PCT WORLD INTELLECTUAL

International Bureau

PROPERTY ORGANIZATION

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : - (11) International Publication Number: WO 94/14119
GO6F 12/00 Al
(43) International Publication Date: 23 June 1994 (23.06.94)
(21) International Application Number: PCT/US93/11797 | (81) Designated States: AU, CA, European patent (AT, BE, CH,
DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 6 December 1993 (06.12.93)
Published
(30) Priority Data: With international search report.
07/987,755 7 December 1992 (07.12.92) Us Before the expiration of the time limit for amending the

(71) Applicant: RAXCO, INCORPORATED [US/US]; 2440 Re-
search Boulevard, Suite 200, Rockville, MD 20850 (US).

(72) Inventor: DAVY, William, R.; 5522 Loch More Court, Dublin,
OH 43017 (US).

(74) Agents: GATTO, James, G. et al.; Baker & Botts, LL.P., 555
13th Street, N.-W., Suite 500 East, Washington, DC 20004

US).

claims and to be republished in the event of the receipt of
amendments.

(54) Title: APPARATUS AND METHOD FOR MOVING OPEN

(57) Abstract

FILES

A method for moving open files on a computer system is disclosed. According to one aspect of the invention, an open file may be
accessed by a user while being moved. To ensure accuracy, if data is to be written to an open file while it is being moved, the data is

written to both the old and new locations.

applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CcG Congo

CH Switzerland

CI Cbte d'Ivoire
cM Cameroon

CN China

cs Czechoslovakia
Ccz Czech Republic
DE Germany

DK Denmark

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

QOQQ
XZmE

SEE85<EKFRE BEE-AHE

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Taly

Japan

Kenya

Kyrgystan
Democratic People's Republic
of Korea
Republic of Korea
Kazakhstan

Republic of Moldova
Madagascar

Mali

Mongolia

SRGFHd3J2RRREEEIRTEERLS

10

15

20

25

. 30

WO 94/14119 PCT/US93/11797

APPARATUS AND METHOD FOR MOVING OPEN FILES

Field of the Invention

The invention relates to an apparatus and method for moving open files in a
computer system.

Background of the Invention

It is well known in the computer field that for performance and other reasons,
it is desirable to defragment (i.e., consolidate the segments of a file into one logically
contiguous location on a disk) and/or optimize the position of files at a location on a
disk other than their current location. Typically, defragmenting and positioning have
been performed on files not curréntly in use.

Commercial defragmenters and disk optimizers (which both defragment and/or
optimize file position on a disk) have been available for a number of years. Specifically,
defragmenters and disk optimizers for use in the VAX/VMS marketplace are available.
While the discussion herein is primarily directed to the VAX/VMS, application of this
method to other systems will be readily apparent to one of ordinary skill in the art.
However, none of these products can move files that are concurrently being read and
written (i.e., "open" files). These commercial defragmenters and disk optimizers have
a number of key features which are necessary to make them generally useful. Among
these necessary and currently available functions are the following.

First, the software must run in a VAXcluster. VAXcluster is the name of the
software environment created by DEC which allows multiple VAX systems to be linked
together in such a way that any or all of the systems can share the disks on any or all
of the other systems just as though those disks were attached to the local systems.

Second, the operation must be completely transparent to any and all user
applications. That is, all user programs must run exactly the same and produce the
exact same results, regardless of whether or not files are being defragmented or moved.
Currently available software accomplishes this feat in part by not moving files that are

currently being accessed by other users. If another user were to try to access the file

10

15

20

25

30

WO 94/14119 PCT/US93/11797

being moved, that user would either be stalled until the file move was completed or else
the file move would be aborted, leaving the old version of the file for the user to access.

Third, the move file operation must be "atomic." That is, a file can never be left
in an intermediate state. For example, it is possible that a system can crash at any time
(for example, due to a power failure, hardware failure, etc.). Regardless of the nature
of the failure, the file must be left either in its original state or else in its completely
copied state.

The reference to "locks" herein is intended to refer to the standard Distributed
Lock Manager locks described in the VAX/VMS documentation set. These are logical
locks on arbitrary "resources” whose names can be up to 31 characters. The lock
manager is a standard part of the VMS operating system and are maintained cluster-
wide by VMS through standard VMS system calls. A working knowledge of the
Distributed Lock Manager is assumed.

