A0 0 O O

WO 01/01221 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date
4 January 2001 (04.01.2001)

O I T

(10) International Publication Number

WO 01/01221 A2

(51) International Patent Classification’: GO6F
(21) International Application Number: PCT/US00/17857
(22) International Filing Date: 28 June 2000 (28.06.2000)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

09/346,155 30 June 1999 (30.06.1999) US
09/346,074 30 June 1999 (30.06.1999) US
09/346,000 30 June 1999 (30.06.1999) US
09/345,250 30 June 1999 (30.06.1999) US
09/344,266 30 June 1999 (30.06.1999) US
(71) Applicant (for all designated States except US): BIZTRO,

INC. [US/US]; Suite 100, 2500 Augustine Drive, Santa

Clara, CA 95054 (US).

(72)
(73)

(74)

@81)

84)

Inventor; and
Inventor/Applicant (for US only): D’SOUZA, Roy, P.
[IN/US]; 657 Spruce Drive, Sunnyvale, CA 94086 (US).

Agent: WHEELER, Jeffrey, D.; Beyer Weaver &
Thomas, LLP, P.O. Box 130, Mountain View, CA
94042-0130 (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F1, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT,RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

[Continued on next page]

(54) Title: IMPROVED SCALABLE ARCHITECTURE AND METHODS FOR E-COMMERCE APPLICATIONS IN A CLUS-

TERED COMPUTER SYSTEM

202

BUSINESS LOGIC

DATA REPOSITORY STAGE

STAGE

WEB SERVER STAGE

(57) Abstract: An intelligent director
agent configured for use in a clustered
computer system having at least a

| — 242

20

RECONFIGUR)

Bus.
[

oA

EXTERNAL MISTORICAL
PROFILES

214a
WES
SERVER ;
1] e
24

WES SERVERS

204

wen
server
LOGIC L

\

- 232

first computer and a second computer,
wherein both the first computer and
the second computer are configured to
run software modules pertaining to a
software program. There is further
included a software module selector
configured for selecting one of the first

computer and the second computer for

A\

\

Y

I-E?-,E
b

servicing the ftransaction request. A
method is also provided for enhancing
reliability while upgrading a software
program implemented in a clustered
computer system from a first version to a
second version. The software program is

f [1
208
OATABASE SERVERS BUSINESS LOGKC SERVERS 216
— 37 §L~
% n)
260 | sm——
BAse
Loste 18—
Hel— S
I
254
250 =
oATA bl
BASE BASE =1
Locic Losic 220
o - -
N H
256 r
L o
et P71 o
LoGic w3 L
-
4—':] .
268
,j -
A

implemented as software modules, with
the method ascertaining a certification
level associated with each of the software

modules. A method is also provided for maintaining a predefined acceptable fault tolerance level for a plurality of software modules
implementing a software program running on a first plurality of computers coupled together in a cluster configuration, and coupled
to a first intelligent director agent. The method further includes tracking status of the modules by using the intelligent director agent.
A method is also provided for balancing load levels among a plurality of computers coupled together in a cluster configuration
in a clustered computer system. Load levels are ascertained as responsive to data received from the plurality of computers at the
intelligent director agent. A method is further provided for predictively preventing computer stress by reconfiguring a plurality of
computers coupled together in a cluster configuration. The reconfiguring is performed prior to the stress occurring. The method
includes predicting a first computer, from the number of transaction requests being serviced by the computer, that would experience
computer stress at a future point in time. The method also includes loading another module of the software program on a second

computer of the plurality of computers.

woO 01/01221 A2 IR0 0O AR O A

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, For two-letter codes and other abbreviations, refer to the "Guid-
CIL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations" appearing at the begin-

ning of each regular issue of the PCT Gazette.
Published:

— Without international search report and to be republished
upon receipt of that report.

10

15

20

25

WO 01/01221 PCT/US00/17857

IMPROVED SCALABLE ARCHITECTURE AND METHODS FOR E-
COMMERCE APPLICATIONS IN A CLUSTERED COMPUTER SYSTEM

Background of the Invention

Related Applications

The following applications are related to the present disclosure and are incorporated by

reference herein.

Application entitled “Data Mining Aggregator Architecture and Intelligent Director For
Data Mining” (Attorney Docket No. BHUBP001) , filed on June 30, 1999, by inventor Roy P.
D’Souza and assigned serial number 09/345,225; application entitled “Data Mining with
Dynamic Events (Attorney Docket No. BHUBP002) , filed on June 30, 1999, by inventor Roy
P. D’Souza and assigned serial number 09/345,259; and application entitled “Data Mining with
Decoupled Policy From Business Application (Attorney Docket No. BHUBP003) , filed on
June 30, 1999, by inventor Roy P. D’Souza and assigned serial number 09/345,170.

The present invention relates to an improved computer architecture. More particularly,
the present invention relates to techniques for improving the reliability and response time of a
scalable computer system of the type employed in e-commerce applications through the

Internet.

E-commerce. or electronic commerce through the Internet, places stringent
requirements on the planning and implementation of the computer infrastructure that supports
the service. As the e-commerce service is in its infancy, it is important for economic reasons to
minimize the cost of the computing infrastructure employed to service the few initial users or
early adopters. As the use of the service becomes wide-spread among many users, which in the
e-commerce age could be in a matter of days or weeks, the initial computing infrastructure
must grow correspondingly to offer reliable and fast service to users or risk losing users to

competing services.

To facilitate scaling of computing capabilities to meet a potentially explosive growing
demand while minimizing upfront costs, many scalable architectures have been proposed. In
one approach, the processing load is borne by a single centrally located computer and as the

processing load increases, that computer may be upgraded to have a more powerful processor

10

15

20

25

30

WO 01/01221 PCT/US00/17857

or, in the case with parallel processors, be endowed with additional processors to handle a

higher processing load.

However, there are limits to the level of processing power that can be provided by a
single machine. This is typically due to limitations in the processing capability of the single
processor or in the upper limit on the number of parallel processors that can be provisioned in
the computer. Further, limitations in memory access, bus speed, I/O speed and/or the like also
tend to place an upper limit on the ultimate processing capability this approach can offer. Even
if the ultimate upper limit is not reached, there are economic disincentives to adopting this
approach for e-commerce usage due to the fact that marginal increases in computing power for
these high-end machines tend to come at great financial cost. For example, a two-fold increase
in processing power of such a computer typically requires substantially more than a two-fold

increase 1n cost.

Clustering represents another computer architecture that readily scales to adapt to
changing processing loads. In clustering, multiple inexpensive and/or low power computers
are clustered together to service the processing load. Typically, the individual computers are
interconnected using some type of network connection, such as Ethernet. Each time a machine
is connected to the cluster, it publishes its presence to the cluster to signal its ability to share
the processing load. Thus, as the processing load increases or decreases, the number of
computers in the cluster may be correspondingly increased or decreased to meet the need of the

changing processing load.

To facilitate discussion, Fig. 1 illustrates a prior art computer architecture wherein the
computers are clustered in various stages to service the processing needs of the stages. With
reference to Fig. 1, there is shown a computer system 102, representing a typical prior art
clustered computer system employed to service Internet-based transaction requests. Computer
system 102, which is typically connected to a larger network such as the Internet or a portion
thereof, includes a webserver stage 104, application server stage 106, and a data repository

stage 108. As can be seen in Fig. 1, each stage is implemented by a group or cluster of servers.

In general, a user may access computer system 102 by typing in a URL (Uniform
Resource Locator) and obtaining a page from a webserver of webserver stage 104. In the

typical situation, the first few pages returned may include general introductory information as

10

15

20

25

30

WO 01/01221 PCT/US00/17857

well as an authentication facility to allow the user to sign in. Once the user is properly
authenticated (by entering user name and password, for example), a menu of contents and/or
applications may then be served up to the user. If the user chooses an application, the request
is serviced by one of the application servers in application server stage 106, which acts in
concert with one or more databases in the data repository stage 108, to respond to the user’s

request.

Due to the use of clustering technology, however, many other intervening steps occur in
between. Beginning with the user’s access request 110 (by, for example, typing in the URL at
the user’s web browser), the request is forwarded to a webserver router 112, which arbitrates
among the webservers 114(a)-114(e), to decide which of these webserver should service this
user’s request. As a threshold determination, webserver router 112 may ascertain whether the
user had recently accessed the service through a particular webserver of webserver stage 104.

If he did, there is usually data pertaining to this user that is cached at the webserver that last
serviced him, and it may be more efficient to continue assigning this user to the webserver that

serviced him earlier.

On the other hand, if it is determined that this user has not recently accessed the service
or if there is no cached data pertaining to this user on any of the webservers, webserver router
112 may assign the user to one of webservers 114(a)-114(e). The decision of which webserver
to assign is typically made based on the current load levels on the respective webservers, the
information pertaining to which is periodically received by webserver router 112 from the
webservers through path 116. Once the user is assigned one of the webservers, subsequent
traffic may be directly transmitted between the user’s terminal and the assigned webserver

without going through the router.

After authentication, if the user subsequently indicates that he wishes to employ a
particular application, the webserver assigned to him then accesses another router, which is
shown in Fig. 1 as application server router 118. Like webserver router 112, application server
118 picks among application servers 120(a)-120(d) of application server stage 106 based on the
current load levels on the application servers. The information pertaining to the current load
levels on the application servers are periodically received by application server router 118
through path 122 as shown. At any rate, one of application servers 120(a)-120(d) will be

assigned to the user to service the user’s request. As in the case with the webservers, once the

3

10

15

20

25

WO 01/01221 PCT/US00/17857

user is assigned one of the application servers, subsequent traffic may be directly transmitted
between the web server that services the user and the assigned application server without going

through the router that performed the assignment.

If the application employed by the user requires data from data repository stage 108, the
application server may consult yet another router (shown in Fig. 1 as database router 130),
which may pick the most suitable database server 132(a)-132(c) for serving up the data. Again,
data base router 130 has information pertaining to the level of load on each database server

since it periodically receives feedback from the database servers (via path 134).

Since the processing load at each stage is shared by multiple computers or servers,
scalability is achieved. Further, the overall cost is kept low since the system employs multiple
low power computers to achieve a high processing capacity, and only brings new computers to

the cluster if needed.

Although the computer cluster architecture of prior art Fig. 1 solves many problems
associated with scaling, it is recognized that there are areas where improvements are needed.
By way of example, improved reliability is one area where continuous improvement is desired.
In the context of highly demanding applications such as e-commerce, it is important that the
computer system that services the user’s transaction requests operates without interruption at
all times. This is because the Internet is a global network, and at any time, transaction requests
may be sent by users and need to be serviced. It is also recognized that one of the more
vulnerable times for computer system failure occurs during or shortly after software upgrades,
i.e.. when the version of the software programs running on the servers (such as those running

on application servers 112a-112d) are changed or when new software packages are loaded.

In the prior art, software upgrades are typically performed on a system-wide basis, using
a new software package that is believed to be compatible with the computer system being
upgraded. To minimize any impact on service, the upgrade operation typically occurs at a time
when usage is relatively low. During a software upgrade operation, the whole computer system
is typically taken offline momentarily, the new software is then loaded onto the servers, and the
whole computer system is then quickly brought back into service to allow the new software to

handle the incoming transaction requests.

10

15

20

25

30

WO 01/01221 PCT/US00/17857

If the new software to be loaded had been tested extensively in advance for quality and
compatibility, one can expect that the majority of the software upgrade operations could be
accomplished with only minor and temporary inconvenience to the users. For some software
upgrade operations, however, catastrophic crashes could and did occur. The catastrophic
system-wide failures can occur despite the best quality assurance testing since modern software
programs are complicated constructs, and their behavior when exposed for the first time to a
computer and/or network that had other software, plug-ins, drivers, and the like already
installed is not always predictable. In a critical application such as e-commerce, the
consequence of such a system-wide failure can be extremely serious as it may result in lost
sales, erode user’s confidence, and may lead to the loss of customers to competitors. With
regard to maintaining reliability during and after software upgrades, an improved approach is

clearly needed.

Even in day-to-day operation, reliability is a big concern since users in the e-commerce
age expect continuous uninterrupted service and will not hesitate to switch to competing
services if their expectation is not met. One way to improve reliability is to employ dedicated
software/hardware to watch over the entire computer system in order to ensure that there exists
a sufficiently high level of fault tolerance so that if there is failure in one of the servers, there
remains adequate processing power to provide an acceptable level of service to customers, €.g.,
by handling their requests in an uninterrupted manner and without unduly long delays. If the
fault tolerance level falls below some acceptable level in a cluster, the fault tolerance
mechanism will alert the operator to permit the operator to bring the fault tolerance back up,
e.g., by adding additional servers to the cluster. This situation typically occurs after one of the

servers in the cluster fails and the number of redundant servers remaining is unacceptably low.

In prior art, fault tolerance is achieved at the server level, i.e., by maintaining a
sufficiently large number of servers per cluster to ensure that if there is a failure in one of the
servers, there still remains sufficient processing capability in the surviving servers to allow the
computer system as a whole to continue handling the transaction requests. Furthermore, prior
art fault tolerance solutions are typically offered on homogeneous clusters and are specifically
tied to specific computers from specific vendors. With reference to Fig. 1, for example, the
prior art technique of fault tolerance typically requires that all servers in a cluster (i.e.,all

servers serviced by a router such as servers 112a -112d of Fig. 1) be homogeneous.

10

15

20

25

30

WO 01/01221 PCT/US00/17857

There are, however, disadvantages to the prior art approach to implementing fault
tolerance. For many businesses, it is sometimes more efficient to employ pre-existing software
programs and modules in servicing their customers’ needs than to develop their own software
programs. Furthermore, it is sometimes more efficient to aggregate different software modules
from different vendors to offer a complete package of service to customers than to employ
software modules from a single vendor since different vendors may offer different advantages.
By picking and choosing among the modules offered by competing vendors, a business may be

able to gain competitive advantages by offering a better aggregate service to their customers.

In these cases, the software modules that are employed, as well as the hardware
platforms on which they are implemented, are often highly diverse. Since prior art techniques
of fault tolerance requires homogeneity of hardware in a cluster, the diverse mix of software
and hardware of such businesses renders it difficult to implement fault tolerance. One possible
solution is to implement a homogeneous cluster for each software module so that fault
tolerance can be achieved with respect to that software module (e.g., by providing multiple
redundant servers per software module). This solution is, however, practical only when the
number of different sets of software modules employed is relative small. If the number of
different sets of modules employed is fairly large, the solution becomes extremely costly as
there needs to be one cluster per set of software modules to implement the prior art technique

of fault tolerance.

Another area that system engineers always strive to improve relates to reducing
transaction request processing time. Because of scaling and the desire to implement fault
tolerance, it is typically the case that there exist multiple copies of any given application
program per cluster. With reference to Fig. 1, for example, there typically exist multiple copies
of an application program, distributed among two or more of servers 112a-112d. Because there
are multiple copies present in the cluster to service incoming transaction requests, it is
important to appropriately distribute the processing requirements of the multiple users across
the servers so that transaction requests may be more efficiently serviced, with no single server

being overtaxed while others are idle.

If all servers of a cluster are homogeneous, the decision regarding which server in the
cluster should service a new user can be made by simply examining the relative load levels

among the servers that have the appropriate software to handle the incoming transaction

6

10

15

20

25

30

WO 01/01221 PCT/US00/17857

request of that user, and by assigning the new user to the server that is least heavily loaded. By
distributing the users among various servers according to the relative load levels experienced
by the servers, the average processing time for transaction requests is, in theory, minimized. In
fact, most modern routers have the capability to receive relative load level data for the servers
they service, and can make decisions pertaining to user routing based on the relative load level

data.

