发明名称
二羟甲基丙酸改性水性酚醛树脂及其制备方法

摘要
本发明公开了一种二羟甲基丙酸改性水性酚醛树脂，由以下重量配比的原料制成：亚麻油70-90份、醇稀10-30份、氯油30-40份、多元醇10-20份、氧化钾0.005-0.01份、苯酚20-30份、二羟甲基丙酸8-15份、苯甲酸5-10份，丁醚30-50份，正丁醇5-15份。本发明还公开了上述水性酚醛树脂的制备方法。本发明的水性酚醛树脂无苯、减少了VOC的排放量，在运输和使用过程中安全系数高，其不仅在技术要求上达到油性树脂的要求，并且在安全性、环保性上有较大的提高和改善，真正体现了安全、环保。
1. 一种二羟甲基丙酸改性水性酚醛树脂，由以下重量配比的原料制成：

亚麻油 70-90 份
顺酐 10-30 份
桐油 30-40 份
多元醇 10-20 份
氢氧化钾 0.005-0.01 份
苯酐 20-30 份
二羟甲基丙酸 8-15 份
苯甲酸 5-10 份
丁醚 30-50 份
正丁醇 5-15 份。

2. 根据权利要求 1 所述的水性酚醛树脂，其中，所述多元醇为季戊四醇和/或甘油。

3. 权利要求 1 或 2 所述的水性酚醛树脂的制备方法，包括如下步骤：
 步骤 1：常温下将 70-90 重量份的亚麻油和 10-30 重量份的顺酐混合，升温至 240-250°C, 保温 7-9 小时，得到第一产物；
 步骤 2：将 30-40 重量份的桐油、10-20 重量份的多元醇和 0.005-0.01 重量份的氢氧化钾混合，升温至 240-250°C 并保温 1-1.5 小时；
 步骤 3：将步骤 2 得到的反应产物降温至 170-190°C，加入 20-30 重量份的苯酐、8-15 重量份的二羟甲基丙酸和 5-10 重量份的苯甲酸，回流二甲苯升温至 170-190°C 并保温 0.5-1.5 小时，再升温至 200-210°C 并保温 6-8 小时，得到第二产物；
 步骤 4：将 30-50 重量份的丁醚、5-15 重量份的正丁醇与第一产物混合，再加入第二产物，待温度降至 95-105°C 时加入胺中和剂，使混合物 pH 值为 8.5-9，得到水性酚醛树脂。

4. 根据权利要求 3 所述的制备方法，其中，所述制备方法进一步包括步骤 5：向所述水性酚醛树脂中加入水进行兑稀。

5. 根据权利要求 3 或 4 所述的制备方法，其中，所述胺中和剂的加入量为 5-10 重量份。

6. 根据权利要求 3 或 4 所述的制备方法，其中，所述胺中和剂为三乙胺或 AMP-95。
二羟甲基丙酸改性水性酚醛树脂及其制备方法

技术领域
[0001] 本发明涉及涂料化工技术领域，尤其涉及一种用于制造水性涂料的二羟甲基丙酸改性水性酚醛树脂及其制备方法。

背景技术
[0002] 酚醛树脂一般是由桐油、苯酐、甘油、季戊四醇、200号溶剂油经过高温聚合产生的一种树脂，其特点是耐候性好，但在生产使用过程中VOC排放量大，安全系数不高，在使用和运输过程中易燃、易爆，属于危险化学品，对环境的污染巨大，属于国家列数淘汰产品。

发明内容
[0003] 为克服现有技术中存在的问题，本发明旨在提供一种改性的水性酚醛树脂及其制备方法。
[0004] 一方面，本发明提供了一种二羟甲基丙酸改性水性酚醛树脂，由以下重量配比的原料制成：
[0005]
<table>
<thead>
<tr>
<th>原料</th>
<th>重量配比</th>
</tr>
</thead>
<tbody>
<tr>
<td>亚麻油</td>
<td>70-90份</td>
</tr>
<tr>
<td>苯酐</td>
<td>10-30份</td>
</tr>
<tr>
<td>桐油</td>
<td>30-40份</td>
</tr>
<tr>
<td>多元醇</td>
<td>10-20份</td>
</tr>
<tr>
<td>氢氧化钾</td>
<td>0.005-0.01份</td>
</tr>
<tr>
<td>苯酐</td>
<td>20-30份</td>
</tr>
<tr>
<td>二羟甲基丙酸</td>
<td>8-15份</td>
</tr>
<tr>
<td>苯甲酸</td>
<td>5-10份</td>
</tr>
<tr>
<td>丁醚</td>
<td>30-50份</td>
</tr>
<tr>
<td>正丁醇</td>
<td>5-15份</td>
</tr>
</tbody>
</table>