One prior software package is called Perfect Disk ("PD"), which operates as
follows. When a process in the VMS file system tries to open, close, extend, or delete
a file, the XQP (the file system processing code) takes out a "protected write" mode
(PW) lock on the file that is called the "file serialization" lock. Its name is F11B$s +
the file identification number. This lock will be referred to herein as the F11B$s lock
or the file serialization lock. By taking out this lock, the system can check the status of
the file (opened, closed, etc.) and be guaranteed that no other user will change the
status while it is doing so. When the status check or state change is completed, the
XQP gives up the lock so that other users may access the file.

When PD determines that it would like to move a particular file, it starts by
taking out a "file serialization" lock in "protected read" (PR) mode with a "blocking
AST" (the blocking AST causes a notification if another users tries to take out an
incompatible lock). While it holds the F11B$s lock in PR mode, no other users in the
cluster can change the state of its access. In particular, if no other user has the file
open, then no other user can access the file while the lock is held.

After PD acquires the lock, it checks locally to determine if another user has the

file open locally. This is done by searching the file control blocks (FCBs) maintained

10

15

20

25

30

WO 94/14119 PCT/US93/11797

in main memory by the XQP for all open files. If it is not open on the local node, then
PD takes out a "file access arbitration” lock (referred herein as the F11B$a lock) in null
(NL) mode. If a file is open on any node in a VAXcluster, then there exists such a lock
on that node. PD can then do a $GETLKI (get lock information) system call and
determine how many such locks exist in the cluster. If there is more than one (PD’s
lock), then another user has the file open and PD will not attempt to move the file. PD
then drops the F11B$a lock since it has no further use for it at that time. Assuming the
process is to continue, PD then allocates space on the disk at the target location for the
defragmented/optimized version of the file. It reads the file data from the old location
and writes it to the new location. A verification pass can be performed if desired to
guarantee that the data was correctly copied. Up to this point, if the system crashes for
some reason, the old file exists as always and there is no problem. The space allocated
for the new version of the file will be deallocated when the disk bitmap is rebuilt, a
normal operation at start-up.

As is well known, a file on a disk contains not only the data portion of the file,
but also a file header containing "metadata.” This file header contains data about the
file including its name, size, creation, last backup, expiration, and modification dates,
and mapping pointers that describe where the data portion of the file exists on the disk.
The file header typically exists in block(s), and if it exists in more than one block, PD
only moves the portion mapped by one file header blocking at a time. PD reads the old
header, rewrites the file mapping pointers in memory, and then queues the rewrite of
the header to disk. Either this rewrite succeeds or it fails. If it succeeds, then the file
exists at its new location. If it fails, it exists at its old location. PD then deallocates the
space where the old version of the file existed and drops the F11BS$s lock so other users
can then access the file. Note that any user that tried to access the file while PD was
copying it was naturally put into a wait state by the lock manager (the process would be
waiting to get its F11B3s lock in PW mode). When PD drops the F11B$s lock, the
process may resume.

The foregoing method is useful for moving files (or segments) that are not open.

However, various problems arise when trying to move open files. As a result, the above

10

15

20

25

30

WO 94/14119 PCT/US93/11797

scheme is inadequate to move "open files" (i.e., files that are being accessed for read or
write by other users). While it has been previously recognized that it would be desirable
to perform these functions while users are using the system and perhaps even the very
file(s) to be defragmented or positioned, no solution to the various problems associated
with such a capability has been provided. For example, in trying to move open files, one
or more of the following problems may arise, among others.

A user that has the file open (anywhere in the cluster) has two data structures
in memory that describe the state of the file and its location. The first is the file control
blocking (FCB) mentioned before. It may have information that indicates the logical
blocking number on the disk of the first blocking of the file (if the file is contiguous).
It also has a "window control block" (WCB) that indicates where at least a portion of
the file exists on the disk. If PD moves the file without causing these structures to be
updated, then the reads and writes depending upon these structures will read and write
where the file previously existed. This is undesirable.

For example, consider the case where a user is writing to the file while it is being
copied. The writes must be coordinated with the copy of the file. For example, if a
portion of the file has been read from the old location and written to the new location,
then the writes must be made over the new portion of the file. If the write is to a
portion of the file that has not yet been copied, then it must be made to the old portion
of the file so that when PD copies over the new portion of the file, updated data will
be written. If a user extends a file (that is, allocates more space to the file, and perhaps
writes new data to it), PD must make sure that the new segment(s) of the file exists
somehow in the new version of the file. If a user write to the file’s new location should
fail to properly write the data due to some I1/O error (perhaps a bad spot on the surface
of the disk) that would not have occurred writing to the file in its old location, then PD
must be notified that the new copy of the file is bad so that it will not complete the copy
operation. Various other concerns and problems also exist when trying to open files.