However, it has been found that when the servers of a cluster are heterogeneous and
differ in their processing capabilities, such simple routing strategies sometimes do not provide
users with the best possible processing time. This is because a more powerful server may
appear slightly more heavily loaded yet may be able to process incoming transaction requests
more rapidly than a less powerful server in the cluster that happens to be more lightly loaded.
Yet. a simple routing strategy based on relative load levels among servers would have picked
the more lightly loaded (and less powerful) server, with a concomitantly longer processing time

for transaction requests that are so routed.

Further, there may exist reasons for keeping a particular server relatively lightly loaded
(e.g., due to the fact that the lightly loaded server is being stress-tested and not yet certified to
handle a full load, or due to the fact that the lightly loaded server also implements another
application program, which is of the type that is subject to sudden, rapidly fluctuating
processing demands and therefore needs a large reserve processing capacity). For the
heterogeneous cluster situation and other preferential routing situations, the prior art method of

routing incoming transaction requests leaves a lot to be desired.

Other areas for improvement also exist in the prior art cluster architecture. By way of
example, in a typical clustered computer system, some of the servers thereon may be
underutilized while other servers are overloaded despite efforts to equitably distribute
transaction requests among the servers of the cluster. This is due to the fact that not every
server in the cluster may be provided with the same set of application programs. Accordingly,
while some servers are severely stressed, other servers, which do not have thereon the

application programs that are in heavy demand, may sit idle.

In the prior art, whenever the load level on a particular server of the cluster is

unacceptably high, the relative load level information among the cluster triggers an alert. To

10

15

20

25

30

WO 01/01221 PCT/US00/17857

reduce the load level, the response is typically to add additional servers to the cluster to
increase the number of copies of the application program that is in heavy demand, thereby
increasing the ability of the computer system as a whole to handle transaction requests that

require the attention of that application program.

As can be appreciated by those skilled in the art, the addition of a server to a cluster is
typically an expensive option and usually involves a substantial delay and investment in time
since it requires the acquisition, installation, and configuration of new hardware in the existing
cluster. Unfortunately, while the new server is acquired and/or installed, user responsiveness
suffers as the overloaded servers struggle to keep up with incoming transaction requests.
Moreover, such an approach to handling temporary increases in traffic makes inefficient use of
the existing server processing resource of the cluster because at the same time that the new
servers are added to handle the increased demand that is experienced by some servers of the
cluster. other servers of the cluster may sit relatively idle. If this approach is taken, the number
of servers required to handle peak demand for every application program implemented in the
cluster may be disproportionately large relative to the average processing requirement placed
on the cluster. This is because demands on different application programs may fluctuate at
different times, and an application program that may be idle at one point in time may be

heavily used at other times, and vice versa.

Up to now, the discussion has revolved around reactive approaches (i.e., after-the-fact
approaches) to ensuring that there is always sufficient processing capability to handle the
transaction requests in an appropriate manner. In many cases, a reactive approach may not be
sufficient to ensure that service disruption and/or delays associated with transaction request
processing will be kept within acceptable parameters. By way of example, by the time it is
discovered that a particular server is overloaded, it may be too late to begin the process of
adding another server to share the processing load. This is because, as mentioned earlier, such
a process is typically time-consuming and thus it may be some time before additional
processing resources become available to the cluster. During that time, the servers that
implement the software program in demand may be overloaded one-by-one and that overload
may lead to a situation wherein none of the users’ transaction requests are serviced in a timely
manner. Thus, there are desired proactive approaches to load balancing that can ready the

cluster for handling the increased processing load before it occurs.

10

15

20

25

30

WO 01/01221 PCT/US00/17857

In some area of the world, outside influences, such as natural and manmade disasters,
may pose a serious threat to the reliability of the e-commerce service. By way of example,
some regions of the United States are exposed to seasonal storms or to earthquakes. As such it
is sometimes desirable to implement the servers in each of the stages of the clustered computer
system in different geographic locations. As one example, the application server stage 106 of
Fig. 1 may be implemented by two clusters of servers, with one being located in San Francisco
while the other is located in New York. When such remote implementation is employed, the
presence of the redundant servers further complicates the earlier mentioned challenges
regarding maintaining reliability during and after software upgrades, efficient routing of
transaction requests, maintaining an acceptable fault tolerance level in a heterogeneous cluster,

and handling increases in the number of transaction requests both reactively and prospectively.

In view of the foregoing, there are desired novel and improved computer architectures
and techniques for increasing the reliability and reducing the response time of a clustered

computer system.

Summary of the Invention

The invention relates, in one embodiment, to a clustered computer system having at
least one cluster of computers operatively coupled to service transaction requests for a plurality
of software programs implemented as software modules on the cluster of computers. The
clustered computer system includes a first computer, and a second computer operatively
coupled with the first computer in a cluster configuration. There is also included an intelligent
director agent operatively coupled with both the first computer and the second computer, the
intelligent director agent receiving both computer-specific information and software module-
specific information from the first computer and the second computer. Further, the intelligent
director agent performs at least one of a routing of the transaction requests to respective ones of
the first computer and the second computer and a reconfiguration of the software modules
implemented on the cluster of computers. The one of the routing of the transaction requests to
respective the ones of the first computer and the second computer and the reconfiguration of
the software modules implemented on the cluster of computers is performed responsive to both
the computer-specific information and software module-specific information from the first

computer and the second computer.

10

15

20

25

30

WO 01/01221 PCT/US00/17857

In another embodiment, the invention relates to an intelligent director agent configured
for use in a clustered computer system having at least a first computer and a second computer
connected in a cluster configuration, wherein both the first computer and the second computer
are configured to run software modules pertaining to a software program. The intelligent
director agent is configured to be operatively coupled with both the first computer and the
second computer. The intelligent director agent includes a first input module for receiving a
transaction request that requires the software modules on the first computer and the second
computer. The intelligent director agent further includes a second input module for receiving
both computer-specific information and software module-specific information from the first
computer and the second computer. There is further included a software module selector
configured for selecting one of the first computer and the second computer for servicing the
transaction request. The software module selector performs the selecting responsive to both
the computer-specific information and the software module-specific information from the first

computer and the second computer.

In yet another embodiment, the invention relates to a method for routing a transaction
request that requires a software program implemented as software modules on a plurality of
computers of a clustered computer system, the plurality of computers being connected in a
cluster configuration, wherein at least two of the plurality of computers being configured to run
software modules pertaining to a software program. The plurality of computers being coupled
to an intelligent director agent. The method includes receiving at the intelligent director agent
computer-specific information pertaining to the plurality of computers. The computer-specific
information includes load level information on respective ones of the plurality of computers.
The method further includes receiving at the intelligent director agent software module-specific
information pertaining to the software modules. The method additionally includes selecting a
given one of the plurality of computers to route the transaction request to, the selecting being
performed responsive to both the computer-specific information and the software module-
specific information. There is also included issuing a command to route the transaction request

to the given one of the plurality of computers responsive to the selecting.

In another embodiment, the invention relates to a method for upgrading a software
program from a first version to a second version. The software program is implemented as

software modules running on a plurality of computers coupled in a cluster configuration in a

10

10

15

20

25

30

WO 01/01221 PCT/US00/17857

with the second version of the software program. the method aiso includes assigning the subset
of software modules with a first certification level. There is further included monitoring
performance of the subset of software modules to ascertain whether the subset of software
modules meet a predefined reliability criteria after the replacing. If the subset of software
modules meet the predefined reliability criteria, the method includes designating the subset of
software modules with a second certification level, wherein the subset of software modules
receive transaction requests that require the software program at a first rate when assigned the
first certification level. The subset of software modules receives the transaction requests that
require the software program at a second rate when assigned the second certification level, the

second certification level being higher than the first certification level.

In another embodiment, the invention relates to a method for enhancing reliability while
upgrading a software program implemented in a clustered computer system from a first version
to a second version. The software program is implemented as software modules running on a
plurality of computers coupled in a cluster configuration in a clustered computer system. The
method includes ascertaining a certification level associated with each of the software modules.
If a certification level of a given software module of the plurality of software modules has a
first certification level, the method includes limiting a load level on the given software module
to a first load level. If a certification level of a given software module of the plurality of
software modules has a second certification level, the method includes allowing the load level
on the second routing transaction requests to reach a second load level higher than the first load

level.

In another embodiment, the invention relates to techniques for maintaining an adequate
level of fault tolerance for a software program implemented on computers of a cluster in a
clustered computer system. In one embodiment, the invention includes the use of intelligent
director agents that are coupled to the computers of the cluster and the computer-specific as
well as the software module-specific information stored therein. These pieces of information
permit the intelligent detection of a deficiency in fault tolerance, the intelligent selection of a
computer capable of running another copy of the software program, the loading of another copy
of the software program on the identified computer, and the registration of the identified

computer for servicing transaction requests pertaining to the software program after another

11

10

15

20

25

30

WO 01/01221 PCT/US00/17857

copy of the software program is loaded thereon. 'Techniques are described to permit both
computers in a local cluster and computers in a remote cluster to serve the fault tolerance relief

role.

In another embodiment, the invention relates to a method for maintaining a predefined
acceptable fault tolerance level for a plurality of software modules implementing a software
program running on a first plurality of computers coupled together in a cluster configuration in
a first cluster in a clustered computer system. The first plurality of computers being coupled to
a first intelligent director agent. The method includes tracking, using the first intelligent
director'agent, status of the software modules running on the first plurality of computers. The
method also includes ascertaining a fault tolerance level associated with the software program,
with the ascertaining being ascertained by examining the status of the software modules
running on the first plurality of computers. If the fault tolerance level is below the predefined
acceptable fault tolerance level, the method also includes searching for a first suitable computer
among the first plurality of computers to load another module of the software program thereon.
The first suitable computer represents a computer of the first plurality of computers that does
not have a module of the software program running thereon. The first suitable computer 1s
compatible to execute the another copy of the computer program. If the first suitable computer
is available, the method further includes loading the another module of the software program
on the first suitable computer, registering the first suitable computer as a computer capable of
servicing transaction requests pertaining to the software program after the another module of
the software program is loaded onto the first suitable computer, and routing the transaction

requests pertaining to the software program to the first suitable computer after the registering.

In yet another embodiment, the invention relates to a method for balancing load levels
among a plurality of computers coupled together in a cluster configuration in a clustered
computer system. The plurality of computers are coupled to a first intelligent director agent.
The method includes ascertaining a first set of load levels associated with the plurality of
computers. The ascertaining is made responsive to data received from the plurality of
computers at the intelligent director agent. The data represents load level information
experienced substantially currently by the plurality of computers. If one of the first set of load
levels associated with a first computer of the plurality of computers exceeds a predefined

threshold, the method includes ascertaining a software program that causes stress on the first

12

10

15

20

25

30

WO 01/01221 PCT/US00/17857

computer of the plurality of computers. There is also included loading another module ot the
software program on a second computer of the plurality of computers. The second computer
represents a computer that is compatible to run the another module of the software program.
The second computer further represents a computer of the plurality of computer that did not run

the software program prior to the loading.

In another embodiment, the invention relates to a method for balancing load levels
among a first plurality of computers coupled together in a cluster configuration in a first cluster
of a clustered computer system. The first plurality of computers are coupled to a first
intelligent director agent and being located at a first geographic location. The clustered
computer system further includes a second cluster that includes a second plurality of computers
also coupled together in the cluster configuration. The second cluster being located at a second
geographic location that is remote from the first geographic location. The method includes
ascertaining a first set of load levels associated with the first plurality of computers. If one of
the first set of load levels associated with a first one of the first plurality of computers exceeds
a predefined threshold, ascertaining a software program that causes stress on the first one of the
first plurality of computers. The method also includes identifying, using the intelligent director
agent, a given local computer among the first plurality of computers. The given local computer
represents a computer that is capable of running another module of the software program and
did not run the software program prior to the identifying. If the given local computer among
the first plurality of computers is not available, the method includes identifying, using the
intelligent director agent, a given remote computer among the second plurality of computers.
The given remote computer represents a computer that is capable of running the another
module of the software program and did not run the software program prior to the identifying.
There is also included loading the another module of the software program on the given remote
computer of the second plurality of computers to permit the given remote computer to receive
and service a subset of transaction requests that require attention of the software program to
reduce load on other computers of the first plurality of computers that also service the

transaction requests.

In another embodiment, the invention relates to a method for predictively preventing
computer stress by reconfiguring a plurality of computers coupled together in a cluster

configuration in a clustered computer system. The reconfiguring is performed prior to the

13

10

15

20

25

30

_ WO 01/01221 PCT/US00/17857

stress occurring. The plurality of computers is coupled to a first intelligent director agent. 'The
method includes predicting a first computer of the plurality of computers that would experience
the computer stress at a future point in time. The computer stress is related to a number of
transaction requests being serviced by the first computer at the future point in time. If the first
computer is predicted to experience the computer stress at the future point in time, the method
includes ascertaining a software program that causes stress on the first computer of the plurality
of computers. The method also includes loading another module of the software program on a
second computer of the plurality of computers. The second computer represents a computer
that is compatible to run the another module of the software program. The second computer
further represents a computer of the plurality of computer that did not run the software program

prior to the loading.

In another embodiment, the invention relates to a method for predictively preventing
computer stress on a plurality of computers coupled together in a cluster configuration in a
clustered computer system. The reconfiguring is performed prior to the stress occurring. The
plurality of computers is coupled to a first intelligent director agent and being located at a first
geographic location. The clustered computer system further includes a second cluster that
includes a second plurality of computers also coupled together in the cluster configuration.
The second cluster is located at a second geographic location that is remote from the first
geographic location. The method includes predicting a first computer of the first plurality of
computers that would experience the computer stress at a future point in time. The computer
stress is related to a number of transaction requests being serviced by the first computer at the
future point in time. If the first computer is predicted to experience the computer stress at the
future point in time, the method includes ascertaining a software program that causes stress on
the first computer of the plurality of computers. The method also includes identifying, using
the intelligent director agent, a given local computer among the first plurality of computers.
The given local computer represents a computer that is capable of running another module of

the software program and does not run the software program prior to the stress occurring.

If the given local computer among the first plurality of computers is not available, the
method also includes identifying, using the intelligent director agent, a given remote computer
among the second plurality of computers. The given remote computer represents a computer

that is capable of running the another module of the software program and did not run the

14

10

15

20

25

WO 01/01221 PCT/US00/17857

software program prior to the stress occurring, and loading the another module of the software
program on the given remote computer of the second plurality of computers to permit the given
remote computer to receive and service a subset of transaction requests that require attention of
the software program to reduce load on other computers of the first plurality of computers that

also service the transaction requests.

These and other advantages of the present invention will become apparent upon reading

the following detailed descriptions and studying the various figures of the drawings.

Brief Description of the Drawings

The present invention is illustrated by way of example, and not by way of limitation, in
the figures of the accompanying drawings which are not drawn to scale to simplify the

illustration and in which like reference numerals refer to similar elements.

Fig. 1 illustrates a prior art computer architecture wherein the computers are clustered

in various stages to service the processing needs of the stages.

Fig. 2 illustrates, in accordance with one aspect of the present invention, a clustered
computer system architecture wherein an intelligent director agent (IDA) is included with each
of the clusters that implement the webserver stage, the business logic stage, and the data
repository stage.

Fig. 3 illustrates, in accordance with one embodiment of the present invention, a

simplified logic block diagram of an exemplary business logic intelligent director agent (IDA).

Fig. 4 illustrates, in accordance with one embodiment of the present invention, a
flowchart illustrating the steps employed to perform the software upgrade in a manner so as to

improve the reliability of the clustered computer system.

