«» UK Patent Application «GB 2 296 350 ., A

(43) Date of A Publication 26.06.1996

(21) Application No 9425786.2 (51) INTCLE

GO6F 7/52
(22) Date of Filing 21.12.1994
(52) UK CL (Edition O)

G4A AMD A2AY A2A1
(71) Applicant(s)
Advanced Risc Machines Limited (56) Documents Cited
EP 0258051 A2 US 4872214 A US 4860241 A
(Incorporated in the United Kingdom) US 4224676 A
Fulbourn Road, Cherry Hinton, CAMBRIDGE, CB1 4JN, {(58) Field of Search
United Kingdom UK CL (Edition N) G4A AMD
INT CL® GO6F 7/52 7/54
(72) Inventor(s) ONLINE : WPI
David Vivian Jaggar
(74) Agent and/or Address for Service
D Young & Co
21 New Fetter Lane, LONDON, EC4A 1DA,
United Kingdom

(54) Data processing divider enabling reduced interrupt latency

(67) A microprocessor is described having an arithmetic unit that includes a dedicated hardware divider
responsive to a plurality of different divide instruction codes to generate respective multi-bit portions of a
quotient. Each divide instruction can be early terminated when the partial remainder is detected as being zero.
Furthermore, subsequent divide instructions to calculate the remaining bits of the quotient can be skipped in
response to a flag (Zflag) set within a current programming status register. In the described embodiment, a
32-bit divisor and 64-bit dividend serve to produce a 32-bit quotient and a 32-bit remainder. The generation of
the 32-bit quotient takes place in response to four different divide instruction codes each responsible for
generating a respective 8-bit portion of the quotient. With each instruction, a register pair originally holding
the dividend holds instead a progressively smaller number of bits of the remainder and a progressively larger
number of bits of the quotient. As each portion of the quotient is calculated more quickly than a 32-bit
quotient, interrupt latency is reduced.

Mt e e e e o o

r

Dividend#1 Dividend#2
fstinst (Partial Remainder PQt
2nd lnst(Partial Remainder PQt
Srd Inst (Partial Remainder PQt
ath Inst C Remainder Quotient

Fig.6

V 06€96C¢ 99

1/8

welsAs
Aows\

1614

0¢

e

U

9l
N
e

)

II

v od
Jojuswalou|
ye od

w_.\J ¢

a7

g4 0}

jonuon

01607 @
lapodeq
uonRonJIsu|

Joisibey eleq eluM

I

HUM ONBWILYIY

yueg Jo)sibay

dSdO HSdS

92— 82—

2/8

g b4

JID
-
Jepureway
y <—
z#puoping'Lepuepwa(Joswa | [
Jsnonp
<

Jusnonp/pusping

>

Japuleway/puspliAiG

10SIAIQ

ve 614

00 LOLILOOOO
» L 0OLOO
00t + [
L L O L L
0LOLLLOOOO
oﬁ GIUJ
® OLOL LlOOODOO
4 L0 LO0OO
L Lo [
cul.* L L O L L
L0l L/l0O0O0O0O

€1+) |L O L L 0O O O0O0O

v
puspiAig

0 = 0b 195 pue al0lsay J

wenqns
wus

0 = Ob 1es pue a101s8Yy \

(luswa|dwod sg ppe) 1oeaqns

Hus /

G+) | O L OO

\ /

d
10SINIQ

4/8

ge bl

gebi4

ve b4

Jusjonp

lepureway

/ \

/

OL0OO

»

I
l
0
3

I
0
I
I

o | -

0
i
l

Il 00O

2

I

o| O|r

o
o

I 000 |

o

- O] |O

O |0 |O

000

-—

-~

0O0O01IL O

-0 ||

- - O |

- |- 10O |0

v—EFO o

OO0 1L O

O | Oy | |O

o
o

0 = 0b jos pue si01s8Y \

oenqng
Hus /

| = Objeg \

oenqng
Hius

0 = Ob 105 pue ai0jsey \

oenqng
HUs

5/8

Vbl

I 00 0 O]

o

-—

- | O
=)

