In an organic EL display, a scan driver is divided into several scan driving units, and the each scan driving unit includes a plurality of flip-flops and a plurality of buffer units each receiving an output of the flip-flop as an input. The flip-flop includes four NOR gates and the buffer unit includes an OR gate composed of a NOR gate and an inverter, and a buffer composed of two inverters. The NOR gates of the flip-flop and the buffer unit receive a clear signal and are composed of PMOS transistors. When the clear signal of high level is applied to non-operating ones of the scan driving units, outputs of the NOR gates become low level, and thereby, it is possible to remove static currents generated in output terminals of the NOR gates.

19 Claims, 7 Drawing Sheets
Fig. 1A
(Prior Art)

![Fig. 1A](prior_art_diagram)

Fig. 1B
(Prior Art)

![Fig. 1B](prior_art_diagram)
Fig. 2A
(Prior Art)

<INVERTER>

<INVERTER>

Fig. 2B
(Prior Art)

<NAND GATE>

<NAND GATE>
Fig. 7A

VDD

P4

P5

P7

GND

Fig. 7B

VDD

P4

P5

P6

P7

GND
ORGANIC ELECTROLUMINESCENCE DISPLAY AND DRIVING METHOD AND APPARATUS THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS
This application claims priority to and the benefit of Korea Patent Application No. 2002-0015438 filed on Mar. 21, 2002 in the Korean Intellectual Property Office, the contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

(a) Field of the Invention
The present invention relates to an organic electroluminescence (hereinafter, “EL”) display and a scan driver, and, more particularly, to an organic EL display and a scan driver with low power consumption.

(b) Description of the Related Art
In general, an organic EL display is a display that emits light by electrical excitation of fluorescent organic compound and displays images by driving each of MxN organic luminescent cells with voltage or current.

The organic cell has a structure of an anode (ITO), an organic thin film, and a cathode layer (metal). The organic thin film is formed as a multi-layered structure including an emission layer (“EML”), an electron transport layer (“ETL”), and a hole transport layer (“HTL”) so as to increase luminescence efficiency by balancing electron and hole concentrations. In addition, it can include an electron injection layer (“EIL”) and a hole injection layer (“HIL”) separately.

Organic EL displays that use organic luminescent cells like the above are configured as a passive matrix or an active matrix that includes thin film transistors (TFTs). In the passive matrix configuration, organic luminescent cells are formed between anodes and cathodes lines that cross each other and are driven by driving those lines. While in the active matrix configuration, each organic luminescent cell is coupled to a TFT usually through ITO electrode and are driven by controlling the gate voltage of the corresponding TFT.

The organic EL display is generally composed of an organic EL display panel, a scan driver, and a data driver. The organic EL display panel includes a plurality of data lines transmitting data signals representing image signals, a plurality of scan lines transmitting selection signals and pixel circuits provided in pixel areas defined by two adjacent data lines and two adjacent scan lines. When the scan driver applies the selection signals to the scan lines, transistors are turned on by the selection signals, and then, the data signals representing the image signals are applied to gates of driving transistors from the data driver through the data lines, and currents flow through organic EL devices via the transistors in correspondence to the data signals applied to the gates thereof. Thereby, lights are emitted.

In this case, as shown in FIG. 1A, the scan driver is composed of master-slave type flip-flops and NAND gates, and each flip-flop includes four inverters as shown in FIG. 1B. If inverters and NAND gates composed of PMOS transistors or NMOS transistors, which are easy to manufacture compared with CMOS transistors, are used, static currents flow.

FIGS. 2A and 2B are circuit diagrams to represent output parts where the static currents are generated when PMOS transistors or NMOS transistors are used in the inverters or NAND gates.

As shown in FIG. 2A, in the case where logic circuits are composed of PMOS transistors, when a load is attached to GND side, and output V_{out} is high level, the static currents flow. As shown in FIG. 2B, in the case where logic circuits are composed of NMOS transistors, when a load is attached to VDD side, and output V_{out} is low level, the static currents flow. Accordingly, when the inverter using PMOS transistors has a low level input and when the NAND gate using PMOS transistors has at least one low level input, the output thereof is high level, and thereby the currents flow. However, in case of a flip-flop composed of four inverters, two inverters receive low level inputs and the other two inverters receive high level inputs. Thus, the static currents always flow in the half of the inverters within the flip-flop.

