Office de la Propriete Canadian CA 2131406 C 2002/11/12

Intellectuelle Intellectual Property
du Canada Office (11)(21) 2 131 406
Un organisme An agency of | 12 BREVET CANADIEN
Industrie Canada ndustry Canada
CANADIAN PATENT
13) C
(22) Date de depot/Filing Date: 1994/09/02 (51) Cl.Int.>/Int.CI.° GO6F 9/46
(41) Mise a la disp. pub./Open to Public Insp.: 1995/03/22 (72) Inventeur/Inventor:
(45) Date de délivrance/lssue Date: 2002/11/12 Jsouzd, David, Us
(30) Priorité/Priority: 1993/09/21 (08/125,930) US (73) Proprietaire/Owner:

MICROSOFT CORPORATION, US
(74) Agent: OYEN WIGGS GREEN & MUTALA

(54) Titre : TRAITEMENT MULTITACHE PREEMPTIF A GROUPES DE TACHES COOPERATIFS
(54) Title: PREEMPTIVE MULTI-TASKING WITH COOPERATIVE GROUPS OF TASKS

Perform LoadLibrary

Or LoadMode
Calls To Link

to DLLs

Move Task Into
A Group With
Other Tasks Which
Use Same DLLs

(57) Abregée/Abstract:

An operating system combines preemptive scheduling with cooperative or non-preemptive scheduling. In particular, tasks are
divided Into groups of interdependent tasks. Each group includes tasks that should not be run asynchronously relative to each
other. The scheduler in the operating system provides each group with a time slot of processor time. The tasks within the group
are cooperatively scheduled to exploit the time slot assigned to the group. Dependencies between modules and tasks are
maintained to assure that no difficulties arise amongst preemptively scheduled groups.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

W .
‘ l an a dH http.:vvopic.ge.ca + Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC
OPIC - CIPO 191

- 2131408

PREEMPTIVE MULTI-TASKING WITH COOPERATIVE GROUPS OF TASKS

Abstract of the Disclosure

An operating system combines preemptive scheduling
with cooperative or non-preemptive scheduling. In particular,
tasks are divided into groups of interdependent tasks. Each
group includes tasks that should not be run asynchronously
relative to each other. The scheduler in the operating system
provides each group with a time slot of processor time. The
tasks within the group are cooperatively scheduled to exploit
the time slot assigned to the group. Dependencies between
modules and tasks are wmaintained to assure that " no
difficulties arise amongst: .p're'emptively scheduled groups.

10

15

20

25

30

335

EXPRESS MAIL NO. TB33741204US

2131406
Description

PREEMPTIVE MULTI-TASKING WITH COOPERATIVE GROUPS OF TASKS

Technical Field

The present invention relates generally to data
processing systems and, more particularly, to scheduling
of tasks in data processing systems.

RACKIroOUNd O THE ventclor
| The Microsoft Windows, version 3.1, operating
system sold by Microsoft Corporation of Redmond,
Washington, is a message~driven operating systen. Each
program run on the operating system maintains a message
queue for holding incoming messages that are destined for
some portion of the program. Messages are often destined
to windows generated by the progran. Each window
generated by a program has an associated procedure. Thus,
the messages are not sent to the window per se, but rather
are sent to the associated procedure
Messages are retrieved and processed from the
message queue by the associated program through execution
of a block of code known as the "message loop". Figure 1
is a flow chart of the steps performed by the message
loop. These steps are continuously repeated in a looping
fashion while the program is active. Initially, a message
is retrieved from the queue by making a call to the
GetMessage function (step 10). The GetMessage function is
responsible for retrieving a message (if one exists) from
the queue. Once the message is retrieved from the queue,
the message is translated (if necessary) into a usable
format by calling the TranslateMessage function, which
performs some keyboard translation (step 12). Once the
message is translated, the message is dispatched to the
appropriate procedure by calling the DispatchMessage
function (step 14). The'message includes information that

10

15

20

25

30

35

2131400

2

identifies a destination window. The information 1s used
COo properly dispatch the message.