DEC and third-party developers have written products for the highly
competitive defragmenter market since at least 1985 but none of these products has

moved open files. Potential developers would be highly motivated to provide such a

10

15

20

25

30

WO 94/14119 PCT/US93/11797

capability because of the great marketing and technical advantages of being able to work
on all of the files on a disk instead of just a portion of them. The failure of others to
provide a workable solution evidences the long-felt but unfulfilled need to move open
files.

Summary of the Invention

It is an object of the invention to overcome these and other drawbacks of the
prior art. More specifically, it is one object of the invention to provide a method for
moving open files.

In order to solve the foregoing and other problems, a cooperating "server" process
is provided on each node in the VAXcluster. In this description, the file moving process
will be called PD, and the server process will be called PD_SERVER.

Brief Description of the Drawings

Figure 1 is a flow chart illustrating a portion of the initial operation of PD and
PD SERVER.

Figure 2 and 2a show the flow of control for a portion of PD and PD_SERVER.

Figure 3 is a flow chart illustrating a portion of the synchronization of PD and
a user file 1/0.

Detailed Description of the Preferred Embodiments

Before attempting to copy a file, the PD_SERVER process is started on every
node in the cluster on which the file to be .copied is open. In this particular
implementation, PD automatically tries to start the server on every node in the cluster
before it tries to copy its first file so that it does not suffer the overhead at each file
copy.

There are a number of ways to start proéesses on both local and remote nodes
as will be readily apparent to one skilled in the art. In this implementation, PD copies
the server process code to the disk being optimized and then uses "SYSMAN," a VMS
utility, to start it from a spawned process.

As shown in Figure 1, for example, before starting the PD_SERVER processes,
PD takes out a lock with the name PD_SERVER diskname (where diskname is the
name of the disk to be optimized) in PW mode (101). It holds this lock as long as it is

10

15

20

25

30

WO 94/14119 PCT/US93/11797

working on the disk. When it gives up the lock, it is a signal to the PD_SERVER
processes that PD is no longer interested in the disk and that the PD_SERVER process
should exit. If the node upon which PD is running should crash, then the other nodes
are automatically notified because this lock will go away when the node does. Before
starting the PD_SERVER processes, PD also takes out a lock with the name
PD_FID_diskname in PW mode (102). This lock has several uses as discussed below.
For example, this lock is used to signal to the PD_SERVER processes that a new file
is being copied, which file is being worked upon, and completion status (success or
failure) of the copy operation. The PD_SERVER can tell which disk it is being run
from and therefore, it knows which disk it is serving. It also makes checks to see that
it is the only copy of PD_SERVER which is serving that disk. If there is already
another such process, it just exits. Once the PD Server processes are started (103, 104),
The PD_SERVER process queues a lock with the name PD_SERVER _diskname in PR
mode (105). This lock is incompatible with the PD_SERVER diskname lock held by
the PD process. If the lock is ever granted, it is a signal that the PD process is exiting
or that the PD process’s node has crashed. If PD_SERVER is currently assisting with
the copying of a file, it also serves as a signal that the copy will not be completed and
the final update should not be made. The PD_SERVER process then takes out a lock
with the name PD_SERVER diskname in concurrent write (CW) mode (106). (This
lock mode is compatible with other CW mode locks on the resource but not with PW
locks. The utility of this will become apparent from the discussion below). The
PD_SERVER process then queues for a PD _FID diskname lock in PR mode (107).
The PR mode is compatible with similar locks queued for by the P SERVER
processes but not with the PW lock held by PD. PD_SERVER waits for the lock to be
granted (108).

Meanwhile, PD identifies a file to be copied and starts a file copy operation at
A (Figure 2) similar to the one described for moving closed files. It takes out the
F11BSs lock on the file in EX mode to keep other users from opening, closing,
extending, deleting, or truncating the file while it holds the lock. It checks for other

users accessing the file anywhere in the cluster. If none are accessing it, then the

10

15

20

25

WO 94/14119 PCT/US93/11797

normal closed file copy procedure may be used. However, if the file is open anywhere
on the system, PD checks that PD_SERVER is holding the PD FID_diskname lock on
every node that has the file open. It is not necessary the PD_SERVER be running on
nodes that do not have the file open (202). If all such nodes have not successfully
started and maintained the PD_SERVER processes, then the file will not be copied.
PD solves the problem(s) of other users opening the file during the copy by not
relinquishing the F11B3$s lock during the copy. It also avoids the problem(s) of other
users closing, extending, truncating, or deleting the file because none of these operations
can occur while PD is holding the F11BS$s lock.