In the organic EL display panel, so as to use PMOS transistors connected to the scan lines as normally-off switches, inputs applied to the PMOS transistors, i.e., outputs of NAND gates (in case of being composed of PMOS transistors) must become high levels. Accordingly, the static currents flow in the NAND gates during most of time.

When the static currents flow as above, there is a problem that static power loss is increased, and thereby power consumptions are increased in the scan driver.

SUMMARY OF THE INVENTION

In accordance with the present invention power consumption is decreased by reducing static currents in a scan driver.

A scan driver is divided into several parts and a clear signal is applied to a non-operating scan driver.

An organic EL display according to the present invention includes an organic EL display panel, a data driver applying data signals to data lines, and a scan driver applying selection signals to scan lines. The organic EL display panel includes a plurality of scan lines transmitting selection signal, a plurality of data lines transmitting data signals representing image signals, and a plurality of pixel circuits coupled to the scan lines and the data lines.

The scan driver is composed of more than two scan driving units and a selection controller generating clear signals, and each scan driving unit includes a plurality of flip-flops coupled with each other in series and a plurality of buffer units receiving outputs of the flip-flops to drive the respective scan lines. Each of the flip-flops is composed of a plurality of logic gates (NOR gates or NAND gates) and a plurality of switching elements. The clear signals keep outputs of logic gates of scan driving units as a constant value for the scan driving units not to generate the selection signal.

The flip-flop is composed of a first to a fourth logic gates, and the first logic gate receives the clear signal and output of the previous flip-flop, inputted through a first switching element, as input. A second logic gate receives the output of the first logic gate and the clear signal as input, and the output terminal of the second logic gate is coupled via a second switching element to the output of the previous flip-flop inputted through the first switching element. A third logic gate receives the clear signal and the output of the first logic gate inputted through a third switching element as input, and output of the third logic gate becomes output of the flip-flop. A fourth logic gate receives the clear signal and the output of the third logic gate, and the output terminal of the fourth logic gate is coupled via a fourth switching element to the output of the first logic gate inputted through the third switching element.

In addition, the selection controller may further generate reset signals for setting initial values of the scan driving
units. The first and the fourth logic gates preferably further receive the reset signals as inputs.

Furthermore, the buffer unit preferably includes a fifth logic gate receiving output of the flip-flop and the clear signal. The buffer unit may include an inverter coupled to output terminal of the fifth logic gate and a buffer coupled to output terminal of the inverter.

The first to the fifth logic gates are preferably composed of the same conductive type thin film transistors.

The first to the fifth logic gates are NOR gates, which may be composed of PMOS transistors. Or, the first to the fifth logic gates are NAND gates, which may be composed of NMOS transistors.

A method of driving the organic EL display in accordance with the present invention includes: dividing the scan driver into a plurality of scan driving units, applying a first clear signal, with level for making outputs of the logic gates constant regardless of other inputs, to the other scan driving units while the selection signal is generated from a n-th scan driving unit, and applying a second clear signal with level opposite to that of the first clear signal to the n-th scan driving unit; applying the second clear signal to a (n+1)-th scan driving unit adjacent to the n-th scan driving unit before the (n+1)-th scan driving unit receives the selection signal outputted from the last flip-flop of the n-th scan driving unit; and applying the first clear signal to the n-th scan driving unit when the selection signal begins to be outputted from the (n+1)-th scan driving unit.

In addition, a reset signal for setting an initial value of the (n+1)-th scan driving unit may be applied thereto before the second clear signal is applied to the (n+1)-th scan driving unit.

The logic gates are preferably NOR gates composed of PMOS transistors. Or, the logic gates are NAND gates composed of NMOS transistors.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B are circuit diagrams illustrating a scan driver and a flip-flop according to the prior art, respectively.

