

1 558 400

(21) Application No. 46253/76 (22) Filed 5 Nov. 1976
 (31) Convention Application No.
 7 535 400U (32) Filed 7 Nov. 1975 in
 (33) Fed. Rep. of Germany (DE)
 (44) Complete Specification published 3 Jan. 1980
 (51) INT. CL.³ E04D 12/00
 (52) Index at acceptance
 F2M 204 272 E
 E1W JDB

(54) A SUPPORT FOR ATTACHING A RIDGE BATTEN

(71) We, REDLAND ROOF TILES LIMITED, a British Company, of, Redland House, Castle Gate, Reigate, Surrey, do hereby declare the invention, for which we 5 pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:—

The invention relates to a support for 10 attaching a ridge batten, which is to be mounted parallel to and at a distance above a ridge rafter.

The non-weather-dependent roofing of 15 the ridge of hipped roofs requires a ridge batten for the attachment of ridge tiles, sealing strips, ridge clamps and ridge caps. In most roof trusses no ridge batten is provided so that the latter is to be installed by the roofer only during the roofing operation. 20 Very often this takes places inexpertly with small spacing blocks, cut-off roof battens, oblique nailing to the ridge rafters and the like. Moreover, this type of installation of the ridge batten is very time-consuming and 25 frequently very ugly. In addition, alignment of the ridge batten is very difficult in this case and often the fastening is inadequate.

The invention provides a support for 30 attaching a ridge batten, which is to be mounted parallel to and at a distance above a ridge rafter, the support comprising a forked part which, in use, fits around the ridge rafter on either side thereof and a top 35 part of channel-shaped configuration to support and engage a ridge batten, in which the arms of the forked part each include fastening apertures and claw-like projections for penetrating the ridge rafter in use, 40 to facilitate provisional fitting of the support.

Such adaptation to ridge battens of varying width can be further improved by 45 allowing the fork arms to converge slightly towards one another adjacent the open end

of the forked parts. Above all, there can be achieved thereby an initially provisional fastening by simple clamping of the converging fork arms on to the ridge rafter, whereupon the final alignment can be effected 50 most simply and quickly after the ridge batten is installed.

A particularly simple embodiment results if the fastening apertures are formed by punching from the outside inwards, since in 55 this case the inwardly directed burrs produced during the punching operations may form the claws which serve as the provision securin gmeans.

It is possible to provide in the upright 60 arms of the channel-shaped top part at least one fastening aperture, through which screws or nails can be driven into the ridge batten. The provision in each case of two holes offset in relation to the other two is 65 recommended here in order to be able to secure in position, two ridge battens ending at this point.

A simple and therefore low-priced production possibility arises if the support con- 70 sists of two rust-proofed sheet-steel halves which are joined to one another, preferably riveted, in a web portion interposed between the top part and forked part.

In this case it is recommended to pro- 75 vide the forked-part halves with reinforcing beads preferably each with an outwardly convex reinforcing bead extending centrally in longitudinal direction.

A preferred embodiment of the invention 80 will now be described by way of example, with reference to the accompanying drawings, in which:

Figure 1 is a side view of a support according to the invention; 85

Figure 2 is a front view of the support of Figure 1, and

Figure 3 is an illustration in perspective of the support according to Figures 1 and 2 when mounted on a ridge rafter. 90

In the embodiment illustrated in the drawings, the support consists of two rust-proofed sheet-steel halves which are so bent or angled that there are formed a lower forked 5 part 1 and an upper channel-shaped top part 2, which are interconnected in a central web portion by rivets 6. The forked-part halves are provided with an outwardly convex reinforcing bead extending centrally 10 in the longitudinal direction of the fork halves and also with fastening apertures 4 which are formed by punching from the outside inwards so that inwardly directed burrs 5 arise. In each of the upright arms 15 of the channel-shaped top part 2 there are provided several fastening apertures 7.

The installation of the support is so carried out that initially a provisional fitting is achieved by positioning on a ridge rafter 20 GS and, if requisite, applying a light hammer blow in the vicinity of the apertures 4, whereupon the claws or burrs 5 are provisionally driven into the ridge rafter GS. This fastening should be easily releasable, 25 if required, during the aligning operation which may be carried out by means of a taut line. When the support is finally in its correct position, attachment means such as screws or nails (not shown) are driven 30 through the apertures 4 in the fork arms. Subsequently, a ridge batten G is inserted in the top part 2, whereupon the ridge batten is secured in position by further attachment means which are driven through the 35 apertures 7.

Of course, the example of embodiment described may be modified in many ways, without departing from the scope of the invention as set forth in the appendent 40 claims. For example, the support could be made of another material, and it could be made optionally in one piece by injection moulding from adequately strong plastics.