-—
o

Ol | O |

Ol O |v
Ol | O |v

1—‘—1—0

FE'—OO

000 L|I

B

o
o

000 [I

I

0

AN

v
puspiAl]d

1 =0bieg\

enqng
Wus

0 = Ob 105 pue ai0jsay \

(luswejdwod sg ppe) 1oenqns
Hus /

8+) [0 00O L O

AN /

d
J0SIAIg

6/8

gpb14

wanond lepujewiay
Ll L L L O|0O0OOOO L = Objag \
A
000 0I[Q
0O0O0 L I oenqgnsg
I L LO|OOO L O Wys
O ¢ n 0
l L LOO|0OO L OO L = 0bjas \
i
00! 0[0
0O0O01L | oenqns
Il LOO|lOO L L O yys
O f . 0
L LOOO|O L LOO L = Ubjag \
i
0L L 0l[0
ay6i4 000 1L I oenqns
v bl i 00OO(O L L L O Wiys

66l

7/8

b5
Beyz 4SdO o)
9¢€
Op
unoo I
— Bupjue|g
2e—"]
O uanonb V Jepurewsl
Joueping | | /puepinig 9 g 1os\na
A
! e, | !
XN\ w XN
|» I 0oe I +
b sng
%

*eleg

8/8

9'bi4

Jusnond Japurewsay v Ul

10d Jopuleway [enled) 501 ot

10d Jepureway [eiled sz

10d Jepureway [enred v sul1s1
Z#PuSpING L#PUSPIAIG

1§ J)\ J\ J\ _J\ _J\ _J\u

))))))))
&zwzswﬂzozzmﬂsmzsmzzmﬁsw

J

10

15

20

25

30

35

1 2296350
DATA PROCESSING DIVIDER

This invention relates to the field of data processing. More
particularly, this invention relates to data processing systems having
a dedicated hardware divider circuit.

It is known to provide data processing systems with dedicated
hardware for performing integer divide operations. The complexity of
implementing divide operations in hardware is such that it is usual to
only usefully produce one bit of quotient per processing cycle.
Accordingly, on a 32-bit system, a 32-bit division operation would
typically take 32 clock cycles to complete. This number of cycles
compares unfavourably with most other processing operations that might
typically take one to five processing cycles to complete. This is
particularly the case in reduced instruction set computing systems in
which efforts are made to keep the number of cycles taken to execute
each instruction to as low a value as possible.

One problem of such long execution times is an undesirably long
interrupt latency. If a processing exception occurs requiring that
control should be passed to an exception handling routine, then the
system must wait until the currently executing instruction has
completed before processing may be safely diverted to the exception
handling routine. The need to wait until the currently executing
instruction has completed results from the requirement to ensure data
integrity by stopping the processor in a known condition. In the case
of a divide instruction taking perhaps 32 cycles to complete, the need
to wait up to 32 cycles before the exception processing may commence is
a significant system limitation.

It has been previously proposed that this problem may be dealt
with by providing a separate instruction to calculate each bit of a
quotient. Thus, in order to calculate a 32-bit quotient value, 32
instructions would have to be consecutively executed. Whilst this
approach reduces the interrupt latency to that needed to read the input
operands, calculate one bit of quotient and write the output results,
it represents a significant increase in the size of the program
software concerned. Accordingly, this approach is unsatisfactory in
situations where code density is important. In addition, the read and

write operations after each instruction increase the total time needed

10

15

20

25

30

35

to produce the full 32-bit quotient.

Another problem with such integer divide operations is the
relatively high number of operands required. Consider the case of a
32-bit divisor and a 64-bit dividend resulting in a 64-bit quotient
with a 32-bit remainder being left in the least significant dividend
register. In this case, five 32 operands are required, one for each
instruction code (one for the divisor, two for the dividend and two for
the quotient). This situation would require five register access ports
if it were to be accomplished in a single cycle. This is more register
access ports than are usually provided within a system.

One way to deal with this restriction upon the number of register
access ports would be to take more than one cycle in which to perform
the register access operations at the beginning and end of a divide
instruction. In this way, the register access ports are used as many
times as needed to read out the operands. Whilst overcoming the
requirement for such a large number of operands, this solution has the
disadvantage of increasing the total time needed to execute a divide
instruction. This is particularly significant in the case of the
approach to reducing interrupt latency by calculating only one bit of
quotient on each cycle since register accesses would be required at the
beginning and at the end of each instruction code operation.