FIGS. 2A and 2B are circuit diagrams illustrating output parts where static currents are generated in case of using PMOS transistors or NMOS transistors in an inverter or a NAND gate in a scan driver according to the prior art, respectively.

FIG. 3 is a diagram illustrating an organic EL display according to an embodiment of the present invention.

FIG. 4 is a diagram illustrating a scan driver of the organic EL display according to an embodiment of the present invention.

FIG. 5 is a circuit diagram illustrating a first scan driving unit according to an embodiment of the present invention.

FIG. 6 is a circuit diagram illustrating a flip-flop according to an embodiment of the present invention.

FIGS. 7A and 7B are circuit diagrams illustrating 2-input and 3-input NOR gates used in a flip-flop according to an embodiment of the present invention, respectively.

FIG. 8 is a circuit diagram illustrating a buffer unit according to an embodiment of the present invention schematically.

FIG. 9 is a circuit diagram illustrating the buffer unit according to an embodiment of the present invention in detail; and

FIG. 10 is a timing diagram of a scan driver according to an embodiment of the present invention.

DETAILED DESCRIPTION

In the specification, similar parts are denoted by the same reference numerals. When a part is connected to another part, the part is not only directly connected to another part but is also electrically connected (coupled) to another part while another device intervenes between them.

First, referring to FIGS. 3 and 4, an organic EL display and a scan driver thereof according to a first embodiment of the present invention will be described in detail.

FIG. 3 is a diagram illustrating an organic EL display according to the first embodiment of the present invention.

FIG. 4 is a diagram illustrating a scan driver of the organic EL display according to the first embodiment of the present invention.

As shown in FIG. 3, the organic EL display according to the first embodiment of the present invention includes organic EL display panel 100, scan driver 200, and data driver 300.

Organic EL display panel 100 includes a plurality of data lines Y_1 to Y_n transmitting data signals (data voltages or data currents) representing image signals, a plurality of scan lines transmitting selection signals X_1 to $X_{m'}$, and a plurality of pixel circuits 110. Transistors connected to the scan lines are PMOS transistors in order to be used as normally off switches in organic EL display panel 100. Pixel circuits 110 are provided in pixel areas defined by two adjacent data lines and two adjacent scan lines.

Scan driver 200 applies the selection signals to scan lines X_1 to $X_{m'}$, and data driver 300 applies the data signals representing image signals to data lines Y_1 to Y_n.

As shown in FIG. 4, scan driver 200 according to the first embodiment of the present invention includes first to third scan driving units 210, 220, and 230 and block selecting controller 240.

First to third scan driving units 210, 220, and 230 are to divide a conventional driver into three parts. Such division is not to be limited to three parts and can be divided into several parts as configurations and operations that may be different according to the number of parts are apparent to those skilled in the art, and thus, description thereof will be omitted. For example, in case a scan driver of 240 outputs is divided into three parts, each of first to third scan driving units 210, 220, and 230 becomes a scan driving unit of 80 outputs.

Block selecting controller 240 outputs clear signals VC1, VC2, and VC3 for removing static currents and reset signals RST1, RST2, and RST3 for setting initial values of the first to third scan driving units 210, 220, and 230 to control operations of the first to third scan driving units 210, 220, and 230.

Hereinafter, referring to FIG. 5 to FIG. 9 the scan driving unit will be described in detail.

FIG. 5 is a circuit diagram illustrating a first scan driving unit according to an embodiment of the present invention. FIG. 6 is a circuit diagram illustrating a flip-flop according to an embodiment of the present invention.

FIGS. 7A and 7B are circuit diagrams illustrating 2-input and 3-input NOR gates used in a flip-flop according to an embodiment of the present invention, respectively.

FIG. 8 is a circuit diagram illustrating a buffer unit according to an embodiment of the present invention schematically.

FIG. 9 is a circuit diagram illustrating the buffer unit according to an embodiment of the present invention in detail.

As shown in FIG. 5, first scan driving unit 210 is composed of a plurality of flip-flops FF1 to FFm and a
plurality of buffers buf, to buf, having the outputs of the flip-flops as the inputs. Flip-flops FF, to FF, have an input signal Vout as clock signals clk and clkb, and clear signal VCI as inputs. Each of the buffer units buf, to buf, includes an OR gate and a buffer having the output of the OR gate as the input, and the OR gate has an OE signal, output Vout, of the flip-flop, and clear signal VCI as inputs.