[0006] 可选地，根据本发明的水性酚醛树脂，所述多元醇为季戊四醇和／或甘油。
[0007] 另一方面，本发明提供了上述水性酚醛树脂的制备方法，包括如下步骤：
[0008] 步骤1：常温下将70-90重量份的亚麻油和10-30重量份的苯酐混合，升温至240-250℃，保温7-9小时，得到第一产物；
[0009] 步骤2：将30-40重量份的桐油、10-20重量份的多元醇和0.005-0.01重量份的氢氧化钾混合，升温至240-250℃并保温1-1.5小时；
[0010] 步骤3：将步骤2得到的反应产物降温至170-190℃，加入20-30重量份的苯酐、8-15重量份的二羟甲基丙酸和5-10重量份的苯甲酸重流二甲苯升温至170-190℃并保温
0.5~1.5小时，再升温至200~210℃并保温6~8小时，得到第二产物；

步骤4：将30~50重量份的丁醚、5~15重量份的正丁醇与第一产物混合，再加入第二产物，待温度降至95~105℃时加入胺中和剂，使混合物pH值为8.5~9，得到水性酚醛树脂。

可选地，根据本发明的制备方法，所述制备方法进一步包括步骤5：向所述水性酚醛树脂中加入水进行兑稀。

可选地，根据本发明的制备方法，所述胺中和剂的加入量为5~10重量份。

可选地，根据本发明的制备方法，所述胺中和剂为三乙胺或AMP-95。

本发明的水性酚醛树脂无苯，减少了VOC的排放量，在运输和使用过程中安全系数高，其不仅在技术要求上达到油性树脂的要求，并且在安全性、环保性上有较大的提高和改善，真正的体现了安全、环保。

附图说明

通过阅读下文优选实施方式的详细描述，各种其他的优点和益处对于本领域普通技术人员将变得清楚了。附图仅用于示出优选实施方式的目的，而并不认为是对本发明的限制。在附图中：

图1为本发明所述二羟甲基丙酸改性水性酚醛树脂制备方法的流程示意图。

具体实施方式

本发明提供了许多可应用的创造性概念，该创造性概念可大量的体现于具体的上下文中。在下述本发明的实施方式中描述的具体的实施例仅作为本发明的具体实施方式的示例性说明，而不构成对本发明范围的限制。

下面结合附图和具体的实施方式对本发明作进一步的描述。

一方面，本发明提供了一种二羟甲基丙酸改性水性酚醛树脂，由以下重量配比的原料制成：

<table>
<thead>
<tr>
<th>原料名称</th>
<th>重量配比</th>
</tr>
</thead>
<tbody>
<tr>
<td>亚麻油</td>
<td>70~90份</td>
</tr>
<tr>
<td>长醇</td>
<td>10~30份</td>
</tr>
<tr>
<td>聚酯</td>
<td>30~40份</td>
</tr>
<tr>
<td>多元醇</td>
<td>10~20份</td>
</tr>
<tr>
<td>氨氧化钾</td>
<td>0.005~0.01份</td>
</tr>
<tr>
<td>苯酐</td>
<td>20~30份</td>
</tr>
<tr>
<td>二羟甲基丙酸</td>
<td>8~15份</td>
</tr>
<tr>
<td>苯甲酸</td>
<td>5~10份</td>
</tr>
<tr>
<td>丁醚</td>
<td>30~50份</td>
</tr>
<tr>
<td>正丁醇</td>
<td>5~15份</td>
</tr>
</tbody>
</table>
[0022] 其中，本发明所使用的多元醇可以为三元醇和/或四元醇，例如季戊四醇、甘油或两者的混合物。

[0023] 另一方面，本发明提供了上述水性酚醛树脂的制备方法，图1示出了本发明所述水性酚醛树脂制备方法的流程示意图。如图1所示，该制备方法包括如下步骤：

[0024] 步骤1，常温下将70-90重量份的亚麻油和10-30重量份的顺酐混合，升温至240-250℃，保温7-9小时，得到第一产物；

[0025] 步骤2，将30-40重量份的桐油、10-20重量份的多元醇和0.005-0.01重量份的氢氧化钾混合，升温至240-250℃并保温1-1.5小时；

[0026] 步骤3，将步骤2得到的反应产物降温至170-190℃，加入20-30重量份的苯酐、8-15重量份的二羟甲基丙酸和5-10重量份的苯甲酸，回流二甲苯升温至170-190℃并保温0.5-1.5小时，再升温至200-210℃并保温6-8小时，得到第二产物；

[0027] 步骤4，将30-50重量份的丁醚、5-15重量份的正丁醇与第一产物混合，再加入第二产物，待温度降至95-105℃时加入胺中和剂，使混合物pH值为8.5-9，得到水性酚醛树脂。