PD then takes out a lock on PD_ERROR diskname lock in PR mode with
blocking AST (203). If a PD_SERVER process queues for a PD_ERROR _diskname
lock in CW mode, PD will get such a blocking AST. This is a mechanism that is used
for the PD_SERVER processes to notify PD that an error has occurred "remotely"
which should cause PD to abort the copy operation without updating the header to point
to the new data.

PD next determines which part of the file it will move (it doesn’t necessarily have
to move the entire file) to what location on the disk and allocates that space (204).
When all of this setup is completed, PD notifies the PD_SERVER processes by writing
the file ID (a unique identifier), the starting virtual blocking number (VBN) of the file
to be copied, the number of blocks to be copied, and the starting logical blocking that
the new portion of the file will occupy into the "value block" of the PD _FID_diskname
lock and converts the PD_FID_diskname lock from the PW to PR mode (205).

When PD lowers the PD_FID_diskname lock to PR mode, any waiting requests
for the PD_FID_diskname locks in PR mode in all of the PD_SERVER processes are
granted (206). The PD_SERVER processes then read the lock’s value blocking to learn
the file ID, starting VBN, number of blocks to be copied, and target LBN. At this
point, the PD_SERVER nprocesses are ready to cooperate with PD in the file copy.
However, the PD_SERVER process must stall the PD process from starting the file

copy until certain housekeeping functions are taken care of.

10

15

20

25

30

WO 94/14119 PCT/US93/11797

It must be guaranteed that user processes will read and particularly write to the
right location on the disk while PD is copying a file. While PD is copying a file and
before it updates the header, all of the user processes can read the file from its original
position. The old data is there the entire time, and furthermore, VMS naturally makes
the processes read the right data under all conditions. So reads are not a particular
problem while PD is copying the data to the new location.

Writes to the file are, however, a particular problem. It is not sufficient to write
any given 1/O to just one of the old or new locations of the file. While it might seem
that some scheme would allow the data to be written to just one location or the other,
depending upon PD’s progress at copying the data, this is not adequate since, for
example, PD may fail to complete the copy. (For example, its node might have a power

failure, etc.) Therefore, all writes to the file during the PD copy phase are preferably

~ written over the old version of the file. Furthermore, if PD has already copied that area

of the file to its new location, the write must also occur at the new location. The
solution therefore, is to make all write I/Os write both to locations. Methods for
"shadowing" disk I/Os (i.e., making them write in two or more locations), in genefal, are
known to those skilled in the art, but have not been used for this particular purpose.
PD_SERVER can identify and shadow just exactly those 1/O since it knows which
blocks in which files must be shadowed.

However, there remain at least three other problems related to the file copy
phase that must be recognized and addressed. First, when PD wants to start copying a
file, PD_SERVER acquires the PD_FID_diskname lock as described above and is ready
to go. It knows to shadow all future write I/Os to the file until the copy phase is done.
However, this alone is inadequate. It is possible that one or more write 1/Os to the file
were queued before PD wanted to copy the file, but that for one reason or another,
have not yet completed. (Though unlikely, in VAXclusters, it is possible that disk 1/Os
may take minutes or even hours to complete.) Therefore, PD must wait to start its copy
until all outstanding write I/Os to the file have completed.

Another problem is that even though shadowing the write 1/Os to both the old

and new copies of the file is occurring, the system still must synchronize the write 1/Os

10

15

20

25

30

WO 94/14119 PCT/US93/11797

with the PD copy process for at least the following reason. Suppose that during the
copy phase, PD reads some blocking of data from the old location of the file, but before
it can write it out to the new location, a user process writes that blocking of data. Even
though the user write is shadowed to the new location, if it is written before PD can
write its version of the data to the new location (and that is quite possible), user data
will be lost in the new portion of the file. If the file copy is completed by PD, the user
data will be lost. Therefore, writes to the disk should preferably be synchronized to
prohibit this possibility.

Finally, when PD is done copying the file, it must point the file header mapping
pointers to the new location of the file, rewrite the file header, and then deallocate the
space where the file previously but no longer exists. This space can then be allocated
to another file. If PD_SERVER was shadowing a write 1/O to the file and the 1/O was
somehow delayed (a distinct possibility), when it completed later on, it might incorrectly
write old data over another file. The following solutions overcome these potential
problems.

