=Alarm,R=

= data, or flash StarOE. Report, D = Data, F

Report = Flash
Manager

will

determine

for

fulfiliing

servers.

TYPE= Designates Char (30) Yes e.g. Broadband,
alarm type, priced, reai-time,
report type, data exception, invoice,
type, or flash MIR, CCID, priced
type call detail, outage

ENTPID= Enterprise {D Char (8) Yes Enterprise ID

USERID= User's ID Char (20) Yes UserlD

STDRPTID= | Standard Report | Char (10) Yes Standard Report ID
iD (i.e., 2, 44).

USERRPTID | User Report ID Char (10) Yes when | User Report ID (i.e.,

= fulfilling 245). Limiton

serveris | unique user report
using the | Ids is 2147483647
StarWRS

Report

Requeste

r

REQUESTID | Unigue Request | Char (10) Yes when | Unique request ID

= D fulfilling sent to fulfilling

serveris | serverin ARD. Limit
using the | onrequestIDis
StarWRS | 2147483647.

Report

Requeste

r

PRIORITY= Standardized Char (1) ONLY 1 = fatal, 2 = major, 3
Network alarm or = minor, 4 =
Management flash info(defauit), 5 = no
Priority Levels alert

COMPRESS | Designates Char (1) Yes 0 = data not

= whether the data compressed, 1 =
has been data compressed
compressed

LOC= Location Char (255) | Yes File Path, name and

extension

SUBSTITUTE SHEET (RULE 26)

_70-

WO 99/15996 PCT/US98/20150

Message: g ParametezﬁgNa ram: Type Requir cceptable Value

FSIZE= | Sizeof Char (10) | Yes | Limitis 2147483647

associated file in
bytes
REPORTTIT | Report Title Char (100) Yes when | Report title to be
LE= fulfilling displayed in Inbox.
server is
not using
the
StarWRS
Report
Reqgueste
r
PRESORTE Indicates Char (1) Yes 0 = not presorted, 1
D= whether or not = is presorted.
the fulfilling
server sorted the
data on their
side.
ERR= Used to when Char (1) No ERR=1
there is no report
file, but there is
an informational
file.
TOTAL= Fulfilling server Char No Sent by fulfilling
totals server to indicate
report totals.
Column iD and total
are passed.

Table 5 Notify Report Location Acknowledgement

NRLA Response Char (4) ‘

ERROR= Error Code Char (4) Yes 0 or error
USERID= User ID Char (20) Yes User ID
USERRPTID | User Report ID Char (10) Yes User Report ID (i.e.,

= 245). Limit on unique
user report Ids is
2147483647

“71-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

REQUESTID | Unigue Request | Char (10) Yes when | Unique request [D

= ID fulfilling sent to fulfilling
serveris | serverin ARD. Limit
using the | onrequestIDis
StarWRS | 2147483647.

Report
Requeste
r

Table 6 Delete Item

D Request Char (1) Yes D = Delete
-INBOXID= Unigue Inbox ID | Char(10) Yes ID assigned by Inbox
to uniquely identify
the item to be
deleted

Example: D<INBOXID=255>

Table 7 Delete Acknowledgment
Message - ‘ParameterName = ParamType -

Required 'Acceptable Value

Z Response Char (1) Yes Z
REQ= Reqguest which is | Char (1) Yes D
being
acknowledged
ERROR= Error Code Char(4) Yes 0 = no error, else
error code

Example: Z<REQ=D,ERROR=0>

Table 8 Delete All Items

D Request Char (1) Yes D = Delete
USERID= User ID Char (20) Yes User ID
ENTPID= Enterprise ID Char (8) Yes Enterprise 1D

Example: D<USERID=1234, ENTPID=7383>

272

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

Table 9 Delete Acknowledgment
- ParameterName ParamType Re

Z Response Char (1)

REQ= Request which is | Char (1) Yes D
being
acknowledged
ERROR= Error Code Char(4) Yes 0 = no error, else
error code

Example: Z<REQ=D,ERROR=0>

Table 10 List

L | Reqest “ ‘ har (1) ‘ L = List

ENTPID= Enterprise ID Char (8) Yes Enterprise 1D
USERID= User ID owning Char (20) Yes As assigned by Sys
item Admin
CATEGORY | Inbox item Char (1) Yes A=Alarm,R =
= category to Report, D —Data, F
return = Flash
INBOXID= Latest inbox ID Char (25) No Inbox Id to return
in inbox entries later than