In the first embodiment of the present invention to divide the scan driver, which applies selection signals to M scan lines X1 to Xn into scan driving units 210, 220 and 230 of three parts, the number (m) of flip-flops FF, to FF, and the number (m) of buffer unit buf, to buf, of first scan driving unit 210 correspond to M/3, respectively. One of the flip-flops FF of flip-flops FF, to FF, as shown in FIG. 6, is composed of two 2-input NOR gates NOR2 and NOR3 and two 3-input NOR gates NOR1 and NOR4, and clear signal VCI is input to all of NOR gates NOR1 to NOR4 and reset signal RST1 is inputted only to 3-input NOR gates, NOR1 and NOR4. In detail, NOR gate NOR1 of flip-flop FF receives not only clear signal VCI and reset signal RST1 but also output Vout of the previous flip-flop via PMOS transistor P0 turned on/off by clock clk, as VCI. The output of NOR gate NOR1 becomes the input of NOR gate NOR2 together with clear signal VCI, and the output of NOR gate NOR2 is connected to the drain of PMOS transistor P0 via PMOS transistor P1 turned on/off by clock clkb. In addition, the output of NOR gate NOR1 is inputted to NOR gate NOR3 together with clear signal VCI via PMOS transistor P2 turned on/off by clock clkb.

The output of NOR gate NOR3 is inputted to NOR gate NOR4 together with clear signal VCI and reset signal RST1, and the output of NOR gate NOR4 is connected to the drain of PMOS transistor P2 via PMOS transistor P3 turned on/off by clock clkb. In addition, the output of NOR gate NOR3 becomes output Vout, of flip-flop FF to be input Vin of adjacent flip-flop.

The 2-input NOR gates NOR2 and NOR3 and 3-input NOR gates NOR1 and NOR4 may be configured, for example, as shown in FIGS. 7A and 7B.

As shown in FIG. 7A, each of 2-input NOR gates NOR2 and NOR3 is composed of 3 PMOS transistors, and the two inputs of NOR gates NOR2 and NOR3 are connected to the gates of PMOS transistors P4 and P5, respectively. The source of PMOS transistor P4 is connected to power source VDD, and the drain thereof is connected to the source of PMOS transistor P5. The drain of PMOS transistor P5 becomes the output of the NOR gate, and this drain is connected to the source of PMOS transistor P7. The gate and the drain of PMOS transistor P7 are connected with each other to be grounded.

As shown in FIG. 7B, 3-input NOR gates NOR1 and NOR4 further includes PMOS transistor P6 of which the gate is connected to one input of the 3-input NOR gate between PMOS transistors P5 and P7 of the 2-input NOR gate shown in FIG. 7A.

The flip-flop configured as above works as a shift register to transmit input Vin to the next flip-flop by the turning on/off of transistors in synchronization with the cycles of clocks clk and clkb.

In addition, in one buffer unit buf of buffer units buf, to buf, as shown in FIG. 8, the OR gate is composed of NOR gate NOR5 and an inverter INV1, and the buffer is composed of two inverters INV2 and INV3. Herein, NOR gate NOR5 and inverters INV1, INV2 and INV3 are composed of, for example, PMOS transistors as shown in FIG. 9.
logic circuits are composed of NMOS transistors instead of PMOS transistors.

In detail, the first embodiment using PMOS transistors employs signals of high levels as clear signals VC1, VC2, and VC3 for removing the static currents and configures logic circuits by using NOR gate, of which the output is always fixed with low level when a signal of high level is inputted. On the contrary, the second embodiment using the NMOS transistors employs signals of low level as clear signals VC1, VC2, and VC3 for removing the static currents and configures logic circuits by using NAND gate, of which the output is always fixed with high level when a signal of low level is inputted.