WHAT WE CLAIM IS:—

45 1. A support for attaching a ridge batten, which is to be mounted parallel to and at a distance above a ridge rafter, the support comprising a forked part which, in use, fits around the ridge rafter on either side there-

of and a top part of channel-shaped con- 50 figuration to support and engage a ridge batten, in which the arms of the forked part each include fastening apertures and claw-like projections for penetrating the ridge rafter in use, to facilitate provisional fitting 55 of the support.

2. A support as claimed in claim 1, in which the arms of the forked part converge slightly towards one another adjacent the open end of the forked part. 60

3. A support as claimed in claim 1 or claim 2, in which the fastening apertures are formed by punching from the outside of each fork arm towards the other fork arm.

4. A support as claimed in any one of the preceding claims, in which at least one fastening aperture is formed in each upright arm of the channel-shaped top part. 65

5. A support as claimed in any one of the preceding claims, in which the support 70 consists of two rust-proofed sheet-steel halves which are joined together, at a web portion interposed between the top part and the forked part.

6. A support as claimed in claim 5 in 75 which the two halves are joined together by rivets.

7. A support as claimed in any one of the preceding claims, in which the arms of forked-part are each provided with reinforcing 80 beads.

8. A support for a ridge batten substantially as hereinbefore described with reference to and as shown in the accompanying drawings. 85

9. A roof portion comprising a ridge rafter, a ridge batten, and at least one support as claimed in any one of the preceding claims supporting the ridge batten above the ridge rafter. 90

10. A roof section substantially as hereinbefore described with reference to and as shown in Figure 3 of the accompanying drawings.

BOULT, WADE & TENNANT
Chartered Patent Agents,
34 Cursitor Street,
London, EC4A 1PQ.

Fig. 1.

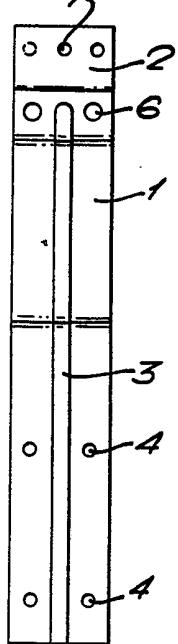


Fig. 2.

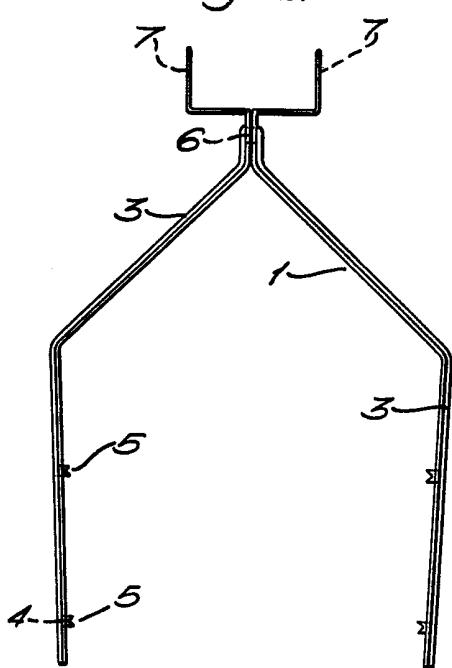
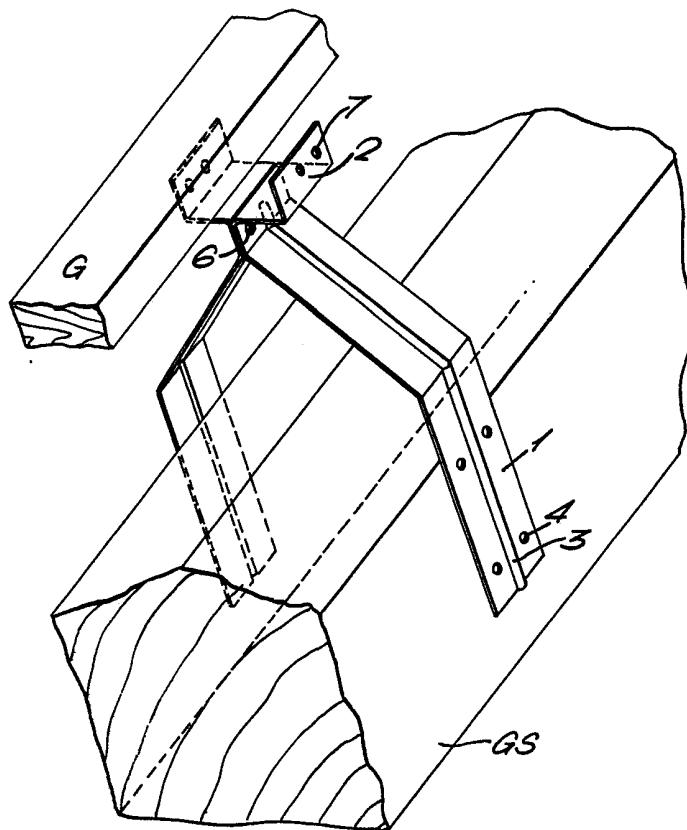



Fig. 3.