The GetMessage function, described above, also
plays a role in the scheduling of tasks in the Microsoft
WINDOWS, Version 3.1, operating system. The operating
System adopts a non-preemptive or cooperative multi-
tasking approach. A task is a section of code, such as a
subroutine or program, that can run independently.
Cooperative multi-tasking refers to when tasks cooperate
with each other by voluntarily passing control over a
processor ("yielding") among each other. With preemptive
multi-tasking, in contrast, a scheduler determines which
task 1s given the processor and typically provides each
task with a given time slot in which it may run. - The
GetMessage function 1is an example of a vehicle for
implementing the cooperative multi-tasking in the
operating system. Other operating system-provided
functions that help implement cooperative multi-tasking
include the PeekMessage, Yield and WaitMessage functions.
In order to understand how the GetMessage function and the
other named functions play a role in cooperative multi-
tasking, it is helpful to take a closer look at the
operation of the GetMessage function.

Figure 2 is a flow chart of the steps performed
by the GetMessage function when called from a first task
(e.g., program) in an environment having multiple active
tasks. Initially, the "GetMessage function determines
whether the message queue for the calling task is empty
(step 16). If the message queue for the calling task is
empty, the task yields (i.e., relinquishes control of) the
processor to a second task that has a non-empty message
queue (step 18). At some later point in time, a message
becomes available in the message queue of the first task
(step 20). The second task maintains control of the
processor until it yields control to another task.
Eventually, a task yields control back to the first task
(step 22). Typically, one of the other tasks yields

10

15

20

25

30

35

control back to the first task when the other task’s
message queue 1s empty, and the message queue for the
first task is no longer empty. The message 1n the message
queue of the first task is then retrieved from the message
queue (step 24). On the other hand, if in step 16 it is
determined that the message queue for the first task is
not empty, the step of retrieving the message from the
message queue 1is performed immediately (step 24) rather
than after first performing steps 18, 20 and 22.

One difficulty with the cooperative multi-
tasking approach of the Microsoft WINDOWS, Version 3.1,
operating system is that a task may monopolize the
processor by refusing to yield to other tasks. As long as
the task has messages in its message queue, it need not
yield.

summary of the Invention

In accordance with a first aspect of the present
invention, a method is practiced in a data processing
system having at least one processor for running tasks.
The tasks are 1logically partitioned into groups of
interdependent tasks. The groups of tasks are
preemptively scheduled to be run such that each group of
tagks is given a time slot in which it may run on the
processor. The tasks to be run within each group are non-
preemptively scheduled to be run during the time slot
allocated to the group.

In accordance with a further aspect of the
present invention, a method is practiced in a data
processing system having at least one storage device for
storing modules of code and at least one processor for
running tasks. During the running of each task, at least
one module of code is run. In this method, a task
dependency 1list is provided for each task. This task
dependency 1list 1lists modules that are candidates to be
called when the task is run on the processor. The method
may include the additional step of providing a module

10

15

20

25

30

35

2131400

4

dependency 1list for each module of code. Each module
dependency list lists interdependent modules of code for
the module code associated with the list. In such a case,
the task dependency 1list for each task is created by
taking a logical union of the modules listed in the module
dependency list that are candidates to be called when the
task is run on the processor. The task devendency lists
are examined to logically partiticn the tasks into groups
of interdependent tasks. The groups of tasks are
preemptively scheduled to be run such that each group of
tasks is given a time slot in a cycle in which its tasks
may run on the processor. For each group of tasks, the
tasks are non-preemptively scheduled to be run during the
time slot allocated to the group.

In accordance with a still further aspect of the
present invention, a data processing system includes a
partitioning mechanism for partitioning tasks into groups
of interdependent tasks. The data processing system also
includes an execution mechanism for executing the task. A
preemptive scheduler preemptively schedules the group of
tasks such that each group is given a time slot in which
to execute one of its tasks. A nonpreemptive scheduler is
also provided in the data processing system for
nonpreemptively scheduling tasks within each group.

e
w
}
h
@
»
-
L
-
!
w
!
L]
f

Figure 1 is a flow chart illustrating the steps
performed by a message loop in the Microsoft WINDOWS,
version 3.1, operating system.

Figure 2 is a flow chart illustrating the steps
performed by the GetMessage function of the message loop
of Figure 1.

Figure 3 is a block diagram of a data processing
system that is suitable for practicing a preferred
embodiment of the present invention.

10

15

20

25

30

35

Figure 4 15 a flow chart providing a high level
view cf the steps performed by the preferred embodimant of

tr:e prasent invention in gcheduling tas«s for sxecution.

Fzgure 5 1is a bDblecck diagram illustratin

G
£
-

example ©0f preemptive scheduiing o¢f groups in the
preferred embcdiment Of thie prasent invention.