In other words, flip-flops FF1 to FFm are composed of NAND gates NAND1 to NANDm and NMOS transistors instead of NOR gates NOR1 to NOR4 and PMOS transistors. Buffer units buf1 to bufm are formed using an AND gate and a buffer. The AND gate is composed of a NAND gate and an inverter, and the buffer is composed of two inverters.

More detailed configurations and driving method thereof are apparent to those skilled in the art through previous description, and thus, the description thereof will be omitted.

In addition, although reset signals RST1, RST2, and RST3 are applied to first to third scan driving units 210, 220, and 230 in order to set initial values thereof, the reset signal may not be applied thereto in a practical operation of a circuit.

Since, in the present invention, the scan driver is divided into several parts to be driven and the clear signals are applied to non-operating units, it is possible to reduce the static currents flowing through the load, and accordingly, to decrease a power consumption.

Although specific embodiments of the present invention have been described in detail hereinabove, it should be clearly understood that many variations and/or modifications of the basic inventive concepts taught herein which may be apparent to those skilled in the present art will still fall within the spirit and scope of the present invention, as defined in the appended claims.

What is claimed is:

1. An organic electroluminescence display comprising:
 an organic electroluminescence display panel having a plurality of scan lines transmitting selection signals, a plurality of data lines transmitting data signals representing image signals, and a plurality of pixels circuit coupled to the scan lines and the data lines;
 a data driver applying the data signals to the data lines; and
 a scan driver outputting the selection signals to the scan lines selectively,
 wherein the scan driver includes:
 more than two scan driving units having a plurality of flip-flops coupled with each other in series and composed of a plurality of logic gates provided by any one of NOR gates and NAND gates and a plurality of switching elements, and a plurality of buffer units receiving outputs of the flip-flops to respectively drive the scan lines; and
 a selection controller generating a clear signal for keeping outputs of the logic gates of a scan driving unit as a constant value for the scan driving unit not to output the selection signal.

2. The organic electroluminescence display of claim 1, wherein the selection controller further generates reset signals for setting initial values of the scan driving units.

3. The organic electroluminescence display of claim 1, wherein the flip-flop includes:
 a first logic gate receiving the clear signal and an output of previous flip-flop inputted through a first switching element, as an input;
 a second logic gate receiving the output of the first logic gate and the clear signal as an input, and an output terminal of the second logic gate is coupled via a second switching element to the output terminal of the previous flip-flop inputted via the first switching element;
 a third logic gate receiving the clear signal and the output of the first logic gate inputted via a third switching element as an input, and an output of the third logic gate becomes output of the flip-flop; and
 a fourth logic gate receiving the clear signal and the output of the third logic gate, and an output terminal of the fourth logic gate is coupled via a fourth switching element and the third switching element to the output terminal of the first logic gate.

4. The organic electroluminescence display of claim 3, wherein the selection controller further generates reset signals for setting initial values of the scan driving units, and wherein the first logic gate and the fourth logic gate further receive the reset signals as the inputs.

5. The organic electroluminescence display of claim 4, wherein the buffer unit includes a fifth logic gate receiving the output of the flip-flop, the clear signal, and the reset signal as an input.

6. The organic electroluminescence display of claim 5, wherein the buffer unit further comprises an inverter coupled to an output terminal of the fifth logic gate and a buffer coupled to an output terminal of the inverter.

7. The organic electroluminescence display of claim 5, wherein the first to the fifth logic gates are composed of the same conductive type thin film transistors.

8. The organic electroluminescence display of claim 5, wherein the first to the fifth logic gates are NOR gates, and thin film transistors forming the NOR gates are PMOS transistors.

9. The organic electroluminescence display of claim 7, wherein the first to the fifth logic gates are NAND gates, and thin film transistors forming the NAND gates are NMOS transistors.