Another approach to the problem of the large number of operands
required would be to add a separate divisor/quotient register to reduce
the number of ports required in the main register file. Whilst
superficially attractive, this approach causes problems in superscaler
arithmetic logic design because the separate divisor/quotient register
is a single resource upon which each arithmetic logic unit will rely.
Accordingly, such an arrangement may lead to an undesirable restriction
in processing speed.

Viewed from one aspect this invention provides apparatus for
processing data in response to instruction codes, said apparatus
comprising:

a dedicated divider circuit responsive to a plurality of
different divide instruction codes to generate respective multi-bit
portions of an X-bit quotient.

The invention recognises that if a plurality of different divide

instruction codes are provided each generating a respective multi-bit

10

15

20

25

30

35

portion of a quotient, that the interrupt latency may be reduced whilst
the penalty of having to make extra register access operations at the
start and end of each of the divide instruction codes does not become
too large.

In a system having an X-bit quotient, Y-dividend and Z-bit
divisor stored in respective registers of a register bank, it is
advantageous that one or more registers initially storing said Y-bit
dividend serve to store a Y-bit remainder as generation of said X-bit
quotient progresses.

In this way, the total number of registers required as resources
to the divide instruction codes is reduced. Furthermore, this
arrangement is particularly suitable for dedicated divider circuits
which progress the divide operation by subtracting multiples of the
divisor from the dividend; these can be made to ultimately result in
the remainder result for the full division operation being left within
the registers that were storing the dividend.

In a system in which the quotient and the dividend are 64 bits in
length and the divisor is 32 bits in 1length, it is particularly
suitable that the multi-bit portions should comprise 8-bit portions.

Another significant advantage of the invention is that by
breaking up execution of a required divide operation into several
multi-bit portions, the execution may be early terminated if the
dividend value becomes zero during the execution. This increases
overall the processing speed.

An embodiment of the invention will now be described, by way of
example, with reference to the accompanying drawings in which:

Figure 1 illustrates a data processing system in the form of an
integrated circuit microprocessor;

Figure 2 schematically illustrates the data values transferred
between a register bank and an arithmetic unit;

Figures 3A and 3B show a first example shift-subtract-restore
division operation;

Figures 4A and 4B show a second example shift-subtract-restore
division operation;

Figure 5 shows a hardware divider; and

Figure 6 schematically illustrates the operations performing in

response to differing divide instructions.

10

15

20

25

30

35

Figure 1 illustrates a data processing system {(that is formed as
part of an integrated circuit) comprising a processor core 2 coupled to
a memory system 4.

The processor core 2 includes a register bank 6, an arithmetic
unit 8 and a write data register 14. Interposed between the processor
core 2 and the memory system 4 is an instruction pipeline 16, an
instruction decoder 18 and a read data register 20. A program counter
register 22, which is part of the processor core 2, is shown addressing
the memory system 4. A program counter incrementer 24 serves to
increment the program counter value within the program counter register
22 as each instruction is executed and a new instruction must be
fetched for the instruction pipeline 16.

The processor core 2 incorporates N-bit data pathways (in this
case 32-bit data pathways) between the various functional units. In
operation, instructions within the instruction pipeline 16 are decoded
by the instruction decoder 18 which produces various core control
signals that are passed to the different functional elements within the
processor core 2. In response to these core control signals, the
different portions of the processor core 2 conduct 32-bit processing
operations, such as 32-bit multiplication, 32-bit addition, multiply-
accumulate operations of differing precisions and 32-bit logical
operations.

The register bank 6 includes a current programming status
register 26 and a saved programming status register 28. The current
programming status register 26 holds various condition and status flags
for the processor core 2. These flags may include processing mode
flags (e.g. system mode, user mode, memory abort mode etc.) as well as
flags indicating the occurrence of zero results in arithmetic
operations, carries and the like. These flags control the conditional
execution of program instructions in dependence upon the parameters
specified by the condition codes of the first four bits of each
instructions. The saved programming status register 28 (which may be
one of a banked plurality of such saved programming status registers)
is used to temporarily store the contents of the current programming
status register 26 if an exception occurs that triggers a processing
mode switch. In this way, exception handling can be made faster and

more efficient.

10

15

20

25

30

35

The register bank 6 has two read ports and one write port. The
write port is able to operate twice in one processing cycle, whereas
the read ports are only able to operate once in one processing cycle.