Figure 6 1is an illustratioas of an exemplary
grcup list employed in the praferred embodiment of the
present invention.

Figqure 7 1s a flow chart illustrating the steps
performed to ma2rge tasks into a gingle merged sroup in the
preferred smbodimant of the present invention.

Figura 8 1is a flow chart illustrating in nore
detail the steps performed to meve a task into a group
with other tasks which use a same DLL in the preferred
embcdiment of the present invention.

Figure ¢ 1s an 1illustration of an exemplary
group status table used in the preferred embodiment of the
present invention.

Figure 10 is an illustration of an exemplary
module dependerncy list used in the preferred embodiment of
the present invention.

Figure 11 is a flow chart illustrating the steps
performed ¢to grow a module dependency list in the
preferred embodiment of the present invention.

Figure 12 is a flow chart illustrating the steps
performed to create a task dependency 1list in the
preferred embodiment of the present inwvention.

Detailed Description of the Invention

The preferrzd embodiment of che prssent
invention combines presmptive multi-tasking with
cooperative multi-tasking to optimize scheduling of tasks
in an operating system. Specifically, tasks are locgically
divided into groups of interdependent tasks. As will Dbe
explained in more detail below, the interdependent tasks

9

are related such thet i€ they were scheduled

10

15

20

25

30

35

2131400

asynchronously, code-sharing and data sharing problems
could arise. A time slot of processor time is provided
for each grour. Scheduling within the group, however, is
performed 1in a cooperative manner, much like that
performed by the Microsoft WINDOWS, Version 3.1, operating
system, sold Dby Microsoft Corporation of Redmond,
Washington. Since groups are preemptively scheduled, one
Ctask may not monopolize the processor and slow down all
executing tasks. In general, response time for task

completion is improved by the present invention.
Furthermore, if a task hangs, the scheduler may switch to
another group so that all tasks will not hang. In
addition, for compatibility reasons, the present invention
ensures that dependencies among tasks are not ignored.
Earlier versions of the Microsoft WINDOWS operating system
used cooperative multi-tasking. Thus, applications
written for such earlier versions of the operating system
do not account for preemptive scheduling and, thus,
dependency problems may arise when such applications are
run in a preemptively scheduled environment. Failure to
recognize these dependencies could cause problems in a
purely preemptively scheduled environment.

The preferred embodiment of the present
invention is practiced in a data processing system 26,
like that shown in Figure 3. Although the data processing
system 26 shown in Figure 3 is a single processor system,
those skilled in the art will appreciate that the present
invention may also be practiced in multiple processor
systems, such as distributed systems. The data processing
system 26 of Figure 3 includes a central processing unit
(CPU) 27 that controls operation of the system. The data
processing system 26 also includes a memory 28 and disk
storage 30 for storing files and data. The memory 28 may
include any of multiple types of memory devices, including
RAM, ROM or other well-known types of memory devices. The
data processing system 26 may further include a keyboard
32, a mouse 34 and a video display 36. It should be

10

15

20

25

30

35

$131406

appreciated that additional or other types of input/output
devices may, likewise, be included in the data processing
system 26.

The memory 28 holds a copy of an operating
system 40 and modules of code 38. The operating system
may be an embellished version of the Microsoft WINDOWS,
version 3.1, operating system that has been embellished to
support the preferred embodiment described herein. The
operating system 40 includes a scheduler 42 that is
responsible for scheduling the execution of tasks on the
CPU 28. The preferred embodiment of the present invention
is implemented, in large part, in the scheduler 42.

Figure 4 is a high level flow chart showing the
steps performed in the scheduling of tasks within the
preferred embodiment of the present invention. First,
tasks are organized into logical groups of interdependent
tasks (step 44). These tasks have interdependencies such
that they cannot be run in separate time slots. For
instance, the tasks may call a common dynamic link library
(DLL) module or other common module. If such task were
run in separate time slots, a data sharing problem arises.
One of the tasks might inadvertently change the data for
the DLL and, thus, deleteriously affect the other tasks.
The organization of tasks into logical groups is performed
by the operating system 40 and will be described in more
detail below. The discussion below will initially focus
on the preemptively scheduling aspect of the present
invention and then 1later focus on the cooperative
scheduling aspect of the present invention.