Example: L<ENTPID=3839, USERID=1234, CATEGORY=R, INBOXID=255>

Table 11 List Acknowledgment

Z | Response ‘ Char (1) |

REQ= Request which is | Char (1) Yes L
being
acknowledged

ERROR= Error Code Char(4) Yes 0 —no error, else

error code

INBOXID Latest Inbox ID Char (25) No Supplied Inbox ID on
requested request

<data>

Example: Z<REQ=L,ERROR=0,INBOXID=35, <Ackl,DataLocationl.DateReceivedl,
DateRequested!, Compressed1, RptID1, InboxID1, Metafilesizel, Priority I, ReportNamel,
ReportTitlel, Sizel, Ttl1, Type!> <Ack2,DataLocation2, DateReceived2. DateRequested2,

-73-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

Compressed2, RptID2, InboxID2, Metafilesize2, Priority2, ReportName2, ReportTitle2, Size2,
Ttl2, type2>>

Table 12 Fetch

F Request F = Fetch
INBOXID= ID assigned by Char Yes
Inbox to uniquely
identify the item
to be located

METADATA= | Flag indicating Char (1) Yes 0 = File
request for file 1 = Metadata File
size or metadata
file size

Example: F=INBOXID=39273,METADATA=0>

Table 13 Update

U Operation flag ' U = Update

update request
ENTPID= Enterprise 1D Char (8) Yes Enterprise ID
USERID= User ID owning Char (20) Yes As assigned by Sys
item Admin
INBOXID= inbox unique ID Char () Yes ID assigned by Inbox
to uniquely identify
the item to be
located
TTL= Time to Live Char (3) No “Time to live” in days
— before
automatically purged
from dbf. Default is
45 days.
ACK= Acknowledge Char (1) No 0 = not
item acknowledged
1 = acknowledge
item (default)

Either UserlD, Ttl, and Category OR or InboxID and Ack must be in the parameter list.
Ttl Example: U<ENTPID=3938, USERID=1234,TTL=63,CATEGORY=R>
Ack Example: U<INBOXID=123493,ACK=1>

-74-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

Table 14 Update Acknowledgment

Cr (‘ es N Z

Z Request
REQ= Request which is | Char (1) Yes U
being
acknowledged
ERROR= Error Code Long Yes 0 —no error, else
error code

Table 15 -- Inbox Stored Procedure Codes

Error Error Description

Code

0 OK — request processed successful, response includes any data requested

5000 Stored procedure “db_in_del” (status code). Inbox ID does not exist.

5010 Stored procedure “db_in_updttl” (error code). Exception in stored procedure.

5011 Stored procedure “db_in_updtt!” (status code). No instances of requested Category

obsolete | and User ID exists.

5020 Stored procedure “db_in_additem”. Failure in insert

5030 Stored procedure “db_in_updack” (status code). Inbox ID does not exist in the
Inbox table.

5031 Stored procedure “db_in_updack”. Exception in stored procedure.

5032 Stored procedure “db_in_getttl”. Exception in stored procedure.

5040 Stored procedure “db_in_list”. Exception in stored procedure.

5050 Stored procedure “db_in_autopurge”. Failure deleting from Inbox.

5060 Stored procedure “db_in_fetch”. Exception in stored procedure.

5070 Stored procedure “db_in_count” . Exception in stored procedure while selecting.

5080 Stored procedure “db_in_del”. Exception in stored procedure.

5090 Stored procedure “db_in_addretry”. Exception in stored procedure.

5120 Stored procedure “db_in_deluser”. Exception in stored procedure.

5125 Stored procedure “db_in_deluser”. Inbox row does not exist.

5130 Stored procedure “db_in_talqueue”. Exception in stored procedure.

5133 Stored procedure “db_in_taldone”. Exception in stored procedure.

5134 Stored procedure “db_in_tallost”. Exception in stored procedure.

5135 Stored procedure “db_in_taldone”. No such Intalq table.

5136 Stored procedure “db_in_tallost”. No entry in Process processing state and older
than the given date.

5500 Stored procedure “db_in_addmail”. Exception in stored procedure.

5505 Stored procedure “db_in_addpage”. Failure in insert.

5531 Stored procedure “db_in_talnext”. Exception in stored procedure.

5532 Stored procedure “db_in_talnext”. No entry in ready processing state.

Table 16 -- Inbox Proxy Codes

Error Error Description

Code

0 OK — request processed successful, response includes any data requested
5005 item had already been added to the inbox and will not be added again.
5100 No records found (status code).