Fig. 5 illustrates in detail, in accordance with one embodiment of the present invention,

the step of routing the transaction request to the uncertified business logic module to handle.

Fig. 6 illustrates, in accordance with one embodiment of the present invention, a
clustered computer system architecture that includes both a remote site and a local site, and the

IDA’s therefor.

15

10

15

20

25

WO 01/01221 PCT/US00/17857

Fig. 7 illustrates, in accordance with one embodiment ot the present invention, a
clustered computer system having a business logic stage which comprises a cluster of

heterogeneous computers

Fig. 8 illustrates, in accordance with one embodiment of the present invention, a
flowchart illustrating the steps for maintaining a proper level of fault tolerance for a business

logic software.

Fig. 9 is a flowchart illustrating, in accordance with one embodiment of the present
invention, a method for increasing the fault tolerance level pertaining to a particular business

logic software which may also include the use of remote servers.

Fig. 10 illustrates, in accordance with one embodiment of the present invention, the
steps involved in performing load balancing by shuffling the business logic modules among the
business logic servers of a cluster if it is ascertained that the load level on any of the business

logic servers is unacceptably high.

Fig. 11 illustrates in detail, in accordance with one embodiment of the present
invention, the step of shuffling business logic modules among servers of the cluster to increase
the processing capability of the business logic software identified to be the cause of server

stress.

Fig. 12 is a flowchart illustrating, in accordance with one embodiment of the present
invention, a method for performing load balancing by shuffling the business logic modules

among the remote and local business logic servers.

Fig. 13 illustrates, in accordance with one embodiment of the present invention, the
steps involved in performing load balancing prospectively by shuffling the business logic
modules among the business logic servers of a cluster if it is ascertained prospectively from
data available to IDAs, such as the historical profile, that the load level on any of the business

logic servers may become unacceptably high at some point in time.

Detailed Description of the Preferred Embodiments

The present invention will now be described in detail with reference to a few preferred
embodiments thereof as illustrated in the accompanying drawings. In the following

description, numerous specific details are set forth in order to provide a thorough understanding

16

10

15

20

25

30

WO 01/01221 PCT/US00/17857

of the present invention. It will be apparent, however, to one skilled in the art, that the present
invention may be practiced without some or all of these specific details. In other instances,
well known process steps and/or structures have not been described in detail in order to not

unnecessarily obscure the present invention.

To facilitate discussion, Fig. 2 illustrates, in accordance with one aspect of the present
invention, a clustered computer system architecture wherein an intelligent director agent (IDA)
is included with each of the clusters that implement the webserver stage, the business logic
stage, and the data repository stage. Preferably, there is an IDA for each cluster, although more
than one cluster may be provided per stage, in which case multiple IDAs may be provided.
Furthermore, as will be discussed later herein, the clusters may be disposed at one local site or
may be dispersed among geographically remote locations. Note that although Fig. 2 shows an
intelligent director agent for each of these stages, it is contemplated that in some clustered
computer systems, not every stage needs to be provided with an intelligent director agent and
that significant benefits may be achieved by endowing even only one of the stages with one or
more intelligent director agents. Conversely, a stage may comprise multiple clusters, in which

case multiple IDAs may be provided.

With reference to Fig. 2, there is shown a clustered computer system 202, which is
typically connected to a larger network such as the Internet or a portion thereof. Clustered
computer system 202 includes a webserver stage 204, and business logic stage 206, and a data

repository stage 208.

Data repository stage 208 represents the stage wherein data for use by the business logic
software modules are kept and includes the data stores as well as the database logic employed
to access the data stores. Business logic stage 206 represents the stage wherein the computer
cluster(s) employed to execute the business logic software modules is implemented. For
simplicity, only one cluster comprising four business logic servers is shown in Fig. 2.
Webserver stage 204 represents the stage wherein the computer cluster(s) employed to execute
the webserver logic is implemented. Webserver stage 204 generally facilitates the users’
interaction with the rest of clustered computer system 202 using the web-based paradigm or a
suitable paradigm for interacting with the Internet. Again, only one cluster comprising five

webservers is shown in Fig. 2 to simplify the illustration.

17

10

15

20

25

30

WO 01/01221 PCT/US00/17857

In the case of Fig. 2, the servers within each stage and within each cluster may be
heterogeneous (i.e., implemented on different platforms and having different capability) and
each may operate a different set of business logic modules, i.e., application software modules.
By way of example, servers 216, 218, 220 and 222 within business logic stage 206 may be
implemented using different hardware/software platforms and configurations that are adapted
for operating the business logic software modules implemented therein. In other words, there
is no requirement in the present invention that the servers associated with a given stage or
cluster or even those running copies of a particular software module be homogeneous (although
such can be readily accommodated by the instant clustered computer system architecture
without any major modification, as can be appreciated by those skilled in the art after reading
this disclosure). As long as the servers in a cluster can communicate with the IDA that is
associated with that cluster and can be adapted to operate cooperatively with one another
within a cluster, they can be implemented in the cluster architecture of the present invention. It
should be noted that the technologies, protocols, and methodologies exist for allowing
heterogeneous computers to communicate and work cooperatively and will not be discussed in
greater detail herein. Further, the specific technologies employed to enable the heterogeneous
computers to communicate and work cooperatively are somewhat irrelevant to the central
purpose of the present invention, which is to improve scalability and efficiency for a clustered
computer system that is capable of employing both heterogeneous and homogeneous clusters.
As will be discussed later herein, the additional information kept by the IDAs pertaining to the
software modules and the servers that implement them renders the implementation of
heterogeneous clusters within each stage possible while facilitating improved access speed for

the users and reliability for the clustered computer system.

Beginning with the user’s access request via path 210 (by, for example, typing in the
Uniform Resource Locator or URL at the user’s web browser), the request is forwarded to a
webserver logic intelligent director agent (IDA) 212, which decides among the webservers
214(a)-214(e) as to which of these webservers should service this user’s access request. Asa
threshold determination, webserver logic IDA 212 may ascertain whether the user had recently
accessed the service through a particular webserver of webserver stage 204. If he did, there

may be data pertaining to this user that is cached at the webserver that last serviced him, and it

18

10

15

20

25

30

WO 01/01221 PCT/US00/17857

may be more efficient to continue assigning this user to that webserver to take advantage ot the

cached data.

On the other hand, if it is determined that this user has not recently accessed the service
or if there is no cached data pertaining to this user on any of the webservers, webserver logic
IDA 212 may assign the user to one of webservers 214a-214e. As in the prior art, the decision
of which webserver to assign may be made based on the current relative load levels on the
respective webservers, the information pertaining to which is periodically received by
webserver logic IDA 212 from the webservers through path 232. Additionally, however,
webserver logic IDA 212 also receives additional information pertaining to the webservers and
the webserver logic software modules implemented on the webservers to facilitate improved
access speed and reliability. Thus, the webserver logic IDA 212 arbitrates among the
webserver computers based not only on the relative load level information associated with the
individual webservers but also based on information pertaining to the individual webserver
logic software modules. For brevity sake, this aspect of the invention will be discussed in
greater detail in the analogous discussion made in connection with the business logic IDA later

herein.

The assigned webserver may then authenticate the user to ascertain whether the user is
registered and/or properly authorized to use the service offered through clustered computer
system 202. After successful authentication, if the user subsequently indicates that he wishes
to employ a particular business logic software (by, for example, inputting data or taking an
action that requires the attention of a particular business logic module), the webserver assigned
to him then accesses a business logic IDA 240 to ascertain the appropriate business logic server
(i.e., the appropriate server in the business logic stage such as one of business logic servers

2216, 218, 220 or 222) to which the user’s transaction request may be sent.

As in the prior art, the decision pertaining to which business logic server to assign may
be made based on the current relative load levels on the respective business logic servers, the
information pertaining to which is periodically received by business logic IDA 240 from the
business logic servers through path 242. Additionally, however, business logic IDA 240 also
receives additional information pertaining to the business logic servers and more importantly
the business logic software modules implemented on the business logic servers to facilitate

improved access speed and reliability. Accordingly, the routing decision taken by the business

19

10

15

20

25

30

WO 01/01221 PCT/US00/17857

logic IDA is based not only on information pertaining to the individual business logic servers
but also based on information pertaining to the individual business logic software modules

implemented thereon.

As will be discussed later herein, the availability of the additional business logic server-
specific information and the business logic module-specific information also facilitates
inventive techniques to improve access speed and reliability during software upgrades, to
maintain a desired level of fault tolerance for the business logic software and/or the business
logic servers, to reactively and/or prospective load balance among the business logic servers,
and to efficiently employ remote business logic servers to accomplish improving access speed
and reliability. Some of the additional data kept by the business logic IDA and their roles in
improving access speed and reliability in accordance with embodiments of the present

invention will be discussed later herein.

To clarify, a business logic software refers to a business logic program. A business
logic module refers to a copy of the business logic software. The servers of a cluster may
implement many different business logic software programs. Each of these business logic
software programs has many copies distributed among the servers of the cluster to facilitate

redundancy and scalability.

Once a business logic server having thereon the requisite business logic module to
service the user’s transaction request is assigned to service the incoming transaction request,
subsequent traffic between the webserver assigned earlier to that user and the assigned business
logic server may be (but is not required to be) transmitted directly without going through the

assigned business logic IDA.

If the business logic module employed by the user requires data from data repository
stage 208, the business logic software module, through the business logic server, may consult
yet another IDA (shown in Fig. 2 as database logic IDA 250), which picks the most suitable
database server 252, 254, and/or 256 for serving up the data. As in the prior art, the decision
regarding which database server to assign may be made based on the current relative load level
on the respective database servers that have the necessary data, the information pertaining to
which is periodically received by database logic intelligent director agent 250 from the

database servers through path 260. Like the business logic IDA and the webserver IDA,

20

10

15

20

25

30

WO 01/01221 PCT/US00/17857

however, the database logic IDA 250 also receives additional information pertaining to the
database servers as well as the database server logic modules implemented on the database
servers to facilitate improved access speed and reliability. For brevity sake, this aspect of the
invention in connection with the database logic IDA will be discussed in greater detail in the
analogous discussion made in connection with the business logic IDA later herein. Once a
database server having thereon the requisite data to service the user’s transaction request 1s
assigned, subsequent traffic between the business logic server that requests the data and the
assigned database server may be (but is not required to be) transmitted directly without going

through the assigning database logic IDA.

In one embodiment, an IDA may be co-located with the router that routes the traffic to
the servers of the cluster, or it may be implemented separately from the router. It should be
kept in mind that although Fig. 2 shows an IDA for each of the webserver stage, the business
logic stage, and the data repository state, there is no requirement that there must be an IDA for
each stage, or each cluster for that matter if there are multiple clusters per stage. The provision
of an IDA, even with only one cluster or one stage of the clustered computer system,
dramatically improves access speed and reliability even when other clusters and stages may be

implemented without IDAs.

As mentioned earlier, an intelligent directory agent (IDA) receives more than just load
status data from the servers it services. With reference to business logic intelligent director
agent (IDA) 240, for example, it is preferable that the business logic IDA tracks one or more of
the additional information such as server processing capability, server geographic identification
(e.g., remote or local to the site that implements the webserver stage and/or the data repository
stage), the average latency for servicing a transaction request (e.g., due to the server’s
geographic remoteness or the speed of the network connection), the list of business logic
modules that are compatible with each server, the list of the business logic modules actually
implemented on each server, the version of the business logic modules implemented, and/or the
load experienced by the business logic modules on the servers. In one embodiment, the
business logic IDA also receives information pertaining to external historical profiles (268) of
transaction requests and processing loads on the business logic modules and/or the business

logic servers in order to predict usage demands placed on the business logic modules and to

21

10

15

20

25

30

WO 01/01221 PCT/US00/17857

prospectively balance the loads among the business logic servers if needed so that an

anticipated surge in usage does not overwhelm any particular business logic module.

Fig. 3 illustrates, in accordance with one embodiment of the present invention, a
simplified logic block diagram of an exemplary business logic intelligent director agent (IDA)
240. Although only the business logic IDA is described in details herein, the webserver logic
IDA and the database logic IDA may be similarly formed. However, their similar construction
will not be discussed in details for brevity sake. With reference to Fig. 3, business logic
requests from the webservers are received by business logic IDA 240 via path 270. Within
business logic intelligent director agent 240, both server-specific and software-specific
information is received and maintained in addition to the relative load status on individual

business logic servers.

Some of the additional pieces of information are received from the business logic
servers via path 242 and stored in exemplary blocks 304, 306, 308, 310, 312, 314, and 316
respectively. For ease of illustration, not every piece of information is shown in Fig. 3. Note
that some of information is static and may be received as part of the registration process that
the servers underwent as they were installed into the cluster. Examples of such static
information includes server processing capability and business logic module version number.
Other information may be dynamically received by the IDA from the servers (such as the list of
business logic modules implemented on each server) and other network monitoring tools (such
as conventional software tools that track network congestion at specific locations). Still, other
information may be derived from the information received dynamically and/or statically (such
as the average latency time for servers, which may be calculated periodically based on average
network latency between the webserver and the business logic server, the average network
latency between the business logic server and the available database cluster, the processing

capability of the servers, and the like).

Business server directory 304 may track information pertaining to the list of business
logic servers available to the clustered computer system, their remote/local status, their
certified/uncertified status (which may be expressed as Boolean values or may be a numerical
value that reflects their preference in receiving and servicing transaction requests), the list of
business logic servers capable of being loaded with a particular business logic software, the list

of business logic servers capable of being used for running a particular business logic module,

22

10

15

20

25

30

WO 01/01221 PCT/US00/17857

their relative weight which reflects the relative preference with which tratfic should be directed

to the individual servers (e.g., due to network conditions or other factors), and the like.

Business logic module version block 306 may track information pertaining to the
software versions of the business logic modules implemented on the various business logic
servers. Further, business logic version block 306 may track information pertaining to the
certified/uncertified status of each copy of the business logic modules, the relative weight of
each copy of business logic module which reflects the relative preference with which traffic

should be directed to it, and the like.

Business logic module load status block 308 may track information pertaining to the
level of load currently experienced by the individual business logic modules (in number of
transactions per second or the number of users currently using a business logic module, for
example). This information may be tracked for business logic modules currently in operation,

individually and/or as a group average.

Server processing capacity block 310 may track the processing capability (again in
number of transactions per second or the number users that can be supported concurrently) of
the individual business logic servers in order to ascertain how much bandwidth a particular

server may have, how much has been used, and how much is available.

Business logic server load status block 312 may track a similar type of data as business
logic module load status, albeit at the server level instead of the business logic module level.
Business logic server average latency block 314 may track the average latency to be expected if
a particular business logic server is employed to service the transaction request. The average
Jatency may be calculated based on the processing capability of the server, how remote it is
from the webserver that issues the transaction request (which is impacted by network latency),
how remote it is from the database that may be needed to service the transaction request (which
is also impacted by network latency). Business logic server log file block 316 may track the
operational status of the business logic server and/or the business logic modules implemented
thereon to determine, for example, the length of time that the server and/or the business logic

module has been in operation without failure and other types of log file data.

Business logic intelligent director agent 240 also includes a data mining module 330,

which receives the external historical profiles (268 of Fig. 2) of past usage trends on the

23

10

15

20

25

30

WO 01/01221 PCT/US00/17857

various business logic modules and/or business logic servers, and ascertains prospectively the
load demand on the various business logic modules and/or business logic servers. Data mining
module 330 may be implemented using a variety of available data mining methodologies. One
implementation of data mining is further discussed in the aforementioned data-mining related

applications, which are incorporated herein by reference.