[0028] 其中，在上述步骤2中，在240-250℃下发生醇解反应。可采用测得乙醉浓度的方法来判定醇解反应的终点，具体操作为：取步骤2中的反应产物与95%的乙醇以1:5的体积比在25℃下混合，混合物为透明，则表明达到醇解反应终点。

[0029] 在上述步骤4中，加入胺中和剂来调节树脂的pH值，使最终产品的pH值为8.5-9。所使用的胺中和剂可以为诸如三乙胺或者MPA-95等产品，加入量为5-10重量份。其中，AMP-95化学命名2-氨基-2-甲基-1-丙醇，是一种多功能胺基剂，能够调节乳液胶黏剂的pH值达到稳定，还有湿润、分散的作用，其有利于生产制造、储存、运输、应用和最终成膜等涂料全部使用周期的各个阶段。

[0030] 进一步地，本发明所述的制备方法还包括步骤5，将合成得到的水性酚醛树脂进行兑稀处理，具体操作为：向所述水性酚醛树脂中加入水进行兑稀，水的加入量可根据生产所需的树脂固体含量而调整。经过该兑稀处理，使得制备得到的水性酚醛树脂更容易保存及后续的使用。

[0031] 根据本发明提出的水性酚醛树脂以及水性酚醛树脂制备方法的可选因素较多，可以设计出多种实施例，因此具体的实施例仅作为本发明的具体实现方式的示例性说明，而不构成对本发明范围的限制。为了具体的描述本发明，选择以下实施例进行示例性说明。

[0032] 实施例1

[0033] 本实施例水性酚醛树脂的原料质量配比为：亚麻油70份，顺酐10份，桐油30份，季戊四醇10份，氢氧化钾0.005份，苯酐20份，二羟甲基丙酸8份，苯甲酸5份，丁醚30份，正丁醇15份。