The various groups of tasks to be run on the
operating system 40 are scheduled preemptively such that
each group is given a particular time slot of processing
time to run on the CPU 28 (step 46 in Figure 4). Figure 5
provides an illustration of how time slots may be assigned
in an instance where there are four 1logical groups:
Group 1, Group 2, Group 3, and Group 4. In the
illustration shown in Pigure 5, Group 1 is assigned time

10

15

20

25

30

35

slot 1 in cycle 1 and then later assigned time slot 5 in
cycle 2. In the example shown in Figure 5, Group 2 is
assigned time slot 2 in cycle 1, Group 3 is assigned time
slot 3 in cycle 1, and Group 4 is assigned time slot 4 in
Cycle 1. Each group is assigned a corresponding time slot
within the next cycle. Thus, Group 1 is assigned time
slot 5 in cycle 2, Group 2 is assigned time slot 6 in
cycle 2, Group 3 is assigned time slot 7 in cycle 2, and
Group 4 is assigned time slot 8 in cycle 2.

As the scheduling is dynamic and groups may be
added and/or removed over time, the sequence of time slots
need not remain fixed; rather the scheduling may change
over time. The scheduler 42, however, ensures that each
active group gets a time slot in each cycle.

The scheduling of tasks within each group is not
performed preemptively; rather, the scheduling is
performed cooperatively (step 48 in Figqure 4). As
discussed above, cooperative multi-tasking requires that a
task wvoluntarily yield to another task. The example
described in the Background section focused on the
GetMessage function as a vehicle for yielding amongst
tasks. In general, the cooperative multi-<tasking
performed within a group is performed much like scheduling
is performed in the Microsoft WINDOWS, Version 3.1
operating system. As will be described in more detail
below, the present invention additionally checks for
dependencies before unblocking a task. API’s such as
GetMessage, PeekMessage, Yield and WaitMessage allow
applications to yield to other tasks in the same group.

In summary, each group 1is given a time slot of
processor time in each cycle. Which task runs during the
time slot assigned to a group depends upon cooperative
scheduling of the tasks within the group. Thus, a task
that is currently running for a group will continue to run
during each consecutive time slot that is assigned to the
group until the task yields to another task in the group
through a vehicle such as a GetMessage function call.

10

15

20

25

30

35

213140

S

The operating system 40 maintains data
structures for monitoring what tasks are in each group.
The primary data structure fcr this purpose is the group
list 50 (Figure 6). The group list 50 may be stored in
the data area of the operating system 40 in memory 28.
The group list 50 includes a respective entry 524, 52B,
52C, and 52D for each of the tasks included in the group.
Each entry 52A, 52B, 52C and 52D holds a handle for a task
that is part of the group. A handle is a number that
uniquely identifies a task amongst those in the system 26.
In the example shown in Figure 6, the group list 50
includes entries 52A, 52B, 52C, and 52D for four tasks:
task 1, task 2, task 7, and task 8.

The tasks 1included in group 1lists may change

over time. Figure 7 is a flow chart illustrating the
steps performed to merge groups. Initially, a task begins
in its own group (step 54). During the course of

execution of the task, the task performs API calls, such
as LoadLibrary, LoadModule, WinExec, or certain forms of
SendMessage, to link to DLLs (step 56). The operating
gystem 40 moves the task into a group with other
applications which use the same DLLs to avoid data sharing
problems (step 58).

Figure 8 is a flow chart illustrating in more
detail how step 58 of Figure 7 is performed to move a task
into a group with other tasks. The application to be
moved from a first group into a second group is placed
into a suspended state, instead of immediately returning
from the LoadLibrary or LoadModule API (step 60). The
first group is in the "synching-up state" at this point.
The operating system 40 waits till no application code for
the second group is running (step 62). In other words, it
waits till each of the tasks in Group 2 is calling an API
like GetMessage, WaitMessage or Yield. The task from the
first group is then added to the second group (step 64)
and the task may then be scheduled to run (step 66).