Using the server-specific and the business logic module-specific information available,
a business logic selector module 334 then selects one of the business logic servers to service

the pending business logic request and transmits the selection to the requesting webserver via

path 272,

Within business logic intelligent director agent 240, there is also shown a configurator
module 340, representing the module that either reactively or prospectively reconfigures and/or
reshuffles the business logic modules among the business logic servers to permit the clustered
computer system to better handle the processing load and to achieve the desired level of fault
tolerance. These aspects of the present invention are discussed later in connection with the

flowcharts herein.

In the figures and discussion that follow, novel and advantageous techniques for
improving transaction request service speed and/or reliability of the clustered computer system
are discussed in greater detail. In one embodiment, the reliability and service quality risks
associated with software upgrade operations (which include updating the version of a business
logic module in operation and/or introducing copies of a new business logic module into the
cluster) are vastly reduced by allowing the copies of the new business logic module to be
gradually phased in on only a percentage of the servers that eventually need to be upgraded. In
the case of software version upgrade, at least a number of copies of the older version of the
business logic module being upgraded are preferably kept unchanged to continue to service
transaction requests in the interim. After copies of the new business logic module are loaded
on a percentage of the servers that need to be upgraded, their load levels are increased
gradually, either incrementally in stages or smoothly over time, until their operation log files
indicate that they or the servers on which they are implemented have passed some predefined
reliability criteria (which may be set in term of the number of hours of continuous operation,
the number of users supported concurrently, a combination thereof, or the like). Once these

copies of the business logic module to be loaded are certified as reliable, another set of copies

24

10

15

20

25

30

WO 01/01221 PCT/US00/17857

of the business logic module to be loaded may be loaded onto another group ot servers until all
servers that need to be upgraded are loaded with the new version of the business logic module.
In this manner, the phase in is done with respect to both the number of servers affected (which
are loaded with copies of the new software in groups over time instead of all at once) and in the

gradual increase in the level of load on the servers undergoing certification.

The number of servers to be loaded at any given in time is preferably chosen so that if
they, as a group, fail, the remaining servers are adequate to handle the existing load without
undue impact to the users (i.e., without undue degradation in performance). As will be
explained in detail herein, the use of remote business logic servers may allow a greater number
of servers of a particular cluster to be loaded at once since the remote business logic servers
may be able to serve as redundant servers to handle the stream of transaction requests should

the servers currently undergoing certification fail.

In a software loading operation in which a new business logic module is loaded onto
servers of the cluster for the first time, the number of servers to be loaded with copies of a new
business logic module may be determined based on the expected level of usage of the business
logic module and the processing capability of the servers of the clusters, among other factors.
If the load is expected to be high, more servers may be loaded with copies of the new business
logic module. On the other hand, if the processing capability of the servers to be loaded is
fairly high, the number of servers required may be reduced since each copy may support a

greater number of concurrent users.

Fig. 4 illustrates, in accordance with one embodiment of the present invention. a
flowchart illustrating the steps employed to perform the software upgrade in a manner so as to
improve the reliability of the clustered computer system. In contrast to the prior art technique
of performing software upgrade, the invention preferably upgrades only a percentage of the
number of servers that need upgrading in the cluster at any given time. As the new business
logic modules are initially loaded, they are deemed uncertified until they pass some reliability
criteria. During certification, user transaction requests are routed to both the certified business
logic modules (the old but proven copies of the business logic software) and the new business
logic modules. A routing function ensures that the traffic load on the uncertified business logic

modules are brought up gradually. When the uncertified business logic modules pass some

25

10

15

20

30

WO 01/01221 PCT/US00/17857

reliability criteria, they become certitied and another set ot old business logic modules can be

replaced (or another set of servers can be loaded) in a similar manner.

In step 402, as user transaction requests are received at the cluster, the intelligent
director agent is consulted to determine whether there exists an uncertified business logic
module in the cluster. In the context of software upgrade/loading, a business logic module may
be flagged as uncertified if it is a new, unproven copy of a business logic software on a server
and/or an existing business logic module that is implemented on a server which happens to also
be loaded with another business logic module undergoing certification. The latter situation
may also present a reliability risk since the entire server may crash (due to e.g., conflict with
the newly loaded business logic module). In this latter situation, all business logic modules on
that server may be deemed uncertified, even if the newly loaded business logic module is
unconnected with the incoming transaction request and the particular business logic module
needed to service the incoming transaction request has not been changed on this server. The
presence of one or more uncertified business logic modules in the cluster signals that a

software upgrade operation is under way.

With reference to Fig. 2, for example, IDA 240 is consulted to determine whether there
exists any uncertified business logic module on any of servers 216, 218, 220, and 222. If no
uncertified business logic module is found in the servers of the cluster (step 404), the method
proceeds to route the incoming transaction request (or the user) to one of the certified business
logic modules using a conventional routing methodology (such as round robin, based on the

relative load levels, and the like). This routing step is shown in step 406 of Fig. 4.

On the other hand, if consultation of the intelligent director agent associated with the
cluster reveals that there is one or more uncertified business logic modules implementing the
requested business logic software present, the method proceeds to step 408 wherein a routing
function is ascertained to determine whether one of the uncertified business logic modules

should service the incoming transaction request.

In general, the routing function is configured to increase the load level of the uncertified
business logic module in a gradual manner. By way of example, the uncertified business logic
module may be brought up to capacity gradually over time, or to some predefined threshold

initially, allowed to level off for a period of time to assure that the uncertified business logic

26

10

15

20

25

30

WO 01/01221 PCT/US00/17857

module can function satisfactorily at that threshold level before that uncertitied business logic
module is permitted to receive additional loads. In the course of certifying an uncertified
business logic module, multiple threshold levels may be involved. As can be appreciated by
those skilled in the art, as long as the routing function allows the uncertified business logic
module to be brought on line gradually, the specific mathematical construct of the routing

function may vary widely depending on need and preference.

If the routing function suggests that the uncertified business logic modules should
handle the incoming transaction request, the incoming transaction request is then routed to one
of the uncertified business logic modules to handle in step 410. In one embodiment, since the
IDA also has available to it performance data pertaining to the individual servers, the IDA may
intelligently route the incoming transaction request to a specific uncertified business logic
module that can service the transaction request in the most timely manner among all uncertified

business logic modules. Additionally and/or alternatively, all uncertified business logic

~ modules may be loaded with transaction requests gradually and equally so as to minimize the

impact on the whole clustered computer system if any random module fails. By way of
example, if one of the servers implementing the uncertified business logic modules is
particularly powerful, it may be wise to avoid allowing that powerful server to handle a high
percentage of the transaction requests to lessen the adverse impact in the event of failure by

that server.

In a particularly advantageous embodiment of the present invention, the adverse impact
of one or more server crashing during certification may be reduced even further by staging the
number of servers simultaneously undergoing certification such that initially, only a very small
number (e.g., 1 or only a few) is first allowed to undergo certification. For subsequent groups
of servers undergoing certification, their number may be allowed to increase such that a greater
number of servers concurrently undergoing certification may be allowed. With this technique,
initial crashes may be experienced by only a small percentage of the servers. As time goes by
and more problems are identified and addressed, the crashes are typically less frequent and a
greater number of servers may be allowed to undergo certification concurrently. In this

manner, the risk of service disruption is advantageously kept low.

The risk of service disruption may be further reduced by installing the uncertified

business logic modules only on servers other than those originally existing in the cluster. The

27

10

15

20

25

30

WO 01/01221 PCT/US00/17857

servers to be loaded with the uncertified business logic modules in this case may be new
servers that are installed locally with the cluster or servers that are remote to the cluster but are
registered with the local IDA for receiving and servicing transaction requests for the purpose of
providing redundancy during software upgrade. Alternatively or additionally, the remote
servers may run the old, certified modules to provide redundancy while the uncertified modules
are loaded onto the existing local servers to leave the capacity attributable to the certified
business logic module substantially unchanged. Thus, if one or even all of the servers
undergoing certification crash, there would be little impact since the certified modules are still
available to the cluster to service the transaction requests. To eliminate impact even on the
transaction requests handled by the failed servers prior to their crashing, the transaction
requests routed to the uncertified copies may be executed concurrently on a certified copy or

cached to allow seamless recovery in the event of a crash.

In step 412, the method ascertains whether the uncertified business logic module has
passed some predefined reliability criteria. The reliability criteria may be ascertained from
reviewing the log file associated with the uncertified business logic module and/or the server
undergoing certification (e.g., by consulting business logic server log file block 316 of Fig. 3,
for example). If the reliability criteria is satisfied, the uncertified business logic module may

have its status changed to certified in step 414. Thereafter, the steps of Fig. 4 end at step 416.

Fig. 5 illustrates, in accordance with one embodiment of the present invention, step 410
of Fig. 4 (routing the transaction request to the uncertified business logic module to handle) in
greater detail. In step 502, the transaction request is forwarded to the uncertified business logic
module. In step 504, the transaction being performed is optionally safeguarded by additionally
caching the transaction request data or by running the request concurrently on one of the
certified business logic modules, which may be local or remote. If the uncertified business
logic module or the server on which it is implemented crashes (step 506), the transaction
request currently underway may be completed by the certified business logic that runs the
transaction concurrently or the transaction may be executed again using the cached data
pertaining to the transaction using another certified business logic module. This is shown in
step 508. Thereafter, the uncertified business logic module that failed is removed from the

cluster (step 510) and its status may be updated accordingly with the business logic IDA.

28

10

15

20

25

30

WO 01/01221 PCT/US00/17857

On the other hand, if the uncertified business logic module 1s able to complete the
transaction, its reliability indicator is upgraded (by, for example, upgrading the operation log
file of the uncertified business logic module (step 512)). Of course if the uncertified business
logic module is able to complete the transaction, there may be no need to complete the
transaction request by the redundant certified business logic module since only one business
logic module should complete servicing the transaction request by the user. In some cases, a
preference rule may be set such that the transaction is always completed by the uncertified
business logic module if no crashing occurs to simulate as closely as possible the conditions
that the uncertified business logic module will experience once it becomes certified. On the
other hand, another preference rule may dictate that the certified business logic module always
complete the transaction during the software upgrade period so as to minimize any impact on
customer service and system reliability if the uncertified business logic module fails, since the

uncertified business logic modules are not relied on to complete the transactions anyway.

In the e-commerce application, it is expected that the business logic modules may be
dynamically reshuffled among the servers of the cluster, may be upgraded by the e-commerce
service and/or its partners, and may be implemented on a variety of heterogeneous servers all
having different capabilities and mix of business logic modules. Accordingly, at any given
time, some of the business logic modules may be in the process of being upgraded or some of
the resources they may need (such as the local database) may be temporarily unavailable due to
maintenance/upgrade. Further, some business logic modules may be implemented on servers
that are more powerful than others, and some may be off-site at a remote location. All these
activities impact the response time for transaction requests and need to be dynamically

accounted for in order to minimize the wait time for customers of the e-commerce site.

In accordance with one embodiment of the present invention, the routing of traffic
(either all transaction requests pertaining to a user or discrete transaction requests) i1s made
more efficient utilizing the additional information pertaining to the business logic modules and
business logic servers that are tracked by the IDAs. In contrast to prior art routing techniques
which depend primarily on the relative load levels on the servers, the IDA of the present
invention further employs, among others, information pertaining to the processing capacity of

the servers, the certified/uncertified status of the business logic modules, and the average

29

10

15

20

25

30

WO 01/01221 PCT/US00/17857

latency ot the servers on which the requisite business logic modules are implemented, 1n order

to make its routing decision.

Information pertaining to the processing capacity of the servers may powerfully impact
the routing decision since a more powerful server may be able to process a transaction request
faster than a less powerful server even if the more powerful server may appear to be more
heavily loaded. With reference to Fig. 3, The server processing capability is tracked by the
business logic IDA (as well as other IDAs for their clusters) in block 310. The server
processing capability may be obtained when the server is first installed and registered with the

IDA.

The certified/uncertified status of the business logic modules may impact the ability of
a business logic module to accept transaction requests since, as mentioned earlier, a routing
function may limit the speed at which the load on an uncertified business logic module is
ramped up after software upgrade. The certified/uncertified status may be registered by the
business logic module undergoing certification or by the server for all the business logic
modules implemented on that server if one of the business logic modules currently undergoes
certification and poses a reliability risk to the server. This is because, as mentioned, even if the
business logic module being requested has not been upgraded recently, another business logic
module on its server may have been upgraded or loaded recently, which affects the reliability
risk of that server as well as all business logic modules implemented thereon. When a business
logic module is labeled as uncertified, it may be deemed less preferred for servicing transaction

requests by a routing function.

The geographic distribution of the clusters and servers may also impact routing
decisions. Nowadays, it is common to find servers of a given e-commerce service widely
dispersed over a large geographic area, both to improve service to its worldwide customer base
and also to provide some measure of protection against natural or man-made catastrophes that
may impact a given geographic location. In general, it is desired that transaction requests
originated from a given locality be serviced by business logic servers that are closest to the
place of origination. However, there are times when local processing resources may not be
adequate and remote servers need to be employed in order to reduce the transaction request
processing times. By way of example, if a significant number of business logic modules are

undergoing certification, the available resources of a particular local cluster for servicing

30

10

15

20

25

30

WO 01/01221 PCT/US00/17857

transaction requests may be reduced. Further, if the local database resources that the local
servers need to service transaction requests are temporarily unavailable or overloaded, the
delay may be less if remote servers are called upon to service the transaction requests
originated locally, particularly if the remote servers have ready and quick access to the needed
database resource at the remote site. The business logic server average latency is kept by block
314 of Fig. 3, for example. Still further, since the servers are interconnected with one another
and with other components of the clustered computer system using networking technologies,
network congestion at specific locations may unduly increase the time required to process a
transaction request. Due to network latency, it may be possible to reduce the transaction

request service time by routing the transaction request to a remote server for servicing.

Fig. 6 illustrates, in accordance with one embodiment of the present invention, a
clustered computer system architecture wherein a business logic IDA 602 of a local site 604
receives feedback data from both the business logic servers/business logic modules of a remote
site 606 (via a connection 608) and business logic servers/business logic modules of local site
604 so that it can, through connection 610, direct traffic to the business logic servers of the
remote site. Network traffic data pertaining to specific connections within and between the
various sites may be obtained through the use of appropriate network sniffers or other software
tools and furnished to the business logic IDA 602 of local site 604 so that the appropriate
calculation pertaining to average latency can be made. A connection 612 is also shown,
indicating that business logic IDA 602 is also capable of directing the business logic servers of
remote site 606 to reconfigure themselves to achieve load balancing and fault tolerance. In
embodiments if the present invention, one or both of the routing and the reconfiguration
connections from one site to another may also be made between IDA’s. Reconfiguration of the
business logic modules to achieve load balancing and fault tolerance is discussed in detail later

herein.

For simplicity’s sake, the connections that facilitate routing and reconfiguration of the
business logic servers/business logic modules of local site 604 by business logic IDA 614 of
remote site 606 are also not shown. Likewise, the reverse connections that allow business logic
IDA 614 of remote site 606 to track information pertaining to the business logic
servers/business logic modules of local site 604 are not shown in Fig. 6. Further, similar

connections between the servers and IDAs of the web server stage and the data repository

31

10

15

20

25

30

WO 01/01221 PCT/US00/17857

stages ot the various sites are also not shown in order to simplify the illustration. Additionally,
more than one remote site may be present. However, the details pertaining to these

connections should be readily apparent to the artisan given the disclosure above.