[0034] 本实施例酚醛树脂的制备方法为：

[0035] 步骤1，常温下将亚麻油和顺酐混合，升温至240℃，保温7小时，得到第一产物；

[0036] 步骤2，将桐油、季戊四醇和氢氧化钾混合，升温至240℃并保温1小时，发生醇解反应；

[0037] 步骤3，将步骤2得到的醇解产物降温至170℃，加入苯酐、二羟甲基丙酸和苯甲酸，回流二甲苯升温至170℃并保温0.5小时，再升温至200℃并保温6小时，得到第二产
物；
[0038] 步骤 4：将丁醚与第一产物混合，再加入第二产物，待温度降至 96°C 时加入 8 重量份的三乙胺，使混合物 pH 值为 8.5-9，得到水性酚醛树脂；
[0039] 步骤 5：向水性酚醛树脂中加入适量自来水，得到生产所需的树脂固体含量，装桶即可。
[0040] 实施例 2
[0041] 本实施例酚醛树脂的原料重量配比为：亚麻油 90 份，顺酐 30 份，桐油 40 份，季戊四醇 20 份，氢氧化钾 0.01 份，苯酐 30 份，二羟甲基丙酸 15 份，苯甲酸 10 份，丁醚 50 份，正丁醇 5 份。
[0042] 本实施例酚醛树脂的制备方法与实施例 1 相同。
[0043] 实施例 3
[0044] 本实施例酚醛树脂的原料重量配比为：亚麻油 80 份，顺酐 20 份，桐油 33 份，季戊四醇 13 份，氢氧化钾 0.008 份，苯酐 25 份，二羟甲基丙酸 12 份，苯甲酸 7 份，丁醚 40 份，正丁醇 10 份。
[0045] 本实施例酚醛树脂的制备方法与实施例 1 相同。
[0046] 实施例 4
[0047] 本实施例酚醛树脂的原料重量配比为：亚麻油 70 份，顺酐 10 份，桐油 30 份，甘油 10 份，氢氧化钾 0.005 份，苯酐 20 份，二羟甲基丙酸 8 份，苯甲酸 5 份，丁醚 30 份，正丁醇 15 份。
[0048] 本实施例酚醛树脂的制备方法为：
[0049] 步骤 1：常温下将亚麻油和顺酐混合，升温至 250°C，保温 8 小时，得到第一产物；
[0050] 步骤 2：将桐油、季戊四醇和氢氧化钾混合，升温至 245°C 并保温 1.5 小时，发生醇解反应；
[0051] 步骤 3：将步骤 2 得到的醇解产物降温至 180°C，加入苯酐、二羟甲基丙酸和苯甲酸，回流二甲苯升温至 180°C 并保温 1 小时，再升温至 210°C 并保温 7 小时，得到第二产物；
[0052] 步骤 4：将丁醚与第一产物混合，再加入第二产物，待温度降至 100°C 时加入 10 重量份的三乙胺，使混合物 pH 值为 8.5-9，得到水性酚醛树脂；
[0053] 步骤 5：向水性酚醛树脂中加入适量自来水，得到生产所需的树脂固体含量，装桶即可。
[0054] 实施例 5
[0055] 本实施例酚醛树脂的原料重量配比为：亚麻油 80 份，顺酐 20 份，桐油 33 份，甘油 13 份，氢氧化钾 0.008 份，苯酐 25 份，二羟甲基丙酸 12 份，苯甲酸 7 份，丁醚 40 份，正丁醇 10 份。
[0056] 本实施例酚醛树脂的制备方法与实施例 4 相同。
[0057] 实施例 6
[0058] 本实施例酚醛树脂的原料重量配比为：亚麻油 90 份，顺酐 30 份，桐油 40 份，甘油 20 份，氢氧化钾 0.01 份，苯酐 30 份，二羟甲基丙酸 15 份，苯甲酸 10 份，丁醚 50 份，正丁醇 5 份。
[0059] 本实施例酚醛树脂的制备方法与实施例 4 相同。
[0060] 实施例 7
[0061] 本实施例酚醛树脂的原料重量配比为：亚麻油 80 份、顺酐 20 份、桐油 33 份、甘油和季戊四醇混合物 13 份、氢氧化钾 0.008 份、苯酐 25 份、二羟甲基丙酸 12 份、苯甲酸 7 份、
丁醚 40 份、正丁醇 10 份。
[0062] 本实施例酚醛树脂的制备方法为：
[0063] 步骤 1：常温下将亚麻油和顺酐混合，升温至 245℃，保温 9 小时，得到第一产物；
[0064] 步骤 2：将桐油、季戊四醇和氢氧化钾混合，升温至 245℃并保温 1 小时，发生醇解
反应；
[0065] 步骤 3：将步骤 2 得到的醇解产物降温至 190℃，加入苯酐、二羟甲基丙酸和苯甲酸，回流二甲苯升温至 190℃并保温 1.5 小时，再升温至 205℃并保温 8 小时，得到第二产物；
[0066] 步骤 4：将丁醚与第一产物混合，再加入第二产物，待温度降至 105℃时加入 5 重量
份的三乙胺，使混合物 pH 值为 8.5~9，得到水性酚醛树脂；
[0067] 步骤 5：向水性酚醛树脂中加入适量自来水，得到生产所需的树脂固体含量，装桶
即可。
[0068] 实施例 8
[0069] 本实施例酚醛树脂的原料重量配比为：亚麻油 90 份、顺酐 30 份、桐油 40 份、甘油
与季戊四醇混合物 20 份、氢氧化钾 0.01 份、苯酐 30 份、二羟甲基丙酸 15 份、苯甲酸 10 份、
丁醚 50 份、正丁醇 5 份。
[0070] 本实施例酚醛树脂的制备方法与实施例 7 相同。
[0071] 实施例 9
[0072] 本实施例酚醛树脂的原料重量配比为：亚麻油 70 份、顺酐 10 份、桐油 30 份、甘油
与季戊四醇混合物 10 份、氢氧化钾 0.005 份、苯酐 20 份、二羟甲基丙酸 8 份、苯甲酸 5 份、
丁醚 30 份、正丁醇 15 份。
[0073] 本实施例酚醛树脂的制备方法与实施例 7 相同。
[0074] 申请人对本发明实施例 1 制备的水性酚醛树脂的外观、色泽以及酸价指标进行了
检测，具体指标及实测值如下表 1 所示。
[0075] 表 1
[0076] !检测项目 | 技术指标 | 实测值 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>外观</td>
<td>水白色，透明</td>
<td>红棕色</td>
</tr>
<tr>
<td>色泽(Fe-Co法)/号</td>
<td>≤9</td>
<td>≤13</td>
</tr>
<tr>
<td>酸价/mgKOH/g</td>
<td>≤20</td>
<td>≤20</td>
</tr>
</tbody>
</table>

[0077] 由表 1 检测数据可以看出，本发明的水性酚醛树脂质量好，性能优于油性树脂。其
他实施例的检测结果与表 1 中结果类似，在此不做赘述。
[0078] 您注意的是，上述实施例对本发明进行说明而不是对本发明进行限制，并且本
领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求
中，不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。单词第一、第二以及第三等的使用不表示任何顺序，可将这些单词解释为名称。
常温下将亚麻油和顺酐混合，升温至240-250℃并保温7-9小时，得第一产物

将桐油、多元醇和氢氧化钾混合，升温至240-250℃后保温1-1.5小时

降温至170-190℃，加入苯酐、二羟甲基丙酸和苯丙酸，回流二甲苯升温至170-190℃保温0.5-1.5小时，再升温至200-210℃保温6-8小时，得第二产物

将丁醚、正丁醇与第一产物、第二产物混合，降温至170-190℃加入胺中和剂

加入水，进行兑稀处理

图1