-75-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 PCT/US98/20150

5101 Failure in parser building parameter list, unknown or invalid token may have been
encountered.

5102 Required parameter missing

5103 Request is invalid or unknown.

5104 During Fetch request, the file specified in the Inbox database could not be opened

5105 Could not make an SQL connection to the Inbox database

5106 Error occurred trying to execute the stored procedure

5107 Error occurred during an SQL open cursor call

5108 Error occurred trying to construct the filename for a Fetch metadata request

5111 Parameter (Inboxid or Userid) missing on update command.

5112 TTL missing or invalid on Update

5113 Category missing on Update.

5121 InboxID parameter missing in Fetch.

5125 no records found for deletion by stored procedure

5131 UserID parameter missing in List.

5132 Category missing in List.

5141 UserlD parameter missing in Delete.

5151 Category parameter invalid in Add.

5152 Type parameter invalid in Add.

5153 EntpID+UserID parameter missing or invalid in Add.

5154 RptID parameter missing in Add.

5155 Compress parameter missing in Add.

5156 Sev parameter missing when Unotify specified in Add.

5157 RptCategory (report name) parameter missing in Add.

5158 Loc parameter missing in Add.

5159 Requested date parameter missing in Add.

5160 Fsize parameter missing in Add.

5161 RptTitle parameter missing in Add.

5162 Msize parameter missing in Add for Report or Data.

5163 File as specified in Loc parameter does not exist.

5164 EntplID parameter missing when Unotify specified.

5165 COMP and LOC parameters conflict, e.g. compress indicated but extension does
not end with _zip.

5166 metadata file does not exist.

5170 User notification error — used in conjunction with 5171, 5172, 5174

5171 No user or enterprise ID in user notification

5172 Notification level is null

5174 Unknown notification level

5178 Invalid constructor call in user notification

5179 Invalid email address (no @ symbol) in user notification

5180 No address or text exists in user notification for email

5182 Page could not be sent — required fields missing in user notification

5183 Comm failure in trying to obtain default email/paging info

5184 StarOE returned an error when trying to obtain default email/paging info

5185 Error when attempting to fork a child process in email/paging

-76-

SUBSTITUTE SHEET (RULE 26)

00 I N W»n b LN =

[T NG T NG T NG TR NG T NG S NG TN NG TR NG T NG S NS B i e e e e
S O 0 0N R W N = O V0N RN~ O O

WO 99/15996 PCT/US98/20150

CLAIMS
What is claimed is:

1. A centralized inbox system for providing on-
line reporting, presentation, and notifications to a
client workstation from one or more Intranet
application services over an Internet/Intranet network,
the system comprising:

a client browser application located at the
client workstation for enabling interactive web-based
communications with the inbox system and providing an
integrated interface to the one or more Intranet
application services, the client workstation identified
with a customer, the client browser application further
including an inbox client, the inbox client launched by
the client browser application;

.at least one secure server for managing
client sessions over the Internet/Intranet network, the
secure server supporting one or more first secure
socket connections enabling encrypted communication
between the client browser application and the secure
server;

one or more application servers associated
with the one or more Intranet application services, the
application servers generating customer specific data
for forwarding;

an inbox server for storing and maintaining
the customer specific data, the data including report
data and notification data received from the one or
more Intranet application servers, the inbox server
also storing a metadata description of the report data,
the metadata representing report standards and options

for customizing the report standards, wherein the

77

SUBSTITUTE SHEET (RULE 26)

—

—_
_— O O X NN R W N

—

O 1 N W»n R W N =

10
11
12
13

AN AW =

WO 99/15996 PCT/US98/20150

report data and the metadata associated with the report
data may be downlcaded to the client browser
application via the secure server for generation of
reports according to the metatdata description, and
presentation of the reports to the customer at the
client workstation; and

the inbox server further storing a
notification alert received from the one or more
application servers for enabling the inbox client to
retrieve and present the notification alert to the

customer at the client workstation.

2. The system as claimed in claim 1, wherein the
inbox client further includes a polling thread, the
polling thread using one of the secure socket
connections for detecting an incoming message from the
inbox server via the secure server, the polling thread
further starting a new thread upon detection of the
incoming message, wherein the new thread starts and
listens on a second one of the secure socket
connections for detecting new messages, while the
polling thread receives the incoming message on the
first one of the secure socket connection,

whereby multiple messages may be downloaded

simultaneously as detected.

3. The system as claimed in claim 2, wherein the
inbox client further communicates to the client browser
application to launch a client application service
associated with the notification alert when the
customer selects the notification alert presented at

the client workstation.

-78-

SUBSTITUTE SHEET (RULE 26)

N N R W N W N ~ N Bk W N e b kW N~

BOW N =

WO 99/15996 PCT/US98/20150

4. The system as claimed in claim 2, wherein the
inbox client further comprises a control device for
upgrading and downloading of client applications, the
client applications including the client browser

application.

5. The system as claimed in claim 2, wherein the
inbox server further comprises a pre-defined directory
associated with each of the one or more Intranet
application services, wherein each of the one or more
application servers stores the report data and the
notification data to its respective pre-defined

directory in the inbox server.

6. The system as claimed in claim 2, wherein the
inbox server utilizes a database storage and retrieval
system for storing and retrieving the customer specific

data.

7. The system as claimed in claim 2, wherein the
system further includes an order entry server and,
wherein the notification alert includes a news message
from the order entry server upon addition of a new
customer to the system, and the notification data
includes a welcome message and a new subscription

package for the new customer.
8. The system as claimed in claim 2, wherein the
notification alert comprises an indication for error

condition, and the notification data comprises an error

message associated with the error condition.