As mentioned earlier, the desire to employ heterogeneous clusters in order to leverage
on the base of preexisting business logic software programs renders it difficult for the prior art
to implement fault tolerance in the clusters. To facilitate discussion, Fig. 7 illustrates, in
accordance with one embodiment of the present invention, a clustered computer system 702
having a business logic stage which comprises a cluster of heterogeneous computers, as
indicated by their diverse shapes to symbolically indicate that servers 704, 706, 708, and 710
may be implemented by computers running on different hardware and operating systems. This
is typically the case when the servers are chosen for their compatibility with the business logic
modules therein (e.g., business logic modules 712, 714, 716 in business logic server 704 or
business logic modules 718 and 720 in business logic server 706 to allow the e-commerce site
to take advantage of the existing base of business logic software instead of being forced to
choose only among those compatible with a given platform, as in the case with the
homogeneous cluster approach). As mentioned, the technologies, protocols, and
methodologies exist for allowing heterogeneous computers to communicate and work

cooperatively and will not be discussed in greater detail herein.

In accordance with one embodiment of the present invention, as long as the business
logic servers can communicate its status and the status of its business logic modules to the
business logic IDA, the IDA can use this information, along with its reconfiguration facility, to
reshuffle the business logic modules among the business logic servers to achieve redundancy.
Thus, there is no requirement that the business logic servers be homogeneous or even be

located in the same site.

Fig. 8 illustrates, in accordance with one embodiment of the present invention, a
flowchart illustrating the steps for maintaining a proper level of fault tolerance for a business
logic software. In contrast to the prior art, fault tolerance may be implemented in the present
invention for a business logic software instead of at the server level. This is important in
heterogeneous clusters as not all servers have thereon the same copies of Buenos logic
software. In step 802, the fault tolerance level for a particular business logic module is

ascertained. Typically, this is ascertained by determining the number of servers that have

32

10

15

20

25

30

WO 01/01221 PCT/US00/17857

thereon the business logic module in question and compare this number to some predetined
fault tolerance threshold number. This information may be obtained by reviewing the list of
business logic modules implemented on the various business logic servers of the cluster. Since
failure typically occurs at the server level, i.e., a business logic module failure typically affects
the entire server or at least all copies of that business logic module on that server, it is generally
the number of servers having thereon copies of the business logic software at issue that is
material in step 802. In one embodiment, uncertified business logic modules pertaining to a
particular business logic software (or servers undergoing maintenance/software upgrade) are
not considered sufficiently reliable and may not be counted (or only partially counted) toward

the number of business logic modules available to provide fault tolerance.

If the fault tolerance level for the business logic module in question is below a
predefined acceptable level (as determined in step 804), the method proceeds to step 806 to
warn the system operator and give the operator an opportunity to add additional servers.
Additionally or alternatively, additional business logic modules pertaining to the business logic
software at issue may be loaded onto existing business logic servers of the cluster (particularly
those that did not already have a copy of that business logic module running). However, the
addition of a software module, no matter how well tested and proven, always involves
reliability risks (due to, for example, software conflicts) and it is typically less risky to employ
a server that is new to the cluster so as not to interfere with the other servers already running in

the cluster.

If the operator does not respond after a predefined period of time or if the operator
affirmatively indicates that no additional server will be added, the method proceeds to step 808
to search for the least utilized server in the cluster (or a powerful server in the local cluster that
is relatively lightly loaded) that does not already have a copy of the business logic module at
issue loaded. Preferably, the selected server is also one that is known to the IDA to have the
ability or compatibility to accept another copy of the business logic software having the
inadequate fault tolerance level. Again, this information may be ascertained by reviewing the
IDA, e.g., the business logic server directory 304 of Fig. 3. If a new server has recently been
added to the cluster in step 806 to address the inadequate fault tolerance condition, the
utilization level of the new server is of course about zero in step 808 and if that new server is

compatible to receive another copy of the business logic module in question, that new server

33

10

15

20

25

30

WO 01/01221 PCT/US00/17857

may be selected. At any rate, one of the existing servers in the cluster that 1s both least utilized
and compatible/able to accept another copy of the business logic module at issue will be

selected.

In step 810, another copy of the business logic module pertaining to the business logic
software that has the inadequate fault tolerance level is loaded onto the server selected in step
810. The business logic IDA may accomplish this by issuing an appropriate command to the
selected business logic server through its reconfiguration facility. In the Internet case, this may
include instructing the business logic server to access another computer on the net to retrieve a
copy of the business logic module to be loaded and load it. Thereafter, the server that has just
been loaded with the business logic module that previously has the inadequate fault tolerance
level is registered with the IDA (step 812) to begin accepting transaction requests. In one
embodiment, the server that has just been loaded with a copy of the business logic module may
be (but not required to be) registered as uncertified and the addition of another copy of this
business logic module may be treated as a software upgrade operation to this server to allow
the load to be increased gradually in accordance with the software upgrade method described

earlier herein.

Fig. 9 is a flowchart illustrating, in accordance with one embodiment of the present
invention, a method for increasing the fault tolerance level pertaining to a particular business
logic software which may also include the use of remote servers. As discussed in connection
with Fig. 6, the clusters of the clustered computer system may be scattered among different
geographically dispersed sites to improve service to geographically dispersed customers and/or
to increase survivability in case of a natural/manmade disaster that affects one site. In one
embodiment, the business logic servers of a remote site (e.g., remote site 606 of Fig. 6) may be
employed to increase the fault tolerance level for a particular business logic software associated

with a local site (e.g., local site 604 of Fig. 6).

In step 902, the fault tolerance level for a particular business logic software of a given
local site is ascertained. In the context of a multiple-site clustered computer system, this may
be ascertained by determining the number of servers at the local site (e.g., local site 604 of Fig.
6) that have thereon copies of the business logic module in question and compare this number
to some predefined fault tolerance threshold number. In one embodiment, uncertified business

logic modules (or modules implemented on servers undergoing maintenance/software upgrade)

34

10

15

20

25

30

WO 01/01221 PCT/US00/17857

are not considered sufficiently reliable and may not be counted (or only partially counted)

toward the number of business logic modules available to provide fault tolerance.

If the fault tolerance level for the business logic module in question is below a
predefined acceptable level (as determined in step 904), the method proceeds to step 906 to
warn the system operator and give the opérator an opportunity to add additional servers to the
local cluster. Additionally or alternatively, additional copies of the business logic software
having the inadequate level of fault tolerance can be loaded onto existing business logic servers
of the local cluster (particularly those that did not already have a copy of that business logic

software running).

If the operator does not respond after a predefined period of time or if the operator
affirmatively indicates that no additional server will be added, the method proceeds to step 908
to search for the least utilized server in the local cluster (or a powerful server in the local
cluster that is relatively lightly loaded) that does not already have the business logic module in
question loaded. As mentioned earlier, this determination may be made by reviewing
information collected at the IDA, such as the list of business logic servers, the list of business
logic modules on each server, the load level on the servers, and the like. Preferably, the
selected local server is also one that is known to the local IDA to have the ability or
compatibility to accept another copy of the business logic having the inadequate fault tolerance
level. If there is one or more local server that has the capability (defined as, for example, a
minimum processing capability threshold) or compatibility to accept another copy of the
business logic software having the inadequate fault tolerance level (as determined in step 910),
the method proceeds to step 916 to load another copy of the business logic module onto

selected business logic server at the local site.

On the other hand, if there is no local server that has the capability (defined as, for
example, a minimum processing capability threshold) or compatibility to accept another copy
of the business logic software having the inadequate fault tolerance level, the method proceeds
to step 912 to select a business logic server in the remote cluster (e.g., the cluster in the
business logic stage of remote site 606 of Fig. 6) to provide fault tolerance for the local cluster.
By way of example, a business logic server that already has a copy of the business logic
module in question loaded to serve as the redundant business logic server for the local cluster

for the purpose of increasing fault tolerance therein. In other words, one or more of the remote

35

10

15

20

25

30

WO 01/01221 PCT/US00/17857

servers are now selected to contribute their processing capability to the local cluster to increase

fault tolerance.

If there is no business logic server in the remote cluster that already has the business
logic module in question loaded, another business logic module at the remote site may still be
employed to provide fault tolerance for the local site. To accomplish this, the least utilized
server in the remote cluster (or a powerful server in the remote cluster that is relatively lightly
loaded) that does not already have the business logic module in question loaded and that is
known to the local IDA to have the ability or compatibility to accept another copy of the
business logic software having the inadequate fault tolerance level is selected to be loaded with
another copy of the business logic software needing the increased level of fault tolerance.
Typically, the loading may be accomplished via the local IDA through its reconfiguration
facility or through the remote IDA (under instruction from the local IDA). Thereafter, the
selected server (either remote or local) having thereon another copy of the business logic
software that requires the increased fault tolerance level is registered with the local IDA (step
914) to begin accepting transaction requests. In one embodiment, the newly registered server
may be (but not required to be) registered as uncertified to allow the load to be increased
gradually in accordance with the software upgrade method described earlier herein.
Additionally, if the newly registered server is a remote server, its status may be noted by the
IDA so that it is less preferred in the routing of incoming transaction requests at the local site in
order to avoid creating network congestion unnecessarily or to avoid the long latency typically

associated with using remote servers.

It should be noted that the selection of a business logic server to provide additional fault
tolerance protection may also be made by reviewing the load level data, the latency data and/or
the processing capability data kept at the business logic IDAs without regard to whether the
additional server is “local” or “remote.” This may very well be the case if the clusters of the
clustered computer system network are connected through reliable, high speed network
connections and the geographical distinction may therefore be less important. In this case, the
business logic server that is mostly lightly loaded may well be selected to be loaded with
another copy of the business logic software needing increased fault tolerance. Alternatively or
additionally, a rule may be stated wherein it is more preferable to employ a remote server that

already has thereon a copy of the business logic software for the purpose of increasing fault

36

10

15

20

25

30

WO 01/01221 PCT/US00/17857

tolerance at the local cluster (provided that the load level and latency are acceptable) than to

load another copy of the business logic software onto another local server (since such software
loading operation may be deemed in some systems to take too long and/or unduly increase the
reliability risk). Other variations exist and they should be within the skills of the artisan given

this disclosure.

In accordance with one embodiment of the present invention, the fault tolerance level
for a business logic software may be increased prospectively to account for activities or events
that may increase the reliability risk. By way of example, software upgrade or software loading
operations may heighten the risk of one or more server crashing (and may therefore potentially
affect the reliability of the copy being upgraded/loaded/modified and/or any business logic
module that is implemented on a server undergoing the reliability risk-affecting activities).
This is particularly true if software upgrade and/or maintenance activities are performed on a
group of business logic servers and their simultaneous crashing would lead to a catastrophic
shortage in the processing capability for one or more of the business logic software even when

a “normal” level of fault tolerance exists prior to failure.

As another example, if one or more of the remote servers that are normally relied on for
providing possible fault tolerance relief are inoperative (e.g., due to failure at the remote site or
on the link between the sites), the fault tolerance level at the local site may be increased just in
case fault tolerance relief is needed and the extra capacity is not available in the remote servers.
In cases where some event renders the fault tolerance level that normally exists inadequate to
protect the system against failure, the fault tolerance level may be increased prospectively over
the level normally existing in the absence of such reliability risk-affecting activities. In
general, fault tolerance may be raised by either increasing the predefined acceptable fault
tolerance level for the business logic software that experiences the heightened reliability risk or
by not taking into account (or taking into account only partially) the contribution of the copies
of the business logic module at risk in the calculation of available fault tolerance. By way of
example, when a server undergoes software upgrade, the copies of the business logic modules
implemented thereon may be downgraded (or discounted altogether) in terms of their ability to

provide redundancy for fault tolerance purposes.

Since different business logic servers of the cluster may have thereon different sets of

business logic modules, there may be times when there is more demand placed on a particular

37

10

15

20

25

30

WO 01/01221 PCT/US00/17857

business logic sottware than others. Thus, even with correct routing, the set ot business logic
servers having thereon copies of the business logic software in demand will be more heavily
loaded than other business logic servers which do not have thereon a copy of the business logic
software in demand. In extreme cases, some business logic servers of the cluster may be
stressed while other business logic servers may sit idle. Adding additional servers to the
cluster to handle the spikes in demand on a particular business logic software, as is done in the
prior art, has its disadvantages. As discussed, the addition of a server to a cluster is typically an
expensive option and usually involves a substantial delay (during which time transaction
request response suffers) and investment in time (since it requires the acquisition, installation,
and configuration of new hardware in the existing cluster). Moreover, if such an approach is
taken, the number of servers required to handle peak demand for every business logic software
implemented in the cluster may be disproportionately large relative to the average processing
requirement placed on the cluster since the demands on different business logic modules may
fluctuate at different times, and a business logic module that may be idle at one point in time

may be heavily used at other times, and vice versa.

In accordance with one embodiment of the present invention, there is provided a load
balancing technique which involves reconfiguring the business logic servers using business
logic module-specific load information collected by the IDAs. Unlike the prior art situation
wherein the relative load information is collected at the server level, the present invention
preferably obtains the load information on the business logic modules themselves. With this
information, it is possible to ascertain the specific business logic module(s) that contribute to
server stress, and to identify the business logic module(s) that are relatively idle at any given
point in time. Once identified, the business logic modules may be shuffled among the business
logic servers of the cluster to allow the load to be better balanced among the business logic

SErvers.

Fig. 10 illustrates, in accordance with one embodiment of the present invention, the
steps involved in performing load balancing by shuffling the business logic modules among the
business logic servers of a cluster if it is ascertained that the load level on any of the business
logic servers is unacceptably high, e.g., greater than some predefined load level for some

predefined time period.

38

10

15

20

25

30

WO 01/01221 PCT/US00/17857

In step 1002, the load levels for the business logic servers ot the cluster are ascertained.
Typically, the load level information is transmitted periodically or on demand from the
business logic servers to the IDA. If the load level on any particular business logic server is
greater than a predefined acceptable load level (as determined in step 1004), the method
proceeds to step 1006 to ascertain the business logic module(s) that are causing the high load
level of the stressed servers. Generally, the identification of the business logic modules that are
causing server stress may be made by reviewing the business logic module-specific load
information received periodically or on demand by the IDA (e.g., by reviewing the processing

demand placed on individual business logic modules that exist on the stressed server).

Once the identity of the business logic module(s) that are causing server stress is
identified, the method may proceed to an optional step 1008 to warn the system operator and
give the operator an opportunity to take action to increase the processing capability of the
business logic software that causes the server stress condition (since additional processing
capability may relieve stress on the stressed servers) and/or reduce the demand on the business
logic servers experiencing the server stress condition. If no action is taken or if the default is
automatic load balancing, the method proceeds to step 1010 to perform load balancing among

the existing business logic servers of the business logic stage.

Load balancing may be performed only among local servers, as is discussed in
connection with Fig. 11 in one embodiment, or may be performed in a manner so as to also
include the remote servers, as is discussed in connection with Fig. 12 in one embodiment.
After load balancing is performed, the method returns to step 1002 to continue to monitor the
load level information on the servers to ascertain whether load balancing has addressed the
server stress problem. Preferably, some time should be allowed to permit the routing
mechanism to distribute the load among the reconfigured servers of the cluster before load
balancing is performed again (to ensure system stability and prevent wild gyrations in the

distributed loads among the servers).

As mentioned earlier, load balancing involves identifying servers of the cluster that can
be loaded with copies of the business logic software identified to be causing server stress so
that the demand on that business logic software may be spread among a greater number of
servers of the cluster. Fig. 11 illustrates, in accordance with one embodiment of the present

invention, the steps for performing step 1010 of Fig. 10, i.e., for shuffling business logic

39

10

15

20

25

30

WO 01/01221 PCT/US00/17857

modules among servers of the cluster to increase the processing capability ot the business logic

software identified to be the cause of server stress.