Once the required program instruction words have been recovered
from the memory system 4, they are decoded by the instruction decoder
18 and initiate 32-bit processing within the processor core 2.

Figure 2 schematically illustrates the reading and writing of
registers from the register bank 6 to and from the arithmetic unit 8.
Considered as a whole, a division operation utilising a 32-bit divisor
and a 6U4-bit dividend produces a 32-bit quotient and a 32-bit
remainder. As a result of the nature of the division operation (to be
discussed later), the quotient and the remainder overlie the most
significant portion and least significant portion of the dividend after
coﬁpletion of the full operation. Three register reads need to take
place to read the divisor and the two parts of the dividend at the
beginning of the divide operation. Following the divide operation, two
writes need to take place to store the quotient and the remainder back
in the register bank 6. Since the read ports can only perform one read
operation per cycle, two cycles are needed to perform the three
register reads, whereas a single cycle can perform the two necessary
register writes.

Figures 3A and 3B illustrate the hardware technique used to
achieve binary division. In this example, the dividend A is +13 and
the divisor B is +5. Broadly speaking, the division process proceeds
by left-shifting the dividend A and then subtracting the divisor B from
the most significant half of the shifted dividend A. This subtraction
is achieved by adding the 2s complement of the divisor B.

If the result of the subtraction is negative (indicated by the
most significant bit of the result being a 1), then the divisor B is
larger than the most significant half of the dividend A and the
quotient bit for that cycle is set to a 0. In contrast, if the result
of the subtraction result is positive (indicated by the most
significant bit of the result being a 0), then the most significant
half of the dividend A is larger than the divisor B and the quotient
bit for that cycle is set to a 1.

In the case where the result of the subtraction is negative and
the quotient bit is a O, the most significant half of the shifted

10

15

20

25

30

35

dividend A is restored to its value prior to the subtraction at the end
of the cycle. Upon the next cycle, the left shifted dividend A will
have a numerically larger most significant half and so the possibility
that it will be greater than the divisor B is increased. In contrast,
when the result of the subtraction is positive and the quotient bit is
a 1, then the most significant half of the shifted dividend A is not
restored at the end of the cycle and a new partial remainder becomes
current.

As will be seen from the example of Figures 3A and 3B, at the end
of the final division cycle, the uppermost half of the registers that
initially held the dividend A, now holds the remainder of the division
operation with the least significant half of these registers holding
the quotient. In the case of a dividend A of +13 and divisor B of +5,
the quotient is +2 and the remainder is +3.

Figures 4A and 4B illustrate another example of this hardware
division technique in operation. In this case, the dividend A is +120
and the divisor B is +8. The result of this division is a quotient of
+15 and a remainder of a 0. A restore and set quotient bit equal to O
step occurs on the first cycle. The remaining four cycles have no
restore operation and each set their respective quotient bit to a 1.

It will be appreciated that with this type of division a check
must be made for a divide overflow. A divide overflow occurs when the
most significant half of the unshifted dividend A is greater than the
divisor B. In this case, there will be an insufficient number of bits
in the least significant half of the registers initially holding the
dividend A to properly represent the quotient. Accordingly, the divide
operation should not be allowed to proceed. The overflow check is made
before the divide operation commences by subtracting the divisor B from
the most significant half of the unshifted dividend A and triggering an
overflow error if the result is positive.

Figure 5 shows schematically the hardware required for an integer
divide operation. A 64-bit dividend is loaded into the concatenated
registers A and Q, with register A containing the high order 32 bits
and register Q containing the low order 32 bits. A 32-bit positive
divisor is loaded into register B, and the carry flip-flop is set to 1.
The dividend is shifted to the left by one bit position, and the

divisor is subtracted by adding its negated value. The information

10

15

20

25

30

35

about the relative magnitudes is then available in the carry flip-flop
C. If C =1, then this signifies that A 2 B, and a quotient bit of 1
is inserted into the q, position. The partial remainder is then shifted
to the left and the process is repeated. If C = 0, then this signifies
that A < B, and a quotient bit of O is inserted into the q, position
(the value set into g, could also be loaded during the shift). The
value of B is then added to restore the partial remainder in A to its
previous value and the carry flip-flop is set to 1. The partial
remainder is then shifted to the left and the process repeats until all
of the desired bits of the quotient have been formed.