-79-

SUBSTITUTE SHEET (RULE 26)

wn W N = ~N Y U AW N O 00 3 Y U AW N

[, T SO U'S S N I

—

WO 99/15996 PCT/US98/20150

9. The system as claimed in claim 2, wherein the
customer specific data includes a time-to-live tag for
representing the duration of time the customer specific
data remains stored in the inbox server, the inbox
server further comprising a device for detecting and
deleting the customer specific data whose time-to-live
tag has expired, wherein said device for detecting and
deleting removes from the inbox server the customer

specific data whose time-to-live has expired.

10. The system as claimed in claim 2, wherein the
inbox server further comprises:
a device for marking the customer specific
data for deletion;
a device for deleting the customer specific
data, wherein the device for deleting runs periodically

and deletes marked records for deletion.

11. The system as claimed in claim 2, wherein the
inbox server further comprises a device for generating
a paging message to the customer when the notification
data associated with the notification alert is

received.

12. The system as claimed in claim 2, wherein the
inbox server further comprises a device for generating
an e-mail message to the customer when the notification
data associated with the notification alert is

received.

13. The system as claimed in claim 2, wherein the

inbox server further comprises a device for logging

-80-

SUBSTITUTE SHEET (RULE 26)

W A W N e

N N W AW N

WO 99/15996 PCT/US98/20150

information related to the data received by the inbox

server.

14. The system as claimed in claim 13, wherein
the device for logging logs error codes occurring

during processing of the inbox server.

15. The system as claimed in claim 14, wherein
the device for logging records date and time of

occurrence of an error.

16. The system as claimed in claim 2, wherein the
inbox client further comprises a graphical user
interface common to the integrated interface, and the
inbox client presents a list of available reports to

the customer via the graphical user interface.

17. The system as claimed in claim 16, wherein
the graphical user interface presents to the customer
a choice of options for fetching, and deleting the
customer specific data stored in the inbox server,
wherein when the customer selects an option, the inbox
client formulates and sends a request message to the

inbox server via the secure server.
18. The system as claimed in claim 16, wherein
the inbox client is implemented as an applet launched

from a Web browser window.

19. The system as claimed in claim 16, wherein

the inbox client is implemented independently from a

-81-

SUBSTITUTE SHEET (RULE 26)

p—

00 3 N L B~ W N~

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

WO 99/15996 PCT/US98/20150

Web browser window, and wherein the inbox client runs

in a frame outside of the Web browser window.

20. A method of providing on-line reporting,
presentation, and notifications to a client workstation
from one or more Intranet application services over an
Internet/Intranet network, the method comprising:

enabling interactive Web-based communications
between the client workstation having a client browser
application, the client workstation identified with a
customer, and a secure server over one Or more secure
socket connections, the secure socket connection
enabling encrypted communication between the client
browser application and the secure server;

receiving at a centralized inbox server,
customer specific data, including report data having a
metadata description for representing report standards
and options for customizing the report standards, and
notification data from the one or more Intranet
application services;

storing and maintaining the report data and
notification data at the centralized inbox server,
wherein the report data may be downloaded to the client
browser application via the secure server for
generation of reports according to the metatdata
description, and presentation of the reports to the
customer at the client workstation;

generating notification alerts from the
notification data as received from the one or more
Intranet application services; and

presenting the notification alert to the

customer at the client workstation.

-82-

SUBSTITUTE SHEET (RULE 26)

O 00 3 O W K W N —

[e T
N R W N = O

(o I S

[BN B Y I RV S

WO 99/15996 PCT/US98/20150

21. The method according to claim 20, wherein the
method further comprises:

(a) listening for an incoming message on a
first of the one or more secure socket connections, and
when the incoming message is detected,

(i) starting a new thread and a second
of the one or more secure socket connections;

(ii) 1listening by the new thread for a
new message on the second of the one or more secure
socket connections; and

(iii) receiving the incoming message on
the first of the one or more secure socket connections,

wherein multiple messages are downloaded
simultaneously in near real-time for presentation to

the customer.

22. The method according to claim 20,
wherein the method further comprises:

invoking the client application service
associated with the notification alert when the
customer selects the notification alert presented at

the client workstation.

23. The method according to claim 20,
wherein the method further comprises:

prioritizing the notification alerts
according to a severity of the notification data before
the step of presenting at the client workstation,
wherein the notification alerts are presented to the

customer in order of priority.

-83-

SUBSTITUTE SHEET (RULE 26)

WO 99/15996

10

/16

PCT/US98/20150

Front-End
Business Logic

Front-End

Business Logic

Front-End
Business Logic

Backplane Services, Presentation Services...