In step 1102, the method searches for the least utilized server in the cluster (or a
powerful server in the cluster that is relatively lightly loaded) that does not already have a copy
of the business logic module identified to be the cause of server stress already implemented
thereon. Preferably, the selected server is also one that is known to the IDA to have the ability
or compatibility to accept another copy of the business logic module identified to be the cause
of server stress. In step 1104, the server identified as a candidate to relieve the server stress
condition is evaluated to ascertain whether it has sufficient processing capability to receive a
copy of the business logic software identified to be the cause of server stress. If there is
sufficient processing capability in the server identified in step 1102 (as determined in step
1104), the method proceeds to step 1106 wherein another copy of the business logic software
that was identified to be the cause of server stress is implemented on that server in order to
increase the processing capability of the business logic module identified earlier to be the cause

of server stress.

On the other hand, if there is not sufficient processing capability in the server identified
in step 1102 to accept a copy of the business logic software ascertained to be the cause of
server stress (as determined in step 1104), the method proceeds to step 1108 to attempt to move
one or more of the business logic modules currently implemented on that server to another
server to create the needed processing capability. For example, one or more existing business
logic modules on the server identified in step 1102 may be moved onto another server of the
cluster that is also relatively lightly loaded to make room for a copy of the business logic
module ascertained to be the cause of server stress to be loaded onto the server identified in
step 1102. It is preferable, of course that due attention is paid (by checking with the IDA
beforehand) to compatibility issues during business logic module shuffling. The business logic
IDA may accomplish this by issuing appropriate commands to the selected business logic

server(s) through its reconfiguration facility.

Thereafter, the method proceeds to step 1106, which, as mentioned earlier, represents
the step wherein another copy of the business logic software that was identified to be the cause
of server stress is implemented on that server in order to increase the processing capability of

the business logic module identified earlier to be the cause of server stress. In step 1110, the

40

10

15

20

25

30

WO 01/01221 PCT/US00/17857

selected server having thereon another copy of the business logic software that requires the
increased fault tolerance level is registered with the local IDA (step 914) to begin accepting
transaction requests. As mentioned, in one embodiment, the newly registered server may be
(but not required to be) registered as uncertified to allow the load to be increased gradually in

accordance with the software upgrade method described earlier herein.

In one embodiment, load balancing may be performed by increasing by one at a time
the number of servers having thereon the business logic software that has the high demand.
However, it is contemplated that if the traffic spike on a given business logic software is fairly
severe (as ascertained by reviewing the historical profile of transaction requests), a greater
number of servers may be simultaneously loaded with copies of the business logic software that
causes server stress in order to more quickly relieve the stress condition. Further, since the
IDA is aware of the processing capabilities of the business logic servers, the additional number
of servers required may be moderated if one of the more powerful servers is employed to
increase the processing capability of the business logic software causing the original server
stress condition. In some cases, it is contemplated that the number of business logic servers
that are loaded with copies of the business logic software that causes the stress condition may
stay the same after shuffling, albeit with the more powerful servers of the cluster being

substituted in to increase the processing capability of that business logic software.

Fig. 12 is a flowchart illustrating, in accordance with one embodiment of the present
invention, a method for performing load balancing by shuffling the business logic modules
among the remote and local business logic servers. As discussed in connection with Fig. 6. the
clusters of the clustered computer system may be scattered among different geographically
dispersed sites to improve service to geographically dispersed customers and/or to increase
survivability in case of a natural/manmade disaster that affects one site. In one embodiment,
the business logic servers of a remote site (e.g., remote site 606 of Fig. 6) may be employed to
provide server stress relief for a particular business logic module associated with a local site

(e.g., local site 604 of Fig. 6).

In step 1202, the method searches for the least utilized local server in the local cluster
(or a local, powerful server in the local cluster that is relatively lightly loaded) that does not
already have a copy of the business logic software identified to be the cause of server stress

already implemented thereon. Preferably, the selected local server is also one that is known to

4]

10

15

20

25

30

WO 01/01221 PCT/US00/17857

the IDA to have the ability or compatibility to accept another copy of the business logic
software identified to be the cause of server stress. In step 1104, the server identified as a
candidate to relieve the stress condition is evaluated to ascertain whether it has sufficient
processing capability to receive a copy of the business logic software identified to be the cause
of server stress. If there is sufficient processing capability in the server identified in step 1202
(as determined in step 1204), the method proceeds to step 1206 wherein another copy of the
business logic software that was identified to be the cause of server stress is implemented on
the identified server in order to increase the processing capability of the business logic software

identified earlier to be the cause of server stress.

On the other hand, if there is not sufficient processing capability in the local server
identified in step 1202 to accept a copy of the business logic software ascertained to be the
cause of server stress (as determined in step 1204), the method proceeds to step 1208 to
ascertain whether it is possible to move one or more of the business logic modules currently
implemented on that local server to another server to create the needed processing capability.
For example, one or more existing business logic modules on the server identified in step 1202
may be moved onto another server of the cluster that is also relatively lightly loaded to make
room for a copy of the business logic module ascertained to be the cause of server stress to be
loaded onto the server identified in step 1202. This is performed in step 1209. It is preferable,
of course that the new local server(s) that receive these lightly loaded copies are not the ones
that also need relief through load balancing themselves. The business logic IDA may
accomplish this by issuing appropriate commands to the selected business logic server(s)

through its reconfiguration facility.

Since the business logic modules to be moved are lightly used anyway, it may be
possible to simply delete or disable the copy of the lightly loaded business logic modules from
the local server that is identified for relieving the server stress condition. This approach may
be acceptable if there is sufficient fault tolerance and/or processing capability in the remaining
copies of the lightly loaded business logic module after deletion. Alternatively or additionally,
a copy of the business logic module that is to be moved to create additional processing
bandwidth on the server that is identified for relieving the server stress condition may be
loaded on a remote server to still leave the processing capacity of that lightly loaded business

logic module unchanged, albeit through the use of a remote server.

42

10

15

20

25

WO 01/01221 PCT/US00/17857

If reshuffling the business logic modules existing on the local server identitied in step
1202 would result in sufficient processing capacity to allow another copy of the business logic
software identified to be the cause of server stress to be implemented thereon (as determined in
step 1208), the method proceeds to step 1206, which, as mentioned earlier, represents the step
wherein another copy of the business logic that was identified to be the cause of server stress is
implemented on the identified server in order to increase the processing capability of the
business logic module identified earlier to be the cause of server stress. Once the copy is
implemented, the identified server is then registered with the IDA to begin receiving

transaction requests to relieve the server stress condition (step 1260).

On the other hand, if it is determined in step 1208 that reshuffling the business logic
modules existing on the local server identified in step 1202 would not result in sufficient
processing capacity to allow another copy of the business logic software identified to be the
cause of server stress to be implemented thereon, the method proceeds to step 1212 to search a
suitable remote server to relieve the server stress condition on the local cluster. Prior to
resorting to the remote server, the method may try to ascertain with a few local servers to
determine whether shuffling locally would result in local capacity to receive another copy of

the business logic software that causes the server stress.

The suitable remote server may be a lightly loaded remote server that already has a copy
of the business logic software identified to be the cause of server stress already implemented
thereon or a lightly loaded remote server in the remote cluster (or a powerful remote server in
the remote cluster that is relatively lightly loaded) that does not already have a copy of the
business logic software identified to be the cause of server stress already implemented thereon
but can also accept, or be arranged via shuffling at the remote site to accept, a copy of the

business logic software identified to be the cause of server stress.

In step 1212, the remote cluster is first searched for the presence of a lightly loaded
remote server that already has a copy of the business logic software identified to be the cause of
server stress already implemented thereon. If such a server exists (as determined in step 1214),
it is registered with the local IDA and the local IDA may subsequently employ it to relieve the

server stress condition locally.

43

10

15

20

25

30

WO 01/01221 PCT/US00/17857

OUn the other hand, if there does not exist a lightly loaded remote server that already has
a copy of the business logic software identified to be the cause of server stress already
implemented thereon, the method proceeds to step 1216 to search for the least utilized server in
the remote cluster (or a powerful server in the remote cluster that is relatively lightly loaded)
that does not already have a copy of the business logic software identified to be the cause of
server stress implemented thereon. In step 1218, the remote server identified as a candidate to
relieve the stress condition is loaded with another copy of the business logic software that was
identified to be the cause of server stress in order to increase the processing capability of the
business logic software identified earlier to be the cause of server stress. Once the copy is
implemented, the remote server is then registered with the local IDA to begin receiving

transaction requests to relieve the server stress condition.

Thus far, the discussion regarding load balancing has revolved around reactive load
balancing, i.e., balancing the load after the stress condition is detected on one of the business
logic servers. There are times, however, when such load balancing is insufficient to address
the stress condition. By way of example, certain business logic modules may experience an
increase in usage so rapidly that there may be no time to perform load balancing reactively (i.e.,
after detection of the stress condition) without suffering poor transaction request processing

performance or increased reliability risks due to dangerously high stress conditions.

In accordance with one aspect of the present invention, a potential stress condition may
be averted by performing the load balancing among the local servers and/or the remote servers
prospectively. Since the IDAs receive the historical profiles of transaction requests, data
mining techniques may be applied to ascertain the trends of demand placed on various business
logic software programs. By way of example, if the business logic software services bank
withdrawals, an examination of the historical profiles of transaction requests may reveal that
bank withdrawals tend to happen prior to a major holiday and may be the heaviest at the close
of the business day immediately preceding the holiday. This information, coupled with other
information tracked by the IDA such as the distribution of copies of the requisite business logic
software among servers of the local cluster, the capabilities of the servers of the local cluster,
the demand that may also be placed on other business logic modules (which are implemented
on the servers of the local cluster) at the same time the peak demand is expected to happen on

one of the business logic software, may be employed to determine whether a stress condition is

44

10

15

20

25

30

WO 01/01221 PCT/US00/17857

likely to occur on one or more servers of the local cluster and whether load balancing should be

performed prior to the expected peak demand.

Fig. 13 illustrates, in accordance with one embodiment of the present invention, the
steps involved in performing load balancing prospectively by shuffling the business logic
modules among the business logic servers of a cluster if it is ascertained prospectively from
data available to IDAs (such as the historical profile) that the load level on any of the business
logic servers may become unacceptably high at some point in time, e.g., greater than some

predefined load level.

In step 1302, the load levels for the business logic servers of the cluster are forecasted
from data available to IDAs (such as the historical profiles of transaction requests). Typically,
the load level information is forecasted using a data mining technique. Implementations of
data mining for this purpose may be found in the aforementioned data-mining applications,

which are incorporated by reference herein.

If the load level on any particular business logic server is forecasted to be greater at a
given point in time than a predefined acceptable load level (as determined in step 1304), the
method to an optional step 1308 to warn the system operator and give the operator an
opportunity to take action to increase the processing capability of the business logic software
that is forecasted to cause the server stress (since additional processing capability may relieve
the potential server stress from the anticipated increase in traffic) and/or reduce the forecasted
demand on the business logic software (e.g., by diverting traffic away from this cluster). If no
action is taken or if the default is automatic load balancing, the method proceeds to step 1310
to perform load balancing among the existing business logic servers of the business logic stage.
Preferably, the load balancing is performed only a short time before the expected stress
condition so that interference with the normal distribution of processing capacity among the
business logic servers is kept minimal. Exemplary techniques of load balancing among local
servers and among both local and remote servers are discussed in details in connection with

Figs. 11 and 12 herein and is not repeated here for brevity’s sake.

While this invention has been described in terms of several preferred embodiments,
there are alterations, permutations, and equivalents which fall within the scope of this

invention. It should also be noted that there are many alternative ways of implementing the

45

WO 01/01221 PCT/US00/17857

methods and apparatuses of the present invention. It is therefore intended that the tollowing
appended claims be interpreted as including all such alterations, permutations, and equivalents

as fall within the true spirit and scope of the present invention.

46

10

15

20

25

WO 01/01221 PCT/US00/17857

CLAIMS

What is claimed is:
1. A clustered computer system having at least one cluster of computers operatively
coupled to service transaction requests for a plurality of software programs implemented as

software modules on said cluster of computers, comprising:
a first computer;

a second computer operatively coupled with said first computer in a cluster

configuration;

an intelligent director agent operatively coupled with both said first computer and said
second computer, said intelligent director agent receiving both computer-specific information
and software module-specific information from said first computer and said second computer,
said intelligent director agent performing at least one of a routing of said transaction requests to
respective ones of said first computer and said second computer and a reconfiguration of said
software modules implemented on said cluster of computers, said one of said routing of said
transaction requests to respective said ones of said first computer and said second computer
and said reconfiguration of said software modules implemented on said cluster of computers is
performed responsive to both said computer-specific information and software module-specific

information from said first computer and said second computer.
2. The clustered computer system of claim 1 wherein said computers are heterogeneous.

3. The clustered computer system of claim 1 wherein said software module-specific
information includes software version information pertaining to each software module on said

computers.

4. The clustered computer system of claim 1 wherein said intelligent director agent is
further configured to receive external historical profiles pertaining to past transactions requests

destined for said software programs implemented on said cluster of computers.

5. The clustered computer system of claim 4 wherein said intelligent director agent

includes a data mining module configured to analyze said external historical profiles.

47

10

15

20

25

WO 01/01221 PCT/US00/17857

6. The clustered computer system of claim 5 wherein said sottware programs representing

software programs adapted for e-commerce application through the Internet.

7. An intelligent director agent configured for use in a clustered computer system having
at least a first computer and a second computer connected in a cluster configuration, both said
first computer and said second computer being configured to run software modules pertaining
to a software program, said intelligent director agent being configured to be operatively

coupled with both said first computer and said second computer, comprising:

a first input module for receiving a transaction request that requires said software

modules on said first computer and said second computer,

a second input module for receiving both computer-specific information and software

module-specific information from said first computer and said second computer;

a software module selector configured for selecting one of said first computer and said
second computer for servicing said transaction request, said software module selector
performing said selecting responsive to both said computer-specific information and said

software module-specific information from said first computer and said second computer.

8. The intelligent director agent of claim 7 further comprising a data mining module
configured to receive external historical profiles pertaining to transaction requests destined for

said plurality of software programs.
9. The intelligent director agent of claim 7 wherein said computers are heterogeneous.

10. The intelligent director agent of claim 9 further comprising a configurator module for
shuffling said software modules on said first computer and said second computer, said
shuffling being performed responsive to both said computer-specific information and said

software module-specific information from said first computer and said second computer.

11. The intelligent director agent of claim 7 wherein said software module-specific

information includes load level information pertaining to said software logic modules.

12. The intelligent director agent of claim 7wherein said software programs represent

software programs adapted for e-commerce application through the Internet.

13. A method for routing a transaction request that requires a software program

implemented as software modules on a plurality of computers of a clustered computer system,

48

10

15

20

25

WO 01/01221 PCT/US00/17857

said plurality of computers being connected in a cluster configuration, at least two ot said
plurality of computers being configured to run software modules pertaining to a software

program, said plurality of computers being coupled to an intelligent director agent, comprising:

receiving at said intelligent director agent computer-specific information pertaining to
said plurality of computers, said computer-specific information including load level

information on respective ones of said plurality of computers;

receiving at said intelligent director agent software module-specific information

pertaining to said software modules;

selecting a given one of said plurality of computers to route said transaction request to,
said selecting being performed responsive to both said computer-specific information and said

software module-specific information; and

issuing a command from said intelligent director agent to facilitate routing of said

transaction request to said given one of said plurality of computers responsive to said selecting.

14. The method of claim 13 wherein said software module-specific information includes a

software version of respective ones of said plurality of computers.