10

15

20

25

30

35

131400

10

NG

In order for the scheduler 42 to properly
allocate time slots to groups, it must know the current
Status of each group and which task, if any, is scheduled
for execution during the next time slot that is provided
for the group. A group status table 68, like that shown
in Figure 9, is stored by the operating system 40 in
memory 28 1in order to assist the -scheduler 42 in
preemptively scheduling tasks from the various groups. In
the example shown in Figure 9, the system 26 currently has
four active groups of tasks. A separate entry 70A, 70B,
70C, and 70D is provided for each group. Each of the
entries 70A, 70B, 70C, and 70D includes a status field

72A, 72B, 72C, and 72D, respectively. The status fields
72A, 72B, 72C, and 72D hold status information that
details whether one of the tasks in the respective groups
is scheduled to be running during the next time slot or
whether the group is in a "synching-up" state (which will
be described in more detail below). The status
information may be encoded as groups of bits held in the
gtatus fields 72A, 72B, 72C, and 72D. Each entry 703,
70B, 70C, and 70D also includes a respective task name
field 74A, 74B, 74C, and 74D. The task name fields 74A,
74B, 74C, and 74D hold the task names of any tasks that
are running during the next available time slot for the
groups. Thus, 1f entry 70A holds status information for
group 1, the task name field 74A holds a name (or handle)
of the task in group 1 that is running.

The operating system 40 also maintains a module
dependency list for each of the modules 38. The module
dependency list serves a role in assigning tasks/modules
to groups when a new task or module is added to a group
and when it is determined which group a task will be added
to. The module dependency lists are examined to determine
what group a task should be assigned. Preemptively
scheduled groups always have disjoint module dependency
lists. A task/module is put in its own group or in a
group with interdependent tasks/modules. An example

2131400
11

module dependency list 76 is shown in Figure 10. Each
task may include a single module or multiple modules. The
module dependency 1list 76 lists modules that are
candidates to be called or loaded from the associated

5 module. The listed modules and the associated module have
an 1inter-dependency. Entries 64A, 64B, and 64C hold
handles for the respective modules. The module dependency
list 76 holds entries 78A, 78B, and 78C for each of
modules called or loaded from the module associated with

10 the list. 1In Figure 10, the module calls or loads module
1, DLL 1, and DLL 2.

The module dependency 1list 76 is not static;
rather the list changes over time. Figure 11 is a flow
chart illustrating the steps performed to update a module

15 dependency list 76 during the course of execution of the
associated module. 1Initially, a module dependency list is

maintained for each module (step 80). An action is then
performed that adds a dependency relative to the module
associated with the 1list (step 82). This action may

20 include, for instance, loading a library module, locading a
DLL module, running an application module, or getting the
address of an exported DLL module. In the Microsoft
WINDOWS, Version 3.1 operating system, API calls such as
LoadLibrary, LoadModule, GetProcAddress and WinExec add a

25 dependency relative to a module. The new modules that are
loaded, run or exported by such API calls are then added
to the module dependency list (step 84). In this fashion,
the module dependency list may dynamically grow during the
course of execution of the associated module.

30 Since any task may include multiple modules, the
issue arises how to develop a module dependency list for a
task. Figure 12 1is a flow chart showing the steps

performed to create a dependency 1list for a task.
Initially, a task is created (step 86). A task dependency
35 1list for the task is then created by taking the union of
the module dependency list of the modules of the task
(step 88). 1In this fashion, the preferred embodiment in

10

15

20

25

2131405

12

the present invention ensures that all of the dependencies
for a task are taken into account when assigning the task
a group.

It 1s perhaps helpful to summarize the
scheduling performed by the scheduler 42. The scheduler
assigns time slots for each of the active groups. The
scheduler 42 must also determine which task within a group
1s to be executed or whether the group is in a synching-up
gstate. The currently running task is specified within
task name fields 74A, 74B, 74C, and 74D (Figure 9) of
entries 70A, 70B, 70C, and 70D of the group status table
68. The APIs GetMessage, PeekMessage, VYield, and
WaitMessage are embellished in the preferred embodiment of
the present invention to update the group status table
when yielding or blocking. Thus, the group status table
68 contains current information and the appropriate task
in each group is scheduled.

While the present invention has been described
with reference to a preferred embodiment thereof, those
skilled in the art will appreciate that various changes in
form and scope may be made without departing from the
present invention as defined in the appended claims. For
example, the present invention is well suited for use in a
distributed system. Moreover, the present invention may
be implemented in environments other than the Microsoft
WINDOWS, Version 3.1, operating system. Still £urther,
the present invention need not use a single scheduler;
rather, multiple schedulers may be used in conjunction.