Front-End Services Framework

16

Session Services, Communication Services

Back-End Services Framework

Request Handlers

Back-End Business Logic

18

Adapter
Framework

Adapter
Framework

Adapter
Framework

Back-End System
Resource

Back-End System
Resource

Back-End System
Resource

FIG. 1

SUBSTITUTE SHEET (RULE 26)

o

Tier 1

Tier 2

Tier 3

16

/

PCT/US98/20150

WO 99/15996

swolsAg
awesurep
ION

1SOH
anljoadsiad

SIENVETS
abuel-pip

IO

199 SAOEIS

(p)ot /!

ee—L ||

19MBG MBIADNJEI |

@ov\

IS/INSD

Anbuj so1nBS -

Aiyuz 1epIQ -

pueqgpeoiq -

labeue YIOMIaN 8814 [|0] -
lojjuopyy awi] jeay -

xoquy -

abed owoH -

:suoneolddy
pajgeus 1asmolg

(elot

I
I
1
i
|
|
I
I
I
I
I
|
|
_ i 1aA18S gsM
4 — ! Wiy
1aAI8g puegpeolg ! =
/| _ m_u
s€ = I Y.L
JonIBS N1 r
I \QN |
48— — " SEINEISYCETYY
JEYNE:
hmzx_m.wi.m_@ﬂw mem | B|._ 1eouejeg peo]
6€71 = anoon " \ = gomelpAH
Janag lebeueiy 1dy X sianIag =
\I|||.| S semeg [/1172 qem mm
ce — /c Smeaw_D €21 /
18A19g Xoquyj i == /o,N
bl ! =
1g”] _.| 9z’ !
Anbuj 8oineg ./
/ : |- “ (q)sz (8)sz
I
JouenU| DN ! ZING
I

)

lasmolg

H3IWOLSNO

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 3./ 16 PCT/US98/20150
. Java Applet !
""" % 12

A /

COBackPlane 14

,58(a) :58(b) ,58(c) v
Web Browser
COApp X
Launching from
Backplane

COApp
(e.g. Service Inquiry)

54(a) 54(b)

COApp
(Event Monitor)

has
has
COAppFrame
((COAppFrame Application Using
Common Object 56(b)
Services
Graphical User @
Interface \ @
Object
56(a
S J @ COAppFrame
has a Number
of COViews
FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 99/15996 4/ 16 PCT/US98/20150

250
[networkMCI Interact Home [l 9
File Edit View Go Favorites Help
e =2 ® 0O & Q@ O
| Back Forward Stop Refresh Home Search Favorites
'l Address |D https://cosdev01.mcit.com:1 OQ_BLO/home.html
.
{networkMCl interact networkMCI
p _252a
Mc| Message Center
,R252brt . t L 256b
RR 2esp20 equestor What's
_252¢
™| Traffic Monitor New
_252d
AM| Broadband Services Features
2521 2526 2562~ Benefits
NM| Network Manager
252f
cM| Call Manager 2560
. 252i
Ol| Online Invoice
__252g networkMCI Interact
uo| User Options Support

I
FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

16

/

WO 99/15996

S 'Old _

|
g9 |

labeuepy €D | aoMm “ .
_

)\/| — gy =

pueqgpeolg . =
MaIA JUBIID = 3 z/ “
\= o S19AI9S qap
()oz /|18 | 52 L
35D “ \ _
(d)oz /|l I./\/ e _ _
dVOL3N JONIBS MBIA dijjed | Jeyoredsi(y ' . oo lasmoig
BSN_T l./\/wm:m:c_ | | l/\/ﬁwcm.:c_ A __.. _ [reuenuly g 3 aljand /\/nm
1s0H anyadsiag | OV N NS T | PN | (B bl
(p)oz 4L I/\/ €500 1Bl
Sdo {Els | | N6t
SLIERA 1 _
] =I/\/ £€ J0)uop\ WBA] | _
I _
NSO /\/al_wvl‘l_ml/\/. _ _
INbNj 80II8S
(2)oz/1l® _/B»mm @mw_ ol
M= | 99
SINOD 9¢/ 30m18 _ _
- . — —
3HOO ot _ _
H |/\(. | _
}soH Aoeba abuelpipy “ “
0g _ Zl [oc

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

16

/

WO 99/15996

cle

vce

80¢

yiE
\

JEVNETS
labeuepy
uoday

21ed_)

cct

9c€e

J9ayspealds

181sanbay

poday

oLe

%

\I/

JETVETTN
poday

c0€ \

ale

Sao -

(SAL) 18n18S MBINDYJEI | -

m;m\

lanag xoqu | g

c0€

“ ele —

)

JEVNETS
Buguing [

8ze
\

eled

00¢

qroe /

/me,

oee /

9 "'Old

JEVNEIS
Buiing

eroe /

SUBSTITUTE SHEET (RULE 26)

labeueiy MlomieN 89l jlo] -

adoogladAH -

PCT/US98/20150

16

/

WO 99/15996

poday Jayjouy s}08]9g 1asn)