In order for any user process on any node to be able to write to a file being
copied, the PD_SERVER process must hold the PD_BLOCK diskname lock in CW
mode. In order for PD to do a read and then write of any data in the file for its copy
operation, it must hold the PD BLOCK diskname in PW mode. While any
PD_SERVER holds this lock in CW mode, PD cannot hold the lock in PW mode. So
PD is preferably programmed so that it will not do the copy unless it holds the
PD_BLOCK diskname lock in PW mode and the PD SERVER processes are
preferably programmed to stall all write I/Os (303) until it holds the
PD_BLOCK diskname lock in CW mode. (Acquiring and releasing the locks is
standard VMS lock work for those skilled in the art.) This solves the problem of users
writing data during PD copy read-then-write copy operations. As shown in Fig. 3, for
example, this may be implemented as follows.

To write to a file being copied, PD_SERVER determines whether it is currently
holding PD_BLOCK_diskname lock in CW mode (301). If not, it holds the I/O and
queues and waits for PD_BLOCK _diskname lock in CW mode (302). When this occurs,

10

15

20

25

30

WO 94/14119 PCT/US93/11797

-10-

it sends the I/O request to the driver to write to the old location (303). When
complete, it requeues the driver to write to the new location (304). Upon completion
of the second queuing (305), it determines whether there is a blocking AST on
PD BLOCK _diskname lock (306). If yes, it drops the PD_BLOCK _diskname lock and
waits for a next event (307). If not, it is done and waits for the next 1/O or PD done
with file or blocking AST signal (308).

Meanwhile, PD determines whether it holds PD_ BLOCK _diskname lock
(309). If not, it queues and waits for PD BLOCK diskname lock in PW mode (310).
If yes, it reads the next segment of data from the file (311), writes data to the new file
location (312) and determines whether there is a blocking AST on
PD BLOCK diskname lock (313). If yes, PD drops the PD_BLOCK_diskname lock
(314) and control returns to 310. If not, control passes to 311.

To make sure that there are no latent I/Os at the start or finish which would
cause other problems (for example, as described above), the PD_SERVER process stalls
operations as follows. As described above, at the start of a file copy operation,
PD_SERVER acquires the PD_FID_diskname lock which tells it which file is to be
moved (206), but it is already holding the PD_ BLOCK _diskname lock in CW mode
(106) so that PD cannot actually start the data transfer. PD_SERVER then watches all
of the new diskname 1/Os that are queued to the diskname device from the local node.
It passes all of the I/O requests onto the driver except for the I/Os to the file being
copied (208), which it holds in a temporary queue. It then compares the number of
requests in its temporary queue with the VMS device driver field (UCB$W_QLEN)
which contains the number of outstanding I/Os on the device. When the two number
are equal, then there are no previously queued I/Os to the file still outstanding. This
allows the diskname to service all other I/Os and still stall the key ones as long as
necessary. When all of the outstanding I/Os for the file have been "collected" in the
temporary queue, synchronization has been accomplished and they are just requeued to
the driver in the standard VMS way. If PD is just starting to process a new file, then
when they are reprocessed by the driver, PD_SERVER will intercept them and shadow
the writes properly. If PD is finishing a file, PD_SERVER will have done its cleanup

10

15

20

25

30

WO 94/14119 PCT/US93/11797

-11-

and will cause only the second half of the shadowing to occur. That is, the part in which
the new location of the file is written.

Referring to the flow of a file copy, once PD_SERVER has performed the above
described stall operations, it waits for the outstanding write 1/Os to complete (208).
PD SERVER then drops the PD_BLOCK _diskname CW lock (209). When all of the
servers have done so, PD’s request for the PD BLOCK diskname PW lock will be
granted (207) and PD can copy file data (211). PD will hold the lock through each
individual sequence of reading and write each portion of the file. (A large file may
require many reads and writes.) At the end of each individual read/write, PD will check
to see if any PD_SERVER has requested the PD_BLOCK_diskname. If so, PD will
drop the lock, which will allow other users to write the file as described, and then will
requeue for it. When the other write(s) have completed, the PD_SERVER process(es)
will drop the PD BLOCK diskname lock(s) and PD will reacquire the
PD BLOCK diskname PW lock and then can continue its read/write operations.

From the PD_SERVER viewpoint, PD_SERVER is watching all of the diskname
1/0 requests. If it encounters a write I/O to the file being copied, rather than sending
the request on to the driver, it stalls the request until the PD_SERVER _diskname lock
is acquired in CW mode. When it gets the lock, it then sends the request to the driver
to write to the original location. When the original request is completed, it then
shadows the 1/O to the nmew location. Only then does PD SERVER drop the
PD BLOCK diskname lock so that PD can start another read/write operation. If
PD SERVER detects an error in either of the writes, then PD_SERVER takes out a
lock with the name PD_ERROR _diskname in CW mode (220). This is incompatible
with PD’s PR lock on the resource, so a blocking AST is generated in PD which informs
PD that there is an error somewhere and that PD should not finish moving the file and
control passes to 225.