2151406

13
CLAIMS

1. In a data processing system having at least one processor for running

tasks, wherein running each task involves running at least one module of code, said
processor running an operating system, a method performed by the operating system
comprising the steps of:

logically partitioning tasks into groups of interdependent tasks, the
interdependency of two tasks being based on whether the two tasks call a common
module of code;

preemptively scheduling the groups of interdependent tasks to be run such that
each group of interdependent tasks 1s allocated a time slot in a cycle in which its tasks
may run on the processor;

for each group, non-preemptively scheduling the tasks in the group to be run
during the time slot allocated to the group;

dynamically updating the partitioning of tasks into groups of interdependent
tasks to reflect a change 1n the interdependency of the tasks in the groups;

updating the preemptive scheduling of groups; and '

updating the cooperative scheduling of tasks within each group.

2. The method recited in claim 1 wherein the data processing system
includes at least one storage device and the method further comprises the step of
storing, 1n the storage device, a group list for each group wherein each group list
includes identifying information for the tasks in the group associated with the group

list.

3. The method recited in claim 1, further comprising the step of storing
status information for each group indicating whether the group has a task that 1s running

and holding identifying information about any task that is running.

2131406

o
_“A,"\ g,

14

4 The method recited in claim 1 wherein the step of logically partitioning
tasks into groups of interdependent tasks further comprises the steps of’

mitially placing each task in its own group; and

subsequently moving the initially placed task into another group of tasks, if the

iitially placed task calls a module that 1s called by one task in the other group.

5. In a data processing system having at least one storage device for storing
modules of code and at least one processor for running tasks wherein running each task

involves running at least one module of code, a method comprising the steps of’

providing a task dependency list for each task, said task dependency list listing

modules that are called when the task is run on the processor;

dynamically updating the task dependency list based on a change in which
modules are called by the task associated with the task dependency list;

during execution of the tasks, dynamically partitioning the tasks into groups of
interdependent tasks based on the task dependency list for each task, the partitioning
being based on dependencies between one module of code called by one task and
another module of code called by another task;

preemptively scheduling the groups of tasks to be run such that each group of

tasks 18 given a time slot 1n a cycle in which its tasks may run on the processor; and

for each group of tasks, non-preemptively scheduling tasks to be run within each

group during the time slot allocated to the group.

6. The method recited in claim 5, further comprising the step of storing a

group hist for each group that holds identifying information for tasks included in the

group.

7. The method recited in claim 5, further comprising the step of storing
status information for each group indicating the group has a task that is running and

holding 1dentifying information about any task that is running.

o e e — — — ———— - tm S W -

~e ci‘./ﬁ
» .;;L

Paiai

2131406

15

8. In a data processing system having at least one storage device for storing
modules of code and at least one processor for running tasks, wherein running each task
involves running at least one module of code, a method comprising the steps of’

providing a module dependency list for each associated module of code,
wherein each module dependency list lists interdependent modules of code of the
associated module of code;

generating a task dependency list for each task by taking a logical union of
modules listed in the module dependency lists of modules that are loaded or exported
when the task 1s run on the processor;

examining the task dependency lists to logically partition the tasks into groups
of interdependent tasks; and

preemptively scheduling the groups of tasks to be run such that each group of
tasks 1s given a time slot in a cycle in which its tasks may run on the processor; and

for each group of tasks, non-preemptively scheduling tasks to be run within each

group during the time slot allocated to the group.

9. The method recited in claim 8, further comprising the step of storing a

group ‘list for each group that holds identifying information for tasks included in the

group.

10. The method recited in claim 8, further comprising the step of storing
status information for each group indicating the group has a task that is running and

holding 1dentifying information about any task that is running.

11. In a data processing system having at least one processor for running
tasks, wherein running each task involves running at least one module of code, wherein
said processor runs an operating system, a computer-readable storage medium holding

the operating system, said operating system performing the steps of’

2151406

16

logically partitioning tasks into groups of interdependent tasks based on
modules of code called by the tasks;

preemptively scheduling the groups of interdependent tasks to be run such that
each group of interdependent tasks is given a time slot in a cycle in which its tasks may
run on the processor;

for each group, non-preemptively scheduling tasks to be run within each group
during the time slot allocated to the group;

dynamically updating the partitioning of tasks into groups of interdependent
tasks to reflect changes in the modules of code called by the tasks;

updating the preemptive scheduling of groups; and

updating the non-preemptive scheduling of tasks within each group.

12. The computer-readable storage medium of claim 11, wherein the
operating system further performs the steps of:

initially placing each task in its own group; and

subsequently moving the initially placed task into another group of tasks, if the

initially placed task calls a module that is called by one or more of the tasks in the other

group.