. aLy
L m_u_ 1474% 47474 _|r_ /mvv m;v/ /Q siswlojsn
0Sh ON \ \ opy | 1980 abessapy | | mwﬂmﬂﬁww;oo «mﬁ_aaw‘
\ pajeal) sjuid poday |/ ylm pajuasald Buiodays paoudu
s950|0 J9sN a4 yodey seag Jasn 1100 poouain
mun uado viv A
suleway Jamaip soA éolid o&ﬂ éi8juld oh* * 9k / 1onpoid s}o9es ‘ebed
g MOIN / BWOH Ylm pajuasald
mmv\ o\ A
suadQ J18MaIA JO [vEY 1si] winjay J9indwon sivwoisn)
@T souejsul —— (g Jo Aeydsig / suoyjeolddy ommmnwo%ghwo
0109 M3NV 'y sop yiny bey I18|day s)onqiels
mwv\ 9s[) uoIssag / Q:v/ mcozm”__aa,q
09% 10} A|je007] paneg si 9|4 peZUOUINY 10 1517
\ A ocr uwpysAs sjsenbay sue|dyoeg
18)uan) abessap sAejdsiq Jonuop \ /301ElS
woiH ssa1boid ‘anu([e907] 0) mov/ mm>%
pajelaQ Hoday 1414 passaidwoauf si ajl4 i () UoBo
\ oN A (0] 1
A 1o1uld A gzr A
Jeindwon (Juayn) |ED0T UO Sjuld sl 0] juss 9| \ VS yum Ajunoeg
[£907] UO J8)ua)) abessapy passaidwo) syo8y) aueldyoeg
pajajaq Hoday ur spoday 40 isi A /
7 1850 0} USS Taiid 207 3
85v * lamalp poday piomssed lajua-ay %m__mﬁ_um_oﬁomwm.n__
mmv/ va/ A aseald ‘10113 uoboT > pue aweu sadA |
vey /
a1eleQ g ‘wadg Y vov A
* » * / lasmolg oy} 14N sedA |
I ccvy 2or
\‘ @ Hoday 109|898
oob A Vi
4 qel
Hoday 10819S [eaau}ay poday

ases|ay /6 1oquiada(

191ua) abessapy woi4 Buinauiey

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

16

/

WO 99/15996

8 'Old

_. llllll =1
laneg userd I 19MBIN “
xoquj wewnying o/ _ xoqui _

bay _
z0e/ 4 / | oog “
(xiuuouy) " _
aseqeleq _ I
30 c8r _
4 I
_ |
| __s1esn pajiying laneg) “ “
10} sayse| 30 _
~—— Aunoeg _ 08t _
7 310 ‘suoneoyddy | _
‘slos
06% n | w0 _
o] 30 |
19sn _ _
987\ | sweno ener I
a1 | esnoH _ Amwv
"B 'S'N uswiiing

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

16

/

WO 99/15996

00S \

6 "Old
911G LG
adA |
\ uonoesues || °PO0D /

mmm/ cmm/ mwm/ mhm/ NB/ Sm/
1)l | %mww eleq 1opesH | 1apesn hwmwn__; _muNmI
uondAioug LN oloadg-Axold |18yoledsiq | gapmiels JdLLH uondAiou3

143 /
laneg layjuapy 18AIRG
/ MMM Axoid MMM
pz/| AapsjpueH ozc/] bl AapapueH |\,

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

16

10 /

WO 99/15996

(e)otr oI

198O
eleqg noawi| | 9zig xog .
ooadg-Axold | parenoban | ying xewy co:mﬂx%mm lajsuel|
Ang
a|pueH Youhsy
1
pajelauany-Axoid liod
UouAsy
1senbay
oyj1oadg-Axoid < 1senbay
ouAsy/oulAg
G/9 cl9
\ \
J_qunN [eusgt 444 L foy Bel4 yjbus | uoisiap
SNElS -_Wﬂﬁmwmmw%o abessapy | uoisseg |buig/oyog|ebessapy| joooloid
omm\ mmm\ om.w\ Axoi1d o} 1eyojedsiq oum\ mmm\
aoBHalU|
Axoid/18yadredsiq

sabessapy

lopesaH
[000104d
uowwoyn

/

099

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

/16

11

WO 99/15996

(a)or oI14

ojuj lou3 sig)aweled <
olyoadg-Axoid 1ou3
lapeaH
eleq jn ele ——————
leg ind v__:m__ hmw_m_ﬁxm;
8|pueH
uoISSag YouAsy |
pajeseusn)-Axoid Alday
mwugng
JUAsy
asuodsay
oyoads-Axoid [Adey
youAs
/9 \ cl9 \
sme hmnvrw_um_w__m_mﬂmm adA} Aoy bel4 yibua | uoisiap
U2 S Jepedelq | 2BESSeW | uoisses Buig/oyog |ebessapy| j0001014
cm.o\ mwm\ omm\ Jayojedsig o0} Axold Em\ mmm\