Otherwise, PD finishes copying the data portion of the file. Up to this point,
there is no problem if any of the systems in the cluster should crash. If the system
running PD crashes, then its PD_SERVER diskname PW lock is released, all of the

remaining PD_SERVER process acquire their locks and know to exit without finishing

10

15

20

25

30

WO 94/14119 | PCT/US93/11797

-12-

a file update. The original file and data structures are just as before the start of the
copy. If any of the remote nodes running PD_SERVER crash, there is no problem
because they will not be doing any I/O to the file and will not be able to do so until the
copy is completely finished.

Then, PD (while holding the PD_BLOCK _diskname lock in PW mode) rewrites
the file header pointing to the new location of the data (221). Once again, if any of the
remote nodes crash, there is no problem because the new file will exist properly when
the system is rebooted. If the node running PD crashes, the signalling scheme still
works. The PD_SERVER processes will acquire the PD_SERVER _diskname lock and
know that there was a failure. PD_SERVER will mark the file’s FCB and WCBs stale
so that the file system will reread the file header (PD may or may not have updated it.)
Any pre-existing write 1/Os will be shadowed to both the old and new locations. Since
the PD process had not yet deallocated the old file space, it is safe to write to both
places. New I/Os will write to the proper place.

After writing the header (221), PD drops the PD BLOCK _diskname lock so that
outstanding I1/Os are allowed to proceed by PD_SERVER. PD queues to convert its
PD_FID_ diskname to PW mode if the copy was a success (222) (or to EX mode if the
header was not updated (226)). Meanwhile, the PD_SERVER processes, which are
holding the lock in PR mode, receive a blocking AST which informs them the PD is
done copying the file (210). Then PD_SERVER checks the lock mode of the PD
request to determine success or failure, but it matters little. In either case,
PD_SERVER marks the FCB and WCBs "stale" (228) so that the file system must
reread the file header so that new I/O requests will read/write the file in its new
location. PD_SERVER does its "stall" operation so that outstanding I/Os (possibly
shadowed) can complete. Upon completion of all outstanding 1/Os, PD_SERVER
drops the PD_FID_diskname lock to signify to PD that it has done all its cleanup (229).
PD_SERVER requeues for the PD_FID_diskname lock (230) so that it will be ready
for the next file to be copied by PD (231).

When all the PD_SERVERS have dropped their PD_FID_diskname locks (229),
PD acquires the lock in PW mode (232) and knows that the PD_SERVER cleanup is

WO 94/14119 PCT/US93/11797

-13-

complete. At this point, PD deallocates the diskname space where the old file no longer
resides, and finally, PD drops the F11BS$s lock (233) so that other users may open, close,
extend, truncate, or delete the file in the normal manner. This completes the file copy
operation and PD finds the next file to process (234).

The foregoing is a description of the preferred embodiments of the present
invention. However, various modifications within the scope of the invention will be
readily apparent to those skilled in the art. The invention is only limited by the claims

appended hereto.

10

15

20

25

WO 94/14119 PCT/US93/11797

-14-

CLAIMS

L. A method for moving an open file in a computer system, wherein said
open file is currently being accessed by at least one user, said method comprising the
steps of:

identifying an open file which is located at a first portion of a disk, where
at least a portion of said file is to be moved to a second portion of said disk;

moving at least a portion of said open file to said second portion of said
disk.

2. The method of claim 1 wherein said user may write to said open file while
said open file is being moved and further comprising the step of:

writing data to said open file while at least a portion of said open file is
in the process of being moved to said second portion of said disk, wherein said step of
writing data includes the steps of writing said data to said first and second portions of
said disk. ”

3. The method of claim 1 further comprising the step of acquiring and
maintaining a lock on said open file while said open file is being moved to said second
portion of said disk wherein said lock prevents said user from extending or truncating
said open file while said lock is maintained on said open file.

4. The method of claim 2 wherein once said step of writing data to said first
and second portions of said disk begins, no portion of the open file is copied until said
data is written to both said first and second portions of said disk.

5. In a computer system comprising means for defragmenting files by moving
at least a portion of said files and optimizing disks by moving file positions on said disk,
a method for moving at least a portion of an open file while said file is being accessed
by a user, said method comprising the steps of:

determining a portion of said file to be moved from a first location to a

second location; and

WO 94/14119 PCT/US93/11797

-15-

copying said portion of said file to said second location while enabling said
file to continue to be accessed by said user.

6. The method of claim 5 wherein when a user request to write data
to said file during said step of copying is made, said data is written to said file by writing
said data to both said first and second locations.