The overall operation of the hardware divide unit will be seen to
tend to decrease the initial partial remainder from 64 bits to 32 bits
and, at the same time, increase the quotient to 32 bits. The 32-bit
quotient enters the cascaded registers from the right and pushes the
upper part of the partial remainder (initially the dividend) off to the
left end of the concatenated registers A and Q. The divisor register
B is required only to load information (from the data bus); it is not
required to have shift properties in the same manner as registers A and
Q.

Figure 6 illustrates the manner in which the generation of a full
32-bit quotient is split down to be achieved by four successive divide
instructions. The first instruction generates the highest order 8 bits
of the quotient as a partial quotient (PQt) starting from the 64-bit
dividend (Dividend#1,Dividend#2). The 8-bit partial quotient following
the first instruction is accompanied by a 56-bit partial remainder.

The second instruction has as its inputs to the registers A and
Q the result of the first instruction, i.e. a 56-bit partial remainder
and a 8-bit partial quotient. The second instruction then proceeds to
calculate the next 8 bits of the quotient by shift, subtract and
restore operations as previously discussed. At the end of the second
instruction, the registers A and Q contain a 48-bit partial remainder
and a 16-bit partial quotient.

The third instruction continues in an analogous manner to the
first and second instructions and results in a 40-bit partial remainder
and a 24-bit partial quotient.

The final divide instruction, the fourth instruction, takes as

10

15

20

25

30

35

its input a 40-bit partial remainder and a 24-bit partial quotient and
serves to generate the final desired 32-bit remainder and the 32-bit
quotient. The remainder and quotient are respectively held within the
registers A and Q.

Returning to Figure 5, at the start of each instruction, the
divisor is loaded into register B and the dividend partial remainder
and partial quotient operands are loaded into the registers A and Q.
The multiplexer 30 serves to select the value for input to the register
A and the multiplexer 32 selects the value for input to register Q.
During the shift, subtract and restore cycles of the divide operation,
the multiplexer 32 serves to selectively feed the carry bit from the
32-bit adder 34 performing the subtract operation into the lowest order
bit q, of the register Q. At the same time, the multiplexer 30 serves
to select into the register A the output of the 32-bit adder 34 for
those cycles in which the divisor stored in the register B is less than
the current partial remainder corresponding to a quotient bit of 1 and
a new partial remainder value; otherwise the value stored in the
register A is not changed.

As previously mentioned, the invention serves to enhance the
possibilities for early termination. More particularly, a 64-input NOR
gate 36 serves to monitor the current value of the partial remainder as
the division operation proceeds. If the partial remainder reaches a
value of 0, then no further shift, subtract and restore operations are
needed in order to arrive at the final result, all of the quotient bits
of lower order than those already calculated will be equal to 0. In
this case, to produce the final gquotient value, the partial quotient
(PQt) needs to be left shifted by a number of positions equal to the as
yet uncalculated quotient bits, with O quotient bits being fed into the
lower order positions. In order that the NOR gate 36 responds only to
the partial remainder bits within the registers A and Q, a blanking
circuit 38 is interposed between the register Q and the NOR gate 36.
The blanking circuit progressively blocks the passage of bit values
from the register Q to the NOR gate 36 that correspond to positions now
occupied by the partial remainder (PQt). Low bit inputs blocked by the
blanking circuit 38 are supplied with O values so as not to interfere
with the action of NOR gate 36 in detecting the partial remainder

becoming O at all of its valid bit positions.

10

15

20

25

When the NOR gate 36 detects that the partial remainder is 0O, a
signal is issued to set the zero result flag (Zflag) within the CPSR
register 36. The partial quotient is then 1left shifted by the
appropriate amount to align it with the final 32-bit quotient. The
divide instructions are conditional instructions whose conditional
flags indicate that they should be skipped if the zero flag (Zflag)
within the CPSR register 26 is set. Conditional instructions sets
operating in this way are known from microprocessors such as the ARM6
microprocessor produced by Advanced RISC Machines Limited.
Alternatively, on standard architecture system, conditional branch
instructions between divide instructions could be used to early
terminate.