15. A method for upgrading a software program from a first version to a second version,
said software program being implemented as software modules running on a plurality of
computers coupled in a cluster configuration in a clustered computer system, said method

comprising:

replacing a subset of said software modules with said second version of said software
program;

assigning said subset of software modules with a first certification level;

monitoring performance of said subset of software modules to ascertain whether said

subset of software modules meet a predefined reliability criteria after said replacing;

if said subset of software modules meet said predefined reliability criteria, designating
said subset of software modules with a second certification level, wherein said subset of
software modules receive transaction requests that require said software program at a first rate
when assigned said first certification level, said subset of software modules receive said

transaction requests that require said software program at a second rate when assigned said

49

10

15

20

25

WO 01/01221 PCT/US00/17857

second certification level, said second certification level being higher than said tirst

certification level.

16. The method of claim 15 wherein said software program represents a software program

adapted for an e-commerce application through the Internet.
17. The method of claim 15 wherein said plurality of computers are heterogeneous.

18. The method of claim 15 further comprising monitoring performance of said subset of
software modules over time to detect a failure condition associated with an given software

module of said subset of software modules; and

removing said given software module from said clustered computer system if said

failure condition is detected.

19. The method of claim 15 further comprising safeguarding a transaction request serviced
by said subset of software modules while said subset of software modules has said first

certification level.

20. The method of claim 15 wherein said plurality of computers are coupled to an
intelligent director agent, information pertaining to certification levels of said software logic
modules are tracked by said intelligent director agent to permit said intelligent director agent to

ascertain a certification level associated with said each of said software modules.

21. A method for enhancing reliability while upgrading a software program implemented in
a clustered computer system from a first version to a second version, said software program
being implemented as software modules running on a plurality of computers coupled in a

cluster configuration in a clustered computer system, said method comprising:
ascertaining a certification level associated with each of said software modules;

if a certification level of a given software module of said plurality of software modules
has a first certification level, limiting a load level on said given software module to a first load

level;

if a certification level of a given software module of said plurality of software modules
has a second certification level, allowing said load level on said second routing transaction

requests to reach a second load level higher than said first load level.

50

10

15

20

25

WO 01/01221 PCT/US00/17857

22. ‘The method of claim 21 wherein said first certification level is assigned to said given
software module when said given software module is initially installed on said clustered

computer system.

23. The method of claim 22 further comprising monitoring performance of said given
software module over time to ascertain whether said given software module meets a predefined

reliability criteria; and

if said performance of said given software module meets said predefined reliability

criteria, assigning said given software module said second certification level.

24. The method of claim 21 wherein said software program represents a software program

adapted for an e-commerce application through the Internet.
25. The method of claim 21 wherein said plurality of computers are heterogeneous.

26. The method of claim 21 further comprising monitoring performance of said given
software module over time to detect a failure condition associated with said given software

module; and

removing said given software module from said clustered computer system if said

failure condition is detected.

27. The method of claim 21 further comprising safeguarding a transaction request serviced

by said given software module if said given software module has said first certification level.

28. The method of claim 21 wherein said plurality of computers are coupled to an
intelligent director agent, information pertaining to certification levels of said software logic
modules are tracked by said intelligent director agent to permit said intelligent director agent to
perform said ascertaining said certification level associated with said each of said software

modules.

29. A method for maintaining a predefined acceptable fault tolerance level for a plurality of
software modules implementing a software program running on a first plurality of computers
coupled together in a cluster configuration in a first cluster in a clustered computer system, said
first plurality of computers being coupled to a first intelligent director agent, said method

comprising:

51

10

15

20

25

WO 01/01221 PCT/US00/17857

tracking, using said first intelligent director agent, status of said sottware modules

running on said first plurality of computers;

ascertaining a fault tolerance level associated with said software program, said
ascertaining being ascertained by examining said status of said software modules running on

said first plurality of computers;

if said fault tolerance level is below said predefined acceptable fault tolerance level,
searching for a first suitable computer among said first plurality of computers to load another
module of said software program thereon, said first suitable computer representing a computer
of said first plurality of computers that does not have a module of said software program
running thereon, said first suitable computer being compatible to execute said another copy of

said computer program; and

if said first suitable computer is available, loading said another module of said software
program on said first suitable computer, registering said first suitable computer as a computer
capable of servicing transaction requests pertaining to said software program after said another
module of said software program is loaded onto said first suitable computer, and routing said
transaction requests pertaining to said software program to said first suitable computer after

said registering.

30. The method of claim 29 further comprising issuing a warning to an operator of said
clustered computer program if said fault tolerance level is ascertained to be below said

predefined fault tolerance level.

31. The method of claim 29 wherein said first suitable computer further represents a least
heavily loaded computer of said first plurality of computers that does not have said module of

said software program running thereon.

32. The method of claim 29 wherein said software program represents a software program

adapted for an e-commerce application through the Internet.
33. The method of claim 29 wherein said plurality of computers are heterogeneous.

34. The method of claim 29 wherein said clustered computer system includes a second

plurality of computers coupled together in a cluster configuration in a second cluster, said

52

10

15

20

25

WO 01/01221 PCT/US00/17857

second cluster being located in a geographic site that is remote from a geographic site

implementing said first cluster, said method comprising:

searching, if said fault tolerance level is below said predefined acceptable fault
tolerance level and said first suitable computer is not available, for a second suitable computer
among said second plurality of computers to load another module of said software program
thereon, said second plurality of computers being coupled together in a second cluster
configuration at a geographic site remote from said first plurality of computers, said second
suitable computer representing a computer of said second plurality of computers that does not
have a module of said software program running thereon and being compatible to execute said

another copy of said computer program;

if said second suitable computer is available, loading said another module of said
software program on said second suitable computer, registering said second suitable computer
as a computer capable of servicing transaction requests pertaining to said software program
after said another module of said software program is loaded onto said second suitable
computer, and routing said transaction requests pertaining to said software program to said

second suitable computer after said registering.

35. The method of claim 34 wherein said searching for said second suitable computer
employs software module-specific information stored at a second intelligent director agent

associated with said second plurality of computers at said second site.

36. The method of claim 34 wherein said loading another module of said software program
on said second suitable computer is performed responsive to instructions from said first

intelligent director agent.

37. The method of claim 34 wherein said loading another module of said software program
on said second suitable computer is performed responsive to instructions from said second

intelligent director agent.

38. The method of claim 29 wherein said software program represents a software program

that implement business logic in said clustered computer system.

53

10

15

20

25

WO 01/01221 PCT/US00/17857

39. The method of claim 29 further comprising issuing a warning to an operator ot said
clustered computer system if said fault tolerance level associated with said software program is

ascertained to be below said predefined acceptable fault tolerance level.

40. The method of claim 29 further comprising removing a first software module from said
first suitable computer to allow said first suitable computer to have sufficient processing

capability to be loaded with said another module of said software program.

41. A method for balancing load levels among a plurality of computers coupled together in
a cluster configuration in a clustered computer system, said plurality of computers being

coupled to a first intelligent director agent, said method comprising:

ascertaining a first set of load levels associated with said plurality of computers, said
ascertaining being made responsive to data received from said plurality of computers at said
intelligent director agent, said data representing load level information experienced

substantially currently by said plurality of computers;

if one of said first set of load levels associated with a first computer of said plurality of
computers exceeds a predefined threshold, ascertaining a software program that causes stress

on said first computer of said plurality of computers; and

loading another module of said software program on a second computer of said
plurality of computers, said second computer representing a computer that is compatible to run
said another module of said software program, said second computer further representing a
computer of said plurality of computer that did not run said software program prior to said

loading.
42. The method of claim 41 wherein said loading said another module includes

identifying, using said intelligent director agent, a given computer among said plurality
of computers, said given computer representing a computer that is least heavily loaded among
computers that both are compatible to run said another module of said software program and

did not run said software program prior to said loading; and

designating said given computer said second computer.

54

10

15

20

25

WO 01/01221 PCT/US00/17857

43. The method of claim 41 wherein said loading said another module includes removing,
responsive to a command from said intelligent director agent, at least one software module

associated with another software program from said second computer prior to said loading.

44. The method of claim 41 further comprising registering said second computer with said
intelligent director agent to permit said second computer to receive a subset of transaction
requests that require attention of said software program to reduce load on other computers of

said plurality of computers that also service said transaction requests.

45. The method of claim 44 wherein said registering further comprises designating said
second computer with a first certification level to initially limit a load level associated with
said second computer to a first load level, said first load level being lower than a load level
allowable on said other computers of said plurality of computers that also service said

transaction requests.

46. The method of claim 45 further comprising raising said load level associated with said
second computer to said load level allowable on said other computers of said plurality of
computers that also service said transaction requests if said second computer passes a

predefined reliability criteria.

47. The method of claim 41 wherein said software program represents a software program

adapted for an e-commerce application through the Internet.
48. The method of claim 41 wherein said plurality of computers are heterogeneous.

49. A method for balancing load levels among a first plurality of computers coupled
together in a cluster configuration in a first cluster of a clustered computer system, said first
plurality of computers being coupled to a first intelligent director agent and being located at a
first geographic location, said clustered computer system further comprising a second cluster
that includes a second plurality of computers also coupled together in said cluster
configuration, said second cluster being located at a second geographic location that is remote

from said first geographic location, said method comprising:

ascertaining a first set of load levels associated with said first plurality of computers;

55

10

15

20

25

WO 01/01221 PCT/US00/17857

if one of said first set of load levels associated with a first one of said first plurality ot
computers exceeds a predefined threshold, ascertaining a software program that causes stress

on said first one of said first plurality of computers;

identifying, using said intelligent director agent, a given local computer among said first
plurality of computers, said given local computer representing a computer that is capable of
running another module of said software program and did not run said software program prior

to said identifying;

if said given local computer among said first plurality of computers is not available,
identifying, using said intelligent director agent, a given remote computer among said second
plurality of computers, said given remote computer representing a computer that is capable of
running said another module of said software program and did not run said software program
prior to said identifying, and loading said another module of said software program on said
given remote computer of said second plurality of computers to permit said given remote
computer to receive and service a subset of transaction requests that require attention of said
software program to reduce load on other computers of said first plurality of computers that

also service said transaction requests.

50. The method of claim 49 wherein said loading said another module includes removing at
least one software module associated with another software program from said given remote

computer prior to said loading.

51. The method of claim 49 wherein said software program represents a software program

adapted for an e-commerce application through the Internet.
52. The method of claim 49 wherein said plurality of computers are heterogeneous.

53. The method of claim 49 further comprising registering said given remote computer with
said first intelligent director agent to permit said given remote computer to receive said subset

of said transaction requests that require attention of said software program.

54. The method of claim 53 wherein said registering further comprises designating said
given remote computer with a first certification level to initially limit a load level associated

with said given remote computer to a first load level, said first load level being lower than a

56

10

15

20

25

WO 01/01221 PCT/US00/17857

load level allowable on said other computers of said first plurality of computers that also

service said transaction requests.

55. A method for predictively preventing computer stress by reconfiguring a plurality of
computers coupled together in a cluster configuration in a clustered computer system, said
reconfiguring being performed prior to said stress occurring, said plurality of computers being

coupled to a first intelligent director agent, said method comprising:

predicting a first computer of said plurality of computers that would experience said
computer stress at a future point in time, said computer stress being related to a number of

transaction requests being serviced by said first computer at said future point in time;

if said first computer is predicted to experience said computer stress at said future point
in time, ascertaining a software program that causes stress on said first computer of said

plurality of computers; and

loading another module of said software program on a second computer of said
plurality of computers, said second computer representing a computer that is compatible to run
said another module of said software program, said second computer further representing a
computer of said plurality of computer that did not run said software program prior to said

loading.
56. The method of claim 55 wherein said loading said another module includes

identifying, using said intelligent director agent, a given computer among said plurality
of computers, said given computer representing a computer that is least heavily loaded among
computers that both are compatible to run said another module of said software program and

did not run said software program prior to said loading; and
designating said given computer said second computer.

57. The method of claim 55 wherein said loading said another module includes removing,
responsive to a command from said intelligent director agent, at least one software module

associated with another software program from said second computer prior to said loading.

58. The method of claim 55 further comprising registering said second computer with said

intelligent director agent to permit said second computer to receive a subset of transaction

57

10

15

20

25

WO 01/01221 PCT/US00/17857

requests that require attention of said software program to reduce load on other computers ot

said plurality of computers that also service said transaction requests.

59. The method of claim 58 wherein said registering further comprises designating said
second computer with a first certification level to initially limit a load level associated with
said second computer to a first load level, said first load level being lower than a load level
allowable on said other computers of said plurality of computers that also service said

transaction requests.

60. The method of claim 59 further comprising raising said load level associated with said
second computer to said load level allowable on said other computers of said plurality of
computers that also service said transaction requests if said second computer passes a

predefined reliability criteria.

61. The method of claim 55 wherein said software program represents a software program

adapted for an e-commerce application through the Internet.
62. The method of claim 55 wherein said plurality of computers are heterogeneous.

63. A method for predictively preventing computer stress on a plurality of computers
coupled together in a cluster configuration in a clustered computer system, said reconfiguring
being performed prior to said stress occurring, said plurality of computers being coupled to a
first intelligent director agent and being located at a first geographic location, said clustered
computer system further comprising a second cluster that includes a second plurality of
computers also coupled together in said cluster configuration, said second cluster being located
at a second geographic location that is remote from said first geographic location, said method

comprising:

predicting a first computer of said first plurality of computers that would experience
said computer stress at a future point in time, said computer stress being related to a number of

transaction requests being serviced by said first computer at said future point in time;

if said first computer is predicted to experience said computer stress at said future point
in time, ascertaining a software program that causes stress on said first computer of said

plurality of computers;

58

10

15

20

25

WO 01/01221 PCT/US00/17857

identifying, using said intelligent director agent, a given local computer among said first
plurality of computers, said given local computer representing a computer that is capable of
running another module of said software program and does not run said software program prior

to said stress occurring;

if said given local computer among said first plurality of computers is not available,
identifying, using said intelligent director agent, a given remote computer among said second
plurality of computers, said given remote computer representing a computer that is capable of
running said another module of said software program and did not run said software program
prior to said stress occurring, and loading said another module of said software program on
said given remote computer of said second plurality of computers to permit said given remote
computer to receive and service a subset of transaction requests that require attention of said
software program to reduce load on other computers of said first plurality of computers that

also service said transaction requests.

64. The method of claim 63 wherein said loading said another module includes removing at
least one software module associated with another software program from said given remote

computer prior to said loading.

65. The method of claim 63 wherein said software program represents a software program

adapted for an e-commerce application through the Internet.
66. The method of claim 63 wherein said plurality of computers are heterogeneous.

67. The method of claim 63 further comprising registering said given remote computer with
said first intelligent director agent to permit said given remote computer to receive said subset

of said transaction requests that require attention of said software program.

68. The method of claim 67 wherein said registering further comprises designating said
given remote computer with a first certification level to initially limit a load level associated
with said given remote computer to a first load level, said first load level being lower than a
load level allowable on said other computers of said first plurality of computers that also

service said transaction requests.