7. The method of claim 5 wherein accesses by a user comprises

reading and writing data.

WO 94/14119

175

PCT/US93/11797

FIG. 1
PD START
101
ACQUIRE PD_SERVER_
DISKNAME
LOCK IN PW MODE
102
ACQUIRE PD_FID
DISKNAME
LOCK IN PW MODE
103
START UP PD_SERVER
PROCESSES ON
ALL NODES 104
—————————— —| PD_SERVER START
105
QUEUE FOR PD_SERVER_
DISKNAME
LOCK IN PR MODE.
(IF EVER GRANTED
WA FOR PD_SERVER EXITS.)
PD_SERVERS 106
TO START
ACQUIRE PD_BLOCK_
DISKNAME
LOCK IN CW MODE
107
QUEUE FOR
PD_FID_DISKNAME
LOCK IN PR MODE.
===]
bm— ~108
DO OTHER WAIT TO GET
INITIALIZATION PD_FID_DISKNAME
WORK. LOCK. (THE SIGNAL
THAT PD HAS FILE TO COPY)

®

SUBSTITUTE SHEET (RULE 26)

WO 94/14119

2/5

FIG. 2

—

<;:) 201

OTHER
ACCESS

GET F11B$S AND FIND

USERS
ING FILE.

A

, 202

CHECK THAT PD_SERVER
IS RUNNING ON ALL NODES
ACCESSING FILE. QUIT, IF NOT.

\

, 203

GET PD_ERROR

IN PR MODE WITF

DISKNAME LOCK
H BLOCKING AST

\

, 204

DETERMINE PORTION OF FILE TO
BE MOVED AND ITS DESTINATION LBN.

\

| 205

TOPR

PUT ABOVE INFO INTO VALUE BLOCK
AND LOWER PD_FID_DISKNAME

MODE.

A

e s qums s v v — — —

| 207

QUEUE FOR AND
BLOCK_DISKNAME

WAIT TO GET PD_
LOCK IN PW MODE.

\

, 211

COPY FILE DATA WHILE HOLDING PD_
BLOCK_DISKNAME LOCK.

©

SUBSTITUTE SHEET (RULE 26)

A

PCT/US93/11797

206

LEARN FILE ID AND MOVE
INFO WHEN PD_FID_
DISKNAME LOCK IS
GRANTED IN PR MODE.

i 208

WAIT FOR ALL
OUTSTANDING 1/0s TO
FILE TO COMPLETE.

! 209

DROP THE PD_BLOCK
_DISKNAME LOCK SO PD
CAN START COPYING DATA.

WAIT FOR BLOCKING AST
ON PD_FID_DISKNAME
LOCK TO SIGNAL PD DONE
COPYING FILE.

WO 94/14119

PCT/US93/11797

315

‘JAOW Hd NI GILNYHD
007 IWVYNXSIA
al4~ad TLINA LIYM

1g2- ,

"300W YHd

_NIYOO0TINYNMSIA
a4 ad 404 3nano
0ez-’ A

MO0T INYNMSIA
a4 ad doHa
622 ,

‘3114 HO4 SEOM ANV
804 31VAIVANI

82z

[

QAII

'SS300dd

OL 3714 1X3aN aNI4
veg- ,

MO0 S84 dOHA
ANV dNNYFTI HSINIZ

cz2- A

"JAOW Md NI J3INVHO
349 01 ¥OOT13NVNASIA
ald dd HO4 LIVM

@Alll,_ \-zee

('SH3IAHIS ad 0L $S329NS
TYNDIS) ‘JAOW Md OL
MO0TINVYNYSIA ald

ad 3Sivd 04 3N3aNO

('sHIAHIS ad O1 HOYY3
TYNDIS) G0N X3 OL
MO0TIWYNYISIA Qld

dd 3SIvd 01 3n3N0

9zz- A

"LOVINI 34
TVYNIODIHO JAVIT OL

31vaddN Y3av3H 14oav

62z~

—

A A

‘NOILVOO1
M3N OL INIOd OL
H3AV3H 31714 31vddN

S
Y4 ON

£ %001
HOHHI ad NO LSV

ONIMO01g
0ce

ve "old

SUBSTITUTE SHEET (RULE 26)

WO 94/14119

475

FIG. 3

PD FILE COPY

PCT/US93/11797

-

[

309
CURRENTL
HOLDING PD_BLOCK_
DISKNAME LOCK
?

NO

>v YES /31 1

READ NEXT SEGMENT
OF DATA FROM FILE.

Y 312

WRITE DATA TO NEW
FILE LOCATION.