The instruction decoder and logic control unit 18 illustrated in
Figure 1 serves as a means for interrupting data processing between
adjacent divide instructions in dependence upon the partial remainder
value. In the above example, the multi-bit portions of the quotient
that are calculated, one for each divide instruction, are 8-bit
portions. These multi-bit portions could have another size in
dependence upon the appropriate trade-off between interrupt latency and
code density.

It will also be appreciated that the divider hardware illustrated
in Figure 5 is only one example of the hardware that may be used.
Different divider hardware may be utilised and yet still benefit from
the advantage of having a plurality of divide instructions each
responsible for generating a respective multi-bit portion of the
quotient. A number of different divider hardware implementations are

known in the art.

10

15

20

25

30

35

10

CLAIMS

1. Apparatus for processing data in response to instruction codes,
said apparatus comprising:

a dedicated divider circuit responsive to a plurality of
different divide instruction codes to generate respective multi-bit

portions of an X-bit quotient.

2. Apparatus as claimed in claim 1, wherein said X-bit quotient is

generated from an Y-bit dividend and an Z-bit divisor.

3. Apparatus as claimed in claim 2 comprising a register bank having
a plurality of registers, respective registers storing said X-bit

quotient, said Y-bit dividend and said Z-bit divisor.

4. Apparatus as claimed in claim 3, wherein one or more registers
initially storing said Y-bit dividend serve to store a Y-bit remainder

as generation of said X-bit quotient progresses.

5. Apparatus as claimed in any one of claims 3 and 4, wherein each
of said registers stores N bits, X =n * N, Y=n, *Nand Z = n, * N,

and n, n, and n, being integers.

Y

6. Apparatus as claimed in claim 5, wherein said register bank has

three data paths allowing simultaneous access to respective registers.
7. Apparatus as claimed in any one of the preceding claims, wherein
said X-bit quotient comprises n,,, of said multi-bit portions, n, being

an integer and said multi-bit portions being non-overlapping.

8. Apparatus as claimed in any one of the preceding claims, wherein

said multi-bit portions comprises 8-bit portions.

9. Apparatus as claimed in claim 2, wherein X = Y = 64 and Z = 32.

10

15

20

25

11

10. Apparatus as claimed in any one of the preceding claims,
comprising means for interrupting data processing, said means for

interrupting being operable between adjacent divide instruction codes.

11. Apparatus as claimed in any one of the preceding claims,
comprising means responsive to an initial dividend value for a divide
instruction code for skipping execution of said divide instruction code

if said initial dividend value is zero.

12. Apparatus as claimed in claim 11, wherein said divide instruction
codes include a conditional execution field with a flag indicating that

execution should be skipped if said initial dividend value is zero.

13. Apparatus as claimed in any one of the preceding claims, wherein

said apparatus comprises an integrated circuit microprocessor.

14, A method of processing data in response to instruction codes,
said method comprising the steps of:

in response to a plurality of different divide instruction codes,
generating respective multi-bit portions of an X-bit quotient using a

dedicated divider circuit.

15. Apparatus for processing data substantially as hereinbefore

described with reference to the accompanying drawings.

16. A method of processing data substantially as hereinbefore

described with reference to the accompanying drawings.

Patelt
Ofhce

Application No: GB 9425786.2 Examiner: Geoff Western
Claims searched: 1-16 Date of search: 21 March 1995
Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:
UK Cl (Ed.N): G4A(AMD)
Int Cl (Ed.6): GO6F(7/52, 7/54)

Other:

On-line database : WPI

Documents considered to be relevant:

Category| Identity of document and relevant passage Rl:i:’:‘“ fo
C!
X EP-0258051-A2 (NORTHERN TELECOM) 1-3, 59 13. 14
See whole document B
X US-4872214-A (ZURAWSKI) 19, 13, 14
See whole document T
X | US-4860241-A (HABER) 1-3, 59, 13, 14
See whole document
X | US-4224676-A (APPELT) 13,59, 13, 14
See whole document
— w

X Document indicating lack of novelty or inventive step A Document indicating technological background and/or state of the art.
Y Document indicating lack of inventive step if combined P Document published on or afier the declared priority date but before
with one or more other documents of same category. the filing date of this invention.

E Patent document published on or after, but with priority date earlier

& Member of the same patent family than, the filing date of this application.

An Executive Agency of the Department of Trade and Industry