59

PCT/US00/17857

WO 01/01221

1/ 13

011

|

1S3N03y SS300V

JOVLS ¥3aNY3S 83M

201 \

JOVLS
H3IAYAS NOILVYOllddV

< ¥INNIS | o i — Atm ‘_O_(_n_v —\ Q_H_
| 8IM e
+ N — 00zl
ol l\x\ REEEL
< ¥3IAYIS NOILYIITddY 5«5_
Y3AY3S
- /
_ 1 ; 9zcl
Pyl — . B4
I g) \\
¥ILNOY |t AAN HILNOY |ati—] - ¥ILN0Y |-
1 Y3AMIS muzww 1] y3AN3S ¥3IAY3S NOILYOIIddY f—p 3sva < 3oug
ELA 2 s | 'ddv H> viva P> »| viva
J opit) | J Y,
4" 8l _HHH_IY 0l qeel
< ¥IAYIS N 1
.| 83M
! ¥IAYIS NOILYDITddY]
91— a7 B ~ q0z | v
ek ! [— v
- CEICECH I - egel
Lyl 830 ——— 1] BOZ1
mqi\ !\\
YIAYIS NOILYOIddV
$0l 504
90!
N Y I) _
J9OV1S

AHOLISOd3d V1Ivd

PCT/US00/17857

WO 01/01221

2 /13

(Q\
L
(1174 ¥
u val
21907
1S3N0FY | 83m
¥3sn \
e

A A

v0¢

\

S3T1408d
TWOIHOLSIH TYNYILXT
——1 ‘
et 01901 < 2l
¥3IAYIS ™ wmm\
> 8m | > S P
shiz 7 < [_
/7 B ~p 21901
asva
LL 001 [< \\\\ viva
/7 ¥3AM3S J
- gam _Ivy Lest 95¢
J
PyiT ‘F g > g
// < ’’ - <M__
< } -1
77 M IS 21507 0zz N < e
- gIm | » | sns - T _viva lkd 3sve
. Y, - -7 viva,
Wiz _ . i 052
¥NOIINOD3Y o . ¥S¢
[/ t— //
77 e 77 e —
> 8awm P ove A e et 1 74 L_p1 01907
3sva
avie \ ,AJ¢r | viva
// Soo e Lot I — 092 267/
/7 ¥3AY3S > 1>
L) gam P vt — [/
eylz — <77 \\1 || <*—
SYIAYIS 8IM gjz Su3n¥3S 21901 SSANISNG S¥IAY3IS 3ISVEVIVA
I I — :
JOVIS
JOVLS HIAYIS g3IM 5 owwm%__w:m AMOLISOdIY VIVa
L

c0¢

RECONFIGURE/

RESHUFFLE BlLs

WO 01/01221 PCT/US00/17857
3/ 13
- -7/ /-0 I
1 304 |
240 | [/ | 242
l BUSINESS] otrver | I [
Y
| LOGIC DIRECTOR FEEDBACK
| FIROM
| INTELLIGENT 306 L
| DIRECTOR | |/l 1 spes
| AGENT |
| I
| 38 |
BUSINESS
| | <t | OGIC MODULE | g l
} 979 LOAD STATUS ‘
| 334 |
| s I |
éL {/ il PR%ECP?QESTNG 4—7 |
SELECT!ON : CAPABILITY I
312
| q |
| BL B s | LOBGlnglsEE:\?ER S . 4 |
| SELECTOR LOAD STATUS ’
MODULE
Bl 31 |
REQUEST BUSINESS ' |
C SERVE
| (] Cirncr | et i
LATENCY
| 270 316 I
/_'
| > BUSINESS { |
I 330 «w LOGIC SERVER H l
| / ' LOG FILE |
I ! |
] DATA 340 !
| MINIING CONFIGU- ,
MODULE RATOR -
| MODULE TO BL STAGE TO |
| |
e R

EXTERNAL
HISTORICAL
PROFILES

]

WO 01/01221 PCT/US00/17857

3 /13
r T T |
I |
240 | 304 %
[
l BUSINESS] serven — .«1 [
: LOG l C DIRECTORY FEEIbBACK
F
. INTELLIGENT 306 oM
I AGENT VERSION l
| |
| v~ 308 l
BUSINESS
|
| tfmed | OGIC MODULE | s |
l 272 LOAD STATUS l
| 334 l
| " |
éL [/ e PRSoEcgiTNG 4_—$ |
SELECT]ON 5 CAPABILITY I
— 312 |
| 9 |
| BL . BUSINESS
I SELECTOR @] LociC SERVER | ' :
L MODULE l
B 314
REQUEST Q- |
BUSINESS
]
] CSCSERVER | @
| LATENCY |
‘ 270 316 |
p
|
> BUSINESS I
LOGIC SERVER
| 330 - e | I
l / LOG FILE !
| DAT | ! |
| A b 340 |
| MINIING CONFIGU- ~
MODULE RATOR ’$
l MODULE TOBL STAGETO |
| RECONFIGURE/
L____t__________EEE_HBFEEEELE_ |
EXTERNAL }—
HISTORICAL | 268 F I G) 3
PROFILES

WO 01/01221 PCT/US00/17857
4 /13

400

FIG. 4
402

=

CONSULT IDA FOR PRESENCE OF UNCERTIFIED
BUSINESS LOGIC MODULE

404

UNCERTIFIED BUSINESS LOGIC
MODULE PRESENT?

408

UNCERTIFIED BUSINESS LOGIC MODULE
CAN ACCEPT TRANSACTION REQUEST?

406

410

ROUTE 7
TRANSACTION

ROUTE TRANSACTION REQUEST TO UNCERTIFIED
BUSINESS LOGIC MODULE

REQUEST TO
CERTIFIED
BUSINESS

LOGIC MODULE

CERTIFY
BUSINESS
LOGIC
MODULE

RELIABILITY CRITERIA SATISFIED?

WO 01/01221 PCT/US00/17857
5713

500

FIG. 5
502

/

PROVIDE TRANSACTION REQUEST TO UNCERTIFIED
BUSINESS LOGIC MODULE

l 504
//‘

OPTIONALLY SAFEGUARD TRANSACTION

506

UNCERTIFIED BUSINESS LOGIC MODULE
CRASHED?

/512
4 [
UPGRADE yay
RELIABILITY [
STATISTICS FOR
UNCERTIFIED COMPLETE TRANSACTION USING CERTIFIED BUSINESS
BUSINESS LOGIC LOGIC MODULE IF TRANSACTION IS SAFEGUARDED
MODULE
_ J 510

~

REMOVE UNCERTIFIED BUSINESS LOGIC MODULE FROM
CLUSTER

= J

o514

PCT/US00/17857

WO 01/01221

6 / 13

9 'Old

$3vsOby
IrSINTLSH TNE3IN3

- 01 |4
|L e _Y
e34 L,
Pz || X
T b ey
‘o C M 2:001
77 e -t L WMM“
- 2:9G1 IR TA]
’/ PERCEH
T -
I w8
X -
vou Lt \“\ -¢ 11 2001 va 7 > M >
~—1 200 ‘" ¥ireIs 2001 \ ooy L] o001
1sz2nosy L2 o3 4. —+ ¥ «ld] xm
43sn [] :
3870080230 \\ —
L - —) 1
N~y
-
o \\ oo T4 | —
¥3nE3S "~
T3 F. P » | SO SE3AE3S ISYETIVD
‘fl 7 [e e
SE3nd38 63\
S¥34523 2IOCISSINSNG
$3Nsdae
WIHeOISM ITNa)T
-« 200 |4 >
¥3AL3S
- 835 Ly el
([s —
{C\77 [—)1
< o 1T
' wsrels
B €3%a |
-1
Y AT
R
77
vo <L - \\\ 2001 v ‘q-~ u"«oem. "
] 2501 7" / ¥34538 29501 2cen F~ 2=
LERY 1 EMN <ng - iy L 1 wu.a
153n03y I L] e
¥3asn FY D
3unOisNP2 24 -
g 71/ oot +—{ g / ’
I e3re2s —‘ L 1] ﬁ
83 001
s | 3es
Q - viva
.t T~ -
N aa wu.w.,vhuw >
e - L | —— SE3Ay2S 3SvAvivD
77 -
Swisulsean S33AB3S 2OCTES3MENE
39viS
39V1S ¥3AH3S 83M 39V1S
51501 S83NISAE AHOL1SOd3Y V1Va

y

909)

Jlov(dd

$09

¥007

PCT/US00/17857

WO 01/01221

7 /13

FIG. 7

LL

21007
Y¥IAY3S
g3m

4

’/

S
1s3no3y

val
31901
g3iM

Ll

J1901
H¥3AY3S
g3M

A
l

Y

rr

H3asn

4

21901
H3IAYIS
g3M

A

78

L.

Q1201
H3INY3S
g3Mm

A
I

L]

//

1907
H3IAH3S
g3M

o -

A
I

SYINYIS g3IM

JOVIS d3AY3S 93M

¢0L \

s3408d
IVOINOLSIH YNY3LX3
—_L
0LZ Ny
> -
// C—]
7 _|_A —-1 DI901
\ 3sva
¢ 77 viva
.
% - /[_ _
/7 A
vai > < vai >
21901 807 W_M,MJ I
. Rat . 3sva
wﬂm - viva < \w\ e
3NOIINODIY \\V — — 0¢.
N
SR
904 8L r 21901
3sva
‘lﬂ%Fv viva
ht [e I N1V
™ C a1
e pil
/7 1_ \ _AI
/- I
SY3ANIS DI90T SSANISNE 47 S¥IANIS 3svaviva
y0.
] |
FOVIS JOVI1S

Q1907 SS3NISNg

AHOLISOd3Y V1vd

WO 01/01221 PCT/US00/17857

8 /13

800

802

ASCERTAIN FAULT TOLERANCE LEVEL FOR A
PARTICULAR BUSINESS LOGIC MODULE

814

FAULT TOLERANCE LEVEL ABOVE A
PREDEFINED THRESHOLD?

806

-

WARN OPERATOR TO OPTIONALLY ADD A NEW SERVER
TO CLUSTER

)

808
,
T
FIG. 8 SEARCH FOR LEAST UTILIZED BUISNESS LOGIC SERVER

THAT CAN BE LOADED WITH ANOTHER COPY OF
BUSINESS LOGIC MODULE

(8

810
Vs

LOAD ANOTHER COPY OF BUSINESS LOGIC MODULE
ONTO SELECTED BUSINESS LOGIC SERVER

812

p:

T

REGISTER SELECTED LOGIC SERVER WITH IDA TO
SERVICE TRANSACTION REQUESTS

Y)

WO 01/01221 PCT/US00/17857
9 /13

900

FIG. 9

902

ASCERTAIN FAULT TOLERANCE
LEVELAT ALOCAL SITEFORA
PARTICULAR BUSINESS LOGIC

MODULE

FAULT TOLERANCE LEVEL ABOVE A
PREDEFINED THRESHOLD?

//- 906

WARN OPERATOR TO
OPTIONALLY ADD A NEW SERVER
TO CLUSTER

¢ 908
=

SEARCH FOR LEAST UTILIZED
BUISNESS LOGIC SERVER AT LOCAL
SITE THAT CAN BE LOADED WITH
ANOTHER COPY OF BUSINESS
LOGIC MODULE

916

910

-

li
LOAD ANOTHER COPY OF
BUSINESS LOGIC MODULE ONTO
SELECTED BUSINESS LOGIC
SERVER AT LOCAL SITE

LOCAL BUSINESS LOGIC SERVER
AVAILABLE FOR FAULT TOLERANCE
RELIEF?

EMPLOY REMOTE BUSINESS LOGIC
SERVER FOR FAULT TOLERANCE

,i /914

f

REGISTER SELECTED LOGIC SERVER WITH IDATO
SERVICE TRANSACTION REQUESTS

WO 01/01221 PCT/US00/17857
10 / 13

1000

1002

ASCERTAIN LOAD CONDITION FOR BUSINESS LOGIC
SERVERS OF CLUSTER

LOAD LEVEL ABOVE A PREDEFINED
THRESHOLD FOR ANY SERVER?

IEDENTIFY BUSINESS LOGIC MODULE(S) THAT CAUSE

SERVER OVERLOAD
1006
WARN OPERATOR TO ALLOW OPERATCR TO MANUALLY
RELIEVE SERVER OVERLOAD
' 1008

Y

SHUFFLE BUSINESS LOGIC MODULES AMONG SERVERS
OF CLUSTER TO INCREASE PROCESSING CAPABILITY OF
BUSINESS LOGIC MODULE CAUSING THE SERVER
1010 OVERLOAD

WO 01/01221 PCT/US00/17857
11 /13

1100
1102
ya
IDENTIFY LEAST UTILIZED SERVER THAT DOES NOT
ALREADY HAVE COPY OF BUSINESS LOGIC SOFTWARE
CAUSING SERVER STRESS
1104
v SERVER IDENTIFIED HAVE
PROCESSING CAPACITY CURRENTLY TO
HANDLE A COPYQF BUSINESS LOGIC
SOFTWARE CAUSING SERVER STRESS?
//,1108
!
SHUFFLE BUSINESS LOGIC MODULES CURRENTLY ON
IDENTIFIED SERVER TO OTHER SERVERS TO CREATE
REQUIRED PROCESSING CAPACITY
_— 1106
/4

LOAD A COPY OF BUSINESS LOGIC SOFTWARE THAT
CAUSES SERVER STRESS ON INDENTIFIED SERVER

l /1110

f
REGISTER IDENTIFIED SERVER WITH IDA TO SERVICE

TRANSACTION REQUESTS

1112

FIG. 11

WO 01/01221 PCT/US00/17857

12 /13
1200
1202
1212
(
IDENTIFY LEAST UTILIZED LOCAL SERVER THAT DOES
NOT ALREADY HAVE COPY OF BUSINESS LOGIC
SOFTWARE CAUSING SERVER STRESS IDENTIFY LIGHTLY LOADED REMOTE
SERVER THAT ALREADY HAS COPY OF
BUSINESS LOGIC MODULE CAUSING
SERVER OVERLOAD
1204

LOCAL SERVER IDENTIFIED HAVE
PROCESSING CAPRPACITY CURRENTLY TO
HANDLE A COPYQOF BUSINESS LOGIC
SOFTWARE CAUSING SERVER STRESS?

LIGHTLY LOADED REMOTE SERVER
THAT ALREADY HAS COPY OF

BUSINESS LOGIC SOFTWARE CAUSING
SERVER OVERLOAD EXISTS?

RESHUFFLE OF BUSINESS LOGIC
MODULES CURRENTLY IMPLEMENTED ON
IDENTIFIED LOCAL SERVER POSSIBLE?

t
SHUFFLE BUSINESS LOGIC MODULES
CURRENTLY ON REMOTE SERVER TO
OTHER SERVERS TO CREATE REQUIRED
PROCESSING CAPACITY

I
SHUFFLE BUSINESS LOGIC MODULES CURRENTLY ON
LOCAL SERVER TO OTHER SERVERS TO CREATE
REQUIRED PROCESSING CAPACITY

1218
/ 1206 /
i
| N LOAD A COPY OF BUSINESS LOGIC
SOFTWARE THAT CAUSES SERVER
LOAD A COPY OF BUSINESS LOGIC SOFTWARE THAT OVERLOAD ON REMOTE SERVER
CAUSES SERVER STRESS ON LOCAL SERVER
\
REGISTER IDENTIFIED LOGIC SERVER WITH IDA TO 1260
SERVICE TRANSACTION REQUESTS //
J
1270

FIG. 12

WO 01/01221 PCT/US00/17857
13 / 13

1300

1302

~

FORECAST HEAVY LOAD CONDITION FOR BUSINESS

LOGIC SERVERS OF CLUSTER BASED ON DATAMINING OF
HISTORICAL PROFILES OF TRANSACTION REQUESTS

LOAD LEVEL ABOVE A PREDEFINED
THRESHOLD FOR ANY SERVER?

WARN OPERATOR TO ALLOW OPERATOR TO MANUALLY
RELIEVE SERVER OVERLOAD

1308
SHUFFLE BUSINESS LOGIC MODULES AMONG SERVERS
OF CLUSTER TO INCREASE PROCESSING CAPABILITY OF
BUSINESS LOGIC MODULE CAUSING THE SERVER
OVERLOAD
1310

FIG. 13

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