313
BLOCKING
AST ON PD_BLOCK_

YES

/310

QUEUE AND WAIT FOR
PD_BLOCK_DISKNAME
LOCK IN PW MODE.

A

/314
DROP PD BLOCK | -

DISKNAME
OCK2

NO

Y

_DISKNAME
LOCK.

SUBSTITUTE SHEET (RULE 26)

WO 94/14119

o5

FIG. 3A

PD_SERVER /O
INTERCEPT FILE WRITE I/O

301

CURRENTLY

HOLDING PD_BLOCK_

DISKNAME LOCK

IN CW MODE
?

YES |«

PCT/US93/11797

303

HOLD 1/0 AND QUEUE
FOR AND WAIT FOR
PD_BLOCK_DISKNAME
LOCK IN CW MODE.

| 808

SEND 1/O REQUEST TO DRIVER
TO WRITE OLD LOCATION.

! -804

INTERCEPT 1/O COMPLETION &
REQUEUE TO DRIVER TO WRITE
NEW LOCATION.

Y /’305

INTERCEPT 1/O COMPLETION
OF SECOND QUEUING.

306
BLOCKING
AST ON PD_BLOCK_
DISKNAME
OCK 2

YES
307

308

DONE. WAIT FOR NEXT
/0 OR PD SIGNAL
DONE WITH FILE, OR
BLOCKING AST.

DROP PD_BLOCK_DISKNAME
LOCK. WAIT FOR NEXT EVENT.

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US93/11797

A. CLASSIFICATION OF SUBJECT MATTER
IPC(5) :GO6F 12/00
US CL :395/600
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 395/600; 364/DIG.1, DIG.2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Elcetronic data base consulted during the international scarch (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED T(O BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

AE US, A, 5,276,867 (Kenley et al) 04 January 1994, whole| 1-7
document.

AP US, A, 5,237,682 (Bendert et al} 17 August 1993, whole| 1-7
document.

Y,P US, A, 5,212,786 (Sathi) 18 May 1993, abstract, Figures| 1,5,7
16- 17, col. 1, line 27 - col. 2, line 4, col. 7, line 43 - col. 8,
line 42.

Y,P US, A, 5,175,852 (Johnson et al) 29 December 1992, whole| 3
document.

Further documents are listed 1in the continuation of Box C. D Sce patent family annex.

M Special categories of cited documents . later document published after the internationai filing date or priority
- . date and nol in conflict with the application but cited 1o understand the
A document defining the generi state of the art which i not considered principie or theory underlying the invention
10 be pan of puruiculur relevance
e N . R X document of purticular relevance; the claimed invention cannot be
E carlier document published on or alter the nternatonal filing date considered novel or cannot be considered Lo involve an inventive step
‘L document which may throw doubts an priority cliim(s) or which 18 when the document is tnken alone
cited 1o estblish the publicution dute of unother citution or other . . . X
specinl renson (uy apecified) Y document of particulur relevance: the cluimed invention cannot be
considered Lo involve an invenlive step when the document iy
0 document referning 10 an orul diclosure. use. exhibition or other combined with one or more other such documents. such combination
means being vbvious to u person skilled i the an
P document published priot to the internutional filing date butlater thun -+ g+ document imember of the sume putent family
the prionty date climed
Date of the actual completion of the international scarch Date of mailing of the international search report
16 February 1994 MAYO 9 1994
Name and mailing address of the ISA/US Authorized officer
Comnussioner of ‘Patents and Trademarks .
Box PCT MARIA N. VON BUHR
Washington, D.C. 20231 ‘ -Q\\(
Facsimile No. (703) 305-3230 Telephone No. (703) 305-9600

Form PCT/ISA/210 (sccond sheet)duly 1992)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US93/11797
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US, A, 5,163,148 (Walls) 10 November 1992, abstract, vFigures 1,2,4-7
-- 4a-c, col. 2, lines 10-27, col. 2, line 62 - col. 3, line 22, col. 4, |---=--=---
Y lines 43-68, col. 5, line 10 - col. 9, line 13. 3
A US, A, 5,021,946 (Korty) 04 June 1991, whole document. 1-7
Y US, A, 5,008,853 (Bly et al) 16 April 1991, abstract, col. 30, line {3

31 - col. 32, line 14, col. 36, lines 5-64.

Form PCT/ISA/210 (continuation of sccond sheetJuly 1992)=

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US93/11797

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data basc and where practicable terms used):

APS - search terms: dises/disks. compaction, (de)fragmentation, read, write, update, editing,
locking, moving, copying, open/active files, (dis)contiguous, optimizing

Form PCT/ISA/210 (extra sheet)(July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