asuodsay
olioadg
xoid

019

lopeaH
|020101d
uowwon

) 099

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

16

/

12

WO 99/15996

$§8201d Py u|
Jual|) $s820.1d

msm\

(e)11 oI

mhm\

100G
UONESIBAUOY) 8S0|D

0c6 /

Axoid 10} 01607 weiboid

(1usled)
§S8001d

ls|pueH
10113 oAU

A

Axo1d 4|

paleai) sepm
$S9001d

PIYSD dI
clé

th\

ON

$S800NG Y0 4}

SOA

$58201d PIIYD 04

lajpueH|eubis
) OAU|

uooBUUo)D
paydaosoy
Axoid 4|

806

Axold 01
uoljo8UU0Y) 10} HEM N\

lsjpuey eubig

<

f
C was)

\ 606

s06

Axo01d 19S N\ 06
wwv_oom 19u8)sI
X01d 9zieniu

dazienul N\ 206

SUBSTITUTE SHEET (RULE 26)

PCT/US98/20150

16

/

13

WO 99/15996

ﬁ unay u

<4— uxgjeubig ssad0id

plIilyodnues|d
$Sa20.1d

956 /

rG6 /

[eubis

1INDYIS atelsusyH
cS6 /

Axo.14 10} 01607 welibolid

(@)L1 OI4 A
sjeubis
ceg/] IV 10Eg 2101s9Y
>
feubs
Buipuad 4|
°N 086
SoA

QIHD9IS
= |eubig 4|

8ré

1INDDIS
= [eubis 4|

9r6

sNgoIs
= |eubig 4|

1447)

pliyodnues|p
$S800.1d

mm,m\

4—— }x3eubig ssadold

ve6 /

feubis
1INDDIS sjersusn

Nm,m\

8cb

9c6

aHOoIS
= [eubis 4

1INODIS
= |eubig 4|

sngois
= [eubig 4|

rcé6

ccb /

leubig
uaung 1daox3y
sjeubis ||y %oolg

SUBSTITUTE SHEET (RULE 26)

16

14 /

PCT/US98/20150

WO 99/15996

0L A ubjsaq jana] mo uuojyeld

—

G @9
N

18yoeds|qg
of :o.:om::oo 183208 8s0|)

A/KE/V vz

\B_E

1eojedsyq o
Smo >xoi wa_u el

\
/\

@%

Nwoav S04 -

(9)11 8nbiy

00d

18yajeds)q o) ddy Axoig
woi4 umc_w_no m_mc Axo01f

WEA

e

~ Qmu 18pesy
@5%& pussg 4|
v

b g

m/,
a8

ad{] uonaesuery
uo peseq sayojeds)q

¢ %W 7 0} 18pea|q Axo1 yoeq pusg

I

eleQ-elayy woi4 ejeq
passaaoiy induj ddy Axoig

I!\E,
0o8b h

\

.tsi $580014-)}

Eo
o™

eje(q ejay anadsy ddy Axoig

sbo

2

leuapyuod |JIN

E:_mz ,)

b9s
@,- | im_ R

xoW _o._u_mam_n oy :o__om::oo
\ 184005 8s0j)

,..ui,.l--
85 [- @

1013 ajpuey —

@

uojssag _w? oN »

oLb

— 18|pUBHI0 1] BY0AU]

e —
oz

\/

_L

\ . 19pesH /
P00y i
>

29 7

b

_ 1ayajeds|q wio1-

uo|SS8g pleA

||n0 e
.ou _um::oo .m_w_xooo A

m@c

bmunmz Axoig m>_8wm

@

SUBSTITUTE SHEET (RULE 26)