10. A method of driving an organic electroluminescence display having an organic electroluminescence display panel including a plurality of scan lines, a plurality of data lines, and a plurality of pixels arranged in a matrix; and a scan driver outputting the selection signals to the scan lines, and having a plurality of flip-flops receiving the outputs of adjacent flip-flops as inputs, respectively, and composed of a plurality of logic gates provided by NOR gates or NAND gates, and a plurality of buffer units receiving outputs of the flip-flops to drive the scan lines, the method comprising:
 (a) dividing the scan driver into a plurality of scan driving units, to apply a first clear signal with level for making outputs of the logic gates constant regardless of other inputs, to the other scan driving, while the selection signal is outputted from a n-th scan driving unit, and applying a second clear signal with level opposite to that of the first clear signal to the n-th scan driving unit;
 (b) applying the second clear signal to a (n+1)-th scan driving unit adjacent to the n-th scan driving unit before the (n+1)-th scan driving unit receives the selection signal outputted from the last flip-flop of the n-th scan driving unit; and
(c) applying the first clear signal to the n-th scan driving unit when the selection signal begins to be output from the (n+1)-th scan driving unit.

11. The method of claim 10, wherein the step (b) further comprises the step applying a reset signal for setting an initial value of the (n+1)-th scan driving unit before the second clear signal is applied to the (n+1)-th scan driving unit.

12. The method of claim 10, wherein the logic gates are NOR gates composed of PMOS transistors.

13. The method of claim 10, wherein the logic gates are NAND gates composed of NMOS transistors.

14. A driving apparatus for driving an organic electroluminescence display by applying selection signals to scan lines of an organic electroluminescence display panel having a plurality of scan lines, a plurality of data lines, and a plurality of pixel circuits, the driving apparatus comprising:

- more than two scan driving units having a plurality of flip-flops coupled with each other in series and composed of a plurality of logic gates provided by NOR gates or NAND gates and a plurality of switching elements, and a plurality of buffer units receiving outputs of the flip-flops to respectively drive the scan lines;
- a selection controller generating a clear signal for keeping outputs of the logic gates of a scan driving unit as a constant value for the scan driving unit not to output the selection signal.

15. The driving apparatus of the organic electroluminescence display of claim 14, wherein the selection controller further generates reset signals for setting initial values of the scan driving units.

16. The driving apparatus of the organic electroluminescence display of claim 14, wherein the flip-flop includes:

- a first NOR gate receiving the clear signal and an output of previous flip-flop, inputted through a first switching element, as an input;
- a second NOR gate receiving the output of the first NOR gate and the clear signal as an input, and an output terminal of the second NOR gate is coupled via a second switching element to the output terminal of the previous flip-flop inputted via the first switching element;
- a third NOR gate receiving the clear signal and the output of the first NOR gate inputted via a third switching element as an input, and an output of the third NOR gate becomes output of the flip-flop; and
- a fourth NOR gate receiving the clear signal and the output of the third NOR gate, and an output terminal of the fourth NOR gate is coupled via a fourth switching element and the third switching element to the output terminal of the first NOR gate, wherein the buffer unit includes a fifth NOR gate receiving the output of the flip-flop and the clear signal as an input,

17. The driving apparatus of the organic electroluminescence display of claim 16, wherein the selection controller further generates reset signals for setting initial values of the scan driving units, wherein the first NOR gate, the fourth NOR gate, and the fifth NOR gate further receive the reset signals as the inputs.

18. The driving apparatus of the organic electroluminescence display of claim 14, wherein the flip-flop includes:

- a first NAND gate receiving the clear signal and an output of previous flip-flop, inputted through a first switching element, as an input;
- a second NAND gate receiving the output of the first NAND gate and the clear signal as an input, and an output terminal of the second NAND gate is coupled via a second switching element to the output terminal of the previous flip-flop inputted via the first switching element;
- a third NAND gate receiving the clear signal and the output of the first NAND gate inputted via a third switching element as an input, and an output of the third NAND gate becomes output of the flip-flop; and
- a fourth NAND gate receiving the clear signal and the output of the third NAND gate, and an output terminal of the fourth NAND gate is coupled via a fourth switching element and the third switching element to the output terminal of the first NAND gate, wherein the buffer unit includes a fifth NAND gate receiving the output of the flip-flop and the clear signal as an input,

19. The driving apparatus of the organic electroluminescence display of claim 18, wherein the selection controller further generates reset signals for setting initial values of the scan driving units, wherein the first NAND gate, the fourth NAND gate, and the fifth NAND gate further receive the reset signals as the inputs.