13. In a data processing system having at least one storage device for storing
modules of code and at least one processor for running tasks wherein running each task
involves running at least one module of code, a computer-readable storage medium
holding an operating system for performing the steps of’

providing a task dependency list for each task, said task dependency list listing
modules that are loaded or exported when the task is run on the processor;

dynamically updating and examining the task dependency lists:

during execution of the tasks, dynamically partitioning the tasks into groups of
interdependent tasks based on the examination of the task dependency list;

preemptively scheduling the groups of tasks to be run such that each group of

tasks 1s given a time slot in a cycle in which its tasks may run on the processor; and

2131406

17
for each group of tasks, non-preemptively scheduling tasks to be run within each

group during the time slot allocated to the group.

14. In a data processing system having at least one storage device for storing
modules of code and at least one processor for running tasks wherein running each task
involves running at least one module of code, a computer-readable storage medium
holding an operating system for performing the steps of

providing a module dependency list for each associated module of code,
wherein each module dependency list lists interdependent modules of code of the

assoclated module of code;

generating a task dependency list for each task by taking a logical union of
modules listed in the module dependency lists of modules that are loaded or exported

when the task is run on the processor;
examining the task dependency lists;

logically partitioning the tasks into groups of interdependent tasks based on the

examination of the task dependency list;
preemptively scheduling the groups of tasks to be run such that each group of
tasks is given a time slot in a cycle in which its tasks may run on the processor; and

for each group of tasks, non-preemptively scheduling tasks to be run within each

group during the time slot allocated to the group.

2131400

Get Message
From Queue If 10
There Is One

Translate
Message

2
Dispatch 14
Message

(Prior Art)
- Figure 1

PATENT AGENTS

2131400

Is The

Message Queue

Empty
?

16

Yield To Task 18
With Non-Empty

Message Queue

YES

NO

Message Becomes
Available In 20

Message Queue

Another Task
Yields To 22

Original Program

Retrieve
Message From 24

Queue

(Prior Art)
Figure 2

SINAOV IN4LVd

vpopyy B woor))
vhbipy, worg)

¢ ainbi4

. 7 JSMPIYOS
.=) 2
—

9381038 €
it

preoqAoy] ¥siq
o .
o~ 9¢ 141 ct 0t]7
—
2
NdO
WRISAQ L

9¢ 3uissa001 BB

2131406

Begin

Organize Tasks
Into Logical
Groups

Schedule Groups
Preemptively
Wherein Each

Group Is Given A
Timne Slot Of

Processor Time

Schecdule Tasks
Within Each

Group Cooperatively

44

46

43

G a4nbi4

¢131400

SEREEEESL E_———

sn
9]0A)) PuoRS PR 1

'l"' 'J‘\-

- . c > : z T .. - jojsauny

PATENT AGENTS

2131405

Group List 50

Handle - Task 1
Handle - Task 2

Handle - Task 7

Handle - Task 8

Figure 6

S2A

52B

J2C

52D

2131400

Begin

Begin With
Task In Its >4
Own Group

Perform LoadLibrary
Or LoadMode 56
Calls To Link
to DLLs

Move Task Into
A Group With
Other Tasks Which
Use Same DLLs

58

Figure 7

", Oyen Wi

PATENT AGENTS

2131400

Begin

Place Task In
First Group In
Suspended State

Wait Till No
Application Code

For Second Group
Is Running

Put Task From
First Group Into
Second Group

Let
Task
Run

Figure 8

60

62

66

¢13140¢

Group Status Table 68

70A

T2A Status Info. Task Name 74A
70B

72B Status Info. Task Name 74B
70C

72C Status Info. Task Name 74C
70D

72D Status Info. Task Name 74D

213140

Module Dependency List 76

Handle - Module 1 78A

Handle - DLL 1 78B

Handle - DLL 2 78C

Figure 10

Oyen Wigga
Green & Milzla

PATENT AGENTS

«131405

Begin

Maintain Module
Dependency List 80
For Each Module

Perform Action
That Adds A 82

Dependency Relative
To A Module

©131406

Begin

Create A 6

Create Task
Dependency List
By Taking Union

- Of Module
Dependency Lists

_ Figure 12

38

PATENT AGENTS

Perform LoadLibrary
Or LoadMode
Calls To Link

to DLLs

Move Task Into
A Group With
Other Tasks Which
Use Same DLLs

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - abstract drawing