16

/

15

PCT/US98/20150

WO 99/15996

0021 ——yp-

¢l "Old

0588 0588 0588 [008LL$10588 |0S88 10588 |82 Oculis
05°/8 05'/8 05°/8 |00°ZL1$]0S/8 |0S5°48 |0S/8 |/¢ 6Lus
05°98 05°98 0598 |00°9L1$]0S'98 |0S598 10598 |92 8lLuls
0G°G8 05°G8 05'G8 [00°'GL1$|0S'G8 |0S'G8B |0S'SB | G2 Ziwis
05'¥8 0Sv8 0S¥8 100vLI$|0S¥8 (0S¥ |0SV8 [Pe gLuis
05°€8 05°€8 0S'€8 |00°ELI$|O0SEB |0SE8 |0G'€8 |€2 gLuis
05°¢8 0528 05¢8 |100CL1$|0Se8 |0S¢8 [09¢8 |22 plLuis
0518 0518 0518 [00°'LLI$|OSI8 |0S'I8 [0S°18 |12 gLus
05°08 0508 0508 [000LL$|0S'08 |0G08 |0S08 |0¢C gLl
05'6L 05964 056 |00'601$]09°64L (0564 [0S56L |61 Liwis
06'8L 0582 05’82 [00'801L$|05'82 |0S'8L |0S'8L |8l oLuis
052/ 052 0S'// [00°/01$|0G°2ZL |0S°LL |0S/ZL | L1 6wIS
0592 0592 0592 [00'901$|05°94 |0S°9L |0S°9L |91 suls
(74 056/ 05'GZ |00°S0l$Jos'sL |0S'GL |09°GL |St Lullg
0S¥, 0Sv. 0S'v/. |00v0L$|0SvL |0S VL |0SVL (vl guis
05'€L 05°€L 0S5€/. |100'€01$|0S €L |0SE€L [0SEL [€L Suis
05'¢/ 05¢L 0S¢/ l00°c0l$|oSeL |0G¢eL |0S¢eL |2l PulsS
0S9'LL 051 0S'L/Z [00°1OI$j0S'LL (0S°LL 0G'LZ LI guwls
0504 0504 0502 Joo'oot$jos02 [06502 |0S0L |OI culis
0099 00v9 00'€9 |00'8S$ |00'19 |009E |00'C9 |/S Vil
lleDAwy BAy | leD/uiy BAY | 1wy | Junowy | uine | seinuin | siieD% | siied | uonduoseq soueysig/ebuey

[dieH | [e01nt8s 15| _

81810si(g 8besn INQ abuey 18UA - Jamalp LeyD/s|qel

disF maiA o)ig |

SUBSTITUTE SHEET (RULE 26)

16

16 /

PCT/US98/20150

WO 99/15996

€L "Old

xaL vicy 06 o9i¢ frewwng sjelg Arewwing ajels an) WAE0:¥0 8661/¢0/80 uoneolioN AydsessiH

DCHN L6Ly c9l 9ig S opoD Auno)y S 9pod Aiunod enl WA9t:€0 8661/40/80 uoieoyiloN AudrelaiH -
xo) 06y 191 oge odey suoydfeq odey suoydhed eni Wd9¥:€0 866L/0/80 uoneoyoN AyolelsiH P
xel 68l 09F oce 191/SS800Y j[e) 191/SS8J0Y jjeD OnL Wd9¥:€0 8661L/¥0/80 uoneoynoN AyosesaiH -
X8l 88l 6SF oge 19]/s5000Y) 191/SS800Y ||eD 9Nl W9t €0 8661/#0/80 uoneoynoN Aysselsiy -
Xal 18lY 85L o0ce 191/ss800y [leD 191/SS800Y j[eD Nl WJSYE0 8661/#0/80 uonesiyiloN AyoielaiH

xal 98l VA S 4T 19] /55900y |leD 18]/SS800Y |[BD ©Onl WJ9t-€0 8661L/#0/80 uoneoyiioN Aysieiaiy -
Xal *1:184 LSL oce 19]/S5800Y [[) 18]/SS900Y |leQ N1 WJ9Y:E0 8661/40/80 uonesyiioN AysielsiH -
XsiL 14134 6l o0zge 181/SS900Y [|BD I81/SSe00Y oD ONnl WdSP:€0 8661/¢0/80 uoneoyoN AyoietaiH
Xat €8y 8¢l oce 19]/SS000Y 8D 19]/SS900y |[BD ©ONLl WJ9Y:E0 8661/b0/80 UOHEIIHION Aydselsly -
xa] 28ly Ol ozg Arewwngebuey Arewwngoebuey ONL WAIY:E0 8661/#0/80 uoneoyloN Ayosessiy -
xal 18ty BEL 0cE 191/88900Y 8D 101/SS800Y [[leD ONL WJ9Y-€0 8661/40/80 uonesyioN Ayssessiy -
xaL 08ly 2E} 9pS WNS BPOD EBAIY wing 8po) easy ONL WAILE0 866L/40/80 UONEOUION AyoieiolH -
DCER 9.ty 26 gie MsiaMesm Jo Aed wysig e Jo Aeg NL WA9Y:€0 8661/0/80 uoneayioN AyosessiH

R Sy 16 9lI€ fewwng sjelg Arewwng sjelg @NL WA9Y:€0 8661/40/80 UoledYIION AyoiesslH L

adA| semeip| eouejsull qi] ezis| Jewnod| opiL| peaeoay swijereq| adA] [peaiun

| smeN |lireleq || [sHoday|

[dieH | [eainies 1sno | usasey| jelelea| [wnd | fuedo)

dloH suondo HoS maip 1p3 9 |

—00¢!

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

